
Deterministic Random Walks
on the Two-Dimensional Grid

Benjamin Doerr and Tobias Friedrich

Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. Deterministic and randomized balancing schemes are used
to distribute workload evenly in networks. In this paper, we compare
two very general ones: The random walk and the (deterministic) Propp
machine. Roughly speaking, we show that on the two-dimensional grid,
the Propp machine always has the same number of tokens on a node
as does the random walk in expectation, apart from an additive error
of less than eight. This constant is independent of the total number of
tokens and the runtime of the two processes. However, we also show that
it makes a difference whether the Propp machine serves the neighbors in
a circular or non-circular order.

1 Introduction

Given an arbitrary graph, a random walk is a path which begins at a given
starting point and chooses the next node from the set of its current neighbors
uniformly at random. Random walks have been used to model a wide variety
of processes in economics (share prices), physics (Brownian motion of molecules
in gases and liquids), medicine (cascades of neurons firing in the brain), and
mathematics (estimations and modeling of gambling). In computer science, they
are the heart of many randomized algorithms.

Jim Propp suggested the following quasirandom analogue to the random walk.
The study of quasirandom approaches is motivated by the experience that in
many applications they proved to be superior to random ones. Propp’s rotor-
router model, which we prefer to call Propp machine, is a simple deterministic
process. Each vertex is equipped with a “rotor” which points to one of its neigh-
bors. Instead of leaving a vertex in a random direction, the Propp walk follows
the direction of the rotor. Afterwards, the rotor is updated to point to a new
neighbor. For this, it follows a fixed cyclic permutation of the adjacent vertices.

The rotors ensure a very high degree of fairness. If a Propp walk visits some
vertex v exactly k times, then for each neighbor w of v it does the passage
v → w either �k/ deg(v)� or �k/ deg(v)� times. While in the random walk all
these numbers are k/ deg(v) in expectation, with high probability they deviate
from that by Θ(

√
k/ deg(v)). Therefore, in this respect the Propp machine is a

better simulation for the “expected random walk” than the random walk itself.
The Propp machine found considerable attention recently [2, 3, 5, 6]. In this

paper, we compare the two models with respect to their balancing behavior,

T. Asano (Ed.): ISAAC 2006, LNCS 4288, pp. 474–483, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Deterministic Random Walks on the Two-Dimensional Grid 475

another well-known application of random walks in computer science. In this
setting, each vertex holds a number of chips. These chips simultaneously and
in a synchronized manner perform a walk (random or Propp, depending on
the model). Clearly, we expect both model to reduce imbalances between the
occupation of vertices in each time step. As an idealized balancing scheme, we
also regard the linear machine. Here, we allow fractional chips, and in each time
step each vertex sends out exactly the same number (possibly non-integral) of
chips to each neighbor. Clearly, the linear machine describes what the random
walk does in expectation.

A well-studied problem is balancing the workload in a massively parallel com-
puter or distributed network [9]. Each node/processor initially has a collection
of tasks and the object is to balance the number of tasks at each node by moving
them to neighboring nodes. Hence, processors are modeled as vertices of an undi-
rected connected graph and links between them as edges. Jobs are modeled as
unit-size tokens. There are two models prevalent in the literature: the dimension
exchange and the diffusion paradigm. In both models each node’s decisions are
based only on local knowledge.

The intuition behind diffusion is that the number of tokens a processor sends
to its neighbor is proportional to the differential between the two processors and
some constant depending on the connecting edge [4]. A standard choice for these
constants is uniform diffusion, in which each processor simply averages the loads
of its neighbors at each step. This is usually modeled by allowing fractional
tasks and ignoring the roundings to whole tasks at each local balancing step.
However, the resulting deviations can become quite large, as was shown in [8].
To quantify the deviation between the fractional problem and the (real-world)
integer problem is an important step in understanding diffusive load-balancing.

Dimension exchange refers to (periodic) balancing circuits [7]. This model is
particularly suited to single-port architectures, where processors can only com-
municate with one of its d neighbors at a time. It decomposes the network in
a sequence M1, . . . , Md of perfect matchings and adds a balancer at each edge.
The balancer is a simple toggling device pointing to one of the incident nodes.
Its purpose is to balance the flow of chips along the wires. Each balancing round
consists of d steps, one for each matching. In step k, two nodes i, j which are
matched in Mk balance their loads xi, xj as closely as possible, i.e., their loads
become �xi+xj

2 � and �xi+xj

2 � with the excess chip following the balancer of the
edge {i, j}.

Both models raise the question how well such quasirandom approaches sim-
ulate the random one, in particular, how close they get to the idealized linear
approach (the random approach “in expectation”).

In order to stick not too closely to a particular workload balancing approach
for a particular distributed network, we analyze what we think is a sufficiently
general but simple model. We compare the classical random walk (respectively
the linear machine describing its expectation) with the Propp machine. Hence
we do not have weights attached to the edges. As underlying graph we choose
the two-dimensional infinite grid. Clearly, infinity is not a realistic assumption

476 B. Doerr and T. Friedrich

in a computer network setting. However, since in finite time chips can walk only
a finite distance, the behavior we detect also occurs on finite grids. Hence the
infinity assumption is rather used to get rid of some extra technicalities. Also,
we assume that our results can be extended to settings with weights attached
to the edges, as well as to other graph topologies or a setting where chips may
also stay on a vertex. We would like to stress that the focus of our research is
more fundamental than oriented to direct applicability. We do feel, however, that
the same questions for a particular balancing setting are highly relevant from
the view-point of application. Also, we are convinced that our methods can be
applied there in an analogous manner.

To measure the difference between the two models, we estimate the maximal
difference of the number of chips at any position and time in the Propp model
compared to the number in the linear model if both models start with the same
initial configuration. Apart from a technicality, which we defer to Section 2,
Cooper and Spencer [2] proved for all grids Z

d that this discrepancy can be
bounded by a constant cd, which only depends on the dimension. In particular,
cd is independent of the initial configuration, the runtime, and the cyclic permu-
tation of the cardinal directions (rotor sequence). For the graph being the infinite
path, Cooper et al. [3] showed that this constant is c1 ≈ 2.3. They further proved
that the discrepancy at the origin is maximized if each position sends exactly
one odd chip at a certain time in the direction of the origin.

In this paper, we continue this work and rigorously analyze the Propp machine
on the two-dimensional grid Z

2. In comparison to the one-dimensional case, a
number of new effects appear. In particular, the order in which the four neighbors
are served now makes a difference. We prove c2 ≈ 7.8 for circular (i.e., clockwise
or counterclockwise) rotor sequences and c2 ≈ 7.3 for all other rotor sequences.
This is the first paper which regards the influence of these rotor sequences. We
also precisely characterize the respective worst-case configurations. In particular,
we prove that the worst-case is already reached when each position sends at most
nine odd chips at at most three different times.

2 Preliminaries

To simplify the calculations, we rotate the grid by 45◦ and consider neighbors
in directions DIR :=

{
↗, ↘, ↙, ↖

}
. Note that by this, we only allow chips

on positions x =
(
x1
x2

)
with x1 ≡ x2 (mod 2). Since this model is isomorphic to

the standard two-dimensional grid model with neighbors {↑, →, ↓, ←}, our result
also holds for the standard model.

First, we fix some notation to describe chips on the grid. For x ∈ Z
2 and

t ∈ N0, x ∼ t denotes that x1 ≡ x2 ≡ t (mod 2) and x ∼ y denotes that
x1 ≡ x2 ≡ y1 ≡ y2 (mod 2). A position x is called “even” or “odd” if x ∼ 0 or
x ∼ 1, respectively. A configuration is called “even” or “odd” if all chips are at
an even or all at an odd positions, respectively.

As pointed out in the introduction, there is one limitation without which
neither the results of [2, 3] nor our results hold. Note that since Z

2 is a bipartite

Deterministic Random Walks on the Two-Dimensional Grid 477

graph, chips that start on even positions never mix with those starting on odd
positions. It looks like we are playing two games at once. However, this is not true,
because chips of different parity may affect each other through the rotors. Within
each game the number of chips send in the four directions is not balanced at each
position. One can cleverly arrange piles of off-parity chips to reorient rotors and
steer them away from random walk simulation. We therefore require the starting
configuration to have chips only on one parity. Without loss of generality, we
consider only even starting configurations.

A random walk on Z
2 can be described nicely by its probability density. By

H(x, t) we denote the probability that a chip from location x arrives at the origin
after t random steps (at time t) in a simple random walk. On a grid as defined
above, this is

H(x, t) = 4−t
(

t
(t+x1)/2

)(
t

(t+x2)/2

)

for x ∼ t and ‖x‖∞ ≤ t, and H(x, t) = 0 otherwise.
The order, in which the four neighbors in directions DIR are served, has a

significant impact on the discrepancy between Propp and linear machine. We
use the same rotor sequence for all positions and describe it by a cyclic function
NEXT : DIR → DIR. Implicitly in the following notations, we fix the rotor sequence
as well as the starting configuration. That is, the number of chips on vertices
and rotor directions. Let f(x, t) denote the number of chips and ARR(x, t) the
direction of the arrow at position x after t steps of the Propp machine. Note
that with this we can determine the resulting arrow after one Propp step via
ARR(x, t + 1) = NEXTf(x,t)

(
ARR(x, t)

)
.

Let E(x, t) denote the expected number of chips at location x after a random
walk of all chips for t steps. In the proofs, we also need the following mixed
notation. By E(x, t1, t2) we denote the expected number of chips at location x
after first performing t1 Propp and then t2 − t1 random walk steps.

3 Parity-Forcing Theorem

For a deterministic process like the Propp machine, it is obvious that the initial
configuration (that is, the position of each chip and the direction of each rotor),
determines all subsequent configurations. The following theorem shows a partial
converse, namely that (roughly speaking) we may prescribe the number of chips
modulo 4 on all vertices at all times and still find an initial configuration leading
to such a game. An analogous result for the one-dimensional Propp machine has
been shown in [3].

Theorem 1 (Parity-forcing Theorem). For any fixed rotor sequence, any
initial position of the arrows and any π : Z

2 × N0 → {0, 1, 2, 3} with π(x, t) = 0
for all x �∼ t, there is an initial even configuration f(x, 0), x ∈ Z

2 that results
in a game with f(x, t) ≡ π(x, t) (mod 4) for all x and t.

The proof is based on the observation that a pile of 4t chips splits evenly t times.
The details of this proof (and all proofs coming) are deferred to the full version
of this paper.

478 B. Doerr and T. Friedrich

4 The Basic Method

In this section we derive the main equations to compare Propp and linear ma-
chine based on the number of chips on a single vertex. We are interested in
bounding the discrepancies f(x, t) − E(x, t) for all vertices x and all times t.
Since we aim at bounds independent of the starting configuration, it suffices to
regard the vertex x = 0. With

E(0, 0, t) = E(0, t),
E(0, t, t) = f(0, t),

we get

f(0, t) − E(0, t) =
t−1∑

s=0

(E(0, s + 1, t) − E(0, s, t)) . (1)

By REM
(j)
s we denote the set of positions that are occupied by k chips with

k ≡ j (mod 4) at time s. Note that if a position contains four chips, then these
four chips behave identically on the Propp and linear machine. With this, we
obtain

E(0, s + 1, t) − E(0, s, t) (2)

=
∑

x∈REM
(1)
s

(
H(x + ARR(x, s), t − s − 1) − H(x, t − s)

)

+
∑

x∈REM
(2)
s

(
H(x + ARR(x, s), t − s − 1)

+H(x + NEXT(ARR(x, s)), t − s − 1)
−2H(x, t − s)

)

+
∑

x∈REM
(3)
s

(
H(x + ARR(x, s), t − s − 1)

+H(x + NEXT(ARR(x, s)), t − s − 1)
+H(x + NEXT2(ARR(x, s)), t − s − 1)
−3H(x, t − s)

)
.

We now regard single chips and define si(x) := min
{
u ≥ 0 | i <

∑u
t=0 f(x, t)

}

for all i ∈ N0, i.e., at time si(x) the location x is occupied by its i-th chip
(counting from 0). With

INF(x,A, t) := H(x + A, t − 1) − H(x, t)

for x ∼ t and INF(x,A, t) = 0 otherwise, we denote the influence of position x
with the arrow pointing to A at time t to the discrepancy between Propp and
linear machine. A simple calculation yields

INF(x,A, t) =
(
(A1x1 · A2x2)t−2 − (A1x1 + A2x2)t−1) H(x, t).

Deterministic Random Walks on the Two-Dimensional Grid 479

With these notations, Equations (1) and (2) give

f(0, T) − E(0, T) =
∑

x∈Z2

∑

i≥0

INF(x, NEXTi(ARR(x, 0)), T − si(x)). (3)

This is the main equation, which will be examined in the remainder. It shows
that the discrepancy is just the sum of the contributions

CON(x) :=
∑

i≥0

INF(x, NEXTi(ARR(x, 0)), T − si(x))

at all positions x. This is a very important observation since this allows us to
examine each position x separately.

5 The Modes of INF(x, A, t)

In the previous section, we expressed the discrepancy as a sum of certain influ-
ences INF(x,A, t). We now analyze INF(x,A, t). Let X ⊆ R. We call a mapping
f : X → R unimodal, if there is an m ∈ X such that f |x≤m as well as f |x≥m

are monotone. We call a mapping f : X → R bimodal, if there are m1, m2 ∈ X
such that f |x≤m1, f |m1≤x≤m2 , and f |m2≤x are monotone. We call a mapping
f : X → R strictly bimodal, if it is bimodal, but not unimodal.

Unimodal functions are popular in optimization and probability theory. The
probability H(x, t) that a chip from the origin arrives at location x at time t
in a simple random walk is unimodal in t. For our purposes it is important
that INF(x,A, t) is bimodal. To prove this, we need Descartes’ Rule of Signs,
which can be found in [1]. With this, we are now well equipped to characterize
INF(x,A, t) precisely.

Lemma 2. For all x and A, INF(x,A, t) is bimodal in t. It is strictly bimodal
in t if and only if (i) ‖x‖∞ > 6 and (ii) −A1x1 > A2x2 > (−A1x1 + 1)/2 or
−A2x2 > A1x1 > (−A2x2 + 1)/2.

We will also need the extrema of certain sums of INF’s. The following lemma
shows that

INF2(x,A(1),A(2), t) := INF(x,A(1), t) + INF(x,A(2), t)

has even nicer properties than INF itself. In particular, INF2(x,A(1),A(2), t) is
never strictly bimodal in t for A(1) �= A(2).

Lemma 3. For all x and A(1) �= A(2), INF2(x,A(1),A(2), t) is unimodal in t.

6 Worst-Case Behavior

In Section 4 we derived that for a fixed initial configuration, the single vertex
discrepancy is the sum of the contributions

CON(x) :=
∑

i≥0

INF(x, A(i), ti)

480 B. Doerr and T. Friedrich

of all positions x with A(i) := NEXTi(ARR(x, 0)) and ti := T − si(x). In this
section we determine for each rotor sequence and each position x the maximum
of CON(x) for all initial configurations. We denote this by MAXCON(x). Hence the
sum of all MAXCON(x) gives an upper bound for the single vertex discrepancy.
Due to the parity-forcing Theorem 1, there is also an initial configuration which
sends from all locations x (apart from multiples of four) exactly the number of
chips from x as the configurations with CON(x) = MAXCON(x). Thus, the upper
bound is tight:

f(0, T) − E(0, T) =
∑

x∈Z2

MAXCON(x). (4)

We now fix a rotor sequence and a position x and examine MAXCON(x). Lemmas 2
and 3 prove that INF(x,A, t) and INF(x,A(1), t)+ INF(x,A(2), t) are bimodal in t.
We observe that sending a chip in each direction at the same time does not
change CON(x). For all t we have

∑

A∈{↗,↘,↙,↖}
INF(x,A, t) = 0. (5)

This shows that all
∑

i INF(x,A(i), t) are bimodal in t. Since INF(x,A, 0) =
limt→∞ INF(x,A, t) = 0 for all A, each

∑
i INF(x,A(i), t) has at most two ex-

tremal times. The set of all extremal times of all
∑

i INF(x,A(i), t) can be defined
as follows.

EX(x) :=
⋃

A(1),A(2)∈{↗,↘,↙,↖}
maxt INF2(x,A(1),A(2),t)>0

argmax
t

INF2(x,A(1),A(2), t) ∪

⋃

A(1),A(2)∈{↗,↘,↙,↖}
mint INF2(x,A(1),A(2),t)<0

argmin
t

INF2(x,A(1),A(2), t)

with argmaxt f(t) := max{s | f(s) = maxt f(t)} and argmint f(t) :=
max{s | f(s) = mint f(t)}. Notice that

INF(x,A, t) = 1
2 INF2(x,A,A, t),

∑1
i=0 INF(x,A(i), t) = INF2(x,A(0),A(1), t), and

∑2
i=0 INF(x,A(i), t) = − 1

2 INF2(x,A(3),A(3), t).

Lemmas 2 and 3 imply |EX(x)| ≤ 7. By calculating the roots of the polynomials
p(x,A, t) and p(x,A(1), t) + p(x,A(2), t) given in Lemma 2, it is easy to deter-
mine EX(x). In Lemma 4 below we will show that there are configurations with
CON(x) = MAXCON(x) where chips are only send from x at times EX(x). This
proof is based on the following blocking argument.

A phase (of x) denotes a maximal period of time, in which all sums of
INF(x,A, t)’s are monotonic. That is, the upper and lower limit of a phase

Deterministic Random Walks on the Two-Dimensional Grid 481

is either an extremal time t ∈ EX(x), or 0, or T . Note that we can assume
T > max EX(x) and that the monotonicity is uniquely determined for all A in
each phase.

A block denotes four consecutive chips, at (possibly different) times tj , . . . , tj+3

send from x within one phase such that
∑j+k

i=j INF(x,A(i), t) is monotonically
increasing in t for all k ∈ {0, 1, 2}. By Equation (5), this is equivalent to∑j+3

i=j+k INF(x,A(i), t) being monotonically decreasing in t for all k ∈ {1, 2, 3}.
A block prefix denotes 0 ≤ � ≤ 3 consecutive chips at times tj , . . . , tj+�−1

send from x within one phase with
∑j+k

i=j INF(x,A(i), t) monotonically increasing
in t for all 0 ≤ k < �. A block suffix denotes 0 ≤ � ≤ 3 consecutive chips at
times tj , . . . , tj+�−1 send from x within one phase with

∑j+�−1
i=j+k INF(x,A(i), t)

monotonically decreasing in t for all 0 ≤ k < �.
To describe chips in a phase, we use → and ← to denote chips send in arrow

direction A(i) whose INF(x,A(i), t) is increasing or decreasing in t, respectively.
With this notation, there are four types of blocks: →←←←, →→←←, →→→←,
and →←→←. There are four important properties of blocks, which are shown
easily:

• For all blocks, there is a common time t with tj ≤ t ≤ tj+3 such that
∑j+3

i=j INF(x,Ai, ti) ≤
∑j+3

i=j INF(x,Ai, t) = 0. Hence, removing a block does
not decrease CON(x).

• For all block suffixes and prefixes, there is a common time t with tj ≤
t ≤ tj+�−1 such that

∑j+�−1
i=j INF(x,Ai, ti) ≤

∑j+�−1
i=j INF(x,Ai, t). Hence,

sending the � chips of a block suffix or prefix at a common time t instead at
times tj , . . . , tj+�−1 does not decrease CON(x).

• In each phase, the block type is uniquely determined by the monotonicity of
INF and INF2.

• Any sequence of chips sent within one phase, can be partitioned in a block
suffix, zero or more blocks, and a block prefix.

Lemma 4. There is an initial configuration with CON(x) = MAXCON(x) such
that there are only chips send from x at times EX(x).

Lemma 4 shows that configurations with CON(x) = MAXCON(x) that send a min-
imal number of chips, only send chips from x at times EX(x). With MAXCONt(x)
denoting the contribution at time t ∈ EX(x), we obtain

MAXCON(x) =
∑

t∈EX(x)

MAXCONt(x).

The following lemma proves that MAXCONt(x) is uniquely determined.

Lemma 5. MAXCONt(x) is uniquely determined by the monotonicity of INF and
INF2 in the two adjacent phases.

For all x we can now characterize exactly the configuration with CON(x) =
MAXCON(x) that sends the least number of chips. Note that by Equation (4),

482 B. Doerr and T. Friedrich

∑
x MAXCON(x) is not only an upper bound for the single vertex discrepancy

f(0, T) − E(0, T), but also a lower bound. With the help of a computer, it is
now easy to sum up over a large number of positions x and to calculate

∑

‖x‖∞≤800

MAXCON(x) ≈
{

7.831 for circular rotor sequences
7.285 for other rotor sequences.

Notice that these constants are just lower bounds for the single vertex dis-
crepancy. To prove that they are upper bounds as well, we have to bound
E :=

∑
‖x‖∞>800 CON(x). Equation (3) yields

E ≤
∑

‖x‖∞>800

(
∑

i≥0

−A
(i)
1 (x)

x1H(x, t − si(x))
t − si(x)

+

∑

i≥0

−A
(i)
2 (x)

x2H(x, t − si(x))
t − si(x)

+

∑

i≥0

A
(i)
1 (x)A(i)

2 (x)
x1x2H(x, t − si(x))

(t − si(x))2

)

(6)

for all times t ∈ N0. Note that, independent of the chosen rotor sequence, each
of the sequences (A(i)

1 (x))i≥0, (A(i)
2 (x))i≥0, and (A(i)

1 (x)A(i)
2 (x))i≥0 are either

strictly or in groups of two alternating. To bound the alternating sums of Equa-
tion (6), we need the following elementary fact.

Lemma 6. Let t0, . . . , tn ∈ X ⊆ R such that t0 ≤ . . . ≤ tn. Let f : X → R be
non-negative and unimodal. If A(i) is either strictly alternating or alternating in
groups of two, then

∣∣
∣
∣

n∑

i=0

A(i)f(ti)
∣∣
∣
∣ ≤ 2 max

x∈X
f(x).

The following lemma shows that (in contrast to INF) the three summands of
Equation (6) are indeed always unimodal.

Lemma 7. H(x, t)/t and H(x, t)/t2 are unimodal functions in t. Denote their
global maxima with tmax(x) and t′max(x), respectively. Then, (x2

1 + x2
2)/4 − 2 ≤

tmax(x) ≤ (x2
1 + x2

2)/4 + 1 and (x2
1 + x2

2)/6 − 1 ≤ t′max(x) ≤ (x2
1 + x2

2)/6 + 2.

By bounding the infinite sums with definite integrals, and applying Lemmas 6
and 7 we get E < 0.15, which finally proves

f(0, T) − E(0, T) ≈
{

7.8 for circular rotor sequences
7.3 for other rotor sequences.

Deterministic Random Walks on the Two-Dimensional Grid 483

References

[1] G. E. Collins and A. G. Akritas. Polynomial real root isolation using descarte’s rule
of signs. In SYMSAC ’76: Proceedings of the third ACM symposium on Symbolic
and algebraic computation, pp. 272–275, New York, NY, USA, 1976. ACM Press.

[2] J. Cooper and J. Spencer. Simulating a random walk with constant error. Combi-
natorics, Probability and Computing. (Also available at arXiv:math.CO/0402323).

[3] J. Cooper, B. Doerr, J. Spencer, and G. Tardos. Deterministic random walks. In
ANALCO’06: Proceedings of the Workshop on Analytic Algorithmics and Combi-
natorics, pp. 185–197, Philadelphia, PA, 2006. SIAM.

[4] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J.
Parallel Distrib. Comput., 7(2):279–301, 1989.

[5] M. Kleber. Goldbug Variations. The Mathematical Intelligencer, 27(1), 2005.
[6] L. Levine and Y. Peres. The rotor-router shape is spherical. The Mathematical

Intelligencer, 27(3):9–11, 2005.
[7] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of markov chains and

the analysis of iterative load-balancing schemes. In FOCS’98: Proceedings of the
39th Annual Symposium on Foundations of Computer Science, pp. 694–705. IEEE
Computer Society, 1998.

[8] R. Subramanian and I. D. Scherson. An analysis of diffusive load-balancing. In
SPAA, pp. 220–225, New York, NY, USA, 1994. ACM Press.

[9] C.-Z. Xu, B. Monien, R. Lüling, and F. C. M. Lau. An analytical comparison of
nearest neighbor algorithms for load balancing in parallel computers. In IPPS, pp.
472–479. IEEE Computer Society, 1995.

	Introduction
	Preliminaries
	Parity-Forcing Theorem
	The Basic Method
	The Modes of INF(x, A,t)
	Worst-Case Behavior

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

