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Abstract. A random geometric graph (RGG) is defined by placing n
points uniformly at random in [0, n1/d]d, and joining two points by an
edge whenever their Euclidean distance is at most some fixed r. We
assume that r is larger than the critical value for the emergence of a
connected component with Ω(n) nodes. We show that, with high proba-
bility (w.h.p.), for any two connected nodes with a minimum Euclidean
distance of ω(log n), their graph distance is only a constant factor larger
than their Euclidean distance. This implies that the diameter of the
largest connected component is Θ(n1/d/r) w.h.p.

We also analyze the following randomized broadcast algorithm on
RGGs. At the beginning, only one node from the largest connected com-
ponent of the RGG is informed. Then, in each round, each informed node
chooses a neighbor independently and uniformly at random and informs
it. We prove that w.h.p. this algorithm informs every node in the largest
connected component of an RGG within Θ(n1/d/r + log n) rounds.

1 Introduction

We study Random Geometric Graphs (RGGs) in d � 2 dimensions. An RGG
is a graph resulting from placing n nodes independently and uniformly at ran-
dom on [0, n1/d]d and creating edges between pairs of nodes if and only if their
Euclidean distance is at most r. These graphs have been studied intensively
in relation to subjects such as cluster analysis, statistical physics, and wireless
sensor networks [25]. Traditionally, most work on RGGs is restricted to two di-
mensions. However, wireless sensor networks also expand in three dimensions.
Examples are sensors in water bodies [1] and sensor networks based on the use
of flying anchors [19]. Another motivation for RGGs in arbitrary dimensions is
multivariate statistics of high-dimensional data [23]. In this case the coordinates
of the nodes of the RGG represent different attributes of the data. The metric
imposed by the RGG then depicts the similarity between data elements in the
high-dimensional space. Also in bioinformatics, RGGs in up to four dimensions
have been observed to give an excellent fit for various global and local measures
of protein-protein interaction networks [16].

Several algorithms and processes have been studied on RGGs. One promi-
nent example is the cover time of random walks. [3] considered RGGs in two
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dimensions when the coverage radius is a constant larger than the one that as-
sures the RGG to be connected with probability 1 − o(1). They proved that in
this regime, the cover time of an RGG is Θ(n log n) with probability 1 − o(1),
which is optimal up to constant factors. This has been improved by [5] who
gave a more precise estimate of the cover time on RGGs that also extends to
larger dimensions. However, all these works are restricted to the case where the
probability that the RGG is connected goes to 1 as n → ∞.

We are interested in a wider range for r. All the following results hold for
the regime where the RGG is likely to contain a connected component with
Ω(n) nodes. [4] proved for RGGs in d = 2 dimensions that with probability
1 − O(n−1) any two connected nodes with a minimum Euclidean distance of
Ω(log3.5 n/r2), their graph distance is only a constant factor larger than their
Euclidean distance. We establish this result for all dimensions d � 2 under the
weaker condition that the minimum Euclidean distance is ω(log n). For this, we
have to employ a different proof technique since the approach of [4] strongly
depends on restrictions imposed by the geometry in two dimensions. Our result
implies that the diameter of the largest connected component is O(n1/d/r) with
high probability1, which was open for d � 3 and matches the corresponding
bound for d = 2 [4, 7]. Our techniques are inspired by percolation theory and
we believe them to be useful for other problems, like estimating the cover time
for the largest connected component of RGGs.

Broadcasting Information

We use the forementioned structural result of RGGs to study the problem of
broadcasting information in RGGs. We study the well known randomized ru-
mor spreading algorithm which is also known as push algorithm [10]. In this
algorithm, in each round each informed node chooses a neighbor independently
and uniformly at random and informs it. We are interested in the runtime, i.e.,
how long it takes to spread a piece of information from an arbitrary node of the
largest connected component to all other connected nodes.

The obvious lower bound of this process on an arbitrary graph G is
Ω(diam(G) + log n), where diam(G) denotes the diameter of the largest con-
nected component. A matching upper bound of O(diam(G) + log n) is known
for complete graphs [13, 24], hypercubes [10], expander graphs [27, 12], sev-
eral Cayley graphs [8], and RGGs in two dimensions [4]. In this paper we
prove that also RGGs in d � 3 dimensions allow an optimal broadcast time
of O(diam(G) + log n) = O(n1/d/r + log n) w.h.p. This generalizes the two-
dimensional result of [4] and significantly improves upon the general bound of
O(Δ · (diam(G) + log n)) [10] since for sparse RGGs (where r = Θ(1)) the max-
imum degree is Δ = Θ(log n/ log log n). Note that also for connected RGGs our
result implies that all nodes get informed after O(n1/d/r + log n) rounds.

1 By with high probability (short: w.h.p.), we refer to an event that holds with prob-
ability at least 1 −O(n−1).
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2 Precise Model and Results

We consider the following random broadcast algorithm also known as the push
algorithm (cf. [10]). We are given an undirected graph G. At the beginning, called
round 0, a node s of G owns a piece of information, i.e., it is informed. In each
subsequent round 1, 2, . . ., every informed node chooses a neighbor independently
and uniformly at random and informs that neighbor. We are interested in the
runtime of this algorithm, which is the time until every node in G gets informed;
in case of G being disconnected, we require every node in the same connected
component as s to get informed. The runtime of this algorithm is a random
variable denoted by R(s, G). Our aim is to prove bounds on R(s, G) that hold
with high probability, i.e., with probability 1 −O(n−1).

We study R(s, G) for the case of a random geometric graph G in arbitrary
dimension d � 2. We define the random geometric graph in the space Ω :=
[0, n1/d]d equipped with the Euclidean norm, which we denote by ‖ · ‖2. The
most natural definition of RGG is stated as follows.

Definition 1 (cf. [23]). Let Xn = {X1, X2, . . . , Xn} be points in Ω chosen
independently and uniformly at random. The random geometric graph G(Xn; r)
has node set Xn and edge set {(x, y) : x, y ∈ Xn, ‖x − y‖2 � r}.
In our analysis, it is more advantageous to use to the following definition.

Definition 2 (cf. [23]). Let Nn be a Poisson random variable with mean n
and let Pn = {X1, X2, . . . , XNn} be points chosen independently and uniformly
at random from Ω; i.e., Pn is a Poisson Point Process over Ω with intensity 1.
The random geometric graph G(Pn; r) has node set Pn and edge set {(x, y) : x, y ∈
Pn, ‖x − y‖2 � r}.
The following basic lemma says that any result that holds in the setting of
Definition 2 with sufficiently large probability holds with similar probability in
the setting of Definition 1.

Lemma 1. Let A be any event that holds with probability at least 1 − α in
G(Pn; r). Then, A also holds in G(Xn; r) with probability 1 −O(α

√
n ).

Henceforth, we consider an RGG given by G = G(Pn; r), and refer to r as the
coverage radius of G. It is known that, for d � 2, there exists a critical value
rc = rc(d) = Θ(1) such that if r > rc, then with high probability the largest
connected component of G has cardinality Ω(n).On the contrary, if r < rc, each
connected component of G has O(log n) nodes with probability 1−o(1) [23]. The
exact value of rc is not known, though some bounds have been derived in [18].
In addition, if rd � log n+ω(1)

bd
, where bd is the volume of the d-dimensional ball

of radius 1, then G is connected with probability 1 − o(1) [21, 22].
Our main result is stated in the next theorem. It shows that if r > rc, then for

all s inside the largest connected component of G, R(s, G) = O(n1/d/r + log n)
with probability 1 − O(n−1). Note that rc does not depend on n, but if r is
regarded as a function of n, then here and in what follows, r > rc means that
this strict inequality must hold in the limit as n → ∞.
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Theorem 2. For a random geometric graph G = G(Pn; r) in d � 2 dimensions,
if r > rc, then R(s, G) = O(n1/d/r + log n) with probability 1 − O(n−1) for all
nodes s inside the largest connected component of G.

The proof of Theorem 2, which is similar to the proof of [4, Theorem 2.2] and is
given in [], requires an upper bound on the length of the shortest path between
nodes of G. Our result on this matter, which is stated in the next theorem,
gives that for any two nodes that are sufficiently distant in Ω, the distance
between them in the metric induced by G is only a constant factor larger than
the optimum with probability 1−O(n−1). In particular, this result implies that
the diameter of the largest connected component of G is O(n1/d/r), a result
previously known only for two dimensions and values of r that give a connected
G with probability 1 − o(1).

For all v1, v2 ∈ G, we say that v1 and v2 are connected if there exists a path
in G from v1 to v2, and define dG(v1, v2) as the distance between v1 and v2

on G, that is, dG(v1, v2) is the length of the shortest path from v1 to v2 in G.
Also, we denote the Euclidean distance between the locations of v1 and v2 by
‖v1 − v2‖2. Clearly, the length of the shortest path between two nodes v1 and v2

in G satisfies dG(v1, v2) � ‖v1 − v2‖2/r.

Theorem 3. If d � 2 and r > rc, for any two connected nodes v1 and v2 in G =
G(Pn; r) such that ‖v1−v2‖2 = ω(log n), we obtain dG(v1, v2) = O(‖v1−v2‖2/r)
with probability 1 −O(n−1).

Corollary 4. If r > rc, the diameter of the largest connected component of
G = G(Pn; r) is O(n1/d/r) with probability 1 −O(n−1).

The statement of Theorem 3 generalizes and improves upon Theorem 2.3 of [4]
which only holds for d = 2 and ‖v1 − v2‖2 = Ω(log3.5 n/r2). The current paper
not only improves upon the previous results, but also employs different proof
techniques which are necessary to tackle the geometrically more involved case
d � 3.

3 The Diameter of the Largest Connected Component

We devote this section to prove Theorem 3. We consider G = G(Pn; r). Recall
that we assume r > rc and r = O(log1/d n). (When r = ω(log1/d n), G is
connected with probability 1 − o(1) and Theorem 3 becomes a slightly different
version of [7, Theorem 8].) Note also that r = Ω(1) since rc = Θ(1). We show
that, for any two connected nodes v1 and v2 of G such that ‖v1−v2‖2 = ω(log n),
we have dG(v1, v2) = O(‖v1 − v2‖2/r) with probability 1 −O(n−1).

Before going to the proof, we establish some notation and discuss results for
discrete lattices that we will use later. For m � 0, whose value we will set later,
let Sm be the elements of Z

d contained in the cube of side length m centered at
the origin (i.e., Sm = {i ∈ Z

d : ‖i‖∞ � m/2}). Let L be the graph with vertex
set Sm such that an edge between two vertices i, j ∈ Sm exists if and only if
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Fig. 1. (a) The graph L over Sm. (b) Illustration of the neighboring cubes Qi and Qj .

‖i − j‖∞ = 1 (see Figure 1(a)). It is easy to see that the maximum degree Δ of
L is Δ = 3d − 1. Let X = (Xi)i∈Sm be a collection of binary random variables.
For two vertices i, j ∈ Sm, let dL(i, j) be their graph distance in L. Also, for any
i ∈ Sm and k � 0, let Fk(i) be the σ-field generated by all Xj with dL(i, j) > k.
Then, for k � 0 and p ∈ (0, 1), we say that X is a k-dependent site percolation
process on L with probability p if, for any i ∈ Sm, we have Pr [Xi = 1] � p and
Pr [Xi = 1 | Fk(i)] = Pr [Xi = 1]; i.e., Xi is independent of any collection (Xj)j

for which the distance between i and j in L is larger than k for all j in the
collection. Let L(X) be the subgraph of L induced by the vertices i with Xi = 1.
The following lemma is a direct application of a result by Liggett, Schonmann
and Stacey [17, Theorem 1.3] that gives that L(X) stochastically dominates an
independent site percolation process.

Lemma 5 ([17, Theorem 1.3]). For given constants p ∈ (0, 1) and k � 0, let
L(X) be the subgraph of L obtained via a k-dependent site percolation process
X with probability p. If p is large enough, then there exists a value p′ ∈ (0, p]
depending only on k and p so that L(X) stochastically dominates a collection of
independent Bernoulli random variables with mean p′. Moreover, p′ can be made
arbitrarily close to 1 by increasing p while k is kept fixed.

We will, from now on, assume that p is so large that from Lemma 5 we can let
p′ be arbitrarily large. In particular, p′ will be larger than the critical value for
independent site percolation on the square lattice. Then if (Yi)i∈Sm is a collection
of independent Bernoulli random variables with mean p′, we have that L(Y )
contains a giant component since the square lattice is contained in L [15]. We
will henceforth say that a vertex i ∈ Sm is open if Yi = 1 and closed if Yi = 0.

Proof of Theorem 3. We take two fixed nodes v1 and v2 satisfying the conditions
of Theorem 3 and show that the probability that v1 and v2 are connected by
a path and dG(v1, v2) = ω(‖v1 − v2‖2/r) is O(n−3). Then, we would like to
take the union bound over all pairs of nodes v1 and v2 to conclude the proof of
Theorem 3; however, the number of nodes in G is a random variable and hence
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the union bound cannot be employed directly. We employ the following lemma
from [4] to extend the result to all pairs of nodes v1 and v2.

Lemma 6 ([4, Lemma 3.1]). Let E(w1, w2) be an event associated to a
pair of nodes w1, w2 ∈ G = G(Pn, r). Assume that, for all pairs of nodes,
Pr [E(w1, w2)] � 1 − p, with p > 0. Then,

Pr

⎡
⎣ ⋂

w1,w2∈G

E(w1, w2)

⎤
⎦ � 1 − 9n2p − e−Ω(n).

Before establishing the result for two fixed nodes v1, v2, we describe our
renormalization argument. Fix a sufficiently large constant M > 0. For
each i = (i1, i2, . . . , id) ∈ Z

d, we define the cube Qi centered at
(i1M/2, i2M/2, . . . , idM/2) whose sides have length M and are parallel to the
bases of R

d (see Figure 1(b)). Let Q be the set of Qi having center inside Ω
and set m so that Ω ∩ Z

d = Sm (thus Qi ∈ Q if and only if i ∈ Sm). Note that
m = Θ(n1/d) and the cubes in Q cover the whole of Ω. We call two cubes Qi and
Qj neighbors if ‖i − j‖∞ � 1. Note that in this case i and j are also neighbors
in L. Therefore each cube has at most Δ = 3d − 1 neighbors, and there are at
most K = �2n1/d/M	d = Θ(n) cubes in Q.

We say that a parallelogram R in R
d has a crossing component if there exists

a connected component inside R such that, for each face of R, there exists at
least one node of the component within distance r of the face. Then, for each
i ∈ Sm, let Ei be defined as the event where all the following happen:

(i) For each neighbor Qj of Qi, the parallelogram Qi ∩ Qj contains a crossing
component.

(ii) Qi contains only one connected component with diameter larger than M/5.

Note that, when Ei happens for some Qi, then (ii) above gives that the largest
component of Qi intersects the crossing components of all parallelograms Qi∩Qj ,
where Qj is a neighbor of Qi. Moreover, for two i and j neighbors in L, we have
that, if Ei and Ej happen, then the crossing components of Qi and Qj intersect.
It is a direct consequence of a result of Penrose and Pisztora [20, Theorem 2]
that, when r > rc, for any ε > 0 there exists a M0 depending only on ε and d
such that, for any fixed i,

Pr [Ei] � 1 − ε (1)

for all M � M0. Since M can be arbitrarily large, we set M to be larger than
M0 and 2r. So, in general, we can assume that M/r is a constant.

Now we set Xi = 1(Ei) for all i ∈ Sm. By construction, Ei does not depend
on the events Ej for which dL(i, j) � 2 since, in this case, the set of nodes in Qi

and the set of nodes in Qj are disjoint. Therefore, (Xi)i∈Sm is a 1-dependent site
percolation process with probability 1−ε. Since ε can be made arbitrarily small,
we can apply Lemma 5 to find a collection of independent Bernoulli random
variables Y = (Yi)i∈Sm with mean p′ so that L(Y ) is a subset of L(X). Moreover,
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p′ can be made arbitrarily close to 1 so that L(Y ) has a giant component with
probability 1 − exp

(−Θ
(
n1−1/d

))
[15].

We now show that, for any fixed pair of nodes v1, v2 of G such that ‖v1−v2‖2 =
ω(log n), we have that either v1 and v2 are in different connected components or
dG(v1, v2) = O(‖v1 − v2‖2/r). Let i1 be the closest vertex of Sm from v1 and i2
be the closest vertex of Sm from v2. Clearly, v1 ∈ Qi1 and v2 ∈ Qi2 . We use some
ideas from Antal and Pisztora [2]. For any connected subset H of Sm, let ∂H be
the set of vertices of Sm\H from which there exists an edge to a vertex in H ; that
is, ∂H is the outer boundary of H . Note that |∂H | � Δ|H |. Let L′(Y ) be the
graph induced by the closed vertices of L. For each j ∈ Sm, if j is closed, let Zj

be the connected component of L′(Y ) containing j and let Ẑj = ∂Zj . If j is open,
then set Zj = ∅ and Ẑj = {j}. Note that Zj only contains closed vertices and Ẑj

only contains open vertices. Moreover, Ẑj separates Zj from Sm\(Zj∪Ẑj) in the
sense that any path in L from a vertex in {j}∪Zj to a vertex in Sm \ (Zj ∪ Ẑj)
must contain a vertex of Ẑj . Now, let Aj = ∪k : ‖k−j‖∞�1Zk. If Aj �= ∅, set
Âj = ∂Aj ; otherwise set Âj = {k ∈ Sm : ‖k − j‖∞ � 1}.

Now we give an upper bound for the tails of |Zj | and |Aj |.
Lemma 7. Let j ∈ Sm. Then, if p′ > 1 − 3−Δ, there exists a positive constant
c such that, for all large enough z > 0, we have

Pr [|Zj| � z] � exp(−cz) and Pr [|Aj | � z] � exp(−cz).

Therefore, for some sufficiently large constant c1, we obtain
Pr [|Zj | � c1 log m] = O(m−3d) and Pr [|Aj | � c1 log m] = O(m−3d), and
using the union bound over the md choices for j, we conclude that, for all
j ∈ Sm, we have |Zj | � c1 log m and |Aj | � c1 log m with probability 1−o(1/m).

Now we take an arbitrary path j1, j2, . . . , j� in L such that j1 = i1, j� = i2
and 
 � ‖i1 − i2‖1. For 2 � k � 
 − 1 we consider the set Ẑjk

. Note that, since
Ẑj separates Zj from Sm \ (Zj ∪ Ẑj), we have that

⋃
k∈[2,�−1] Ẑjk

contains a

connected component with at least one vertex from each Ẑjk
, 2 � k � 
− 1. We

call this component the bridging component and denote it by B(i1, i2). For i1
and i2 we consider the sets Âi1 and Âi2 .

We will show how to find a path from v1 to v2 in G in three parts. We will
bound the length of these parts by F1, F2, and F3 so that this path from v1 to
v2 in G contains F1 + F2 + F3 edges. Note that, since v1 and v2 are such that
‖v1 − v2‖2 = ω(log n) and |Aj | � c2 log m = O(log n) for all j, we have that Ai1

and Ai2 are disjoint. Note that, by definition, i1 is not a neighbor of any vertex
that is not in Ai1 , which gives that, intuitively, Âi1 envelops the region Qi1 . This
property gives that, if there exists a path from v1 to v2 in G, this path must cross
the region

⋃
k∈Âi1

Qk. Now, since Âi1 is a set of open vertices, we have that, for

each j ∈ Âi1 , the cube Qj has a crossing component. For any connected set
V ⊆ Sm of open vertices, where connectivity is defined with respect to L, let
C(V ) be the set of vertices of G that belong to the crossing component of at
least one Qj with j ∈ V . With this definition, we have that the path from v1
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to v2 must have a node in C(Âi1). Let F1 be the length of the shortest path
between v1 and a node of C(Âi1 ) ∩ C(Ẑj2). Note that this node must exist since
Âi1 ∩ Ẑj2 �= ∅ by construction. If we denote by R the set Ai1 ∪ Âi1 , we have that
this path is completely contained inside ∪k∈RQk. Therefore, we can bound F1

using the following geometric lemma.

Lemma 8. Let I be a set of vertices of Sm and Q = ∪i∈IQi. Let w1 and w2

be two nodes of G inside Q. If there exists a path between w1 and w2 entirely
contained in Q, then there exists a constant c > 0 depending only on d such that

dG(w1, w2) � c|I|Md

rd
.

Remark 9. The result in Lemma 8 also holds when I is replaced by any bounded
subset of R

d composed of the union of parallelograms; in this case, the term |I|Md

gets replaced by the volume of this set.

Lemma 8 then establishes that there exists a constant c2 such that

F1 � c2|Ai1 ∪ Âi1 |Md

rd
� c2(1 + Δ)(|Ai1 | + 1)Md

rd
= O(log m),

since |Âj | � Δ|Aj |+Δ = O(log m) for all j, and M/r is constant. Similarly, there
is a path from v2 to a node inside C(Âi2) ∩ C(Âj�−1), whose length we denote
by F2. An analogous derivation then gives that F2 = O(log m). These paths
must intersect C(B(i1, i2)) since they intersect C(Âj2 ) and C(Âj�−1), respectively.
Denote the length of the path in C(B(i1, i2)) that connects the two paths we
found above by F3. Using Lemma 8 we obtain a constant c3 such that

F3 � c3|B(i1, i2)|Md

rd
. (2)

In order to bound |B(i1, i2)|, we use a coupling argument by Fontes and
Newman [11] and a result of, Deuschel and Pisztora [6, Lemma 2.3],
which gives Pr

[∑�−1
k=2 |Ẑjk

| � 
α
]

� Pr
[∑�−1

k=2 |Zjk
| � (
α − 1)/Δ

]
�

Pr
[∑�−1

k=2 |Z̃jk
| � (
α − 1)/Δ

]
, where the first inequality follows since |Ẑj | �

1 + Δ|Zj | for all j, and the Z̃’s are defined to be independent random variables
such that Z̃jk

has the same distribution as Zjk
. From Lemma 7 we know that

Z̃jk
is stochastically dominated by an exponential random variable with mean

μ = Θ(1). Then, applying a Chernoff bound for exponential random variables in
the equation above, we obtain a constant c4 such that, for any large enough α,
we have Pr

[∑�−1
k=2 |Ẑjk

| � α

]

� exp
(
− c4α�

μ

)
. Since 
 = ω(log n) we have that

Pr
[∑�−1

k=2 |Ẑjk
| � α


]
= O(m−3d) for some large enough α. Then, using (2), we

have that, with probability 1 −O(m−3d),

F3 � c3α
Md

rd
= O(‖i1 − i2‖1) = O

(‖v1 − v2‖2

M

)
= O

(‖v1 − v2‖2

r

)
.
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Putting everything together, with probability 1 − O(m−3d), we obtain a path
from v1 to v2 with length at most

F1 + F2 + F3 = O
(

log n +
‖v1 − v2‖2

r

)
. (3)

By Lemma 6, the result above holds for all connected pairs of nodes v1, v2 such
that ‖v1 − v2‖2 = ω(log n). Then using m = Θ(n1/d) completes the proof.
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