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Abstract18

Given a graph with colors on its vertices, a path is called a rainbow vertex path if all its internal19

vertices have distinct colors. We say that the graph is rainbow vertex-connected if there is20

a rainbow vertex path between every pair of its vertices. We study the problem of deciding21

whether the vertices of a given graph can be colored with at most k colors so that the graph22

becomes rainbow vertex-connected. Although edge-colorings have been studied extensively under23

similar constraints, there are significantly fewer results on the vertex variant that we consider. In24

particular, its complexity on structured graph classes was explicitly posed as an open question.25

We show that the problem remains NP-complete even on bipartite apex graphs and on split26

graphs. The former can be seen as a first step in the direction of studying the complexity of27

rainbow coloring on sparse graphs, an open problem which has attracted attention but limited28

progress. We also give hardness of approximation results for both bipartite and split graphs. To29

complement the negative results, we show that bipartite permutation graphs, interval graphs,30

and block graphs can be rainbow vertex-connected optimally in polynomial time.31
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1 Introduction36

Graph coloring and graph connectivity are two of the most famous topics in graph algorithms.37

Many different types of colorings and connectivity measures have been considered throughout38

time. The concept of rainbow coloring brings these two extensively studied topics together,39

and it was first defined a decade ago by Chartrand et al. [8] using edge-colorings. Let G be a40

connected, edge-colored graph. A rainbow path in G is a path all of whose edges are colored41
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83:2 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

with distinct colors, and G is rainbow-connected if there is a rainbow path between every pair42

of its vertices. The resulting computational problem Rainbow Coloring (RC) takes as43

input a connected (uncolored) graph G and an integer k, and the task is to decide whether the44

edges of G can be colored with at most k colors so that G is rainbow-connected. This problem45

has various applications in telecommunications, data transfer, and encryption [25, 4, 11]46

and has been studied rather thoroughly from both graph-theoretic and complexity-theoretic47

viewpoints (see related work below and the surveys [19, 25]).48

The intense interest in Rainbow Coloring led Krivelevich and Yuster [18] to define49

a natural variant on vertex-colored graphs. Here, a path in a vertex-colored graph H is a50

rainbow vertex path if all its internal vertices have distinct colors. We say that H is rainbow51

vertex-connected if there is a rainbow vertex path between every pair of its vertices. Similarly52

to the edge variant, Rainbow Vertex Coloring (RVC) is the decision problem in which53

we are given a connected (uncolored) graph H and an integer k, and the task is to decide54

whether the vertices of H can be colored with at most k colors such that H is rainbow55

vertex-connected. The rainbow vertex connection number of G, denoted by rvc(G), is the56

minimum k such that G has a rainbow vertex coloring with k colors. RVC is NP-complete57

for every k ≥ 2 [10, 9], and remains NP-complete for k = 3 for bipartite graphs [23]. In58

addition, it is NP-hard to approximate rvc(G) within a factor of 2− ε unless P 6= NP, for59

any ε > 0 [13]. It is also known that RVC is linear-time solvable on planar graphs for every60

fixed k [19]. Finally, assuming the Exponential Time Hypothesis, there is no algorithm for61

solving RVC in time 2o(n3/2) for any k ≥ 2 [19].62

A stronger variant of rainbow vertex-colorings was introduced by Li et al. [24]. A vertex-63

colored graph H is strongly rainbow vertex-connected if between every pair of vertices of64

H, there is a shortest path that is also a rainbow vertex path. The Strong Rainbow65

Vertex Coloring (SRVC) problem takes as input a connected (uncolored) graph H and66

an integer k, and the task is to decide whether the vertices of H can be colored such that H67

is strongly rainbow vertex-connected. This definition is the vertex variant of the Strong68

Rainbow Coloring problem, which was also broadly studied (see related work below69

and the surveys [19, 25]). The strong rainbow vertex connection number of G, denoted by70

srvc(G), is the minimum k such that G has a strong rainbow vertex coloring with k colors.71

SRVC is NP-complete for every k ≥ 2 [12] and linear-time solvable on planar graphs for72

every fixed k [19]. In addition, it is NP-hard to approximate srvc(G) within a factor of73

n1/2−ε unless P 6= NP, for any ε > 0 [13].74

While RC has been widely studied in more than 300 published papers, we are unaware75

of any further complexity results on RVC and SRVC than those mentioned previously. In76

particular, the complexity of RVC and SRVC on structured graph classes is mostly open.77

This led Lauri [19, Open problem 6.6] to explicitly ask the following:78

For what restricted graph classes do RVC and SRVC remain NP-complete?79

Our Results In this paper, we make significant progress towards addressing this open80

problem. In particular, we study bipartite graphs and chordal graphs, and some of their81

subclasses, and give hardness results and polynomial-time algorithms for RVC and SRVC.82

Our main result is a hardness result for bipartite apex graphs:83

I Theorem 1. Let G be a bipartite apex graph of diameter 4. It is NP-complete to decide84

both whether rvc(G) ≤ 4 and whether srvc(G) ≤ 4. Moreover, it is NP-hard to approximate85

rvc(G) and srvc(G) within a factor of 5/4− ε, for every ε > 0.86

This result is particularly interesting since no hardness result was known on a sparse graph87

class (like apex graphs) for any of the variants of rainbow coloring. Moreover, this result88
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can be considered tight in conjunction with the known result that RVC and SRVC are89

linear-time solvable on planar graphs for every fixed number of colors k [19]. Finally, we90

observe (like Li et al. [23]) that rvc(G) and srvc(G) can be computed in linear time if G is91

a bipartite graph of diameter 3, providing further evidence that this result is tight.92

For general bipartite graphs and for split graphs (a well-known subclass of chordal graphs),93

we exhibit stronger hardness results:94

I Theorem 2. Let G be a bipartite graph of diameter 4. It is NP-complete to decide both95

whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 3. Moreover, it is NP-hard to96

approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.97

We remark that, previously, it was only known that deciding whether rvc(G) ≤ 3 for bipartite98

graphs G is NP-complete by the result of [23]. Our construction, however, is conceptually99

simpler, gives hardness for every k ≥ 3, and is easily extended to the strong variant. Moreover,100

for RVC on general graphs, this result implies a considerable improvement over the previous101

result of Eiben et al. [13] which only excluded a polynomial-time approximation with a factor102

of less than 2 assuming P 6= NP.103

I Theorem 3. Let G be a split graph of diameter 3. It is NP-complete to decide both104

whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 2. Moreover, it is NP-hard to105

approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.106

To the best of our knowledge, our results for split graphs give the first non-trivial graph class107

besides diameter-two graphs for which the complexity of the edge and the vertex variant108

differ (see e.g, [19, Table 4.2] but note that it contains a typo erroneously claiming that109

RVC can be solved in polynomial-time for split graphs). In particular, RC can be solved in110

polynomial time on split graphs when k ≥ 4 [5, 7]. Moreover, we observe that rvc(G) and111

srvc(G) can be computed in linear time if G is a graph of diameter 2, providing evidence112

that this result is tight.113

To contrast our hardness results, we show that both problems can be solved in polynomial114

time on several other subclasses of bipartite graphs and chordal graphs.115

I Theorem 4. If G is a bipartite permutation graph, a block graph, or a unit interval graph,116

then rvc(G) and srvc(G) can be computed in linear time. If G is an interval graph, then117

rvc(G) can be computed in linear time.118

Combined, these results paint a much clearer picture of the complexity landscape of RVC119

and SRVC than was possible previously.120

Related Work We briefly survey the known work for the edge variants of rainbow coloring;121

we refer to [19, 25] for more detailed surveys. RC is NP-complete for every k ≥ 2 [4, 2, 22],122

even on chordal graphs [5]. On split graphs, RC is NP-complete when k ∈ {2, 3}, but solvable123

in polynomial time otherwise [5, 7]. It is also solvable in polynomial time on threshold124

graphs [5]. On bridgeless chordal graphs, there is a linear-time (3/2)-approximation algorithm125

for RC, however the problem cannot be approximated with a factor less than 5/4 on this126

graph class, unless P = NP [6]. Some lower bounds on algorithms for solving RC are given127

by Kowalik et al. [17] and Agrawal [1] under the Exponential Time Hypothesis.128

For the strong edge variant, an edge-colored graph is said to be strongly rainbow-connected129

if there is a rainbow shortest path between every pair of its vertices. The problem of deciding130

whether the edges of a given graph G can be colored in k colors to make G strongly rainbow-131

connected is referred to as SRC. For k = 2, it is not difficult to verify that RC is equivalent132
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to SRC. Not surprisingly, SRC is also NP-complete for k ≥ 2 [2]. In contrast to RC, SRC133

remains hard on split graphs for every k ≥ 2 [19, Theorem 4.1]. Moreover, on n-vertex split134

graphs, it is NP-hard to approximate SRC within a factor of n1/2−ε for any ε > 0, while135

RC admits an additive-1 approximation [5]. The former statement also holds for n-vertex136

bipartite graphs instead of split graphs [2]. For block graphs, computing SRC can be done in137

linear time [16], while RC on block graphs is conjectured to be hard (see [19, Conjecture 6.3]138

or [16]). In general, it appears that despite the interest, there are fewer complexity-theoretic139

results on SRC. In fact, the same is true when considering combinatorial results (see [25] for140

a broader discussion).141

2 Preliminaries142

In this paper, we work on undirected simple graphs. Such a graph is denoted by G = (V,E),143

where V is the vertex set of G, and E is the edge set. We let n denote the number of vertices144

of G. For a vertex x ∈ V , N(x) is the set of its neighbors, and deg(x) = |N(x)| is its degree.145

For a S ⊆ V , the subgraph of G induced by S is denoted by G[S]. A cut vertex of G is a146

vertex whose removal increases the number of connected components of G.147

Given a path P = x1, x2, . . . , xp−1, xp in G, the vertices from x2 to xp−1 are called the148

internal vertices of P . The distance between two vertices u and v in G, denoted by dist(u, v),149

is the length of a shortest path between u and v. The diameter of G, denoted by diam(G),150

is the maximum distance between any pair of vertices of G.151

A k-coloring of G is a function c : V → {1, 2, . . . , k}. (From now on, we will denote a set152

of consecutive integers from 1 to k as [k].) A coloring is simply a k-coloring for some k ≤ n.153

A coloring c is proper if c(u) 6= c(v) for every edge uv ∈ E. The chromatic number of G,154

denoted by χ(G), is the smallest k such that G has a proper k-coloring. A d-distance coloring155

of G is a coloring c of G such that c(u) 6= c(v) whenever dist(u, v) ≤ d. The minimum156

number of colors needed for a d-distance coloring of G is known as the d-distance chromatic157

number of G, and it is denoted by χd(G). Note that χd(G) is equivalent to χ(Gd), i.e., the158

chromatic number of the dth power of G.159

Since, in this paper, we will only be working on the vertex variant of the rainbow coloring160

and rainbow connectivity, we might sometimes omit the word “vertex” when there is no161

confusion. The parameter srvc(G) was defined by Li et al. [24], and they also verified that162

diam(G)−1 ≤ rvc(G) ≤ srvc(G) ≤ n−2. The following upper bound was mentioned in [19]163

(see the same reference for further discussion and examples).164

I Proposition 5 ([19]). Let G be a connected graph with diam(G) = d ≥ 3. Then

d− 1 ≤ rvc(G) ≤ srvc(G) ≤ χd−2(G).

Proof. There are at least two vertices in G connected by a shortest path of length d. Clearly,165

every coloring must use at least d− 1 colors to rainbow-connect this pair. On the other hand,166

between every pair of vertices u and v, there is a path of length at most d, meaning that167

it contains at most d− 1 internal vertices. As every (d− 2)-distance coloring colors these168

internal vertices distinctly, the statement follows. J169

A dominating set of G is a set D ⊆ V such that every vertex in V \ D is adjacent170

to at least one vertex in D. If G[D] is connected, then D is a connected dominating set.171

The minimum size of a connected dominating set in G, denoted by γc(G), is known as the172

connected domination number of G. This parameter provides an upper bound on the rainbow173

vertex connection number of a connected graph, since G becomes rainbow vertex-connected174
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by simply coloring all vertices of the connected dominating set distinctly, and the remaining175

vertices with any of the already used colors. This observation can be derived from [18].176

I Proposition 6 ([18]). If G is a connected graph, then rvc(G) ≤ γc(G).177

2.1 Graph classes178

As we will be studying the mentioned problems on some graph classes, let us give a brief179

definition of these classes here. More definitions and properties will be added as needed180

when we handle these graphs. A detailed background on these graph classes can be found,181

for example, in the book by Brandstädt, Le, and Spinrad [3].182

A graph is an apex graph if it contains a vertex (called an apex) whose removal results in183

a planar graph. A graph is chordal if all of its induced simple cycles are of length 3. Some184

well-known subclasses of chordal graphs are interval graphs, split graphs, and block graphs.185

A graph is an interval graph if it is chordal and it contains no triple of non-adjacent vertices,186

such that there is a path between every two of them that does not contain a neighbor of187

the third. A graph is a split graph if its vertex set can be partitioned into an independent188

set and a clique. A graph is a block graph if every biconnected component (block) of G is a189

complete graph.190

Let σ be a permutation of the integers between 1 and n. We can make a graph Gσ191

on vertex set [n] in the following way. Vertices i and j are adjacent in Gσ if and only if192

they appear in σ in the opposite order of their natural order. A graph on n vertices is a193

permutation graph if it is isomorphic to Gσ for some permutation σ of the integers between194

1 and n. A graph is a bipartite permutation graph if it is both a bipartite graph and a195

permutation graph.196

2.2 Hypergraph coloring197

For our hardness reductions we will use a well-known NP-complete problem called Hyper-198

graph Coloring. A hypergraph H = (N, E) with vertex set N and hyperedge set E is a199

generalization of a graph, in which edges can contain more than two vertices. Thus E consists200

of subsets of N of arbitrary size. The definition of a (vertex) coloring of a hypergraph is ex-201

actly that same as that of a graph. In a colored hypergraph, an edge is called monochromatic202

if all of its vertices received the same color. A proper coloring of a hypergraph generalizes a203

proper coloring of a graph in a natural way: we require that no hyperedge is monochromatic.204

To avoid trivial cases, we can assume from now on that every hyperedge contains at least205

two vertices. Thus a proper coloring must always use at least two colors.206

The Hypergraph Coloring problem takes as input a hypergraph H and an integer207

k and asks whether there is a proper coloring of H with at most k colors. The problem is208

well-known to be NP-complete for every k ≥ 2 [26]. The Graph Coloring problem takes209

as input an undirected graph G and asks to determine the smallest k such that G has a210

proper k-coloring. This problem is NP-hard to approximate within a factor of n1−ε for any211

ε > 0, where n is the number of vertices [30]. Finally, the Planar 3-Coloring problem212

takes as input a planar graph G and asks whether G has a proper 3-coloring. This problem213

is NP-complete [14].214

3 Bipartite graphs and their subclasses215

In this section, we show that RVC and SRVC are hard on bipartite graphs for k ≥ 3. We216

complement these results by showing that both problems can be solved in linear time on217
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Figure 1 A hypergraph H = (N, E) (left) transformed into a bipartite graph G (right) as described
in the proof of Lemma 8. The dashed rectangle with rounded corners contains the sets in N ′.

bipartite permutation graphs. We first observe that computing rvc(G) or srvc(G) is easy218

on bipartite graphs of diameter 3. The same observation was made by Li et al. [23].219

I Proposition 7 ([23]). IfG is a bipartite graph with diam(G) = 3, then rvc(G) = srvc(G) = 2.220

Moreover, such a coloring can be found in linear time.221

Proof. The statement follows from Proposition 5 and the fact that every bipartite graph222

has a proper 2-coloring that can be found in linear time. J223

It turns out that if diam(G) ≥ 4, then rvc(G) and srvc(G) of a bipartite graph G224

become much harder to compute, as claimed in Theorem 2. We prove the following general225

construction.226

I Lemma 8. Let H be a hypergraph on n vertices. Then in polynomial time we can construct227

a bipartite graph G of diameter 4 and with O(n3) vertices such that for any k ∈ [n], H has a228

proper k-coloring if and only if G has a (k + 1)-coloring under which G is (strongly) rainbow229

vertex-connected. Moreover, if H is a planar graph, then G is an apex graph.230

Proof. Let H = (N, E) be an arbitrary hypergraph and let n = |N |. We construct a231

bipartite graph G = ({a} ∪N ′ ∪ I ′, E) where N ′ = N ′1 ∪ · · · ∪N ′n+1, I ′ = I ′1 ∪ · · · ∪ I ′n+1,232

N ′i := {vi | v ∈ N}, I ′i := {xie | e ∈ E} and E := {avi | v ∈ N, i ∈ [n+1]} ∪ {vixie | v ∈ N, e ∈233

E , i ∈ [n+ 1], v ∈ e}. Let V = {a} ∪N ′ ∪ I ′. A bipartition of G is given by ({a} ∪ I ′, N ′).234

Observe that diam(G) = 4 and that G has O(n3) vertices. Moreover, if H is a planar graph,235

then G consists of vertex a plus n+ 1 copies of the graph obtained from H by subdividing236

each edge of H, and thus G is an apex graph. For an illustration of the construction, see237

Figure 1.238

Consider any proper k-coloring h : N → [k] ofH, i.e., no hyperedge ofH is monochromatic239

under h. We construct a coloring c : V → [k+ 1] in the following way. First, for every v ∈ N ,240

we give the vertices v1, v2, . . . , vn of G the same color as v, i.e., c(vi) = h(v) for all v ∈ N and241

i ∈ [n+1]. We give vertex a the color k+1, i.e., c(a) = k+1. The vertices in I all receive the242

same color, which is any arbitrary color in [k + 1]. Now we prove that G is strongly rainbow243

vertex-connected under c by showing that there is a rainbow vertex shortest path between244
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every pair of vertices. The only non-trivial case is when both vertices of the pair are in I.245

Consider two distinct vertices xie, x
j
f ∈ I (it is possible that e = f or i = j but not both).246

Since e and f are not monochromatic under h, we can pick two distinct vertices u ∈ e and247

v ∈ f such that h(u) 6= h(v). It is clear that the path xieuavx
j
f is a shortest path between xie248

and xjf and that it is a rainbow vertex path. Hence, G is strongly rainbow vertex-connected249

under c.250

Conversely, let c be a (k + 1)-coloring of G under which G is (strongly) rainbow vertex-251

connected. For each i ∈ [n+1], define hi to be the vertex coloring of H such that hi(v) = c(vi)252

for all v ∈ N . Let Mi be the set of vertices v ∈ N such that hi(v) 6= c(a). Let h′i(v) = hi(v)253

if v ∈ Mi and h′i(v) = 1 otherwise. We claim that there exists an i ∈ [n + 1] such that h′i254

is a proper k-coloring of H. For the sake of contradiction, suppose that h′i is not a proper255

k-coloring of H for every i ∈ [n + 1]. For each i ∈ [n + 1], let ei ∈ E be a monochromatic256

edge under h′i. Suppose that, for some i ∈ [n+ 1], all vertices in ei are colored c(a) under257

c. Then any path from xiei
to xjei

for some j 6= i uses two vertices having color c(a) under258

c. Hence, c would not be a rainbow vertex coloring, a contradiction. Therefore, for each259

i ∈ [n + 1], there is a vertex vi ∈ ei for which c(vi) 6= c(a). Suppose now that for every260

i ∈ [n + 1], all vertices in ei are colored either c(vi) or c(a) under c. If c(vi) = c(vj) for261

i 6= j, then any path from xiei
to xjej

uses either two vertices having color c(a) or two vertices262

having color c(vi) = c(vj) under c. This would contradict the assumption that G is rainbow263

vertex-connected under c. Hence, c(vi) 6= c(vj) for all distinct i, j ∈ [n+ 1]. This implies that264

c uses at least n+ 2 colors, a contradiction to the assumptions that c is a (k + 1)-coloring265

of G and that k ∈ [n]. Therefore, for some i ∈ [n + 1], there is a vertex v′i ∈ ei for which266

c(v′i) 6= c(a) and c(v′i) 6= c(vi). The latter implies that ei is not monochromatic under h′i, a267

contradiction. The claim follows, and thus H has a proper k-coloring. J268

Proof of Theorem 2. For membership in NP, a certificate that rvc(G) ≤ k (srvc(G) ≤ k)269

consists of a k-coloring and a list of (shortest) paths, one for every pair of non-adjacent vertices,270

that are rainbow vertex connected. For NP-hardness, we observe that the transformation271

of Lemma 8 implies a straightforward reduction from Hypergraph Coloring. Since272

Hypergraph Coloring is NP-complete for each k ≥ 2, this proves the first part of the273

theorem.274

For the second part of the theorem, we consider an instance of Graph Coloring that275

consists of a graph on ` vertices and apply Lemma 8. Note that the total number of vertices276

in G is n = O(`3). From the hardness of approximation of Graph Coloring, we know that277

for all ε > 0, it is NP-hard to distinguish between the case when H is properly colorable with278

`ε colors and the case when H is not properly colorable with fewer than `1−ε colors [30]. By279

Lemma 8, this implies that it is NP-hard to distinguish between the case when G is (strong)280

rainbow vertex colorable with `ε + 1 ≤ nε + 1 colors and the case when G is not (strong)281

rainbow vertex colorable with fewer than `1−ε + 1 = Ω(n1/3−ε) colors. The second statement282

of the theorem follows. J283

We then proceed to give a proof of Theorem 1. This result can be considered as a first284

step to understand rainbow coloring on sparse graphs classes.285

Proof of Theorem 1. The proof follows along the same lines as the proof of the first part286

of Theorem 2. Instead of Hypergraph Coloring, however, we reduce from Planar287

3-Coloring, the problem of deciding whether a planar graph has a proper 3-coloring. This288

problem is NP-complete. The statement follows from Lemma 8, because the graph resulting289

from the construction is a bipartite apex graph of diameter 4.290
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For the hardness of approximation, we recall that any planar graph has a proper 4-coloring,291

and thus the graph G constructed in Lemma 8 has a 5-coloring under which G is rainbow292

vertex-connected. Hence, Lemma 8 combined with the NP-hardness of Planar 3-Coloring293

makes it NP-hard to decide whether G has a 5-coloring or a 4-coloring under which G is294

rainbow vertex-connected. J295

We now complement the above hardness results with a positive result in the case when a296

bipartite graph is also a permutation graph, as claimed in Theorem 4. Bipartite permutation297

graphs have a desirable property, related to breadth-first search (BFS), that we will use298

heavily in our next result. Let us first define a chain graph. A bipartite graph is a chain graph299

if the vertices of the two independent sets A and B can be ordered as {a1, a2, . . . , ak} and300

{b1, b2, . . . , b`}, such that N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(Ak), equivalently, N(b`) ⊆ N(b`−1) ⊆301

· · · ⊆ N(b1).302

In every bipartite permutation graph G it is possible to find a vertex v such that the levels303

L0, L1, L2, . . . of the tree resulting from a BFS starting from v have the following properties.304

For all i, L0 = {v}, Li is an independent set and G[Li ∪Li+1] is a chain graph. Moreover, for305

each level i, there exists a special vertex ai ∈ Li such that Li+1 ⊂ N(ai). The vertex v can306

be picked as the first vertex of a strong ordering. It has been shown by Spinrad et al. [27]307

that a bipartite graph is a permutation graph if and only if it has a strong ordering, and308

such an ordering can be computed in linear time. The properties of the BFS tree above are309

well-known and easy to deduce from a strong ordering [29].310

I Theorem 9. If G is a bipartite permutation graph, then rvc(G) = srvc(G) = diam(G)−1,311

and the corresponding (strong) rainbow vertex coloring can be found in time that is linear in312

the size of G.313

Proof. Let G = (V,E) be a bipartite permutation graph. Let v be a first vertex in a strong314

ordering for G. We start by doing a BFS on G with v as the root. Let k be the number315

of levels in the BFS tree in addition to level 0. Hence, Li is the set of vertices in level316

i of the BFS tree, 0 ≤ i ≤ k, with L0 = {v}. Since dist(v, y) = k for every y ∈ Lk, we317

conclude that diam(G) ≥ k. Furthermore, if dist(x, y) > k − 1 for some x ∈ L1 and some318

y ∈ Lk, then we can conclude that dist(x, y) = k+1, where x, v, a1, a2, . . . , ak−1, y is a shortest319

path between x and y. In this case, diam(G) = k+1. We distinguish between these two cases:320

321

Case 1. diam(G) = k.322

We construct a strong rainbow vertex coloring c : V → [k − 1] for G in the following way.323

If x ∈ Li, we define c(x) = i, for 1 ≤ i ≤ k− 1. We define c(v) = k− 1, and we give arbitrary324

colors between 1 and k − 1 to the vertices of Lk. To see that G is indeed rainbow-connected325

under c, consider any pair x, y ∈ V . If xy ∈ E or if they are in the same level of the BFS326

tree, there is nothing to prove, since dist(x, y) ≤ 2. Otherwise, we have exactly the following327

cases:328

1. x = v and y ∈ Lj : Then the path v, a1, . . . , aj−1, y is shortest and it is rainbow.329

2. x ∈ L1 and y ∈ Lk: In this case, dist(x, y) = k − 1. Otherwise, since each Li is an330

independent set, we would have dist(x, y) ≥ k+ 1, which contradicts our assumption that331

diam(G) = k. Since dist(x, y) = k − 1, every shortest path between x and y is rainbow,332

as every vertex of such a shortest path has to be in a distinct level of the BFS tree.333

3. x ∈ L1 and y ∈ Lj with 2 ≤ j ≤ k − 1: If dist(x, y) = j − 1, then again by the same334

argument used above, every shortest path between x and y is rainbow. If dist(x, y) > j−1,335

then dist(x, y) = j + 1, and the shortest path x, v, a1, . . . , aj−1, y has distinct colors on336
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all its internal vertices. (Note that y might have the same color as v if j = k− 1, but this337

is fine since y is the end of the path.)338

4. x ∈ Li and y ∈ Lj with 2 ≤ i < j ≤ k: If dist(x, y) = j − i, then every shortest path339

is rainbow. If dist(x, y) > j − i, then the path x, ai−1, ai, . . . , aj−1, y is rainbow and has340

length j − i+ 1, and it is therefore shortest.341

Case 2. diam(G) = k + 1.342

We construct a strong rainbow vertex coloring c : V → [k] for G in the following way. If343

x ∈ Li, we define c(x) = i, for 1 ≤ i ≤ k − 1. We define c(v) = k, and we give arbitrary344

colors between 1 and k to the vertices of Lk. To see that G is indeed rainbow-connected345

under c, consider any pair x, y ∈ V . Again, if xy ∈ E or if they are in the same level of the346

BFS, there is nothing to prove, since dist(x, y) ≤ 2. Otherwise, there is only one remaining347

case:348

x ∈ Li and y ∈ Lj , with 0 ≤ i < j ≤ k: If dist(x, y) = j − i then every shortest path349

between x and y is rainbow. Otherwise, the path x, ai−1, ai, . . . , aj−1, y is rainbow and350

has length j − i+ 2, therefore being shortest.351

In both cases, c is a strong rainbow vertex coloring for G with diam(G)− 1 colors. By352

Proposition 5 we can conclude that rvc(G) = srvc(G) = diam(G)− 1. J353

4 Chordal graphs and their subclasses354

In this section, we investigate the complexity of RVC and SRVC on chordal graphs and355

some subclasses of chordal graphs. We start by proving that both problems are NP-complete356

when the input graph is a split graph, implying that they are also NP-complete on chordal357

graphs. On the positive side, we show that RVC is polynomial-time solvable on interval358

graphs, and both RVC and SRVC are polynomial-time solvable on block graphs and on unit359

interval graphs.360

We start by observing that computing rvc(G) or srvc(G) is easy on graphs of diameter 2.361

I Proposition 10 ([18]). If G is a graph with diam(G) = 2, then rvc(G) = srvc(G) = 1.362

Moreover, such a coloring can be found in linear time.363

Proof. Color each vertex of G with the same color. Since each shortest path between two364

vertices contains at most one internal vertex, G is strongly rainbow vertex-connected under365

this coloring. J366

If G is a split graph of diam(G) = 3 (note that split graphs have diameter at most 3),367

then rvc(G) and srvc(G) become much harder to compute, as claimed in Theorem 3. We368

prove the following general construction, which closely mimics the construction of Lemma 8.369

I Lemma 11. Let H be a hypergraph on n vertices. Then in polynomial time we can370

construct a split graph G of diameter 3 and with O(n3) vertices such that for any k ∈ [n], H371

has a proper k-coloring if and only if G has a k-coloring under which G is (strongly) rainbow372

vertex-connected.373

Proof. Let H = (N, E) be an arbitrary hypergraph and let n = |N |. We construct a split374

graph G = (N ′∪ I ′, E) where N ′ = N ′1∪ · · ·∪N ′n+1, I ′ = I ′1∪ · · ·∪ I ′n+1, N ′i := {vi | v ∈ N},375

I ′i := {xie | e ∈ E} and E := {uivj | u, v ∈ N, i, j ∈ [n + 1]} ∪ {vixie | v ∈ N, e ∈ E , i ∈376

[n+ 1], v ∈ e}. Let V = N ′ ∪ I ′. The constructed graph G is a split graph since G[I ′] is an377

independent set and G[N ′] is a clique. Observe that diam(G) = 3 and that G has O(n3)378
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vertices. The construction is illustrated in Figure 1: note that since G[N ′] is a clique, all379

possible edges now appear between the vertices inside the rectangle with rounded corners.380

Consider any proper k-coloring h : N → [k] ofH, i.e., no hyperedge ofH is monochromatic381

under h. We construct a coloring c : V → [k] in the following way. First, for every v ∈ N ,382

we give the vertices v1, v2, . . . , vn of G the same color as v, i.e., c(vi) = h(v) for all v ∈ N383

and i ∈ [n+ 1]. The vertices in I all receive the same color, which is any arbitrary color in384

[k]. Now, we prove that G is strongly rainbow vertex-connected under c by showing that385

there is a rainbow vertex shortest path between every pair of vertices. The only non-trivial386

case is when both vertices of the pair are in I. Consider two distinct vertices xie, x
j
f ∈ I (it is387

possible that e = f or i = j but not both). Since e and f are not monochromatic under h,388

we can pick two distinct vertices u ∈ e and v ∈ f such that h(u) 6= h(v). It is clear that the389

path xieuvx
j
f is a shortest path between xie and xjf and that it is rainbow vertex path.390

Conversely, let c be a k-coloring of G under which G is (strongly) rainbow vertex-connected.391

For each i ∈ [n + 1], define hi to be the vertex coloring of H such that hi(v) = c(vi) for392

all v ∈ N . We claim that there exists an i ∈ [n+ 1] such that h′i is a proper k-coloring of393

H. For the sake of contradiction, suppose that h′i is not a proper k-coloring of H for every394

i ∈ [n+ 1]. For each i ∈ [n+ 1], let ei ∈ E be a monochromatic edge under h′i. Let vi be an395

arbitrary vertex in ei. Suppose now that for every i ∈ [n+ 1], all vertices in ei are colored396

c(vi) under c. If c(vi) = c(vj) for i 6= j, then any path from xiei
to xjej

uses two vertices397

having color c(vi) = c(vj) under c. This would contradict the assumption that G is rainbow398

vertex-connected under c. Hence, c(vi) 6= c(vj) for all distinct i, j ∈ [n + 1]. This implies399

that c uses at least n+ 1 colors, a contradiction to the assumptions that c is a k-coloring of400

G and k ∈ [n]. Therefore, for some i ∈ [n+ 1], there is a vertex v′i ∈ ei for which c(v′i) 6= c(a)401

and c(v′i) 6= c(vi). The latter implies that ei is not monochromatic under h′i, a contradiction.402

The claim follows, and thus H has a proper H-coloring. J403

Proof of Theorem 3. The proof follows in exactly the same way as Theorem 2, except that404

we apply Lemma 11 instead of Lemma 8. J405

We now move on to the positive results. As a consequence of the following theorems, we406

complete the proof of Theorem 4.407

I Theorem 12. Let G be a block graph, and let ` be the number of cut vertices in G. Then408

rvc(G) = srvc(G) = `. The corresponding (strong) rainbow vertex coloring can be found in409

time that is linear in the size of G.410

Proof. Let G = (V,E) be a block graph and {a1, a2, . . . , a`} be the set of cut vertices of411

G. We construct a strong rainbow vertex coloring c : V → [`] for G by defining c(ai) = i412

for i ∈ [`] and giving the other vertices arbitrary colors between 1 and `. An important413

property of block graphs is that there is a unique shortest path between every pair of vertices.414

Moreover, each internal vertex of such a path is a cut vertex. Since all the cut vertices415

received distinct colors, these shortest paths are all rainbow. The proof follows by observing416

that rvc(G) ≥ srvc(G) ≥ ` as well. J417

For our next result, we need to mention that every interval graph has a representation418

called an interval model. Let I be a set of n intervals of the real line. Then we can define419

a graph GI with a vertex for each interval, such that two vertices are adjacent if and only420

if their corresponding intervals overlap. A graph G is an interval graph if and only if G is421

isomorphic to GI for some set I of intervals. In this case I is called an interval model of G.422
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I Theorem 13. If G is an interval graph, then rvc(G) = diam(G)−1, and the corresponding423

rainbow vertex coloring can be found in time that is linear in the size of G.424

Proof. Let G = (V,E) be an interval graph and I be an interval model for G. The interval425

corresponding to vertex v is denoted by Iv. For each interval I ∈ I, we let r(I) be its right426

endpoint and `(I) its right endpoint. Let Iu ∈ I be such that r(Iu) ≤ r(I) for all I ∈ I.427

Let Iv ∈ I be such that `(Iv) ≥ `(I) for all I ∈ I. Let P = u, x1, x2, . . . , xk, v be a shortest428

path between u and v in G. Observe that P is a connected dominating set. Furthermore,429

since P is a shortest path, k ≤ diam(G) − 1. By the way we defined u and v, we have430

that N(u) ⊆ N(x1) and N(v) ⊆ N(xk). This implies that the set {x1, x2, . . . , xk} is also a431

connected dominating set. By Proposition 6, G has a rainbow vertex coloring c : V → [k]432

with c(xi) = i, and we can give all the other vertices arbitrary colors. J433

An interval graph is a unit interval graph if it has an interval model in which every interval434

has the same length (or no interval properly contains another interval). Unit interval graphs435

have the same BFS tree structure as that of bipartite permutation graphs, with the single436

difference that every level of the BFS tree is a clique instead of an independent set [15].437

I Theorem 14. If G is a unit interval graph, then rvc(G) = srvc(G) = diam(G)− 1, and438

the corresponding (strong) rainbow vertex coloring can be found in time that is linear in the439

size of G.440

Proof. Let G = (V,E) be a unit interval graph. Let v be the vertex corresponding to a441

first interval in an ordering of the intervals in the unit interval model of G by their right442

endpoints. Do a BFS on G with v as the root. Let Li be the set of vertices in level i of the443

BFS tree, 0 ≤ i ≤ k, with L0 = {v}. Recall that, for 0 ≤ i ≤ k − 1, there exists a special444

vertex ai ∈ Li such that Li+1 ⊂ N(ai).445

Consider a vertex u ∈ Lk. A shortest path between v and u has k − 1 internal vertices,446

which implies that diam(G) ≥ k. To construct a strong rainbow coloring c : V → [k − 1], we447

assign, for 1 ≤ i ≤ k− 1, c(x) = i if x ∈ Li and we give arbitrary colors to the vertices of Lk.448

To see that G is strongly rainbow vertex-connected under c, consider x, y ∈ V . If both x449

and y are in the same level of the BFS tree, then they are adjacent. So let us consider the450

case when x ∈ Li and y ∈ Lj , with 1 ≤ i < j ≤ k. If there is a shortest path between x and451

y each of whose vertices is in a distinct level of the BFS tree, then this path is rainbow. If452

this is not the case, we consider the path x, ai, ai+1, . . . , aj−1, y. In this case, this path is a453

shortest path between x and y, and its internal vertices have distinct colors, since only x454

and ai belong to the same level of the BFS. This proves that c is indeed a strong rainbow455

coloring for G with diam(G)− 1 colors. J456

5 Concluding remarks and related problems457

It should be mentioned that other variants of rainbow problems have been studied as well.458

When a coloring of the edges or the vertices of a graph is already given as input, we can459

ask whether the graph is rainbow-connected or rainbow vertex-connected. Both of these460

problems are known to be NP-complete even on highly restricted graphs, like interval graphs,461

series-parallel graphs, and k-regular graphs for every k ≥ 3 [21, 20, 28]. However, we stress462

that these problems are strictly different from RC and RVC. That is, complexity results on463

one problem are not transferable to the other.464
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Finally, we end our paper with the following open question.1 A diametral path of a graph465

G is a shortest path whose length is equal to diam(G). A graph is a diametral path if every466

connected induced subgraph has a dominating diametral path.467

I Conjecture 15. Let G be a diametral path graph. Then rvc(G) = diam(G)− 1.468
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