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Abstract. Inspired by real world examples, e.g. the Internet, research-
ers have introduced an abundance of strategic games to study natural
phenomena in networks. Unfortunately, almost all of these games have
the conceptual drawback of being computationally intractable, i.e. com-
puting a best response strategy or checking if an equilibrium is reached is
NP-hard. Thus, a main challenge in the field is to find tractable realistic
network formation models. We address this challenge by investigating
a very recently introduced model by Goyal et al. [14] which focuses on
robust networks in the presence of a strong adversary who attacks (and
kills) nodes in the network and lets this attack spread virus-like through
the network via neighboring nodes.

Our main result is to establish that this natural model is one of the
few exceptions which are both realistic and computationally tractable.
In particular, we answer an open question of Goyal et al. by provid-
ing an efficient algorithm for computing a best response strategy, which
implies that deciding whether the game has reached a Nash equilibrium
can be done efficiently as well. Our algorithm essentially solves the prob-
lem of computing a minimal connection to a network which maximizes
the reachability while hedging against severe attacks on the network
infrastructure and may thus be of independent interest.

1 Introduction

Many of today’s important networks, most prominently the Internet, are essen-
tially the outcome of an unsupervised decentralized network formation process
among many selfish entities [22]. In the case of the Internet these selfish entities
are Autonomous Systems (AS) which interconnect via peering agreements and
thereby create a connected network of networks. Each AS can be understood
as a selfish player who strategically chooses a subset of other ASs to directly
connect with. Each inter-AS-connection is costly and yields a benefit and a risk.
The benefit is a reliable direct link towards the other AS. However, such a con-
nection may be used by malicious software and thus harbors the risk of collateral
damage if a neighboring AS is attacked.
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The field of strategic network formation, started by the seminal works of
Jackson and Wolinsky [15], Bala and Goyal [2] and Fabrikant et al. [11], stud-
ies the global structure and properties of networks formed by individual players
making decentralized local strategic choices. In all considered models there are
players trying to optimize their own benefit, while minimizing their individual
cost. It is far from obvious why a collection of individual selfish strategies eventu-
ally results in useful and reliable network topologies like the Internet. Studying
the properties of such models aims for revealing insights about properties of
existing naturally grown networks and inspiring methods to improve them.

Required features of any Internet-like communication network are reacha-
bility and robustness. Such networks have to ensure that even in case of cas-
cading edge or node failures caused by technical defects or malicious attacks,
e.g. DDoS-attacks or viruses, most participating nodes can still communicate.
This important focus on network robustness has long been neglected and is now
a very recent endeavor in the strategic network formation community, see e.g.
[6,14,17,20]. We contribute to this endeavor by proving that the very recently
introduced natural model by Goyal et al. [13,14] is one of the few exceptions
of a tractable network formation model. In particular, we provide an efficient
algorithm for computing a utility maximizing strategy for their elegant model,
which can be used to efficiently decide whether a network is in Nash equilibrium.
Thus, our algorithm allows the model of Goyal et al. to be used to predict real
world phenomena in large scale simulations and to analyze real world networks.

Related Work: We focus on the model for strategic network formation with
attack and immunization recently proposed by Goyal et al. [13,14]. This model
essentially augments the well-known reachability model by Bala and Goyal [2]
with robustness considerations. In particular, different types of adversaries are
introduced which attack (and destroy) a node of the network. This attack then
spreads virus-like to neighboring nodes and destroys them as well. Besides decid-
ing which links to form, players also decide whether they want to buy immuniza-
tion against eventual attacks. The model is the first model which incorporates
network formation and immunization decisions at the same time.

The authors of [13,14] provide beautiful structural results for their model.
For example, showing that equilibrium networks are much more diverse than in
the non-robust version, that the amount of edge overbuilding due to robustness
concerns is small and that equilibrium networks generally achieve very high social
welfare. Besides this, the authors raise the intriguing open problem of settling
the complexity of computing a best response strategy in their model1.

Computing a best response in network formation games can be done in poly-
nomial time for the non-robust reachability model [2] and if the allowed strat-
egy changes are very simple [16,19]. However, these examples are exceptions.
The existence of an efficient best response algorithm for a network formation
game is in general a rare gem. For almost all related network formation models,
e.g. [4–6,8,10,11,21], where players strive for a central position in the network,
1 This question was raised in [13] for the maximum carnage adversary and is replaced

in [14] with a reference to our preprint [12] of the present paper.
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it has been shown that the problem is indeed NP-hard. The model by Goyal
et al. [13,14] seems on the first glance computationally easier than the above
mentioned centrality models since players only strive for reaching all other play-
ers. However, the presence of a strong adversary and the possibility of immu-
nization renders finding a best possible strategy a non-trivial problem.

To the best of our knowledge, besides the model by Goyal et al. [13,14] there
are only a few other models which combine selfish network formation with robust-
ness considerations and all of them consider a much weaker adversary which can
only destroy a single edge. The earliest are models by Bala and Goyal [3] and
Kliemann [17], both essentially augment the model by Bala and Goyal [2] with
single edge failures. Other related models are by Meirom et al. [20] and Chauhan
et al. [6]. Both latter models consider players who try to be as central as pos-
sible in the created networks but at the same time want to protect themselves
against single edge failures. In [20] heterogeneous players are considered whereas
in [6] all players are homogeneous. The complexity of computing a best response
was only settled for the model by Chauhan et al. [6] where it was proven to be
NP-hard.

Apart from network formation games, also vaccination games, e.g. [1,7,18,23],
are related. There the network is fixed and the selfish nodes only have to decide if
the want to immunize or not. Computing a best response in these models is trivial
(there are only two strategies) but pure Nash equilibria may not exist.

Our Contribution: We establish that the natural model by Goyal et al. [13,14]
is one of the few examples of a tractable realistic model for strategic network
formation and thereby answer an open question by these authors. In particular,
we provide an efficient algorithm for computing a best response strategy for their
main model, i.e. the “maximum carnage” adversary which tries to kill as many
nodes as possible, and for the natural variant which employs the even stronger
random attack adversary.

Due to space constraints, we refer to [12] for all omitted details.

2 Model

We consider the model proposed by Goyal et al. [13,14] and mostly use their
notation. In this model the n nodes of a network G = (V,E) correspond to
individual players v1, . . . , vn. We will thus use the terms node, vertex and player
interchangeably. The edge set E is determined by the players’ strategic behavior
as follows. Each player vi ∈ V can decide to buy undirected edges to a subset of
other players, paying α > 0 per edge, where α is some fixed parameter.

If player vi decides to buy the edge to node vj , then we say that the edge
{vi, vj} is owned and paid for by player vi. Buying an undirected edge entails
connectivity benefits and risks for both participating endpoints. In order to cope
with these risks, each player can also decide to buy immunization against attacks
at a cost of β > 0, which is also a fixed parameter of the model. We call a player
immunized if this player decides to buy immunization, and vulnerable otherwise.
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The strategy si = (xi, yi) of player vi consists of the set xi ⊆ V \ {vi} of the
nodes to buy an edge to, and the immunization choice yi ∈ {0, 1}, where yi = 1 if
and only if player vi decides to immunize. The strategy profile s = (s1, . . . , sn) of
all players then induces an undirected graph G(s) =

(
V,

⋃
vi∈V

⋃
vj∈xi

{vi, vj}
)
.

The immunization choices y1, . . . , yn in s partition V into the set of immunized
players I ⊆ V and vulnerable players U = V \I. The components in the induced
subgraph G[U ] are called vulnerable regions and the set of those regions is RU .
The vulnerable region of any player vi ∈ U is RU (vi). Immunized regions RI
are defined analogously as the components of the induced subgraph G[I].

After the network G(s) is built, we assume that an adversary attacks one
vulnerable player according to a strategy known to the players. We consider
mostly the maximum carnage adversary [13,14] which tries to destroy as many
nodes of the network as possible. To achieve this, the adversary chooses a vul-
nerable region of maximum size and attacks some player in that region. If there
is more than one such region with maximum size, then one of them is chosen
uniformly at random. If a player vi ∈ U is attacked, then vi will be destroyed
and the attack spreads to all vulnerable neighbors of vi, eventually destroying
all players in RU (vi). Let tmax = maxR∈RU {|R|} be the number of nodes in the
vulnerable region of maximum size and T = {vi ∈ U | |RU (vi)| = tmax} be the
corresponding set of nodes which may be targeted. The set of targeted regions
is RT = {R ∈ RU | |R| = tmax}, and RT (vi) is the targeted region of a player
vi ∈ T . Thus, if vi ∈ T is attacked, then all players in RT (vi) will be destroyed.

The utility of a player vi in network G(s) is defined as the expected number
of nodes reachable by vi after the adversarial attack on network G(s) (zero in
case vi was destroyed) less vi’s expenditures for buying edges and immunization.
More formally, let CCi(t) be the connected component of vi after an attack to
node vt ∈ T and let |CCi(t)| denote its number of nodes. Then the utility (or
profit) ui(s) of vi in the strategy profile s is

ui(s) =
1

|T |

(
∑

vt∈T
|CCi(t)|

)

− |xi| · α − yi · β.

Fixing the strategies of all other players, the best response of a player vi is a strat-
egy s∗

i = (x∗
i , y

∗
i ) which maximizes vi’s utility ui

(
(s1, . . . , si−1, s

∗
i , si+1, . . . , sn)

)
.

We will call the strategy change to s∗
i a best response for player vi in the network

G(s), if changing from strategy si ∈ s to strategy s∗
i is the best possible strategy

for player vi if no other player changes her strategy.
Consider what happens if we remove node vi from the network G(s) = (V,E)

and we call the obtained network G(s) \ vi. In this case, G(s) \ vi consists of
connected components C1, . . . , C�. The edge-set x∗

i can thus be partitioned into
� subsets x∗

i (C1), . . . , x∗
i (C�), where x∗

i (Cz) denotes the set of nodes in Cz to
which vi buys an edge under best response strategy s∗

i . We will say that x∗
i (Cz)

is an optimal partner set for component Cz. Therefore, x∗
i is the union of optimal

partner sets for all connected components in G(s) \ vi.
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A best response is calculated for one arbitrary but fixed player va, which we
call the active player. Furthermore let C be the set of connected components
which exist in G(s) \ va. Let CU = {C ∈ C | C ∩ I = ∅}, CI = C \ CU and
Cinc = {C ∈ C | ∃u ∈ C : {u, v} ∈ E}, where CU is the set of components in
which all vertices are vulnerable, CI is the set of components which contain at
least one immunized vertex and Cinc is the set of components to which player va

is connected through incoming edges bought by some other player.

3 The Best Response Algorithm

A naive approach to calculate the best response for player va would consider all
2n possible strategies and select one that yields the best utility. This is clearly
infeasible for a larger number of players.

3.1 Key Observations

Our algorithm exploits three observations to reduce the complexity from expo-
nential to polynomial:

Observation 1: The network G(s) \ va may consist of � connected components
that can be dealt with independently for most decisions. As long as the set of
possible targets of the adversary does not change, the best response of va can
be constructed by first choosing components to which a connection is profitable
and then choosing for each of those components an optimal set of nodes within
the respective component to build edges to.

Observation 2: Homogeneous components in G(s) \ va, which consist of only
vulnerable or only immunized nodes, provide the same benefit no matter whether
va connects to them with one or with more than one edge. Thus the connection
decision is a binary decision for those components.

Observation 3: Mixed components in G(s)\va, which contain both immunized
and vulnerable nodes, consist of homogeneous regions that again have the prop-
erty that at most one edge per homogeneous region can be profitable. Merging
those regions into block nodes forms an auxilliary tree, called Meta Tree, which
we use in an efficient dynamic programming algorithm to compute the most
profitable subset of regions to connect with.

3.2 Main Algorithm

Our algorithm, called BestResponseComputation, is described in Algo-
rithm 1 and a schematic overview can be found in Fig. 1.
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Our algorithm solves the problem of finding a best response strategy by con-
sidering both options of buying or not buying immunization and computing for
both cases the best possible set of edges to buy. Thus, the first step of BestRe-

sponseComputation is to drop the current strategy of the active player va and
to replace it with the empty strategy s∅ = (∅, 0) in which player va does not buy
any edge and does not buy immunization. Then the resulting strategy profile
s′ = (s1, . . . , sa−1, s∅, sa+1, . . . , sn) and the set of connected components CU and
CI with respect to network G(s′) \ va is considered.

Fig. 1. Schematic overview of the best response algorithm.
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The subroutine SubsetSelect determines the optimal sets of components
of CU to connect to if va does not immunize. This is done by solving an adjusted
Knapsack problem which involes only small numbers. Two such sets of com-
ponents, called At and Av, are computed depending on player va becoming
targeted or not by connecting to these components. Additionally the subroutine
GreedySelect greedily computes a best possible subset of components of CU
to connect with in case va buys immunization.

The challenging part of the problem is to cope with the connected components
in CI which also contain immunized nodes. For such components our algorithm
detects and merges equivalent nodes and thereby simplifies these components to
an auxiliary tree structure, which we call the Meta Tree. This tree is then used
in a dynamic programming fashion to efficiently compute the best possible set of
edges to buy towards nodes within the respective component. Thus, our approach
for handling components containing immunized nodes can be understood as first
performing a data-reduction similar to many approaches for kernelization in the
realm of Parameterized Algorithmics [9] and then solving the reduced problem
via dynamic programming.

The subroutine PossibleStrategy, see Algorithm 2, obtains the best set
of nodes in components in CI . As this set depends on the number of targeted
regions, it has to be determined for several cases independently. These cases are
va not being immunized and not being targeted, va not being immunized but
being targeted, and va being immunized. The correctness of this is guaranteed
by the following lemma.

Lemma 1. Player va can deal with distinct components from CI independently,
if T and RU (va) do not change.

For each case, PossibleStrategy first chooses an arbitrary single edge to buy
into the previously selected components from CU . This is correct since we have:

Lemma 2. Buying at most one edge into any component C ∈ CU yields maxi-
mum profit for player va.

Then the best set of edges to buy into components in CI is computed indepen-
dently for each component C ∈ CI via the subroutines PartnerSetSelect,
MetaTreeConstruct and MetaTreeSelect. The union of the obtained
sets is then returned. Finally, the algorithm compares the empty strategy and
the individually obtained best possible strategies for the above mentioned cases
and selects the one which maximizes player va’s utility. All in all we get:

Theorem 1. The algorithm BestResponseComputation is correct and runs
in polynomial time.

The run time of our best response algorithm heavily depends on the size of the
largest obtained Meta Tree and we achieve a worst-case run time of O(n4 + k5)
for the maximum carnage adversary and O(n4 + nk5) for the random attack
adversary, where n is the number of nodes in the network and k is the number
of blocks in the largest Meta Tree. In the worst case, this yields a run time
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of O(n5) and O(n6), respectively. To contrast this worst-case bound, we also
provide in [12] empirical results showing that k is usually much smaller than n,
which emphasizes the effectiveness of our data-reduction and thereby shows that
our algorithm is expected to be much faster than the worst-case upper bound.

3.3 Partner Selection for Components in CI

Let C1, . . . , Cc ∈ CI be the components va might buy edges into. By defini-
tion, each of those components contains at least one immunized node. The next
statement ensures that we only need to consider buying edges to such nodes.

Lemma 3. Player va has an optimal partner set for C ∈ CI which only buys
edges to immunized players.

For computing an optimal partner set for a component C ∈ CI , we consider the
expected contribution of C to va’s profit given that va buys edges to all nodes
in a set Δ, and denote this profit by ûva

(C | Δ).

PartnerSetSelect. For each component C ∈ CI we compute three candidate
sets of players to buy edges to and finally select the candidate set that yields the
highest profit contribution for the considered component C for player va. The
three candidate sets for component C are obtained as follows:

Case 1: The player considers buying no additional edges into C. In this case
the resulting player set is empty.

Case 2: The player considers buying one additional edge into C. The resulting
player set contains the immunized partner that maximizes the profit for C.

Case 3: The player considers buying at least two edges. An optimal set of at
least two immunized partners is obtained via the algorithm MetaTreeSelect.

As all possible cases are covered, the most profitable set of those three can-
didate solutions must be the optimal partner set for component C. This optimal
partner set is returned. We refer to this subroutine as PartnerSetSelect.

The first two cases, buying either no or exactly one edge into component
C are easily solved: if no edge is purchased by va, then the expected profit
contribution is ûva

(C | ∅). If exactly one edge is bought then the expected profit
contribution is ûva

(C | {w}), where w is the vertex in C which maximizes va’s
expected profit for component C.

Case 3 is much more difficult to handle. It is the main point where we need
to employ algorithmic techniques to avoid a combinatorial explosion. To ease the
strategy selection, for each component C ∈ CI we create an auxiliary graph to
identify sets of nodes which offer equivalent benefits with respect to connection.
This graph is a bipartite tree which we call the Meta Tree of C. Figure 2 shows a
conversion of a graph component into its Meta Tree by merging adjacent nodes
of the same type into regions and collapsing regions into blocks. So called Bridge
Blocks (orange) of the Meta Tree represent targeted regions of C that would, if
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destroyed, decompose C into at least two components. If the adversary however
chooses to attack a player in a so-called Candidate Block (blue or violet), C
would remain connected. Details of the Meta Tree are discussed in [12]. An
important property is guaranteed by the following lemma.

Lemma 4. All leaves of the Meta Tree are Candidate Blocks.

vulnerable targeted mixed immunized

Fig. 2. A graph component (left), the corresponding Meta Graph (middle), which is
an intermediate step in the construction, and the obtained Meta Tree (right). (Color
figure online)

We now use the Meta Tree for maximizing the expected component profit
for va.

Solving Case 3 of PARTNERSETSELECT. In the following let M be the Meta
Tree of component C. Moreover, we assume that M has at least two Candidate
Blocks, since otherwise, by Lemma 3 buying at most one edge suffices.

Idea of the MetaTreeSelect Algorithm. The following two lemmas imply that
we only have to consider to buy single edges into leaves of the Meta Tree which
are Candidate Blocks. Thus, we only have to find the optimal combination of
leaves of M to which to buy an edge.

Lemma 5. Buying more than 1 edge to a Candidate Block is never beneficial.

Lemma 6. Let M be the Meta Tree of component C. If player va has an optimal
partner set for C which contains buying at least two edges, then va also has an
optimal partner set for C which contains only leaves of M .

Probing all possible combinations of leaves of M yields exponential runtime. We
use the following two observations to compute the best possible combination of
leaves efficiently. Both observations are based on the assumption that player va

buys an edge to some leaf r of M and we consider the tree M rooted at r. Later
we ensure this assumption by rooting M at each possible leaf. Let w be any
vertex of M .

Observation 1: If player va has an edge to w, then it can be decided efficiently
whether it is beneficial to buy exactly one or no edge into a subtree of w, as
the influence of any additional edges into M does not propagate over w. Hence
decisions are independent for subtrees.
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Observation 2: Let the children of w in M be x1, . . . , x�. Consider that va

has an edge to w and it has already been decided for each subtree rooted at
x1, . . . , x� whether or not to buy an edge into that subtree. If there exists at
least one edge between va and any of those subtrees, then it cannot be beneficial
to buy additional edges into the subtree rooted at w. Either w is destroyed,
and the previous edge-buy decisions apply to the disconnected subtrees, or w
survives, and va is connected to all subtrees via node w.

These observations provide us with the foundation for a dynamic program-
ming algorithm which decides bottom-up whether it is beneficial to buy at most
one edge into a given subtree by reusing the edge buy decisions of its subtrees.

Note that the algorithm never has to compare combinations of bought edges,
as the only decision to make is, whether or not to buy exactly one edge into a
subtree in combination with iteratively shifting the presumed edge to the parent
node of the leaves to the root r.

The MetaTreeSelect Algorithm: The MetaTreeSelect algorithm can be
found in Algorithm 3. It roots M at every leaf and assumes buying an edge
towards some immunized node within the root Candidate Block. Then the sub-
routine RootedMetaTreeSelect, see Algorithm 4, gets the rooted Meta Tree
M(r) and some vertex rT (which initially is the only child of the currently con-
sidered root leaf) as input and recursively computes the expected profit contri-
bution of one additional edge from va to a block in the subtree T rooted at rT

under the assumption that va is already connected to the parent block p(rT ) of
rT in M(r). Let |T | denote the number of players represented by the union of
all blocks in T and opt(rT ) will be the set of blocks in T the algorithm decided
to buy an edge to.
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After processing all subtrees of rT (Algorithm 4 lines 2–3), the algorithm
distinguishes three cases (Algorithm 4 line 4):

Case 1: rT is a Bridge Block. Then, as M is bipartite, p(rT ) must be a Candidate
Block. As the algorithm assumes the existence of an edge from va to p(rT ),
there also exists a path from va to rT via p(rT ) in all attack scenarios. Thus, no
additional edge is needed (Algorithm 4 line 5).

Case 2: There exists an edge between va and some node x in T , either through
an edge va buys according to the results of the recursive invocations, or through
a preexisting edge bought by player x. Then, depending on the attack target,
there either exists a path from va to rT via x or via p(rT ). Hence, no additional
edge is needed (Algorithm 4 line 5).

Case 3: Player va can get disconnected from rT by an attack on p(rT ). Then
the algorithm considers each leaf l of T as possible partner (Algorithm 4 line 6),
computes the profit contribution of an edge to l (Algorithm 4 line 7) and selects
a leaf that maximizes this profit contribution (Algorithm 4 line 8).

The additional profit of an edge to l is computed as follows: An edge to l
only yields profit, if a Bridge Block t is attacked which either belongs to T or
t = p(rT ), and l is located in a subtree of t. In this case, the profit contribution
equals the size of this subtree. Therefore let profit(l | t) be the additional profit
an edge to l contributes to the utility of va in case t is attacked and let B be the
set of all Bridge Blocks in T . Thus profit(l) = |p(rT )|

|T | |T | +
∑

t∈B
|t|
|T |profit(l | t),

with

profit(l | t) =

{
0, if l is not in any subtree of t

|Y |, if Y is a subtree of t and l is in Y.

Finally, If the additional profit of the best possible leaf exceeds the edge costs,
l is added to the set of partners of va (Algorithm 4 line 10).

The correctness of MetaTreeSelect is based in the following statement:

Lemma 7. If va has an edge to p(rT ) and opt(rT ) is returned by RootedMe-

taTreeSelect(M(r), rT ), then there exists an optimal partner set for compo-
nent C which contains r∗ and opt(rT ).

Theorem 2. If there is an optimal partner set with at least two nodes for com-
ponent C, then MetaTreeSelect algorithm outputs such a set.

Proof. Assume that there exists an optimal partner set with at least two nodes
for component C and assume that the Meta Tree M of component C is rooted
at some leaf r. Since the algorithm compares all possibilities to root M at a leaf
and by Lemma 6, at least one of those leaves must be contained in an optimal
partner set. Assume that r is indeed such a leaf.

Thus, by buying r we satisfy the assumption needed for RootedMeta-

TreeSelect. By Lemma 7, RootedMetaTreeSelect returns a set of nodes,
which together with r∗ yields an optimal partner set for C. Hence, the algorithm
MetaTreeSelect is correct. ��
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4 Conclusion

For most models of strategic network formation computing a utility maximizing
strategy is known to be NP-hard. In this paper, we have proven that the model
by Goyal et al. [13,14] is a notable exception to this rule. The presented efficient
algorithm for computing a best response for a player circumvents a combinator-
ial explosion essentially by simplifying the given network and thereby making it
amenable to a dynamic programming approach. An efficient best response com-
putation is the key ingredient for using the model in large scale simulations and
for analyzing real world networks. Moreover, our algorithm can be adapted to a
significantly stronger adversary and we are confident that further modifications
for coping with other variants of the model are possible.

Future Work: Settling the complexity of computing a best response strategy
with respect to the maximum disruption adversary is left as an open problem.
Besides this, it seems worthwhile to consider a variant with directed edges, orig-
inally introduced by Bala and Goyal [2]. Directed edges would more accurately
model the differences in risk and benefit which depend on the flow direction.
Using the analogy of the WWW, a user who downloads information benefits
from it, but also risks getting infected. In contrast, the user providing the infor-
mation is exposed to little or no risk.
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