
On Dynamics in Basic Network Creation Games∗

(full version)

Pascal Lenzner†

Abstract

We initiate the study of game dynamics in the Sum Basic Network Creation Game,
which was recently introduced by Alon et al.[SPAA’10]. In this game players are associ-
ated to vertices in a graph and are allowed to “swap” edges, that is to remove an incident
edge and insert a new incident edge. By performing such moves, every player tries to
minimize her connection cost, which is the sum of distances to all other vertices. When
played on a tree, we prove that this game admits an ordinal potential function, which
implies guaranteed convergence to a pure Nash Equilibrium. We show a cubic upper
bound on the number of steps needed for any improving response dynamic to converge
to a stable tree and propose and analyse a best response dynamic, where the players
having the highest cost are allowed to move. For this dynamic we show an almost tight
linear upper bound for the convergence speed. Furthermore, we contrast these positive
results by showing that, when played on general graphs, this game allows best response
cycles. This implies that there cannot exist an ordinal potential function and that funda-
mentally different techniques are required for analysing this case. For computing a best
response we show a similar contrast: On the one hand we give a linear-time algorithm
for computing a best response on trees even if players are allowed to swap multiple edges
at a time. On the other hand we prove that this task is NP-hard even on simple general
graphs, if more than one edge can be swapped at a time. The latter addresses a proposal
by Alon et al..

1 Introduction

The importance of the Internet as well as other networks has inspired a huge body of scientific
work to provide models and analyses of the networks we interact with every day. These models
incorporate game theoretic notions to be able to express and analyse selfish behavior within
these networks. Such behavior by players can be the creation or removal of links to influence
the network structure to better suit their needs. However, most of this work focused on
static properties of such networks, like structural properties of solution concepts. Prominent
examples are bounds on the Price of Anarchy or on the Price of Stability of (pure) Nash
Equilibria in games that model network creation. The problem is, that such results do not
explain how selfish and myopic players can actually find such desired states.

∗See [9] for the original publication.
†Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,

Germany. Email: lenzner@informatik.hu-berlin.de

1

In this paper we focus on the process itself. That is, on the dynamic behavior of players
which eventually leads to a state of the game having interesting properties like stability
against unilateral deviations and low social cost. We initiate the study of myopic game
dynamics in the sum basic network creation game, which was introduced very recently
by Alon et al. [2]. This elegant model incorporates important aspects of network design as
well as network routing but is at the same time simple enough to provide insights into the
induced dynamic process. The idea is to let players “swap” edges to resemble the natural
process of weighing two decisions (possible edges) against each other. We investigate the
convergence process of dynamics which allow players to myopically swap edges until a stable
state of the game emerges. Furthermore, we take the mechanism design perspective and
propose a specific dynamic, which yields near optimal convergence speed.

1.1 Related Work

The line of research which is closest to our work was initiated by Fabrikant et al. [5], who
considered network creation with a fixed edge-cost of α. For some ranges of α they proved
first bounds on the Price of Anarchy [8], which is the ratio of the social cost of the worst
(pure) Nash Equilibrium and the minimum possible social cost achieved by central design.
Subsequent work [1, 4, 10, 11] has shown, that this ratio is constant for almost all values of
α. Only for α ∈ Θ(n) there remains a gap. However, there is a downside of this model: As
already observed in [5], computing a best response is NP-hard, which implies, that players
cannot efficiently decide if the game has reached a stable state. This computational hardness
prevents myopic dynamics from being applied to finding a pure Nash Equilibrium.

Very recently, Alon et al. [2] proposed a slightly different model, which no longer depends
on the parameter α but still captures important aspects of network creation. The authors
consider two different cost-measures, namely the sum of distances to all other players and
the maximum distance to all other players and give bounds on the price of anarchy. Here, we
adopt the former measure. Alon et al. proved that in this case the star is the only equilibrium
tree. Interestingly, as observed in [11], it is not true that the class of equilibria in the model
without parameter is a super-class of the equilibria in the original model. Nevertheless, we
believe that the model of Alon et al. is still interesting, because it models the natural process
of locally weighing alternatives against each other. Furthermore, it has another striking
feature: Best responses can be computed efficiently. Thus, applying myopic dynamics seems
a natural choice for the task of finding stable states in the game. The authors of [2] also
propose to analyse the case where players are allowed to swap more than one edge at a time.

The work of Baumann and Stiller [3] is very similar in spirit to our work. They pro-
vide deep insights into the dynamics of a related network creation game and show various
structural properties, e.g. sufficient and necessary conditions for stability.

Due to space constraints we refer for further work on selfish network creation to Jackson’s
survey [6] and to the references in Nisan et al. [13, Chapter 19].

1.2 Model and Definitions

The sum basic network creation game is defined as follows: Given an undirected,
connected graph G = (V,E), where each vertex corresponds to a player. Every player v ∈ V

2

selfishly aims to minimize her connection cost by performing moves in the game. A player’s
connection cost c(v) is the sum of all shortest-path distances to all other players. If the
graph is disconnected, then we define c(v) to be infinite. At any time, a player can “swap”
an incident existing edge with an incident non-edge at no cost. More formally, let u be a
neighbor of v and w be a non-neighbor of v, then the edge swap (u,w) of player v removes
the edge vu and creates the edge vw. Let ΓG(v) denote the closed neighborhood of v in
G, which includes v and all neighbors of v. The set of pure strategies for player v in G is
SG(v) =

(
ΓG(v) \ {v} × V \ ΓG(v)

)
∪ {⊥}, where ⊥ denotes, that player v does not swap.

Note, that this set depends on the current graph G and that moves of players in the game
modify the graph. We allow only pure strategies and call a pure strategy s ∈ SG(v), which
decreases player v’s current connection cost most, a best response. Sometimes we say that a
vertex x is a best response of a player v, which abbreviates, that v has a best response of
the form (y, x), for some y 6= x. Player v is called active if v can swap an edge to strictly
decrease her connection cost. If no such swap is possible, then we call player v passive.

We assume that players are lazy, in the sense that if for some player v the best possible
edge-swap yields no decrease in connection cost, then player v prefers the strategy ⊥, that
is, not to swap. We say that G is stable or in swap-equilibrium if ⊥ is a best response for
every player.

Since the model does not include costs for edges, the utility of a player is simply the
negative of her connection cost. Let x ∈ G denote that G contains vertex x. The connection
cost of player v in graph G is defined as cG(v) =

∑
x∈G dG(v, x), where dG(v, x) is the number

of edges on the shortest path from v to x in G. We omit the reference to G, if it is clear from
the context. The social cost of a graph G is the sum of the connection costs of all players
in G.

Furthermore, we use the convention, that for a graph G, we let |G| denote the number of
vertices in G and we define G− x to be the graph G after the removal of vertex x.

1.3 Our Contribution

We provide a rigorous treatment of the induced game dynamics of the sum basic network
creation game on trees. For this case, Theorem 1 shows that the game dynamic has the
desirable property that local improvements by players directly yield a global improvement
in terms of the social cost. More formally, we show that the game on trees is an ordinal
potential game [12], that is, there exists a function mapping states of the game to values
with the property that pure Nash Equilibria of the game correspond to local minima of the
function. A prominent feature of such games is, that a series of local improvements must
eventually converge to a pure Nash Equilibrium – a stable state of the game in which no player
wants to unilaterally change her strategy. Theorem 3 shows that this convergence is fast by
providing a cubic upper bound on the number of steps any improving response dynamic needs
to reach such a stable state. Furthermore we introduce and analyse a natural dynamic called
Max Cost Best Response Dynamic. This dynamic is proven to be close to optimal in terms of
convergence speed, since Theorem 4 shows that the number of steps needed by this dynamic
almost matches the trivial lower bound. This implies, that the process of finding a pure Nash
Equilibrium can be significantly sped up by introducing coordination and enforcing that best
responses are played.

3

In contrast to these positive results on trees, Theorem 7 is a strong negative result for the
sum basic network creation game on general graphs. We show that in this case best
response dynamics can cycle, which implies, that there cannot exist an ordinal potential func-
tion. Thus, any treatment of the game dynamics on general graphs requires fundamentally
different techniques and is an interesting open problem for ongoing research.

Last, but not least, we use structural insights to obtain a linear-time algorithm for com-
puting a best response on trees even for the case where players are allowed to swap multiple
edges at a time. For the game on general graphs, we provide another sharp contrast by show-
ing that computing a best response in the general case is NP-hard, if more than one edge
can be swapped at a time. This is particularly interesting, since this addresses the proposal
of Alon et al. [2] to analyse this case. Our results imply, that in this case best responses can
be efficiently computed only if the game is played on trees or on very simple graphs.

2 Playing on a Tree

In this section we consider the special case where the given graph G is a tree. We show,
that the sum basic network creation game on trees belongs to the well-studied class of
ordinal potential games [12]. This guarantees the desirable property that pure Nash Equilibria
always exist and that such solutions can be found by myopic play.

Theorem 1. The sum basic network creation game on trees is an ordinal potential
game.

Before we prove the Theorem, we analyse the impact of an edge-swap on the connection cost
of the swapping player and on the social cost.

Let T = (V,E) be a tree having n vertices. Assume that player v performs the edge-swap
vu to vw in the tree T . (Note, that this implies, that vw /∈ E). Let T ′ be the tree obtained
after this edge-swap. Let Φ and Φ′ be the social cost of T and T ′, respectively. Let Tv and Tu
be the tree T rooted at v and u, respectively. Let A be the subtree rooted at v in Tu and let
B be the subtree rooted at u in Tv. See Fig. 1 for an illustration. Let cK(z) =

∑
k∈K dK(z, k)

v u

wA

B

v u

wA

B

T T ′

Figure 1: Player v swaps edge vu to edge vw.

denote the connection cost of player z within tree K.

Lemma 1. The change in player v’s connection cost induced by the edge-swap vu to vw is
∆(v) = cB(u)− cB(w).

4

Proof. Let c(v) and c′(v) denote the connection cost of v in T and T ′, respectively. In T , we
have

c(v) =
∑
x∈A

d(v, x) +
∑
y∈B

d(v, y) =
∑
x∈A

d(v, x) +
∑
y∈B

(1 + d(u, y)) =
∑
x∈A

d(v, x) + |B|+ cB(u).

Analogously, we obtain c′(v) =
∑

x∈A d(v, x) + |B|+ cB(w). Thus, we have

∆(v) = c(v)− c′(v) = cB(u)− cB(w).

The following Lemma implies the desired property, that local improvement of a player yields
a global improvement in terms of social cost.

Lemma 2. The change in social cost induced by the edge-swap vu to vw is

∆(Φ) = 2|A|∆(v) .

Proof. First, we analyse the social cost Φ in terms of the subtrees A and B:

Φ =
∑
x∈T

c(x) =
∑
x∈A

c(x) +
∑
x∈B

c(x)

=
∑
x∈A

(∑
y∈A

d(x, y) +
∑
y∈B

d(x, y)
)

+
∑
x∈B

(∑
y∈B

d(x, y) +
∑
y∈A

d(x, y)
)
.

For all a ∈ A and b ∈ B, we have that the neighbors v and u lie on the shortest path between
a and b. Hence, we have

Φ =
∑
x∈A

∑
y∈A

d(x, y) +
∑
x∈A

∑
y∈B

(d(x, v) + d(v, y)) +
∑
x∈B

∑
y∈B

d(x, y) +
∑
x∈B

∑
y∈A

(d(x, u) + d(u, y))

=
∑
x∈A

∑
y∈A

d(x, y) +
∑
x∈A

(
|B|d(x, v) +

∑
y∈B

(1 + d(u, y))
)

+
∑
x∈B

∑
y∈B

d(x, y) +
∑
x∈B

(
|A|d(x, u) +

∑
y∈A

(1 + d(v, y))
)

Let ΦA =
∑

a∈A cA(a) and ΦB =
∑

b∈B cB(b) denote the social cost of tree A and B, respec-
tively. Observe, that ΦA =

∑
x∈A

∑
y∈A d(x, y) and ΦB =

∑
x∈B

∑
y∈B d(x, y). Putting all

pieces together, this yields

Φ = ΦA + |B|cA(v) + |A||B|+ |A|cB(u) + ΦB + |A|cB(u) + |A||B|+ |B|cA(v)

= ΦA + ΦB + 2(|A||B|) + 2|B|cA(v) + 2|A|cB(u).

In an analogous way, we get Φ′ = ΦA + ΦB + 2(|A||B|) + 2|B|cA(v) + 2|A|cB(w). Thus, the
amount of the change in social cost of any edge-swap is ∆(Φ) = Φ−Φ′ = 2|A|(cB(u)−cB(w)).
By Lemma 1, we have that ∆(v) = (cB(u)− cB(w)). Thus, ∆(Φ) = 2|A|∆(v).

Now we are ready to prove Theorem 1.

5

Proof of Theorem 1. By Lemma 2, we have that the social cost strictly decreases if and only
if the connection cost of the swapping player strictly decreases. This implies, that the social
cost Φ is an ordinal potential function for the sum basic network creation game on
trees.

Theorem 1 guarantees that a pure Nash Equilibrium of this game can be reached by myopic
play, even if the players do not play in an optimal way. We only need one very natural
ingredient for convergence: Whenever a player moves, this move must decrease this player’s
connection cost. We call every dynamic where a player strictly improves by making a move
(or passing if no improving move is possible) an improving response dynamic(IRD). Such a
dynamic stops if no player can strictly improve, which implies that any IRD stops if a stable
graph is obtained.

2.1 Improving Response Dynamics on Trees

For trees it was shown by Alon et al. [2] that the star is the only stable tree. Using this
observation and Theorem 1, we arrive at the following Corollary.

Corollary 1. For every tree T , every IRD converges to a star.

Having guaranteed convergence, the natural question to ask is how many steps are needed to
reach the unique pure Nash Equilibrium by myopic play. The following Theorems provide a
lower and an upper bound on that number.

Theorem 2. Let Pn be a path having n vertices. Any IRD on Pn needs at least max{0, n−3}
steps to converge.

Proof. Let n ≥ 4, since otherwise P is already a star. Since the leaf-players can perform an
improving move (every swap to an inner vertex strictly decreases their connection cost), we
have that P cannot be stable. By Corollary 1, any IRD converges to a star on n vertices.
Clearly, such a star contains a vertex having degree n− 1. In any stepwise transformation of
P into a star, some vertex will become the center of the star. Assume that an inner vertex v
of P is the designated center. Since v has degree 2 there are n− 3 non-neighbors of v. Since
in every step of the dynamic only one edge can be swapped, it follows that at least n − 3
steps are needed, to connect all of these non-neighbors to v. If a leaf of P is the designated
center, then one additional step is needed.

Lemma 3. Pn is the tree on n vertices which has maximum social cost.

Proof. Let T have at least four vertices and assume towards a contradiction, that T has more
than two leaves and has maximum social cost. Consider a leaf l of T , which has minimum
connection cost c(l) among all leaves of T . Let k be the neighbor of l in T and observe, that
c(l) = c(k) + (n− 2), since k is the first vertex on l’s shortest paths to all other n− 2 vertices
of T . Let u be a leaf of T , which has maximum connection cost c(u) among all leaves of
T . Thus, we have c(u) ≥ c(l). Now consider the tree T − l and let c′(k) and c′(u) denote
the connection cost of player k and u within T − l. Since l is a neighbor of k in T , we have
c′(k) = c(k)−1 = c(l)−(n−1). Furthermore, we have c′(u) = c(u)−dT (u, l). The tree T has

6

at least three leaves, which implies that the longest path of T can have length at most n− 2.
Thus, dT (u, l) < n−1, together with c(u) ≥ c(l), this implies c′(u) > c′(k). Consider the edge-
swap lk to lu by player l and let T ′′ be the obtained tree. Let c′′(l) and c′′(u) be the connection
cost of l and u in T ′′. We have c′′(l) = c′′(u)+(n−2) = c′(u)+(n−1) > c′(k)+(n−1) = c(l).
Thus, the edge-swap lk to lu strictly increases player l’s connection cost. By Lemma 2, it
follows that the social cost of T ′′ is strictly larger than the social cost of T , which is a
contradiction. Hence, every tree with maximum social cost must have exactly two leaves.

Theorem 3. Any IRD on trees having n vertices converges in O(n3) steps.

Proof. The idea is to start with the tree having the highest potential and to bound the
number of steps any IRD needs by analysing the number of steps needed if this potential is
decreased by the smallest possible amount per step. By Lemma 3, we have that Pn has the
maximum social cost ΦPn . Observe, that ΦPn =

∑n−1
i=1 2i(n − i) = n3−n

3 . Let Xn be a star
having n vertices. We have ΦXn = 2n2 − 4n + 2. To transform Pn into Xn any IRD has to

decrease the social cost by ΦPn − ΦXn = n3

3 − 2n2 + 11n
3 − 2. Since we have an IRD, every

moving player decreases her connection cost by at least 1. By Lemma 2, we have that the
minimum decrease in social cost by any move is 2. Hence, at most n3

6 −n2 + 11n
6 − 1 ∈ O(n3)

steps are needed to transform Pn into Xn.

2.2 Best Response Dynamics on Trees

It is reasonable to assume, that players greedily try to decrease their connection cost most,
whenever swapping an edge. In this section we analyse dynamics, where every move of a
player is a best response move.

Since a best response is always an improving response, we have that every dynamic where
every move is a best response must converge to a star for every tree T . We are left with
the question of how fast best response dynamics converge. In the following, we analyse a
specific best response dynamic, called Max Cost Best Response Dynamic(mcBRD), whose
convergence speed almost matches the lower bound provided by Theorem 2. Hence, for best
response dynamics we can significantly improve the upper bound of Theorem 3.

Definition 1. The Max Cost Best Response Dynamic on a graph G is a dynamic, where
in every step the active player having the highest connection cost is allowed to play a best
response. If two or more players are active and have maximum connection cost, then one of
them is chosen uniformly at random.

In this section we show the following upper bound on the speed of convergence for the
Max Cost Best Response Dynamic. Surprisingly, mcBRD behaves differently depending on
whether the number of vertices in the tree is odd or even.

Theorem 4. Let T be a tree having n vertices. The following holds:

• If n is even, then mcBRD(T) converges after at most max{0, n − 3} steps and every
player moves at most once.

• If n is odd, then at most max{0, n+bn/2c−5} steps are needed and every player moves
at most twice.

7

In order to prove Theorem 4, we first show some useful properties of the convergence process
induced by the mcBRD-rule.

We begin with characterizing a player’s best response on a tree. Here, the notion of a
center-vertex is crucial.

Definition 2. A center-vertex of a graph G is a vertex x, which satisfies

x ∈ arg min
v∈G

c(v) .

Lemma 4. Let v be an arbitrary vertex of a tree T and let F = T − v =
⋃l

j=1 Tl, where the
trees Tj are connected components in the forest F . Let u1, . . . , ul be the neighbors of v in T ,
where uj is a vertex of Tj for all 1 ≤ j ≤ l. Let wj be a center-vertex of the tree Tj. The best
response of v in T is the edge-swap vuj to vwj, where j ∈ arg maxj{cTj (uj)− cTj (wj)}.

Proof. Let T ′ be the tree obtained after player v’s swap. Observe, that if player v removes
the edge vui for some i ∈ {1, . . . , l}, then it must by replaced with an edge vxi, where xi ∈ Ti,
since otherwise T ′ would be disconnected. Thus, if the edge vui is removed, then player v
has to choose which of the vertices of Ti to connect to. By Lemma 1, player v’s change in
connection cost is ∆(v) = cTi(ui)− cTi(xi), if the edge vui is removed and vxi is build. Since
v’s best response yields the largest decrease in connection cost, it follows that xi must be
chosen such that cTi(xi) ≤ cTi(yi) holds for all vertices yi ∈ Ti. Thus, xi must be a center-
vertex of Ti. Player v can swap only one edge. Hence, v’s best response is to connect to a
center-vertex xj of a tree Tj , which maximizes cTj (uj)− cTj (xj).

The next Lemma provides a very useful property of neighbors in a tree.

Lemma 5. Let u and w be neighbors in a tree T . Let Tu and Tw denote the tree T rooted
at vertex u and w, respectively. Let U be the set of vertices in the subtree rooted at u in Tw.
Analogously, let W be the set of vertices in the subtree rooted at w in Tu. Then we have
c(u) ≤ c(w) ⇐⇒ |U | ≥ |W | and c(u) < c(w) ⇐⇒ |U | > |W |.

Proof. Let u,w,U ,W ,Tu and Tw be defined as in the Lemma. Let d(a, b) be the length of the
shortest path from a to b in T . Then, since T is a tree, we have

c(u) ≤ c(w)

⇐⇒
∑
x∈U

d(u, x) +
∑
x∈W

(1 + d(w, x)) ≤
∑
x∈W

d(w, x) +
∑
x∈U

(1 + d(u, x))

⇐⇒
∑
x∈W

(1 + d(w, x))−
∑
x∈W

d(w, x) ≤
∑
x∈U

(1 + d(u, x))−
∑
x∈U

d(u, x)

⇐⇒ |W | ≤ |U |.

If the inequality of the connection costs is strict, then the proof is similar.

We can use Lemma 5, to show an important property of the mcBRD-process.

Lemma 6. Let T be a tree. Every player who moves in a step of mcBRD(T) must be a leaf.

8

Proof of Lemma 6. In every step of mcBRD the player with the largest connection cost is
allowed to move. Assume towards a contradiction, that an inner vertex u has the largest
connection cost c∗ in T . Let x1, . . . , xl be the neighbors of u. By Lemma 5, we have that at
most one of the neighbors of u can have the same connection cost c∗.

If u has no neighbor having connection cost c∗, then all neighbors must have strictly
smaller connection cost than u. But Lemma 5 yields, that at most one neighbor of any
vertex can have smaller connection cost. Since u has at least two neighbors, there must be a
neighbor of u having larger connection cost and we have a contradiction.

If u has a neighbor w having connection cost c∗, then, by Lemma 5, all other neighbors
of w must have smaller connection cost. If there is more than one such neighbor, then again,
we have a contradiction. Thus, assume that there is exactly one such neighbor z. Let Tu,Tw
and Tz denote the tree T rooted at vertex u, w and z, respectively. Let U and W1 denote
the subtree rooted at u and w, respectively, in tree Tz. Let W2 denote the tree rooted at w
in tree Tu and let Z denote the subtree rooted at z in tree Tw. By Lemma 5, we have that
|Z| > |W1| ≥ |U |. Furthermore, we have |W2| > |Z|. Hence, we have |W2| > |U | and thus,
again by Lemma 5, it follows that c(u) > c(w), which is a contradiction.

The following Lemma provides the key to analysing mcBRD. It shows, that at some point in
the dynamic a certain behavior is “triggered”, which forces the dynamic to converge quickly.

Lemma 7 (First Trigger Lemma). Let T be a tree. If the player who moves in step i of
mcBRD(T) has a unique best response vertex w, then all players who move in a later step of
mcBRD(T) will connect to vertex w.

Proof. Let T be any tree. Let T s denote the tree obtained after step s of mcBRD(T) and let
vs denote the player who moves in step s. Consider step i of mcBRD(T) and assume that
player vi has maximum connection cost in T i−1. Let the edge-swap towards w be the unique
best response of player vi in this step. We show for any step j ≥ i+ 1 of mcBRD(T) that if
T j−1 is not a star, then player vj will connect to vertex w, if player vj−1 did.

Consider the tree T j−2 in which player vj−1 has maximum connection cost. It follows by
Lemma 6, that vj−1 must be a leaf of T j−2. Since T j−1 is not a star, we have that T j−2 is not
a star. Assume that the unique best response of player vj−1 is to connect to vertex w. By
Lemma 4, it follows that w must be the unique center-vertex of the tree T ′′ = T j−2−{vj−1}.
Let x1, . . . , xk be the neighbors of w in T ′′. Let Tw be the tree T ′′ rooted at vertex w and
let X1, . . . , Xk be the subtrees of Tw rooted at x1, . . . , xk, respectively. Using the fact that
w is the unique center-vertex of T ′′ and Lemma 5, we obtain that 1 +

∑
p 6=q |Xp| > |Xq| for

any q ∈ {1, . . . , k}. After his move, player vj−1 will end up as the k + 1’th neighbor of w in
the tree T j−1. Since, by assumption, this tree is not stable, there is a leaf vj of T j−1 who
swaps an edge in step j. Clearly, we have vj ∈ Xr for some r ∈ {1, . . . , k}. Now consider
T ′′′ = T j−1 − {vj} and let X ′1, . . . , X

′
k+1 be defined analogously as above for the tree T ′′′.

We have that |Xi| = |X ′i|, for all i ∈ {1, . . . , k} \ {r}, and |Xr| = |X ′r| + 1. The new tree
Xk+1 contains only vertex vj−1 and thus compensates the loss of tree |X ′r|. Hence, we have
1 +

∑
p 6=q |Xp| > |Xq|, for q ∈ {1, . . . , k + 1}. By Lemma 5, this implies that w is the unique

center-vertex of T ′′′ and thus, player vj will connect to w in step j.

9

Lemma 8. In any tree T on n vertices, there are at most two center-vertices. If this is the
case, then they are neighbors and n must be even.

Proof. Assume that T contains exactly two vertices x1 and x2, which both have minimum
connection cost c∗ but there is no edge x1x2 in T . Since T is connected, there is a path P
from x1 to x2 of length at least 2. Let z1 and z2 be the neighbors of x1 and x2, respectively, on
path P . Let Tx1 , Tx2 , Tz1 and Tz2 be the tree T rooted at vertex x1, x2, z1 and z2, respectively.
Let X1 be the set of vertices in the subtree of Tz1 , which is rooted at vertex x1. Analogously,
X2 denotes the set of vertices in the subtree rooted at x2 in Tz2 . We define Z1 and Z2 in
the same way, for the trees Tx1 and Tx2 , respectively. We apply Lemma 5, which yields
c(x1) ≤ c(z1) ⇐⇒ |X1| ≥ |Z1| and c(x2) ≤ c(z2) ⇐⇒ |X2| ≥ |Z2|. Since T is a tree and
x1 and x2 are non-neighbors, we have that |Z1| > |Y | and |Z2| > |X|. Using Lemma 5, this
implies c(z1) < c(y) and c(z2) < c(x), which is a contradiction. The only feasible solution is
that z1 = x2 and z2 = x1 and thus, x1 and x2 have to be neighbors. Furthermore, we have
that c(x1) = c(x2) = c∗. By Lemma 5, it follows that |X1| = |X2|, which implies that n must
be even.

If there are more than two vertices having minimum connection cost, then the above
argumentation implies, that all of them must be pairwise neighbors. Since T is a tree, this is
impossible.

Now we are ready, to prove the first part of Theorem 4.

Proof of Theorem 4, Part 1. We show, that if the number of vertices in a tree T is even, then
mcBRD needs at most max{0, n− 3} to converge and every player moves at most once.

If T has two vertices, then it is already a star and no player will move in mcBRD(T).
Thus, let T be a tree having at least n ≥ 4 vertices, where n is even. By Lemma 6, we have
that in every step of mcBRD(T) a leaf l of the current tree is allowed to move. By Lemma 4,
we know that player l will connect to a center-vertex of T ′ − l, where T ′ is the tree before
player l moves. Observe, that the tree T ′ − l has an odd number of vertices. By Lemma 8,
we have that any tree having an odd number of vertices must have a unique center vertex. It
follows, that the leaf who moves in the first step of mcBRD(T) has a unique best response.
Let this best response be the edge-swap towards vertex w. Lemma 7 implies, that all players
who move in a later step of mcBRD(T), will connect to vertex w as well. Furthermore, again
by Lemma 7, after the first step of mcBRD(T) it holds, that every vertex who is already
connected to vertex w will never move again. Hence, every vertex moves at most once.

By Lemma 5, we have that w must be an inner vertex of T . Thus, w has at most n− 3
non-neighbors, which implies that the dynamic mcBRD(T) will need at most n− 3 steps to
converge to a star having w as its center-vertex.

The next Theorem shows a lower bound on the speed of convergence for mcBRD on trees
having an odd number of vertices. Surprisingly, the behavior of the dynamic on such instances
is much more complex. The lower bound for odd n is roughly 50% greater than the upper
bound for even n. Furthermore, the following Theorem together with Theorem 2 implies,
that the analysis of mcBRD is tight.

10

Theorem 5. There is a family of trees having an odd number of vertices greater than 5,
where mcBRD can take n+ bn/2c− 5 steps to converge. Furthermore, every player moves at
most twice.

Figure 2 shows an example of a tree which belongs to the above mentioned family of trees
and it sketches the convergence process induced by mcBRD.

w vl r

x1x2

x3

x4

x5 x6

y1

y6 y5

y2
y3

y4
w v

l

r

x1x2

x3

x4

x5 x6

y1

y6 y5

y2
y3

y4

w v

l

r

x1x2

x3

x4

x5 x6

y1

y6 y5

y2
y3

y4

w v

l

r

x1x2x3

x4

x5 x6

y1

y6 y5

y2
y3

y4

u u

u

u

Figure 2: Example of a tree T having 17 vertices, where mcBRD(T) takes n+ bn/2c−5 = 20
steps to converge. The vertices x1, . . . , x6, u move twice.

Proof of Theorem 5. A member of the family is constructed as follows: We start with a path
having 5 vertices. Let the leaves of this path be l and r, let the center be w and let z be
the vertex between w and r. Fix an even number k ≥ 2 and connect k/2 vertices to l and
r, respectively. Let x1, . . . , xk/2 be the vertices having l as neighbor and y1, . . . , yk/2 are the
vertices connected to r. An example is shown top left in figure 2.

Let T be a tree constructed in the described way. During mcBRD(T) some players will
have two best responses and the number of steps towards convergence depends on which best
response is chosen. Note, that this implies, that a local decision has a global impact. We
show that these choices can be made such that mcBRD(T) takes n+ bn/2c − 5 steps until a
star emerges.

Since T is symmetric, all leaves are equal in the first step of mcBRD(T), that is, they all
have the same connection cost. By Lemma 6, one of those leaves moves in the first step of
mcBRD(T). Let T i denote the tree, which is obtained after the i-th step of mcBRD(T).Let
T i
w and T i

z denote the tree T i rooted at w and z, respectively. Let W i be the set of vertices
in the tree rooted at w in T i

z and let Zi be the set of vertices in the tree rooted at z in T i
w.

Before the first step of mcBRD(T), we have that |W 0| = |Z0|+ 1.
The convergence proceeds in three stages:
Stage 1: Without loss of generality, assume that player x1 moves first. Consider the tree

T 0 \ {x1}. This tree has two center-vertices, namely w and z. Hence, player x1 has two best
responses. Assume that x1 chooses to connect to vertex w. Thus, we have that W 0 = W 1

and Z0 = Z1. In the next step, we have that vertices x2, . . . , xk/2 have largest connection

11

cost. Each of those players has two best responses, namely to connect to w or z. This is true
by Lemma 5, since |W 1| − 1 = |Z1|. Let x2 move towards vertex w, which implies W 1 = W 2

and Z1 = Z2. This process iterates until all xi-vertices are connected to w. Thus, we have
that W 0 = W k/2 and Z0 = Zk/2. In the following step, player l is allowed to move and,
again, there are the two best responses w and z. Let l choose the connection towards z. This
implies W k/2+1 = W 0 \ {l} and Zk/2+1 = Z0 ∪{l}. Observe, that |W k/2+1| < |Zk/2+1| holds.
The top right graph in figure 2 illustrates the result of the steps mentioned so far.

Stage 2: Now, all yi-vertices have largest connection cost. Again, they have the two best
responses w and z and we let them choose the vertex which is closer, that is z. After another
k/2 steps a graph similar to the one bottom right in figure 2 is obtained. Furthermore, we
have that W k+1 = W k/2+1 and Zk+1 = Zk/2+1. Let NZ

z denote the number of neighbors of
z in Zk+1. Let NW

w be defined analogously. Observe, that NZ
z > NW

w holds.
Stage 3: In the next steps, all neighbors of w in W have highest connection cost, but this

time, there is only one best response, which is connection to vertex z. The dynamic stops
when all vertices are connected to z, which happens after NW

w many steps.
Now we analyse the number steps of mcBRD(T). In Stage 1, there are k/2 steps, where

a player xi moves and one step where l swaps an edge. In Stage 2, all yi-vertices move, which
implies k/2 steps. In Stage 3, there are NW

w steps. Since |W k+1| = |W 0| − 1, we have that
NW

w = |W0| − 2 = dn/2e − 2. Observe, that in Stage 3 all xi-vertices move a second time.
There are no other players, which move twice.

Hence, in total there are k/2 + 1 + k/2 + dn/2e − 2 = k + bn/2c steps. By construction,
we have that k = n− 5 and thus mcBRD(T) takes n+ bn/2c− 5 steps to converge and every
player moves at most twice.

For proving the second part of Theorem 4 we need two additional properties of the mcBRD-
process.

Lemma 9 (Second Trigger Lemma). Let T be an unstable tree having n vertices. If after any
step i in mcBRD(T) a vertex w of T i has degree dn/2e, then this vertex will be the unique
best response to connect to for all players moving in a later step of mcBRD(T).

Proof. Let T be any unstable tree having n vertices. Observe, that whenever a player moves
in mcBRD(T), the degrees of exactly two vertices change by an amount of 1. Let step i
be the first step of mcBRD(T) after which a vertex w having degree dn/2e occurs. Using
Lemma 7, it suffices to show, that if vertex w has degree dn/2e after step i of mcBRD(T),
then the player vi+1 who moves in the i + 1’th step will have w as its unique best response
vertex. To prove this, we show, that vi+1 cannot be a neighbor of w in T i. By Lemma 5,
this implies that w is the unique best response vertex of vi+1.

Assume towards a contradiction, that player x is a neighbor of w in T i and that player
x moves in the i + 1’th step of mcBRD(T). Thus, player x must be a leaf an can swap an
edge to decrease her connection cost. This implies that w is not a vertex having minimum
connection cost in T ′ = T i − x. Observe, that vertex w has degree bn/2c in T ′. Let u be a
vertex having minimum connection cost in T ′. Let T ′w denote the tree T ′ rooted at w. We
have, that u lies in a subtree rooted at some neighbor y of w in T ′w. Let T ′y denote the tree T ′

rooted at y. Let W be the set of vertices in the subtree rooted at w in T ′y and let Y denote
the set of vertices in the subtree rooted at y in T ′w. Since, w has degree bn/2c, we have that

12

|W | ≥ bn/2c. Thus, |Y | ≤ |T ′| − |W | = bn/2c. By Lemma 5, it follows, that w cannot have
higher connection cost than u and we have a contradiction.

Lemma 10. Let T be an unstable tree having an odd number of vertices. Only vertices
which are best responses of the player who moves in the first step of mcBRD(T) will be best
responses in any step of mcBRD(T).

Proof. Let T be an unstable tree having n vertices, where n is odd. Let v be the player
who moves in the first step of mcBRD(T). Let T i denote the resulting tree after step i of
mcBRD(T).

If player v has a unique best response w, then, by Lemma 7, vertex w will be the unique
best response of any player who moves in a later step of mcBRD(T).

The only case left is the one where player v has two best responses u and w. We show
that the set of best responses of any player y who moves in step j ≥ 2 is a subset of the set
of best responses of the player x who moved in step j − 1. Settling this, implies the Lemma.

If in step j − 1 player x has a unique best response, then, by Lemma 7, the claim is true.
Thus, suppose that in step j − 1 player x has two best responses p and q. Let T j−2 be the
tree T after step j − 2. Let T j−2

p and T j−2
q be the tree T j−2 rooted at p and q, respectively.

Let P j−2 be the subtree rooted at p in T j−2
q and let Qj−2 be the subtree rooted at q in T j−2

p .
Suppose that x is a leaf of P j−2. Since both p and q are best responses for x we have, by
Lemma 5, that |P j−2 − x| = |Qj−2|. In step j − 1 player x will connect either to p or to q.
Suppose x connects to p. Now consider the moving player y in step j. Define T j−1, P j−1

and Qj−1 analogous to the respective trees after step j − 2. There are two cases:
If y is a leaf of P j−1, then |P j−1 − y| = |Qj−1| and thus, by Lemma 4 and Lemma 5,

player y has p and q as its best responses.
If y is a leaf of Qj−1, then we claim that vertex p is the unique vertex having minimum

connection cost in T j−1 − y and thus vertex p must be player y’s unique best response. To
prove the claim, it suffices to show that every neighbor of p in T j−1−y has higher connection
cost than p itself. Since |P j−1| > |Qj−1−y|, this holds, by Lemma 5, for vertex q. Furthermore
it is trivially true for x, which is a leaf connected to p. Let z be any other neighbor of p
in T j−1 − y. In tree T j−2 − x, by assumption, p and q are the vertices having minimum
connection cost. This implies, that player z must have higher connection costs than player p
in T j−2 − x. Since player x, who is missing in T j−2 − x connects in step j − 1 to vertex p,
this difference increases further, which settles the claim.

The case where x connects in step j − 1 to vertex q and both subcases where x is a leaf
of Qj−2 are analogous.

Finally, we have set the stage to prove the second part of Theorem 4.

Theorem 4, Part 2. We show that if a tree T has an odd number of vertices, then mcBRD(T)
takes at most max{0, n+ bn/2c− 5} steps to converge and every player moves at most twice.

If n = 5, then the worst case instance is a path and thus the convergence takes at most
2 steps. Hence, we assume for the following that n ≥ 7. Observe, that there are two events
that force the dynamic to converge: Let E1 be the event, where for the first time in the
convergence process a vertex w becomes the unique best response of a moving player. Let
E2 be the event, where for the first time a vertex w has degree dn/2e.

13

If event E1 occurs in step j, then, by Lemma 7, all non-neighbors of the vertex w will
connect to w in the subsequent steps of mcBRD(T). Thus, mcBRD(T) will converge in at
most j + |V \Γ(w)| steps, where Γ(w) is the closed neighborhood of w. If event E2 occurs in
step j, then, by Lemma 9, all non-neighbors of w will connect to w in the subsequent steps.
Thus, in this case j + bn/2c − 1 steps are needed for mcBRD(T) to converge.

Let T be any tree and v be the first player to move and assume that v has two best
responses p and q, since otherwise the dynamic will converge in at most n − 3 steps. By
Lemma 10, we have that in any step of mcBRD(T) a player will connect either to p or to q.
Let t1(T) denote the number of steps until event E1 is the first event to occur in mcBRD(T).
Analogously, let t2(T) denote the number of steps until E2 is the first occurring event. Let
r1(T) denote the number of steps needed for convergence after event E1. Hence, the maximum
number of steps needed until mcBRD(T) converges is

t(T) = max{t1(T) + r1(T), t2(T) + bn/2c − 1} .

We claim, that t1(T) + r1(T) ≤ n + bn/2c − 5. Observe, that r1(T) ≤ n − 3, since
the vertex that becomes the center of the star must be an inner vertex of T and, thus, can
have at most n − 3 non-neighbors. Furthermore, if t1(T) ≤ bn/2c − 2, then the claim is
true. Now let t1(T) > bn/2c − 2. Note, that both p and q must be inner vertices of T .
Thus, they have at least degree 2. Since event E2 did not occur in the first t1(T) steps
of mcBRD(T) we have that not all players who moved within the first t1(T) steps can be
connected to p. Thus, at least x = t1(T)−(bn/2c−2) players have connected to q. This yields
t1(T) + r1(T) ≤ t1(T) +n− 3−x ≤ n+ bn/2c− 5. On the other hand, since all players move
either to p or q and both p and q have degree at least 2, it follows that t2(T) ≤ 2(bn/2c− 2).
Hence, t2(T) + bn/2c − 1 ≤ n+ bn/2c − 5.

Observe, that any player x who is a neighbor of either p or q will not move again until
event E1 or E2 happens. This holds because every leaf, which is not a neighbor of p or q
must have higher connection cost than x and will therefore move before x. Thus, every player
moves at most twice.

2.3 Computing a Best Response on Trees

Observe, that Lemma 4 directly yields an algorithm for computing a best response move of a
player v: Compute the connection-costs of all other vertices in T − v within their respective
connected component to find a center-vertex for every component. Then choose the center-
vertex, which yields the greatest cost decrease for player v. Clearly, the connection-cost
of a player can be obtained using a BFS-computation. However the above naive approach
of computing a center-vertex yields an algorithm with running time quadratic in n, since
Ω(n) BFS-computations can occur. The following Lemma shows, that a center-vertex can be
computed in linear time, which is clearly optimal. The algorithm crucially uses the structural
property provided by Lemma 5.

Lemma 11. Let T be a tree having n vertices. A center-vertex of T and its connection-cost
can be computed in O(n) time.

14

Proof. We give a linear time algorithm, which computes a center-vertex of T and its connec-
tion-cost. Let L be the set of leaves of T . Clearly, L can be computed in O(n) steps by
inspecting every vertex.

Given T and L, the algorithm proceeds in two stages:

1. The algorithm computes for every vertex v of T two values nv and cv. This is done in
reverse BFS-order: We define nv to be the number of vertices in the already processed
subtree Tv containing v and cv to v’s connection-cost to all vertices in Tv. For every
leaf l ∈ L we set nl := 1 and cl := 0. Let i be an inner vertex and assume that we
have already processed all but one neighbor of i. Let a1, . . . , as denote these neighbors.
We set ni := 1 + na1 + · · · + nas and ci := ni − 1 + ca1 + · · · + cas . By breaking
ties arbitrarily, this computation terminates at a root-vertex r, for which all neighbors
are already processed. Let b1, . . . , bq denote these neighbors. We set nr := n and
cr := n− 1 + cb1 + · · ·+ cbq .

2. Starting from vertex r, the algorithm performs a local search for the center-vertex with
the help of Lemma 5. For all neighbors bi ∈ {b1, . . . , bq} of r, the algorithm checks if
nbi > nr−nbi . Since T is a tree, this can hold for at most one neighbor x. In this case,
x will be considered as new root-vertex. Let c1, . . . , cs, r be the neighbors of x. By
setting nx := n and cx := n− 1 + c1 + · · ·+ cs + cr − cx we arrive at the same situation
as before and we now check for all neighbors cj 6= r if ncj > nx−ncj holds and proceed
as above. Once no neighbor of the current root-vertex satisfies the above condition, the
algorithm terminates and the current root-vertex is the desired center-vertex.

The correctness of the above algorithm follows by Lemma 5. Step 1 clearly takes time O(n).
Step 2 takes linear time as well, since the condition is checked exactly once for every edge
towards a neighbor and there are only n− 1 edges in T .

Theorem 6. If p ≥ 1 edges can be swapped at a time, then the best response of a player v
can be computed in linear time if G is a tree.

Proof. Let v be a degree d vertex in G. Clearly, player v can swap at most min{p, d} edges
and the task is to determine the k ≤ min{p, d} edge swaps that decrease player v’s connection
cost most. Let v1, . . . , vd denote the neighbors of v in G.

Let F = T1 ∪ T2 ∪ · · · ∪ Td be the forest obtained by deleting vertex v. Let ci = |Ti| +∑
w∈Ti

dG(vi, w) denote player v’s connection cost to vertices in Ti, where 1 ≤ i ≤ d. And let
ci(vi) = ci − |Ti| be vertex vi’s connection cost in tree Ti. By Lemma 4 we have that every
swap in player v’s best response is of the form (vi, wi), where wi is a center-vertex of Ti. Let
ci(wi) denote vertex wi’s connection cost in tree Ti. Let zi = ci(wi)− ci(vi) denote player v’s
change in costs after the swap (vi, wi). Clearly, if zi ≥ 0 then the swap (vi, wi) will not be
part of v’s best response, since it does not yield a cost reduction. If zi < 0, then we call the
corresponding swap (vi, wi) attractive. If there are l attractive swaps for player v, then we
have that v’s best response will consist of the min{k, l} attractive swaps having the smallest
zi values.

Thus, computing player v’s best response reduces to finding a center-vertex in each tree
Ti and to computing the corresponding ci(wi)-value. By Lemma 11 we have that both tasks

15

can be done in time linear to the number of vertices in each Ti. Observe that all negative zi-
values are in the range [−n2, 0]. Hence we can use radixsort, to find the min{k, l} attractive
swaps having the smallest zi values in linear time.

3 Playing on General Graphs

3.1 Best Response Dynamics on General Graphs

Definition 3. A cycle x1, . . . , xl is a best response cycle, if x1 = xl and each xi is a pure
strategy profile in the sum basic network creation game and for all 1 ≤ k ≤ l− 1 there
is a player pk whose best response move transforms the profile xk into xk+1.

Theorem 7. The sum basic network creation game allows best response cycles.

Proof. Consider the graph G depicted left in Figure 3 and let x1 denote the corresponding
strategy profile. Player a can decrease its connection cost and one of its best responses is to

a b

c

d

ef

g

h

ia b

c

d

ef

g

h

ia b

c

d

ef

g

h

i a b

c

d

ef

g

h

i

ca = 13, cb = 11, cc = 12 ca = 12, cb = 13, cc = 11 ca = 11, cb = 12, cc = 13 ca = 13, cb = 11, cc = 12

Figure 3: Example of a graph, where the sum basic network creation game allows a
best response cycle. The steps of the cycle are shown.

swap edge ab with edge ac. This leads to the second graph depicted in Figure 3. Call the
corresponding strategy profile x2. Now, player b has the swap bc to ba as its best response,
which leads to the third graph depicted in the illustration, with x3 as its strategy profile.
Finally, player c can perform the swap ca to cb as its best response, which leads to profile
x4 = x1. Thus, x1, x2, x3, x4 is a best response cycle in the sum basic network creation
game on graph G.

Voorneveld [14] introduced the class of best-response potential games, which is a super-class
of ordinal potential games. Furthermore he proves, that if the strategy space is countable,
then a strategic game is a best-response potential game if and only if there is no best response
cycle. This implies the following Corollary.

Corollary 2. There cannot exist an ordinal potential function for the sum basic network
creation game on graphs containing cycles.

3.2 Computing a Best Response in General Graphs

Given an undirected, connected graph G, then the best response for player v can be computed
in O(n2) time, since |SG(v)| < n2 and we can try all pure strategies to find the best one.

16

Quite surprisingly, computing the best response is hard if we allow a player to swap p > 1
edges at a time.

Theorem 8. If players are allowed to swap p > 1 edges at a time, then computing the best
response is NP-hard even if G is planar and has maximum degree 3.

Proof. We reduce from the p-Median problem [7], which is defined as follows: Given a
connected undirected graph G = (V,E) with non-negative weights w(v) for every vertex
v ∈ V and non-negative lengths l(e) for every edge e ∈ E and given an integer p > 1.
The task is to find a subset V ′ ⊆ V with |V ′| = p such that

∑
v∈V minu∈V ′ w(v)dG(v, u) is

minimized. Here dG(v, u) denotes the length of the shortest path from v to u in G.
The p-Median problem is known [7] to be NP-hard for p > 1 even if all vertex weights

and edge lengths are one, G is planar and has maximum degree 3.
The reduction works as follows: Let G be an instance of the p-Median problem, where G

is planar, has unit vertex weights and edge lengths and has maximum degree 3. We introduce
a new vertex v∗ and connect v∗ with p new edges to G which induces the graph G′ = (V ′, E′).
Now, let v∗ play a best response and let X ⊆ V be the set of vertices incident to v∗ after the
best response move. We claim that X is the solution to the p-Median problem in G, which
implies NP-hardness of computing the best response if p edges can be swapped at a time.

Clearly, we have |X| = p, since no best response of v∗ will allow multiple edges connecting
to the same vertex. By definition of a best response, we have that building edges to vertices
in X minimizes the connection cost c(v∗) of player v∗. Thus, we have

c(v∗) =
∑
u∈V ′

dG′(v
∗, u) =

∑
u∈V

(
1 + min

x∈X
dG(x, u)

)
= |V |+

∑
u∈V

min
x∈X

dG(x, u),

which yields that c(v∗) is minimized if and only if the set X minimizes
∑

u∈V minx∈X dG(x, u).

References

[1] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On nash equilibria for a
network creation game. In Proceedings of the seventeenth annual ACM-SIAM symposium
on Discrete algorithm, SODA ’06, pages 89–98, New York, NY, USA, 2006. ACM.

[2] N. Alon, E. D. Demaine, M. Hajiaghayi, and T. Leighton. Basic network creation games.
In SPAA ’10: Proceedings of the 22nd ACM symposium on Parallelism in algorithms
and architectures, pages 106–113, New York, NY, USA, 2010. ACM.

[3] N. Baumann and S. Stiller. The price of anarchy of a network creation game with
exponential payoff. In SAGT, pages 218–229, 2008.

[4] E. D. Demaine, M. Hajiaghayi, H. Mahini, and M. Zadimoghaddam. The price of anarchy
in network creation games. In Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, PODC ’07, pages 292–298, New York, NY, USA,
2007. ACM.

17

[5] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a network
creation game. In Proceedings of the twenty-second annual symposium on Principles of
distributed computing, PODC ’03, pages 347–351, New York, NY, USA, 2003. ACM.

[6] M. O. Jackson. A survey of models of network formation: Stability and efficiency. Group
Formation in Economics: Networks, Clubs and Coalitions, 2003.

[7] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. ii:
The p-medians. SIAM Journal on Applied Mathematics, 37(3):pp. 539–560, 1979.

[8] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th
annual conference on Theoretical aspects of computer science, STACS’99, pages 404–413,
Berlin, Heidelberg, 1999. Springer-Verlag.

[9] P. Lenzner. On dynamics in basic network creation games. In G. Persiano, editor,
Algorithmic Game Theory, volume 6982 of Lecture Notes in Computer Science, pages
254–265. Springer Berlin / Heidelberg, 2011.

[10] H. Lin. On the price of anarchy of a network creation game. Class final project. 2003.

[11] M. Mihalák and J. C. Schlegel. The price of anarchy in network creation games is
(mostly) constant. In Proceedings of the Third international conference on Algorithmic
game theory, SAGT’10, pages 276–287, Berlin, Heidelberg, 2010. Springer-Verlag.

[12] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior,
14(1):124 – 143, 1996.

[13] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, New York, NY, USA, 2007.

[14] M. Voorneveld. Best-response potential games. Economics Letters, 66(3):289 – 295,
2000.

18

