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Abstract. Robustness is one of the key properties of nowadays net-
works. However, robustness cannot be simply enforced by design or reg-
ulation since many important networks, most prominently the Internet,
are not created and controlled by a central authority. Instead, Internet-
like networks emerge from strategic decisions of many selfish agents.
Interestingly, although lacking a coordinating authority, such naturally
grown networks are surprisingly robust while at the same time having
desirable properties like a small diameter. To investigate this phenom-
enon we present the first simple model for selfish network creation which
explicitly incorporates agents striving for a central position in the net-
work while at the same time protecting themselves against random edge-
failure. We show that networks in our model are diverse and we prove the
versatility of our model by adapting various properties and techniques
from the non-robust versions which we then use for establishing bounds
on the Price of Anarchy. Moreover, we analyze the computational hard-
ness of finding best possible strategies and investigate the game dynamics
of our model.

1 Introduction

Networks are everywhere and we crucially rely on their functionality. Hence it is
no surprise that designing networks under various objective functions is a well
established research area in the intersection of Operations Research, Computer
Science and Economics. However, investigating how to create suitable networks
from scratch is of limited use for understanding most of nowadays networks.
The reason for this is that most of our resource, communication and online social
networks have not been created and designed by some central authority. Instead,
these critical networks emerged from the interaction of many selfish agents who
control and shape parts of the network. This clearly calls for a game-theoretic
perspective.

One of the most prominent examples of such a selfishly created network
is the Internet, which essentially is a network of sub-networks which are each
owned and controlled by Internet service providers (ISP). Each ISP decides self-
ishly how to connect to other ISPs and thereby balancing the cost for creating
links (buying the necessary hardware and/or peering agreement contracts for
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routing traffic) and the obtained service quality for its customers. Interestingly,
although the Internet is undoubtedly an important and critical infrastructure,
there is no central authority which ensures its functionality if parts of the net-
work fail. Despite this fact, the Internet seems to be robust against node or edge
failures, which hints that a socially beneficial property like network robustness
may emerge from selfish behavior.

Modeling agents with a desire for creating a robust network has long been
neglected and was started to be investigated only very recently. This paper con-
tributes to this endeavor by proposing and analyzing a model of selfish network
creation, which explicitly incorporates agents who strive for occupying a central
position in the network while at the same time ensuring that the overall network
remains functional even under edge-failure.

1.1 Related Work

Previous research on game-theoretic models for network creation has either
focused on centrality models, where the agents’ service quality in the created
network depends on the distances to other agents, or on reachability models
where agents only care about being connected to many other agents.

Some prominent examples of centrality models for selfish network creation
are [2,7–10,13,18]. They all have in common that agents correspond to nodes in
a network and that the edge set of the network is determined by the combina-
tion of the agents’ strategies. The utility function of an agent contains a service
quality term which depends on the distances to all other agents. To the best
of our knowledge the very recent paper by Meirom et al. [19] is the only cen-
trality model which incorporates edge-failures. The authors consider two types
of agents, major-league and minor-league agents, which maintain that the net-
work remains 2-connected while trying to minimize distances, which are a linear
combination of the length of a shortest path and the length of a best possible ver-
tex disjoint backup path. Under some specific assumptions, e.g. that there are
significantly more minor-league than major-league agents, they prove various
structural properties of equilibrium networks and investigate the corresponding
game-dynamics. In contrast to this, we will investigate a much simpler model
with homogeneous agents which is more suitable for analyzing networks created
by equal peers. Our results can be understood as zooming in on the sub-network
formed by the major-league agents (i.e. top tier ISPs).

In reachability models, e.g. [3–5,11,12,15], the service quality of an agent
is simply defined as the number of reachable agents and distances are ignored
completely. For reachability models the works of Kliemann [15,16] and the very
recent paper by Goyal et al. [12] explicitly incorporate a notion of network robust-
ness in the utility function of every agent. All models consider an external adver-
sary who strikes after the network is built. In [15,16] the adversary randomly
removes a single edge and the agents try to maximize the expected number of
reachable nodes post attack. Two versions of the adversary are analyzed: edge
removal uniformly at random or removal of the edge which hurts the society of
agents most. For the former adversary a constant Price of Anarchy is shown,
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whereas for the latter adversary this positive result is only true if edges can
be created unilaterally. In [12] nodes are attacked (and killed) and this attack
spreads virus-like to neighboring nodes unless they are protected by a firewall.
Interestingly also this model has a low Price of Anarchy and the authors prove
a tight linear bound on the amount of edge-overbuilding due to the adversary.

1.2 Model and Notation

We consider the Network Creation Game (NCG) by Fabrikant et al. [10] aug-
mented with the uniform edge-deletion adversary from Kliemann [15] and we call
our model Adversary NCG (Adv-NCG). More specifically, in an Adv-NCG there
are n selfish agents which correspond to the nodes of an undirected multi-graph
G = (V,E) and we will use the terms agent and node interchangeably. A pure
strategy Su of agent u ∈ V (G) is any multi-set over elements from V \ {u}. If
v is contained k times in Su then this encodes that agent u wants to create k
undirected edges to node v. Moreover we say that u is the owner of all edges to
the nodes in Su. We emphasize the edge-ownership in our illustrations by draw-
ing directed edges which point away from their owner - all edges are nonetheless
understood to be undirected. Given an n-dimensional vector of pure strategies
for all agents, then the union of all the edges encoded in all agents’ pure strate-
gies defines the edge set E of the multi-graph G. Since there is a bijection of
multi-graphs with edge-ownership information and pure strategy-vectors, we will
use networks and strategy-vectors interchangeably, e.g. by saying that a network
is in equilibrium.

The agents prepare for an adversarial attack on the network after creation.
This attack deletes one edge uniformly at random. Hence, agents try to minimize
the attack’s impact on themselves by minimizing their expected cost. Let G − e
denote the network G where edge e is removed. Let δG(u) =

∑
v∈V (G) dG(u, v),

where dG(u, v) is the number of edges of a shortest path from u to v in network
G. Let

distG(u) =
1

|E|
∑

e∈E

δG−e(u) =
1

|E|
∑

e∈E

∑

v∈V

dG−e(u, v)

denote agent u’s expected distance cost after the adversary has removed some
edge uniformly at random from G. The expected cost of an agent u in network
G = (V,E) with edge-price α is defined as costu(G,α) = edgeu(G,α)+distG(u),
where edgeu(G,α) = α · |Su| is the total edge-cost for agent u with strategy Su

in (G,α). Thus, compared to the NCG [10], the distance cost term is replaced
by the expected distance cost with respect to uniform edge deletion.

Let (G,α) be any network with edge-ownership information. We call any
strategy-change from Su to S′

u of some agent u a move. Specifically, if |Su| = |S′
u|,

then such a move is called a multi-swap, if |Su ∩ S′
u| < |Su| − 2 and a swap if

|Su ∩ S′
u| = |Su| − 2. If a move of agent u strictly decreases agent u’s cost, then

it is called an improving move. If no improving move exists, then we say that
agent u plays its best response. Analogously we call a strategy-change towards
a best response a best response move. A sequence of best response moves which
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starts and ends with network (G,α) is called a best response cycle. We say that
(G,α) is in Pure Nash Equilibrium (NE) if all agents play a best response.

We measure the overall quality of a network (G,α) with its social cost, which
is defined as cost(G,α) =

∑
u∈V (G) costu(G,α) = edge(G,α) + dist(G), where

edge(G,α) =
∑

u∈V (G) edgeu(G,α) = α · |E| and dist(G) =
∑

u∈V (G) distG(u).
Let OPT (n, α) be a network on n nodes with edge-price α which minimizes
the social cost and we call OPT(n, α) the optimum network for n and α. Let
maxNE(n, α) be the maximum social cost of any NE network on n agents with
edge-price α and analogously let minNE(n, α) be the NE having minimum social
cost. Then, the Price of Anarchy is the maximum over all n and α of the ratio
maxNE(n,α)
OPT(n,α) , whereas the Price of Stability is the maximum over all n and α of

the ratio minNE(n,α)
OPT (n,α) .

1.3 Our Contribution

This paper introduces and analyzes an accessible model, the Adv-NCG, for selfish
network creation in which agents strive for a central position in the network while
protecting against random edge-failures.

We show that optimum networks in the Adv-NCG are much more diverse
than without adversary, which also indicates that the same holds true for the
Nash equilibria of the game. However, we also show that many techniques and
results from the NCG can be adapted to cope with the Adv-NCG, which indi-
cates that the influence of the adversary is limited. In particular, we prove NP-
hardness of computing a best possible strategy and W[2]-hardness of computing
a best multi-swap. Moreover, we show that the Adv-NCG is not weakly acyclic,
which is the strongest possible non-convergence result for any game. On the pos-
itive side, we prove that the amount of edge-overbuilding due to the adversary is
limited, which is then used for proving that upper bounding the diameter essen-
tially bounds the Price of Anarchy from above. We apply this by adapting two
diameter-bounding techniques from the NCG to the adversarial version which
then yields an upper bound on the PoA of O(1 + α/

√
n).

Due to space constraints some proofs and details are omitted. All missing
material can be found in the full version [6].

2 Optimal Networks

Clearly, every optimal network must be 2-edge connected. Thus, every optimal
network must have at least n edges. We first prove the intuitive fact that if edges
get more expensive, then the optimum networks will have fewer edges.

Theorem 1. Let (G = (V,E), α) and (G′ = (V,E′), α′) be optimal networks on
n nodes in the Adv-NCG for α and α′, respectively. If α′ > α, then |E| ≥ |E′|.
In the following, we show that the landscape of optimum networks is much richer
in the Adv-NCG, compared to the NCG where the optimum is either a clique
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Fig. 1. Different candidates for optimum networks.

or a star, depending on α. In particular, we prove that there are Ω(n2) different
optimal topologies. We consider the following types of networks: Here DGn is a
clique of n nodes where we have a double edge between all pairs of nodes. Let
DGn,k be a n node clique with exactly k pairs of nodes which are connected with
double edges. Thus, DGn,0 = Gn and DGn,(n

2) = DGn. Moreover, let Fn denote
the fan-graph on n nodes which is a collection of triangles which all share a single
node and let DSn denote a star on n nodes where all connections between the
center and the leaves are double edges. Finally, let Cn be a cycle of length n.

Clearly, if α = 0, then the optimum network on n nodes must be a DGn, since
in this network no edge deletion of the adversary has any effect, it minimizes the
sum of distances of each agent and since edges are for free.

Now consider what happens, if one pair of agents, say u and v, are just
connected via a single edge instead of a double edge. The probability that the
adversary removes this edge is 1

n(n−1)−1 . The removal would cause an increase in
distance cost of 1 between u and v and between v and u. Thus, if α < 2

n(n−1)−1 ,
then agent u and v would individually be better off buying another edge between
each other. Thus, we have the following observation.

Observation 2. If 0 ≤ α ≤ 2
n(n−1)−1 , then OPT(n, α) = DGn.

Lemma 1. If 2n(n−1)

((n
2)+k)((n

2)+k+1)
≤ α ≤ 2n(n−1)

((n
2)+k)((n

2)+k−1)
, for 1 ≤ k ≤ (

n
2

) − 1,

then the network DGn,k is optimal.

Note, that the proof of the above statement implies that the complete graph Gn

is an optimum, if 4

(n
2)+1

≤ α < 2 − 2

(n
2)

.

We also remark that we conjecture that Fig. 1 resembles a snapshot of opti-
mum networks for increasing α from left to right. In fact, extensive simulations
indicate that the optimum changes from Gn to DSn and then, for slightly larger
α for Fn. After this the cycles in the fan-graph increase and get fewer in number
until, finally, for α ∈ Ω(n3) the cycle appears as optimum.

3 Computing Best Responses and Game Dynamics

In this section we investigate computational aspects of the Adv-NCG. First we
analyze the hardness of computing a best response and the hardness of comput-
ing a best possible multi-swap. Then we analyze a natural process for finding an
equilibrium network by sequentially performing improving moves.
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3.1 Hardness of Best Response Computation

We first introduce useful properties for ruling out multi-buy or multi-delete
moves. The proof is similar to the proof of Lemma 1 in [17].

Proposition 1. If an agent cannot decrease its expected cost by buying (delet-
ing) one edge in the Adv-NCG, then buying (deleting) k > 1 edges cannot
decrease the agent’s expected cost.

Lemma 2. If 1 − 1
|E|+1 < α < 1 + 1

|E|(|E|−1) and if agent u is not an endpoint
of any double-edge in the Adv-NCG, then buying the minimum number of edges
such that u’s expected distance to all nodes in V \ Nu is 2 and to nodes in Nu is
1 + 1

|E| is u’s best response.

Now we show that computing the best possible strategy-change is intractable.

Theorem 3. 1. It is NP-hard to compute the best response of agent u in the
Adv-NCG.

2. It is W [2]-hard to compute the best multi-swap of agent u in the Adv-NCG.

3.2 Game Dynamics

We investigate the dynamic properties of the Adv-NCG. That is, we turn the
model into a sequential version which starts with some initial network (G,α)
and then agents move sequentially in some order and perform improving moves,
if possible. One natural question is, if this process is guaranteed to converge to
a Nash equilibrium of the game.

For the game dynamics of the Adv-NCG we prove the strongest possible
negative result, which essentially shows that there is no hope for convergence if
agents stick to performing improving moves only. In particular, we prove that
the order of the agents moves or any tie-breaking between different improving
moves does not help for achieving convergence. This result is even stronger than
the best known non-convergence results for the NCG [14].

Theorem 4. The Adv − NCG is not weakly acyclic.

4 Analysis of Networks in Nash Equilibrium

In this section we establish the existence of networks in Nash Equilibrium for
almost the whole parameter space and we compare NE networks in the Adv-NCG
with NE networks from the NCG [10] and Kliemann’s adversarial model [15].
Moreover, we investigate structural properties which allow us to provide bounds
on the Price of Stability and the Price of Anarchy.

We start with the existence result:

Theorem 5. The networks DGn and DSn are in pure Nash Equilibrium if α ≤
1

n(n−1)−1 and α ≥ 1 − 1
2n−1 , respectively.
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Next, we show that NE in the Adv-NCG are not comparable with NE from the
NCG or Kliemann’s model.

Theorem 6. There is a NE in the Adv-NCG which is not an NE in the NCG
and vice versa. The analogous statement also holds for Kliemann’s model.

4.1 Relation Between the Diameter and the Social Cost

We prove a property which relates the diameter of a network with its social cost.
With this, we prove that one of the most useful tools for analyzing NE in the
NCG [10] can be carried over to the Adv-NCG.

Before we start, we analyze the diameter increase induced by removing a
single edge in a 2-edge-connected network.

Lemma 3. Let G = (V,E) be any 2-edge-connected network having diameter D
and let G − e be the network G where some edge e ∈ E is removed. Then the
diameter of G − e is at most 2D.

Next, we will focus on edges which are part of cuts of the network of size two.
Remember that a bridge is an edge whose removal from a network increases
the number of connected components of that network. Let G = (V,E) be any
2-edge-connected network. We say that an edge e ∈ E is a 2-cut-edge if there
exists a cut of G of size 2 which contains edge e. Equivalently, e is a 2-cut-edge
of G if its removal from G creates at least one bridge in G−e. We now bound the
number of 2-cut-edges in any 2-edge-connected network G. This is an important
structural result, since this proves that the amount of edge-overbuilding due to
the adversary is sharply limited.

Lemma 4. Any 2-edge-connected network G with n nodes can have at most
2(n − 1) edges which are 2-cut-edges.

Proof. Let e be any 2-cut-edge in network G. By definition, the removal of e
creates one or more bridges in G − e. Let b1, . . . , bl denote those bridges. Note,
that b1, . . . , bl also must be 2-cut-edges in G. Moreover, it follows that there
must be a shortest cycle C in G which contains all the edges e, b1, . . . , bl. If there
are more than one such cycles, then fix one of them. We call the fixed cycle C a
cut-cycle.

Notice that any 2-cut-edge corresponds to exactly one cut-cycle in the net-
work and that every cut-cycle contains at least two 2-cut-edges. We show in the
following that if any cut-cycle in the network contains at least three 2-cut-edges,
then we can modify the network to obtain strictly more 2-cut-edges and strictly
more cut-cycles. This implies that the number of 2-cut-edges is maximized if
the number of cut-cycles is maximized and every cut-cycle contains exactly two
2-cut-edges.

Now we describe the procedure which converts any network with at least one
cut-cycle containing at least three 2-cut-edges into a modified network with a
strictly increased number of cut-cycles and 2-cut-edges (see Fig. 2). Let G be
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a) Conversion of adjacent 2-cut-edges
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b) Conversion of non-adjacent 2-cut-edges

Fig. 2. Increasing the number of 2-cut-edges by splitting up a cut-cycle.

any network with at least one cut-cycle C = v1, . . . , vk, v1 containing at least
three 2-cut-edges. If there are two adjacent 2-cut-edges {vl, vl+1}, {vl+1, vl+2} in
cycle C, then delete the 2-cut-edge {vl, vl+1} and insert two new edges {vl, vl+2}
and {vl+1, vl+2}. First of all, note that these new edges have not been present in
network G before the insertion since otherwise {{vl, vl+1}, {vl+1, vl+2}} cannot
be a cut of G. We claim that both new edges are 2-cut-edges and that the cycle C
is divided into two new cut-cycles v1, . . . , vl, vl+2, . . . , vk, v1 and vl+1, vl+2, vl+1.
Indeed, there are at least two bridges {vl+1, vl+2} and {vk, vk+1} in the cut-cycle
C after deleting {vl, vl+1}, and both of them end up in different new cut-cycles.
Hence, deleting any of the newly inserted edges {vl, vl+2} or {vl+1, vl+2} implies
that {vk, vk+1} or {vl+1, vl+2} becomes a bridge. Thus, both new edges are 2-
cut-edges and both of new cycles are cut-cycles.

If there are three pairwise non-adjacent 2-cut-edges {vl, vl+1}, {vm, vm+1},
{vp, vp+1} in cycle C, then delete one 2-cut-edge {vl, vl+1} and insert two new
edges {vl, vp+2} and {vl+1, vm+1}. Analogous to above, both new edges cannot
be already present in G and both are 2-cut-edges because deleting any of them
renders edge {vm, vm+1} or {vp, vp+1} a bridge. Moreover, cut-cycle C is divided
into two new cut-cycles.

Finally, we claim that the maximum number of cut-cycles in any n-vertex
network G is at most n − 1. Since we know that every such cut-cycle contains
exactly two 2-cut-edges this then implies that there can be at most 2(n − 1)
2-cut-edges in any network G.

Now we prove the above claim. Note that applying our transformation does
not disconnect the network. Thus, we know that network G after all transfor-
mations is connected. Now we iteratively choose any cut-cycle C in G and we
delete the two 2-cut-edges contained in C. This deletion increases the number
of connected components of the current network by exactly 1. We repeat this
process until we have destroyed all cut-cycles in G. Note that deleting edges from
G may create new cut-cycles, but we never destroy more than one of them at a
time. Thus, since each iteration increases the number of connected components
of the network by 1, it follows that there can be at most n − 1 iterations since
network G with n vertices cannot have more than n connected components. ��
Remark 1. Lemma 4 is tight, since a path of length n− 1, where all neighboring
nodes are connected via double edges, has exactly 2(n − 1) 2-cut-edges.

Now we relate the diameter with the social cost.
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Theorem 7. Let (G,α) be any NE network on n nodes having diameter D and
let OPT (n, α) be the optimum network on n nodes for the same edge-cost α.
Then we have that

cost(G,α)
cost(OPT (n, α))

∈ O(D).

Proof. Since OPT (n, α) must be 2-edge-connected, it must have at least n
edges. Moreover, the minimum expected distance between each pair of vertices
in OPT (n, α) is at least 1. Thus, we have that cost(OPT (n, α)) ∈ Ω(α ·n+n2).

Now we analyze the social cost of the NE network (G,α), where G = (V,E).
We have cost(G,α) = edge(G,α) + dist(G) and we will analyze both terms
separately. We start with an upper bound on dist(G).

Since (G,α) has diameter D and since (G,α) is 2-edge-connected, Lemma 3
implies that the expected distance between each pair of vertices in (G,α) is at
most 2D. Thus, we have that dist(G) ∈ O(n2 · D).

Now we analyze edge(G,α). By Lemma 4 we have at most 2n many 2-cut-
edges in G. Buying all those edges yields cost of at most 2n · α.

We proceed with bounding the number of non-2-cut-edges in G. We consider
any agent v and analyze how many non-2-cut-edges agent v can have bought.
We claim that this number is in O (

nD
α

)
, which yields total edge-cost of O(nD)

for agent v. Summing up over all n agents, this yields total edge-cost of O(n2D)
for all non-2-cut-edges of G. This then implies an upper bound of O(α ·n+n2D)
on the social cost of G which finishes the proof.

Now we prove our claim. Fix any non-2-cut-edge e = {v, w} of G which is
owned by agent v. Let Ve ⊂ V be the set of nodes of G to which all shortest
paths from v traverse the edge e.

We first show that removing the edge e increases agent v’s expected distance
to any node in Ve to at most 4D. By Lemma 3, removing edge e increases the
diameter of G from D to at most 2D. Since e is a non-2-cut-edge, we have that
G − e is still 2-edge-connected. Thus, again by Lemma 3, it follows that agent
v’s expected distance to any other node in G − e is at most 4D.

However, removing edge e not only increases v’s expected distance towards
all nodes in Ve, instead, since G − e has a less many edges than G, agent v’s
expected distance to all other nodes in V \ (Ve ∪ {v}) increases as well. We now
proceed to bound this increase in expected distance cost.

We compare agent v’s expected distance cost in network G and in network
G − e. Let m denote the number of edges in G. Thus, G − e has m − 1 many
edges. For network G agent v’s expected distance cost is

distG(v) =
1
m

∑

f∈E

δG−f (v) =
1
m

∑

f∈E\{e}
δG−f (v) +

δG−e(v)
m

.

In network G − e, we have distG−e(v) = 1
m−1

∑
f∈E\{e} δG−e−f (v). Now we

upper bound the increase in expected distance cost for agent v due to removal
of edge e from G. distG−e(v) − distG(v) is
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1
m − 1

∑

f∈E\{e}
δG−e−f (v) −

⎛

⎝ 1
m

∑

f∈E\{e}
δG−f (v) +

δG−e(v)
m

⎞

⎠

=
∑

f∈E\{e}

(
δG−e−f (v)

m − 1
− δG−f (v)

m

)

− δG−e(v)
m

.

We have that δG−e−f (v) ≤ δG−f (v) + |Ve| · 4D, since in G − e − f only the
distances to nodes in Ve increase, compared to the network G − f and since e
is a non-2-cut-edge in G. Moreover, by Lemma 3, the distances to nodes in Ve

in G − e − f increase to at most 4D for each node in Ve. Thus, we have that
distG−e(v) − distG(v) is

∑

f∈E\{e}

(
δG−e−f (v)

m − 1
− δG−f (v)

m

)

− δG−e(v)
m

≤
∑

f∈E\{e}

(
δG−f (v) + |Ve|4D

m − 1
− δG−f (v)

m

)

= |Ve|4D +
∑

f∈E\{e}

(
δG−f (v)

m(m − 1)

)

≤ |Ve|4D +
∑

f∈E\{e}

(
2D · n

n(m − 1)

)

≤ |Ve|4D + 4D = (|Ve| + 1)4D.

Since G is in Nash Equilibrium, we know that removing edge e is not an improv-
ing move for agent v. Thus, we have that

α ≤ (|Ve| + 1)4D ⇐⇒ |Ve| ≥ α

4D
− 1.

Thus, for all non-2-cut-edges e which are bought by agent v, we have that |Ve| ∈
Ω( α

D ). Since all these sets Ve are disjoint, it follows that v can have bought at
most n

Ω( α
D ) ∈ O(nD

α ) many non-2-cut-edges. ��

4.2 Price of Stability and Price of Anarchy

Theorem 8. If α ≤ 1
n(n−1)−1 , then the PoS is 1. If 1

n(n−1)−1 < α < 2
n(n−1)−1 ,

then PoS is strictly larger than 1, if α > 1 − 1
2n−1 , then the PoS is at most 2.

We now show how to adapt two techniques from the NCG for bounding the
diameter of equilibrium networks to our adversarial version. This can be under-
stood as a proof of concept showing that the Adv-NCG can be analyzed as
rigorously as the NCG. However, carrying over the currently strongest general
diameter bound of 2O(

√
log n) due to Demaine et al. [8], which is based on inter-

leaved region-growing arguments seems challenging due to the fact that we can
only work with expected distances.

We start with a simple diameter upper bound based on [10].
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Theorem 9. The diameter of any NE network (G,α) is in O(
√

α).

Proof. We prove the statement by contradiction. Assume that there are agents
u and v in network G with dG(u, v) ≥ 4�, for some �. Since expected distances
cannot be shorter than distances in G, it follows that u’s expected distance to
v is at least 4�. If u buys an edge to v for the price of α then u’s decrease in
expected distance cost is at least |E|

|E|+1 (4� − 1 + 4� − 3 + · · · + 1) = |E|
|E|+12�2.

Thus, if dG(u, v) > 4
√

α, then u′s decrease in expected distance cost by
buying the edge uv is at least |E|

|E|+12α > α. Thus, if the diameter of G is at least
4
√

α then there is some agent who has an improving move. ��
Together with Theorem 7 this yields the following statement:

Corollary 1. The Price of Anarchy of the Adv-NCG is in O(
√

α).

Adapting a technique by Albers et al. [1] yields a stronger statement, which
implies constant PoA for α ∈ O(

√
n).

Theorem 10. The Price of Anarchy of the Adv-NCG is in O
(
1 + α√

n

)
.

We conclude with a weak lower bound on the PoA, which is tight for high α.

Theorem 11. The Price of Anarchy of the Adv-NCG is at least 2 and for very
large α this bound is tight.

5 Conclusion

Our work is the first step towards incorporating both centrality and robustness
aspects in a simple and accessible model for selfish network creation. In essence
we proved that many properties and techniques can be carried over from the
non-adversarial NCG and we indicated that the landscape of optimum and equi-
librium networks in the Adv-NCG is much more diverse than without adversary.
As for the NCG, proving strong upper or lower bounds on the PoA is very chal-
lenging. Especially surprising is the hardness of constructing higher lower bounds
than in the NCG since by introducing suitable gadgets it is always possible to
enforce that no agent wants to swap or delete edges. A non-constant lower bound
on the PoA seems possible if α is linear in n.

It would also be interesting to consider different adversaries. An obvious
candidate for this is node-removal at random. Another promising choice is a
local adversary, where every agent considers that some of its incident edges may
fail. This local perspective combined with a centrality aspect could explain why
many selfishly built networks have a high clustering coefficient.

Another direction is to consider the swap version [9,20] of the Adv-NCG,
especially in the case where all agents own at least 2 edges. We note in passing,
that the swap-version of the Adv-NCG is not a potential game (an improving
move cycle can be found in the full version [6]) and that creating equilibrium
networks having diameter 4 is already very challenging.
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