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Abstract

In 1952, Dirac proved the following theorem about long cycles in graphs with large minimum vertex degrees:
Every n-vertex 2-connected graphG with minimum vertex degree δ ≥ 2 contains a cycle with at least min{2δ, n}
vertices. In particular, if δ ≥ n/2, then G is Hamiltonian. The proof of Dirac’s theorem is constructive, and
it yields an algorithm computing the corresponding cycle in polynomial time. The combinatorial bound of
Dirac’s theorem is tight in the following sense. There are 2-connected graphs that do not contain cycles of
length more than 2δ + 1. Also, there are non-Hamiltonian graphs with all vertices but one of degree at least
n/2. This prompts naturally to the following algorithmic questions. For k ≥ 1,

(A) How difficult is to decide whether a 2-connected graph contains a cycle of length at least min{2δ+k, n}?
(B) How difficult is to decide whether a graph G is Hamiltonian, when at least n − k vertices of G are of

degrees at least n/2− k?

The first question was asked by Fomin, Golovach, Lokshtanov, Panolan, Saurabh, and Zehavi. The second
question is due to Jansen, Kozma, and Nederlof. Even for a very special case of k = 1, the existence of a
polynomial-time algorithm deciding whether G contains a cycle of length at least min{2δ + 1, n} was open.
We resolve both questions by proving the following algorithmic generalization of Dirac’s theorem: If all but k
vertices of a 2-connected graph G are of degree at least δ, then deciding whether G has a cycle of length at
least min{2δ + k, n} can be done in time 2O(k) · nO(1).

The proof of the algorithmic generalization of Dirac’s theorem builds on new graph-theoretical results that
are interesting on their own.
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1 Introduction

The fundamental theorem of Dirac from 1952 guarantees the existence of a Hamiltonian cycle in a graph with
a large minimum vertex degree.

Theorem 1.1. (Dirac [Dir52, Theorem 3]) If every vertex of an n-vertex graph G is of degree at least n/2,
then G is Hamiltonian, that is, contains a Hamiltonian cycle.

Theorem 1.1 follows from a more general statement of Dirac about long cycles in a graph.

Theorem 1.2. (Dirac [Dir52, Theorem 4]) Every n-vertex 2-connected graph G with minimum vertex degree
δ(G) ≥ 2, contains a cycle with at least min{2δ(G), n} vertices.

Both Dirac’s theorems were the first instances of results that developed into one of the core areas in Extremal
Graph Theory. One of the main questions in this research domain is to establish vertex degree characterization of
Hamiltonian graphs and conditions enforcing long paths or cycles in graphs. The (very) incomplete list of results in
this area includes the classical theorems of Erdős and Gallai [EG59], Ore [Ore60], Bondy and Chvátal [BC76], Pósa
[P6́2], Meyniel [Mey73], and Bollobás and Brightwell [BB93], see also the Wikipedia entry on the Hamiltonian
path.1 The chapters of Bondy [Bon95] and Bollobás [Bol95] in the Handbook of Combinatorics, as well as
Chapter 3 in the Extremal Graph Theory book [Bol78] provide excellent introduction to this important part of
graph theory. The survey of Li [Li13] is a comprehensive (but a bit outdated) overview of the area. After almost
70 years, the field remains active, see for example the very recent proof of the Woodall’s conjecture by Li and
Nung [LN21].

Computing long cycles and paths is also an important topic in parameterized complexity. It served as a
test-bed for developing several fundamental algorithmic techniques including the color coding of Alon, Yuster
and Zwick [AYZ95], the algebraic approaches of Koutis and Williams [Kou08, Wil09], matroids-based methods
[FLPS16], and the determinants-sum technique of Björklund from his FOCS 2010 Test of Time Award paper
[Bjö14]. We refer to [FK13], [KW16], and [CFK+15a, Chapter 10] for an overview of algorithmic ideas and
techniques developed for computing long paths and cycles in graphs.

Despite the tremendous progress in graph-theoretical and algorithmic studies of longest cycles, all the
developed tools do not answer the following natural and “innocent” question. By Theorem 1.2, deciding whether
a 2-connected graph G contains a cycle of length at least min{2δ(G), n} can be trivially done in polynomial time
by checking degrees of all vertices in G.

Question 1: Is there a polynomial time algorithm to decide whether a 2-connected graph G contains a
cycle of length at least min{2δ(G) + 1, n}?

The methods developed in the extremal Hamiltonian graph theory do not answer this question. The
combinatorial bound in Theorem 1.2 is known to be sharp; that is, there exist graphs that have no cycles of
length at least min{2δ(G) + 1, n}. Since the extremal graph theory studies the existence of a cycle under certain
conditions, such type of questions are beyond its applicability. The techniques of parameterized algorithms do
not seem to be much of use here either. Such algorithms compute a cycle of length at least k in time 2O(k) ·nO(1),
which in our case is 2O(δ(G)) · nO(1). Hence when δ(G) is, for example, at least n1/100, these algorithms do not
run in polynomial time.

Similarly, the existing methods do not answer the question about another “tiny algorithmic step” from Dirac’s
theorem, what happens when all vertices of G but one are of large degree?

Question 2: Let v be a vertex of the minimum degree of a 2-connected graph G. Is there a polynomial
time algorithm to decide whether G contains a cycle of length at least min{2δ(G− v), n}?

(We denote by G− v the induced subgraph of G obtained by removing vertex v.) Note that graph G− v is
not necessarily 2-connected and we cannot apply Theorem 1.2 to it.

1https://en.wikipedia.org/wiki/Hamiltonian_path
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The incapability of existing techniques to answer Questions 1 and 2 was the primary motivation for our work.
We answer both questions affirmatively and in a much more general way. Our result implies that in polynomial
time one can decide whether G contains a cycle of length at least 2δ(G−B) + k for B ⊆ V (G) and k ≥ 0 as long
as k+ |B| ∈ O(log n). (We denote by G−B the induced subgraph of G obtained by removing vertices of B.) To
state our result more precisely, we define the following problem.

Input: Graph G with vertex set B ⊆ V (G) and integer k ≥ 0.
Task: Decide whether G contains a cycle of length at least min{2δ(G−B), |V (G)|−|B|}+k.

Long Dirac Cycle parameterized by k + |B|

In the definition of Long Dirac Cycle we use the minimum of two values for the following reason. The
question whether an n-vertex graph G contains a cycle of length at least 2δ(G − B) + k is meaningful only for
δ(G− B) ≤ n/2. Indeed, for δ(G− B) > n/2, G does not contain a cycle of length at least 2δ(G− B) + k > n.
However, even when δ(G− B) > n/2, deciding whether G is Hamiltonian, is still very intriguing. By taking the
minimum of the two values, we capture both interesting situations.

The main result of the paper is the following theorem providing an algorithmic generalization of Dirac’s
theorem.

Theorem 1.3. (Main Theorem) On an n-vertex 2-connected graph G, Long Dirac Cycle is solvable in time
2O(k+|B|) · nO(1).

In other words, Long Dirac Cycle is fixed-parameter tractable parameterized by k+|B| and the dependence
on the parameters is single-exponential. This dependence is asymptotically optimal up to the Exponential Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [IPZ01]. Solving Long Dirac Cycle in time 2o(k) · nO(1)

even with B = ∅ yields recognizing in time 2o(n) whether a graph is Hamiltonian. A subexponential algorithm
deciding Hamiltonicity would fail ETH. We show that solving Long Dirac Cycle in time 2o(|B|) · nO(1) even
for k = 1 would contradict ETH as well. It is also NP-complete to decide whether a 2-connected graph G has a
cycle of length at least (2 + ε)δ(G) for any ε > 0.

The 2-connectivity requirement in the statement of the theorem is important—without it Long Dirac Cycle
is already NP-complete for k = |B| = 0. Indeed, for an n-vertex graph G construct a graph H by attaching to each
vertex of G a clique of size n/2. Then H has a cycle of length at least 2δ(H) ≥ n if and only if G is Hamiltonian.
However, when instead of a cycle we are looking for a long path, the 2-connectivity requirement could be omitted.
More precisely, consider the following problem.

Input: Graph G with vertex set B ⊆ V (G) and integer k ≥ 0.
Task: Decide whether G contains a path of length at least min{2δ(G−B), |V (G)| − |B| −

1}+ k.

Long Dirac Path parameterized by k + |B|

Theorem 1.3 yields the following.

Corollary 1.1. On a connected n-vertex graph G, Long Dirac Path is solvable in time 2O(k+|B|) · nO(1).

Indeed, when G is connected, the graph G+ v, obtained by adding a vertex v and making it adjacent to all
vertices of the graph, is 2-connected. The minimum vertex degree of G+ v is equal to δ(G) + 1, and G has a path
of length at least t if and only if G+ v has a cycle of length at least t+ 2.

Theorem 1.3 answers several open questions from the literature. Fomin, Golovach, Lokshtanov, Panolan,
Saurabh and Zehavi in [FGL+20a] asked about the parameterized complexity of problems (with parameter k)
where for a given (2-connected) graph G and k ≥ 1, the task is to check whether G has a path (cycle) with at
least 2δ(G) + k vertices. By Theorem 1.3 and Corollary 1.1 (the case B = ∅), both problems are fixed-parameter
tractable.

Jansen, Kozma, and Nederlof in [JKN19] conjectured that if at least n−k vertices of graph G are of degree at
least n/2−k, then deciding whether G contains a Hamiltonian cycle can be done in time 2O(k) ·nO(1). Theorem 1.3
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resolves this conjecture. Indeed, if G is Hamiltonian, it is 2-connected. Then let B, |B| ≤ k, be the set of vertices
such that every vertex from V (G)\B is of degree (in G) at least n/2−k. Then δ(G−B) ≥ n/2−k−|B| ≥ n/2−2k.
If n − |B| ≤ n − 2k − 2|B|, we put k′ = |B|, otherwise we put k′ = n − 2δ(G − B). Note that because
2δ(G−B) ≥ n−4k, in both cases we have that k′ ≤ 4k. Also by the choice of k′, min{2δ(G−B), n−|B|}+k′ = n
and hence G has a cycle of length at least min{2δ(G − B), n − |B|} + k′ if and only if G is Hamiltonian. By
Theorem 1.3, deciding whether G has a cycle of length at least min{2δ(G−B), n− |B|}+ k′ can be done in time
2O(k′+|B|) · nO(1) = 2O(k) · nO(1). Interestingly, while the conjecture of Jansen, Kozma and Nederlof follows from
the statement of Theorem 1.3, to prove the theorem, we need to resolve this conjecture directly.

We state Theorem 1.3 for the decision variant of the problem. However, the proof is constructive and the
corresponding cycle can be found within the same running time. Note that standard self-reduction arguments are
not applicable here because deleting or contracting edges could change the minimum vertex degree.

Related work. Until very recently, graph-theoretical and algorithmic studies of the longest paths and cycles
coexisted in parallel universes without almost any visible interaction. In 1992, Häggkvist [H9̈2], as a corollary
of his structural theorem, provided an algorithm that decides in time nO(k) whether a graph with the minimum
vertex degree at least n/2 − k is Hamiltonian. In 2019, Jansen, Kozma, and Nederlof in [JKN19] gave two
algorithms of running times 2O(k) · nO(1) that decide whether the input graph G is Hamiltonian when either the
minimum vertex degree of G is at least n/2 − k or at least n − k vertices of G are of degree at least n/2. The
first result of Jansen, Kozma, and Nederlof strongly improves the algorithm of Häggkvist. However, the methods
they use, like the structural theorem of Häggkvist [H9̈2], are specific for Hamiltonicity and are not applicable
for the more general problem of computing the longest cycle. Second, their parameterized algorithms work only
in one of the scenarios: either when all vertices are of degree at least n/2 − k or when at least n − k vertices
are of degree at least n/2. Whether both scenarios could be combined, that is, the existence of a parameterized
algorithm deciding Hamiltonicity when n− k vertices are of degree at least n/2− k, was left open.

Fomin, Golovach, Lokshtanov, Panolan, Saurabh and Zehavi in [FGL+20a] gave an algorithm that in time
2O(k) · nO(1) decides whether a 2-connected graph G contains a cycle of length at least d + k, where d is the
degeneracy of G. Since the minimum vertex degree δ(G) does not exceed the degeneracy of G, this result also
implies an algorithm for finding a cycle of length at least δ(G) + k in 2-connected graphs.

None of the works [JKN19] and [FGL+20a] could be used to address Questions 1 and 2, the very special cases
of Theorem 1.3.

More generally, Theorem 1.3 fits into a popular trend in parameterized complexity called “above guarantee”
parameterization. The general idea of this paradigm is that the natural parameterization of, say, a maximization
problem by the solution size is not satisfactory if there is a lower bound for the solution size that is sufficiently
large. For example, there always exists a satisfying assignment that satisfies half of the clauses or there is always
a max-cut containing at least half the edges. Thus nontrivial solutions occur only for the values of the parameter
that are above the lower bound. This indicates that for such cases, it is more natural to parameterize the
problem by the difference of the solution size and the bound. Since the work of Mahajan and Raman [MR99]
on Max Sat and Max Cut, the above guarantee approach was successfully applied to various problems, see
e.g. [AGK+10, CJM+13, GP16a, GKLM11, GvIMY12, GP16b, GRSY07, LNR+14, MRS09]. In particular,
[BCDF19] and [FGL+20b] study the longest path above the shortest s, t-path and the girth of a graph.

Organization of the paper. This proceedings version of the paper contains the detailed overview of the proof
of the main result, Theorem 1.3, given in the following section; and a conclusion. Due to its extensive volume,
the complete formal proof of Theorem 1.3 and further discussion of results is deferred to the full version of the
paper on arXiv [FGSS20].

2 Overview of the proof

The original proof of Dirac is not constructive because it does not provide any procedure for constructing
a cycle of length at least 2δ(G). There are algorithmic proofs of Dirac’s theorem; see, e.g., the thesis of Locke
[Loc83]. The idea of Locke’s proof that also provides a polynomial-time algorithm for constructing a cycle of
length at least 2δ(G) is to start from some cycle and to grow by inserting new vertices and short paths. Thanks
to the conditions on the graph’s degrees, such a procedure always constructs a cycle of the required length. On
a very general level, our proof of Theorem 1.3 uses the same strategy. For an instance (G,B, k) of Long Dirac
Cycle, we try to grow a cycle iteratively. However, enlarging the cycle by “elementary” improvements could
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get stuck with a cycle of length significantly smaller than min{2δ(G−B), |V (G)| − |B|}+ k. It appears that the
cycles that cannot be improved by “elementary” operations induce a very particular structure in a graph. These
structural theorems play a crucial role in our algorithm.

The main technical contribution is the new graph decomposition that we call Dirac decomposition. Dirac
decomposition is defined for a cycle C in G. Let C be a cycle of length less than 2δ(G−B) + k. Informally, the
components of Dirac decomposition are connected components in G− V (C). (For an intuitive description of the
decomposition, we will assume that B = ∅. Handling vertices of B requires more technicalities—we have to refine
the graph and work with its refinement.) Since G is 2-connected, we can reach C by a path starting in such a
component in G. One of the essential properties of Dirac decomposition is a limited number of vertices in V (C)
that have neighbors outside of C. In fact, we can choose two short paths P1 and P2 in C (and short means that
their total length is of order k) such that all connections between connected components of G− V (C) and C go
through V (P1)∪V (P2). The second important property is that each connected component of G−(V (P1)∪V (P2))
is connected with Pi in G in a very restricted way: The maximum matching size between its vertex set and the
vertex set of Pi is at most one.

Dirac decomposition appears to be very useful for algorithmic purposes. For a cycle C and a vertex set B,
given a Dirac decomposition for C and B, in time 2O(k+|B|) · nO(1) we either solve the problem or succeed in
enlarging C. We also provide an algorithm that either constructs a Dirac decomposition in polynomial time or
obtains additional structural information that again can be used either to solve the problem or to enlarge the
cycle. More precisely, first, we need to eliminate the “extremal” cases. When δ(G − B) ∈ O(k), the classical
result of Alon, Yuster, and Zwick [AYZ95] solves the problem in time 2O(k+|B|) · nO(1). Another extremal case is
when |B| ≤ k and δ(G − B) ≥ n

2 − k. In that case, for solving Long Dirac Cycle, we have to decide in time

2O(k) · nO(1) whether G is almost Hamiltonian, i.e., a cycle in G that cover all but O(k) vertices. The existence
of such an algorithm for Hamiltonian cycles was conjectured in [JKN19] and Theorem 2.4 settles this conjecture.
We give an overview of the proof of Theorem 2.4 later in this section. If we are in none of the extremal cases,
then in polynomial time we can either (a) enlarge the cycle C, or (b) compute a vertex cover of G−B of size at
most δ(G−B) + 2k, or (c) compute a Dirac decomposition. In cases (a) and (c), we can proceed iteratively. For
the case (b) we give an algorithm that solves the problem in time 2O(k+|B|) · nO(1) (Theorem 2.3).

The most critical and challenging component of the proof is the algorithmic properties of Dirac decomposition.
We use these properties of Dirac decomposition to show that an enlargement of a cycle C of length at most
2δ(G− B) + k − 1 can be done in a very particular way. By an extension of Dirac’s existential theorem, we can
assume that C is of length at least 2δ(G − B). The most interesting and not-trivial situation that could occur
is that for some vertices x ∈ V (P1) and y ∈ V (P2), we replace the shortest (x, y)-path in C by a detour with
a particular property. This detour leaves x, moves to a vertex s of some 2-connected component of G − V (C),
visits some vertices in this component, leaves it from a vertex t, and goes to vertex y. Since the length of the
longest (x, y)-path in C is at least δ(G − B), to decide whether such a detour exists, it is sufficient to solve
the following problem. For vertices s, t of a 2-connected graph G, decide whether G contains an (s, t)-path of
length at least δ(G−B) + k. We give an algorithm solving this problem in time 2O(k+|B|) · nO(1) (Theorem 2.2).
The combinatorial bound that an (s, t)-path of length δ(G) always exists if G is 2-connected, is the classical
theorem of Erdős and Gallai [EG59, Theorem 1.16]. Because of that, we name the problem of computing an
(s, t)-path of length at least δ(G − B) + k by the Long Erdős-Gallai (s, t)-Path problem. Long Erdős-
Gallai (s, t)-Path is an interesting problem on its own, and to prove Theorem 2.2, we use another structural
result which we call Erdős-Gallai decomposition. Similar to Dirac decomposition, this decomposition is very useful
from the algorithmic perspective. We define this decomposition, provide efficient algorithms for constructing it,
and use it to solve Long Erdős-Gallai (s, t)-Path. Another interesting component of the solution to Long
Erdős-Gallai (s, t)-Path is the algorithm for computing the longest cycle passing through two specified vertices
(Theorem 2.1). We are not aware of the previous work in parameterized algorithms on this natural problem.

Figure 1 displays the most important steps of the proof and the dependencies between them. In the remaining
part of this section, we highlight the ideas behind each of the auxiliary steps (Theorems 2.1, 2.2, 2.3, and 2.4) in
the proofs of Theorem 1.3 and algorithmic properties of Dirac decomposition.

The first auxiliary problem whose solution we use in the proof of Theorem 2.2 is the following.
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Long (s, t)-Cycle
(Theorem 2.1)

Long Erdős-Gallai (s, t)-Path
(Theorem 2.2)

Dirac decomposition

Long Dirac Cycle / Vertex Cover
Above Degree
(Theorem 2.3)

Almost Hamiltonian
Dirac Cycle
(Theorem 2.4)

Long Dirac Cycle
(Theorem 1.3)

Figure 1: The main steps and connections in the proof of Theorem 1.3.

Input: Graph G with two vertices s, t ∈ V (G) and integer k ≥ 0.
Task: Decide whether there is a cycle in G of length at least k that passes through s and

t.

Long (s, t)-Cycle parameterized by k

When s 6= t, an equivalent formulation is to decide whether G contains two internally disjoint (s, t)-paths of
total length at least k. We prove that this problem is fixed-parameter tractable.

Theorem 2.1. Long (s, t)-Cycle is solvable in time 2O(k) · nO(1).

While the first idea to design an algorithm claimed in Theorem 2.1 would be to use the color coding technique of
Alon, Yuster and Zwick [AYZ95], this idea does not work directly. The reason is that color coding can be used
only to find in the claimed running time the cycle whose length is of order of k. However, it is quite possible that
the lengths of all solutions are much larger than k; in such situation color coding cannot be applied directly. Our
approach in proving Theorem 2.1 builds on ideas from [FLP+18, Zeh16], where a parameterized algorithms for
finding a directed (s, t)-path and a directed cycle of length at least k were developed. The main idea of the proof
is the following. First, we use color coding to verify whether the considered instance has a solution composed
by two (s, t)-paths of total length at most 3k. If the instance has a solution, we return it and stop. Otherwise,
we conclude that the total length of the paths of every solution is at least 3k + 1. This allows to use structural
properties of paths. Let P1 and P2 be the (s, t)-paths of a solution of minimum total length. Then there are
vertices x1 and x2 on P1 and P2, respectively, such that (i) the total length of the (s, x1)-subpath P ′1 of P1 and
the (s, x2)-subpath P ′2 of P2 is exactly k, (ii) either x1 = s or the length of the (x1, t)-subpath P ′′1 of P1 is at
least k, and, symmetrically, (iii) either x2 = s or the length of the (x2, t)-subpath P ′′2 of P2 is at least k. Then
P ′′1 and P ′′2 are internally disjoint paths that are shortest disjoint paths avoiding V (P ′1) ∪ V (P ′2) \ {x1, x2}. We
use the method of random separation to distinguish the following three sets: V (P ′1) ∪ V (P2) \ {x1, x2}, the last
min{k, |V (P1)| − 2} internal vertices of P ′′1 , and the last min{k, |V (P2)| − 2} internal vertices of P ′′2 . This allows
to highlight the crucial parts of the shortest solution and then find a solution.

The second problem whose solution we use in the proof of Theorem 1.3, comes from another classical theorem
due to Erdős and Gallai from [EG59, Theorem 1.16], see also [Loc85]. For every pair of vertices s, t of a 2-connected
graph G, there is a path of length at least minv∈V (G)\{s,t} deg v. The proof of this result is constructive, and
it implies a polynomial time algorithm that finds such a path. We define Long Erdős-Gallai (s, t)-Path as
follows.

Input: Graph G with vertex set B ⊆ V (G), two vertices s, t ∈ V (G) and integer k ≥ 0.
Task: Decide whether G contains an (s, t)-path of length at least δ(G−B) + k.

Long Erdős-Gallai (s, t)-Path parameterized by k + |B|

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited411

D
ow

nl
oa

de
d 

11
/2

5/
22

 to
 1

41
.8

9.
22

1.
17

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



Our following result plays an important role in the proof of the algorithmic properties of Dirac decomposition.

Theorem 2.2. Long Erdős-Gallai (s, t)-Path is solvable in time 2O(k+|B|) · nO(1) on 2-connected graphs.

Similar to Long Dirac Path, the requirement that the input graph is 2-connected is important. It is easy
to prove that Long Erdős-Gallai (s, t)-Path is NP-complete for k = |B| = 0 when the input graph is not
2-connected.

To prove Theorem 2.2, we apply the following strategy. We take an (s, t)-path P and try to extend it as
much as possible. The principal tool in enlarging the path P is the proof of the extension of the theorem of
Erdős and Gallai that takes into account the vertices of B. In the extremal case, when we cannot extend the path
anymore, we obtain a graph decomposition whose properties become useful from the algorithmic perspective. We
call this decomposition by the name of Erdős-Gallai decomposition and prove that, in that case, the graph can be
decomposed in a very particular way. Roughly speaking, after a certain refinement of the graph, the (s, t)-path
P consists of a prefix P1 and a suffix P2 with the following properties. These parts of the path are sufficiently
far from each other in P . Moreover, all components of the graph G − V (P1 ∪ P2), we call them Erdős-Gallai
component, are connected to P1 and P2 in a very restricted way. Such a graph-theoretical insight helps us to
characterize how a long (s, t)-path traverses through an Erdős-Gallai component. This property allows us to
design the recursive algorithm that proves the theorem.

The next auxiliary result required for proof of Theorem 1.3, concerns Long Dirac Cycle parameterized
by the vertex cover of a graph. It is well-known, see e.g., [CFK+15b], that a longest path in a graph G could be
found in time 2O(t)nO(1), where t is the size of the minimum vertex cover of G. However, we need a much more
refined result for the proof of the main theorem, where the parameter is not just the size of the vertex cover, but
the difference between that size and δ(G−B). We define the following parameterized problem.

Input: Graph G with vertex set B ⊆ V (G), vertex cover S of G of size δ(G − B) + p and
integer k ≥ 0.

Task: Decide whether G contains a cycle of length at least 2δ(G−B) + k.

Long Dirac Cycle / Vertex Cover Above Degree parameterized by p+ |B|

Part of our work is devoted to the proof of the following theorem, which we need for both Theorem 2.4 and
Theorem 1.3.

Theorem 2.3. Long Dirac Cycle / Vertex Cover Above Degree is solvable in 2O(p+|B|) ·nO(1) running
time.

To prove Theorem 2.3, we establish the new structural result. It reduces the crucial case of the problem about
the long cycle to a particular path cover problem. This equivalence becomes very handy because we can use
color-coding to compute the particular path cover, and thus by the lemma, to compute a long path. In spirit,
this result is close to the classical theorem of Nash-Williams [NW71], stating that a 2-connected graph G with
δ(G) ≥ (n + 2)/3 is either Hamiltonian or contains an independent set of size δ(G) + 1. An extension of this
theorem is due to Häggkvist [H9̈2], which was used by Jansen, Kozma and Nederlof [JKN19] in their algorithm
for Hamiltonicity below Dirac’s condition. In our case, we cannot use the structural theorem of Häggkvist as a
black box, and build on the new graph-theoretic lemma instead.

The last ingredient we need to prove Theorem 1.3, is its special case when the minimum degree of δ(G−B)
is nearly n

2 . Specifically, the problem is defined as follows.

Input: Graph G, integer k ≥ 0 and vertex set B ⊂ V (G), such that |B| ≤ k and
δ(G−B) ≥ n

2 − k.
Task: Find the longest cycle in G.

Almost Hamiltonian Dirac Cycle parameterized by k
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Observe that for a 2-connected graph, extended Dirac’s theorem always gives a cycle of length 2δ(G−B) ≥ n−2k.
Thus it is more natural to state the problem in the form above, as the length of the longest cycle is necessarily
between n−2k and n, which is at most 2δ(G−B) + 2k. In other words, we look for an almost Hamiltonian cycle,
in a sense that it does not cover only O(k) vertices. Now we state our result for Almost Hamiltonian Cycle.

Theorem 2.4. Let G be a given 2-connected graph on n vertices and let k be a given integer. Let B ⊆ V (G) be
such that |B| ≤ k and δ(G − B) ≥ n

2 − k. There is a 2O(k) · nO(1) running time algorithm that finds the longest
cycle in G.

The key obstacle for proving the theorem is the low-degree set B, since for empty B, we could simply apply
the Nash-Williams theorem [NW71] and obtain either a Hamiltonian cycle or an independent set of size δ(G) + 1,
and in the latter case use our result for Long Dirac Cycle / Vertex Cover Above Degree. Assume there
exists a Hamiltonian cycle in G (for almost Hamiltonian cycles the algorithm is similar), it induces a certain path
cover of the vertices of B, where the endpoints of paths belong to V (G) \B, and their total length is O(k). Such
a path cover can be found by color-coding and dynamic programming in time 2O(k)nO(1). Now either the rest of
the graph is not 2-connected, and we have a O(k)-sized separator, or we can apply the Nash-Williams theorem
and obtain a cycle covering everything except the path cover, or a large independent set. The latter case is dealt
with by Theorem 2.3, and for the case of the small separator we design a special algorithm that leverages the fact
that the resulting components are very dense. So the main case is when the graph splits into a long cycle and the
path cover. Now we crucially use that the paths in the path cover start and end outside of B, thus the endpoints
of a path have high degree, each of them sees roughly half of the vertices of the long cycle. This makes it “hard”
to not be able to insert the path somewhere in the cycle and make it longer. However, this last intuitive idea is
achieved by a very intricate case analysis that constitutes the most of technical difficulty of the proof. Also, in
some of the cases, we cannot make the cycle longer nor conclude that it is impossible, but instead we are able
to find either a small separator or a large independent set. Again, we settle these cases by using the respective
specialized algorithms.

3 Conclusion

In this paper, we developed an algorithmic extension of the classical theorem of Dirac. Our main result,
Theorem 1.3, is that Long Dirac Cycle is solvable in 2O(k+|B|) · nO(1) time on 2-connected graphs. An
important step in the proof of Theorem 1.3 is Theorem 2.2: Long Erdős-Gallai (s, t)-Path is solvable in
2O(k+|B|) · nO(1) time on 2-connected graphs. We conclude with open questions for further research.

3.1 Open questions. Dirac’s theorem is the first fundamental result in Extremal Hamiltonian Graph Theory.
The area contains many deep and interesting theorems but it remains largely unexplored from the algorithmic
perspective. Here we present several open questions hoping that these questions would trigger further research in
this fascinating area.

The first question is from [FGL+20a]. Recall that the average degree of a graph G is

1

|V (G)|
∑

v∈V (G)

degG(v) = 2|E(G)|/|V (G)|.

The following was shown by Erdős and Gallai [EG59].

Proposition 3.1. ([EG59]) Every graph G with average degree at least d ≥ 2 has a cycle of length at least d.

Similarly, it can be shown that a graph G with average degree at least d has a path of length at least d. This
leads to the following question.

Open Question 1. (Path/cycle above average degree) Given a 2-connected (connected, respectively) graph
G and a nonnegative integer k, how difficult is to decide whether G has a cycle (a path, respectively) of length at
least 2|E(G)|/|V (G)|+ k?

We do not know whether the problem is FPT parameterized by k, W[1]-hard, or Para-NP. Even the simplest
variant of the question: whether a path of length 2|E(G)|/|V (G)|+ 1 could be computed in polynomial time, is
open.
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Our second open question concerns the problem of finding a cycle containing a specified set of vertices. The
study of this problem can be traced back to another fundamental theorem of Dirac from 1960s about the existence
of a cycle in h-connected graph passing through a given set of h vertices [Dir60]. According to Kawarabayashi
[Kaw08] “...cycles through a vertex set or an edge set are one of central topics in all of graph theory.” Such type
of problems have been a popular and important topic in algorithms as well. See, e.g., Björklund, Husfeldt and
Taslaman [BHT12] and Wahlström [Wah13], and Kawarabayashi [Kaw08].

In Extremal Hamiltonian Graph Theory, the following theorem of Egawa, Glas, and Locke [EGL91] is well-
known.

Theorem 3.1. ([EGL91]) Let G be an h-connected graph, h ≥ 2, with minimum degree d, and at least 2d − 1
vertices. Let X be a set of h vertices of G. Then G has a cycle C of length at least 2d such that every vertex of
X is on C.

This brings us to the following algorithmic problem.

Open Question 2. (Cycle above Egawa, Glas, and Locke condition) Given an h-connected graph G, a
set of vertices X ⊆ V (G) of size h, and a nonnegative integer k, how difficult is to decide whether G has a cycle
of length at least 2δ(G) + k containing every vertex of X?

As for Open Question 1 the question is open even for k = 1.

Finally, let us mention the area of directed graphs; we refer to the book of Bang-Jensen and Gutin [BG09]
and the survey of Bermond and Thomassen [BT81] for extremal theorems for directed graphs. In particular, the
classical result of Ghouila-Houri [GH60] from 1960, generalizes Theorem 1.1. Recall that a digraph D is strong if
for every two vertices u and v, D has directed (u, v) and (v, u)-path, and the degree degD(v) of a vertex v is the
sum of its in-degree deg−D(v) and out-degree deg+

D(v).

Theorem 3.2. ([GH60]) If for every vertex v of a strong digraph D with n vertices degD(v) ≥ n, then D has a
Hamiltonian cycle.

The following question is the variant of the question discussed by Jansen, Kozma and Nederlof in [JKN19]
for undirected graphs.

Open Question 3. (Cycle above Ghouila-Houri condition) Given an n-vertex strong digraph D and a
nonnegative integer k such that at least n− k vertices have degree at least n, how difficult is to decide whether D
is Hamiltonian?

Again, the simplest variant—whether there is a polynomial time algorithm for for k = 1—is open. We also do
not know the complexity of the problem when every vertex has degree at least n− k.

A digraph D with at least two vertices is 2-connected if it is strong and remains strong after deleting an
arbitrary vertex. Thomassen in [Tho81] proved the following analog of Theorem 1.2.

Theorem 3.3. ([Tho81]) Let D be a 2-connected digraph with at least 2d + 1 vertices such that deg−D(v) ≥ d
and deg+

D(v) ≥ d for every v ∈ V (D). Then D contains a cycle of length at least 2d.

Whether Thomassen’s theorem can be extended algorithmically is our last open question.

Open Question 4. (Cycle above Thomassen condition) What is the (parameterized) complexity of the
following problem. Given a 2-connected digraph D such that deg−D(v) ≥ d and deg+

D(v) ≥ d for every v ∈ V (D),
and a nonnegative integer k. Decide whether D contains a cycle of length at least 2d+ k.

As in Questions 1–3, even the existence of a polynomial time algorithm for k = 1 in Question 4 is open.
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