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Abstract

According to the classic Chvátal’s Lemma from 1977, a graph of minimum degree δ(G) contains every
tree on δ(G) + 1 vertices. Our main result is the following algorithmic “extension” of Chvátal’s Lemma:
For any n-vertex graph G, integer k, and a tree T on at most δ(G) + k vertices, deciding whether G
contains a subgraph isomorphic to T , can be done in time f(k) · nO(1) for some function f of k only.

The proof of our main result is based on an interplay between extremal graph theory and
parameterized algorithms.

1 Introduction

In the Tree Containment problem we are given an n-vertex graph G and a tree T . The task is to
identify whether G has a subgraph isomorphic to T .1 For the very special case of T being an n-vertex path,
solving Tree Containment is equivalent to deciding whether G contains a Hamiltonian path and thus is
NP-complete. Our work on Tree Containment is strongly motivated by the recent advances in algorithmic
“extensions” of the classic theorems of extremal combinatorics [16, 17, 26].

For example, the classic theorem of Dirac states that every 2-connected graph contains a cycle (and thus
a path) of length at least min{2δ(G), n}, where δ(G) is the minimum degree of G. In [16], we gave an FPT
algorithm for parameterization “above Dirac’s bound”—an algorithm that for any k ≥ 1, decides whether a
connected G contains a path of length at least 2δ(G) + k in time f(k) · nO(1) for some function f of k only.

The question of how to impose conditions on vertex degrees of the host graph G to guarantee that it
contains a certain tree T as a subgraph is fundamental in extremal graph theory. However, compared with
path and cycle containments, tree containment is much more challenging. For example, the theorem of Erdős
and Gallai [11] from 1959 asserts that every graph of average degree > d contains a cycle with at least d+1
vertices. Similarly, Erdős and Sós [9] conjectured in 1963 that every graph with average degree > d contains
any tree on d+ 1 vertices. This conjecture remains open.

The starting point of our algorithmic study of Tree Containment is the following cute result first
published by Chvátal.

Lemma 1.1. (Chvátal’s Lemma [6]) If G is a graph of minimum degree δ(G), then G contains every tree
on δ(G) + 1 vertices.

From the combinatorial point of view, the result of Lemma 1.1 is tight: a δ-regular graph does not contain
a star of degree δ(G) + 1. The proof of Lemma 1.1 is constructive and it yields a polynomial time algorithm

∗The full version of the paper can be accessed at https://arxiv.org/abs/2310.09678
†Department of Informatics, University of Bergen, Norway.
‡St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia.
§Hasso Plattner Institute, University of Potsdam, Germany.
1Let us remark that in computational biology the name tree containment is used for a different problem of deciding whether

a phylogenetic network displays a phylogenetic tree over the same set of labeled leaves.
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computing a subtree in G isomorphic to a tree T on δ(G)+1 vertices. Whether Lemma 1.1 is tight from the
algorithmic point of view, that is, whether it is possible to decide in polynomial time if a tree on δ(G) + k
vertices, for some fixed constant k > 1, is in G, was open prior to our work. Our main result is the following
“algorithmic extension” of Chvátal’s Lemma.

Theorem 1.1. For any n-vertex graph G, integer k, and a tree T on at most δ(G) + k vertices, there is a
randomized algorithm deciding with probability at least 1

2 whether G contains a subgraph isomorphic to T in

time 2k
O(1) · nO(1). The algorithm is with one-sided error and reports no false positives.

In other words, Tree Containment Above Minimum Degree admits a randomized FPT algorithm.
We state Theorem 1.1 for the decision variant of the problem. However, the proof of the theorem is
constructive and if it exists, the corresponding subgraph isomorphism can also be constructed in the same
running time.

It is useful to compare and contrast Theorem 1.1 and the algorithm “above Dirac” from [16] that decides
whether a connected graph contains a path of length at least 2δ(G)+k in time f(k) ·nO(1). On the one hand,
the statement of Theorem 1.1 holds for any tree, not only paths. On the other hand, the “combinatorial
threshold” in the “above Dirac” algorithm is 2δ(G) and in Theorem 1.1 it is δ(G). While in the statement
of Chvátal’s Lemma the value δ(G) cannot be replaced by (1+ ε)δ(G) for ε > 0, it is not clear a priory that
the threshold δ(G) in Theorem 1.1 cannot be increased. Our next theorem rules out this option.

Theorem 1.2. For any ε > 0, Tree Containment is NP-complete when restricted to instances (G,T )
with |V (T )| ≤ (1 + ε)δ(G).

Related work Tree Containment plays an important role both in graph theory and in graph algorithms.

Extremal Graph Theory. According to Maya Stein [42]: “One of the most intriguing open questions in the
area is to determine degree conditions a graph G has to satisfy to ensure it contains a fixed tree T , or more
generally, all trees of a fixed size.” While the conjecture of Erdős and Sós [9] about the average degree
remains open, various other conditions have been suggested that might ensure the appearance of all trees
or forests of some fixed size [3, 5, 28, 31, 34, 10]. We refer to the survey of Stein [42] for a comprehensive
overview of the area.

Our work is also closely related to stability theorems in extremal combinatorics. Informally, a stability
theorem establishes that an “almost nice” extremal structure can always be obtained by slightly modifying
a “nice structure”. For example, coming back to Dirac’s and Erdős-Gallai theorems, there is a significant
amount of literature devoted to sharper versions of these classic results [20, 19, 36, 33, 32, 43]. The typical
statement of such results is that when we weaken the condition on the minimum vertex degree or an average
degree of a graph, the graph contains a long cycle (or path) unless it possesses a very specific structure. To
prove Theorem 1.1, we have to establish several stability variants of Chvátal’s Lemma.

Algorithms. Tree Containment is the special case of Subgraph Isomorphism, where the guest graph T
is a tree. Matula in [40] gave a polynomial time algorithm for Tree Containment when the host graph G is
also a tree. According to Matoušek and Thomas [39], Tree Containment is NP-complete when all vertices
of T but one are of degree ≤ 3 and G is a treewidth 2 graph and all vertices of G but one are of degree ≤ 3.
The result of Matoušek and Thomas shows a sharp difference in the complexity of Tree Containment and
the Longest Path, which is FPT parameterized by the treewidth of G. The exhaustive study of Subgraph
Isomorphism by Marx and Pilipczuk [38] establishes several hardness results about Tree Containment
for different classes of graphs G and trees T . There is a broad literature in graph algorithms on a related
problem of finding a spanning tree in a graph with specified properties, see e.g. [41, 21, 23].

The seminal work of Alon, Yuster, and Zwick on color coding [2] shows that Tree Containment is
FPT parameterized by the size of T . In other words, deciding whether G contains a tree T of size t could be
done in time 2O(t)nO(1). Let us remark that in the setting of Theorem 1.1, the color coding method provides
an algorithm of running time 2O(δ(G)+k)nO(1), which is not FPT in k.

Several results in the literature provide FPT algorithms for long paths, and cycles parameterized above
some degree conditions. Our work is an extension of this line of research to more general subgraph
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isomorphism problems. Fomin et al. [13] gave FPT algorithms for computing long cycles and paths above the
degeneracy of a graph. The tractability of these problems was extended by the authors in [17] above the so-
called Erdős-Gallai bound, which is above the average vertex degree of a graph. In [15, 16], we established
that finding a cycle above Dirac’s bound is FPT. In other words, we gave an algorithm of running time
2O(k) · nO(1) deciding whether a 2-connected graph G contains a cycle of length at least min{2δ(G), n}+ k.
The ideas and methods used to prove all the above results about cycles and paths are quite different from
those we use in the proof of Theorem 1.1.

From a more general perspective, Theorem 1.1 belongs to a rich subfield of Parameterized Complexity
concerning parameterization above/below specified guarantees [1, 7, 22, 24, 35, 37, 30]. We refer to the recent
survey of Gutin and Mnich [25] for an overview of this area. In particular, the parameterized complexity of
finding an (s, t)-path above the distance between vertices s and t, the Detour problem, attracted significant
attention recently [4, 14, 12, 27, 29].

Structure of the paper In this extended abstract, we give a high-level overview of the proof of our main
result Theorem 1.1 and omit the proof of Theorem 1.2. The details and complete proofs are available in
the full arXiv version [18]. In Section 2, we introduce the notation used throughout the paper and provide
auxiliary results. Section 3 contains the overview of the proof of Theorem 1.1. We conclude in Section 4 by
stating some open problems.

2 Definitions and preliminaries

For a positive integer t, we define [t] = {1, . . . , t}.
We use standard graph-theoretic notation and refer to the textbook of Diestel [8] for non-defined notions.

We consider only finite simple undirected graphs. We use V (G) and E(G) to denote the sets of vertices
and edges of a graph G, respectively; n and m are used to denote the number of vertices and edges if this
does not create confusion. A vertex v is a non-neighbor of u if v ̸= u and uv /∈ E(G). For a graph G
and a subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced by X. We use
G−X to denote the graph obtained by deleting the vertices of X, that is, G−X = G[V (G) \X]; we write
G − v instead of G − {v} for a single element set. For a vertex v, NG(v) = {u ∈ V (G) | vu ∈ E(G)} is
the open neighborhood of v and NG[v] = NG(v) ∪ {v} is the closed neighborhood. For a set of vertices X,
NG(X) =

(⋃
v∈X NG(v)

)
\X and NG[X] =

⋃
v∈X NG[v]. We use degG(v) = |NG(v)| to denote the degree

of a vertex v; ∆(G) = maxv∈V (G) degG(v) is the maximum degree of G and δ(G) = minv∈V (G) degG(v) is
the minimum degree. In the above notation, we may omit subscripts denoting graphs if this does not create
confusion. We write P = v1 − · · · − vk to denote a (simple) path in a graph G with k vertices v1, . . . , vk
of length k − 1; v1 and vk are the end-vertices of G and we say that P is an (v1, vk)-path. The diameter
of G, denoted diam(G), is the maximum length of a shortest (u, v)-path in G over all u, v ∈ V (G). Two
vertices u and v compose a diametral pair if the distance between them, i.e. the length of the shortest path,
is diam(G).

An isomorphism of a graph H into a graph G, a bijective mapping φ : V (H) → V (G) such that
uv ∈ E(H) for u, v ∈ V (H) if and only if φ(u)φ(v) ∈ E(G). A subgraph isomorphism of H into G is an
injective mapping σ : V (H) → V (G) such that uv ∈ E(H) for u, v ∈ V (H) if and only if φ(u)φ(v) ∈ E(G).
In words, this means that G contains H as a subgraph. We use Imσ to denote σ(V (H)).

Throughout our paper, we use the following specific notions.

Definition 1. (Maximum leaf-degree ld(T )) The leaf-degree of a vertex v in T is the number of leaves
of T that are neighbors of v. The maximum leaf-degree of T , ld(T ), is the maximum of the leaf-degrees over
all vertices of T .

Definition 2. (Neighbor deficiency νk (v)) For a graph G, an integer k ≥ 0 and a vertex v ∈ V (G) we
define the neighbor deficiency of v as

νk (v) = max{(δ(G) + k − 1)− degG(v), 0}.

If νk (v) = 0, we say that v is non-deficient.
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Definition 3. (q-escape vertex) For a graph G and integer q, a vertex v in G is an q-escape vertex, if
degG(v) ≥ δ(G) + q or the maximum matching size between N [v] and V (G) \N [v] in G is at least q.

Definition 4. (size-q-separable) We say that a tree T is size-q-separable if there is an edge in T whose
removal separates T into two subtrees consisting of at least q vertices each.

Finally, we give here the following extension of Chvátal’s Lemma (Lemma 1.1). While Chvátal’s Lemma
indeed provides the guarantee of δ(G)+1 for Tree Containment Above Minimum Degree, throughout
the proof of the main theorem, we often need a more general statement. Its proof repeats the original proof
of Chvátal, and we provide it here for completeness.

Proposition 2.1. ([6]) Let G be a graph and let T be a tree on at most δ(G)+1 vertices. Let σ′ : V (T ′) →
V (G) be a subgraph isomorphism mapping a connected subtree T ′ of T into G. Then there is a subgraph
isomorphism σ : V (T ) → V (G) mapping T into G such that σ is an extension of σ′.

Proof. [Proof of Lemma 2.1] The proof is constructive. Let T0, T1, . . . , Tq be a sequence of trees such that
q = |V (T )| − |V (T ′)|, T0 = T ′, Tq = T , and for each i ∈ [q], Ti−1 = Ti− ℓi, where ℓi is a leaf of Ti that is not
present in T ′. One way to construct the sequence in reverse order is to start from Tq := T . Then, to obtain
Ti−1 from Ti for each consecutive i in {q, q− 1, . . . , 1}, we just delete a leaf of Ti that does not belong to T ′.
Since T ′ is a connected subtree of Ti, such a leaf always exists in Ti.

We then construct a series of subgraph isomorphisms σ0, σ1, . . . , σq, such that for each i ∈ {0, . . . , q},
σi is a subgraph isomorphism of Ti into G. We start from σ0 = σ′. Then consecutively for each i ∈ [q], σi

is obtained by extending σi−1 on ℓi. The leaf ℓi has only one neighbor si in Ti. Then the image of ℓi in
σi should be the neighbor of σi−1(si). Since | Imσi−1| ≤ δ(G), and σi−1(si) ∈ Imσi−1, Imσi−1 contains at
most δ(G)− 1 neighbors of σi−1(si) in G. Then at least one neighbor of the image of si is not occupied by
σi−1. We obtain σi from σi−1 by extending mapping ℓi to such a neighbor.

The procedure produces the subgraph isomorphism σq of Tq = T into G.

3 Main ideas and structure of the proof of Theorem 1.1

In this overview, we will provide some intuition on how several various structural cases for G and T
guarantee that G contains T . In several situations, we push the structural analysis to the limit. In the
remaining cases, when the structural analyses (or stability theorems) cannot be pushed further, the obtained
structural properties allow us to design algorithms. Such a WIN/WIN approach results is a randomized

FPT algorithm running in time 2k
O(1) · nO(1). The order of presentation of the case analysis in the overview

slightly disagrees with the order of the full version [18]. In the overview, we aimed to make the presentation
more intuitive while in [18], we put parts using the same techniques and ideas closer to each other.

The natural way to proceed above the Chvátal’s δ(G) + 1 guarantee is to ask whether G contains an
arbitrary T of size at most δ(G) + 2. The answer to this question appears to be quite simple, yet it settles
the starting point of our work. We state it as Proposition 3.1. While this result is not explicitly used in the
proof of the main theorem, its proof exposes the key ideas we use to prove the main theorem.

Proposition 3.1. Every connected graph G contains every tree on at most min{|V (G)|, δ(G) + 2} vertices,
unless G is δ(G)-regular and T is isomorphic to the star graph K1,δ(G)+1 with δ(G) + 1 leaves.

Proof. [Proof of Proposition 3.1] Note that the only case that has to be proved above Chvátal’s Lemma is
when |V (T )| = δ(G) + 2.

We have that G is connected and has at least δ(G) + 2 vertices. Let T be an arbitrary tree on exactly
δ(G) + 2 vertices. Clearly, if T has a vertex of degree δ(G) + 1 but the maximum degree of G equals δ(G)
then G does not contain T as a subgraph. This is equivalent to T being isomorphic to K1,δ(G)+1 and G
being δ(G)-regular. It is left to show that in any other case, G contains T .

Assume first that G has a vertex of degree at least δ(G) + 1. Denote this vertex by u. Since T has at
least two vertices, there is a vertex in T adjacent to a leaf. Denote this vertex by t and its adjacent leaf
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by ℓ. We start constructing a mapping of T into G by mapping t to u. Since T − ℓ is a tree consisting of
exactly δ(G) + 1 vertices, we apply Proposition 2.1 and extend mapping t → u to a subgraph isomorphism
σ of T − ℓ into G. The size of NG[u] is at least δ(G) + 2. Hence, at least one vertex in NG[u] is not used by
σ. We extend σ by mapping ℓ to this vertex. Then σ becomes a subgraph isomorphism of T into G. That
is, if G has a vertex of degree at least δ(G) + 1 then G contains T .

The remaining case is when all vertices of G are of degree δ(G) but T is not isomorphic to a star. Again,
we take a leaf ℓ and its neighbor vertex t in T . Since T is not a star, there is a neighbor of t in T that is not
a leaf. Denote this neighbor by x. Then x has at least one neighbor distinct from t, denote it by y.

We have a path on three vertices t − x − y in the tree T − ℓ and we map this path into G as follows.
Take an arbitrary vertex u in G. Since G is connected and |V (G)| > δ(G)+1 = |NG[u]|, there is at least one
edge vw ∈ E(G) such that v ∈ NG[u] and w ∈ V (G) \NG[u]. We have that u− v−w is a path in G where u
is not adjacent to w. We initiate the construction of a subgraph isomorphism of T into G by mapping t, x, y
into u, v, w respectively. Then, by making use of Proposition 2.1, we extend this mapping into a subgraph
isomorphism σ of T − ℓ into G.

In contrast to the previous case, the closed neighborhood of u, NG[u] is of size δ(G)+1. But we ensured
that σ uses at least one vertex outside NG[u] by mapping y to w initially. Hence, NG[u] \ Imσ is not empty.
Therefore, we can extend σ by mapping ℓ to an arbitrary vertex in NG[u] \ Imσ. The obtained mapping is
a subgraph isomorphism of T into G. The proof of the proposition is complete.

Let us highlight and discuss the key ideas of the proof above.

Idea I. Saving space for mapping leaves starts from mapping their neighbors.
In the proof of Proposition 3.1, we cut off a leaf ℓ of T and decide where it will be mapped later. Since the
pruned tree has exactly δ(G) + 1 vertices, we can map it into G by Lemma 1.1. However, we have to make
sure that the removed leaf can be mapped to a free vertex. To achieve that, we initially set the image of its
neighbor t to a specific vertex in G. If G has a vertex of degree more than δ(G) then any such vertex will
do as an image of t. This is because the isomorphism can occupy at most δ(G) of its neighbors, so one of
them is always vacant to host ℓ. The other case occurs when G is regular and hence has no vertex of a large
degree. This brings us to the next key idea.

Idea II. Saving space for leaves is achieved by mapping outside specific sets.
When we deal with the case of a regular graph G, we map t to an arbitrary vertex u of degree δ(G). Now
a subgraph isomorphism of T − ℓ into G can occupy all δ(G) neighbors of u. If this happens, then the
isomorphism uses no vertex outside NG[u] since already δ(G)+1 vertices are occupied. Thus, if we force the
subgraph isomorphism to use at least one vertex outside NG[u], then at least one vertex in NG[u] would be
saved. This is exactly what we do in the proof of Proposition 3.1. We initially map a path of three vertices
in T starting in t into a path of three vertices in G starting in u making sure that the last vertex of this
path in G is not a neighbor of u. When this isomorphism is extended onto T − ℓ, it automatically leaves at
least one neighbor of u in G unused. This neighbor finally becomes the image of ℓ.

These two ideas bring to a polynomial time algorithm for finding trees of size δ(G) + 2 in a graph G.
It appears that we can push the applicability of these ideas further. However, it does not come without
additional effort. Let us provide some intuition on how the two ideas could be extended to the case when T
is a tree on δ(G) + k vertices for k ≥ 3.

3.1 Saving neighbors of a single vertex Let T be a tree on δ(G) + k vertices for k ≥ 3. The first
question arising when we try to adapt Proposition 3.1 to T is the following: If there is a vertex t in T with at
least k− 1 adjacent leaves, can we shave off k− 1 leaves t and repeat the same arguments to map the shaved
tree and save k− 1 neighbors of the image of t? This would allow us to map the shaved leaves into the saved
neighbors and obtain the subgraph isomorphism of T into G. According to the notion of the maximum-leaf
degree (see Definition 1), the existence of a vertex t in T is equivalent to the condition ld(T ) ≥ k − 1.

Note that different possible images of t can require different numbers of saved neighbors. For example,
if degG(u) ≥ δ(G) + k − 1, where u is the image of t, then saving neighbors is not required at all, as k − 1
neighbors of u remain vacant after mapping the shaved tree of size δ(G) + 1. The less the degree of u is,
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the more vertices are required to be mapped outside NG[u]. We use νk (u), the neighbor deficiency of u, to
denote the number of vertices to map outside NG[u] (see Definition 2).

In the proof of Proposition 3.1, we initially mapped a path of three vertices in order to map one vertex
outside NG[u]. We push this method further and show that mapping a path of length 3k (starting from t
in T ) initially can save νk (u) neighbors of some vertex u in G. This is achieved by mapping the path in T
into a path in G starting in u that has roughly every third vertex outside NG[u]. The choice of u depends
drastically on the structure of G. The sufficient requirement for u is having enough vertices in NG[u] that
have more than k − 1 neighbors outside NG[u].

If such a choice of u is not possible, the regular “map every third outside” procedure is not possible. In
this case, we show that the minimum vertex degree of graph G − NG[u] is at least k. Such a graph has a
path of length at least k starting in an arbitrary vertex. Then we construct a path in G that starts in u,
goes to some vertex v in V (G) \ NG[u] through an intermediate vertex in NG(u), and ends by following a
path of length k− 2 inside G−NG[u]. This path is of length k and has its last k− 1 vertices outside NG[u].
It is easy to see that mapping the first k + 1 vertices of the path in T into the constructed path in G saves
k − 1 ≥ νk (u) neighbors of u.

However, this technique is not applicable when (i) T has no path of length at least 3k starting in t or
(ii) the minimum degree of G is in O(k2). In each of these cases, containment of T in G is not guaranteed
and requires an algorithmic approach. We handle each case separately. The second case is easier than the
first: It guarantees that the size of T is bounded by O(k2). Since Tree Containment can be solved in
2O(|V (T )|) · nO(1) running time using the color-coding technique of Alon, Yuster and Zwick [2], we achieve

a time 2O(k2) · nO(1) algorithm for the case δ(G) = O(k2). We highlight this idea for further use in the
overview.

Idea III. Color-coding applies for graphs of minimum degree bounded by kO(1).

It remains to discuss case (i) when T has no path of length at least 3k starting in t. The algorithm
for this case also involves color-coding. The initial step towards the algorithm here is to note that T has a
bounded diameter and so does every subtree of T . For the previous cases, we constructed a path-to-path
isomorphism that hits enough vertices in V (G) \ NG[u], where u is the fixed2 image of t. In this case, T
has no path of enough length starting in u. However, we know that if T is isomorphic to a subgraph of G,
then the subgraph isomorphism of T into G occupies at least νk (u) vertices outside NG[u]. Thus, solving
the problem is equivalent to finding an isomorphism of a connected subtree of T containing t into G that
maps t to u and also maps at least νk (u) vertices of T to vertices in G that are outside NG[u].

We aim to find such a subtree of minimum size, the existence of such a tree is equivalent to the
containment of T in G. By minimality, the leaves of such a subtree are necessarily mapped to either t
or into V (G) \ NG[u]. Then by the minimality, this tree should have at most νk (u) + 1 leaves, so the size
of any minimal subtree is at most diam(T ) · (νk (u) + 1) ≤ k · diam(T ). The obtained bound allows us to
use color-coding to find the required subtree in G. We color G with k · diam(T ) colors uniformly at random
and use the coloring to find a subgraph of G that is (a) isomorphic to the required subtree of T , (b) the
isomorphism maps t to u, and (c) the isomorphism occupies νk (u) vertices in V (G)\NG[u]. This is done via
dynamic programming in time 2O(k·diam(T )) · nO(1). As there is no vertex at a distance at least 3k from t in
T , we have that diam(T ) = O(k). Hence the overall running time of the algorithm is 2O(k2) · nO(1), similar
to the case (ii).

This algorithm is important not only for the particular case ld(T ) ≥ k − 1—we shall recall it once
again in the overview in a slightly more general setting for the problem which we call Annotated Hitting
Subtree Containment. In this problem, it is allowed to have an arbitrary starting mapping from T into G
and have multiple sets in G that are required to be hit by the isomorphism. Our algorithm for this problem

works in time 2k
O(1)·diam(T ) · nO(1) if the total number of vertices to hit by the isomorphism is bounded by

kO(1).

2The choice of the vertex u in G is fixed in the outer loop of the algorithm. Thus, the algorithm considers every possible
vertex in G as a candidate for the image of t.
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The above arguments bring us to an algorithm for Tree Containment running in time 2O(k2) · nO(1),
where k = |V (T )| − δ(G), for the special case ld(T ) ≥ k − 1.

3.2 Filtering out yes-instances We still have to consider the case of the maximum-leaf degree ld(T ) <
k− 1. As in the case ld(T ) ≥ k− 1, we first filter out some structural properties of G and T that guarantee
G containing T . Taking the success of the complement case into account, a good candidate for being filtered
out first is the case of T having less than k−1 leaves (that actually stops us from applying Idea II by shaving
leaves).

In this case, T can be covered by at most k − 3 (the number of leaves minus one) paths starting in
the same arbitrary leaf of T and ending in pairwise distinct leaves of T . Each of these paths consists
of at most diam(T ) + 1 vertices. Since these paths share at least one common vertex, we obtain
|V (T )| ≤ 1 + (k − 3) · diam(T ) < k · diam(T ). It follows that diam(T ) is at least δ(G)/k. As we can
handle small values of δ(G) by making use of Idea III, we need to look only at trees of large diameter.

Up to this point, we still have not introduced any mechanism of constructing isomorphisms of T into G
other than mapping outside a neighborhood of a specific vertex. To avoid keeping track of this, we discover
that it is possible to save neighbors of all vertices of G simultaneously. Moreover, path-to-path isomorphisms
are very suitable for this purpose. This is the next idea in the proof of the main result

Idea IV. Shortest paths are very good for saving neighbors.
Assume that G has a shortest (s, t)-path that consists of at least k + 2 vertices. On the one hand, each
vertex of G that does not belong to this path cannot have more than three neighbors belonging to this path
(otherwise we can make the (s, t)-path shorter). On the other hand, each vertex of the (s, t)-path cannot
have more than two neighbors inside the path for the same reason. Then every vertex in G has at least k−1
non-neighbors in the path. Hence, if we map a path of T into the (s, t)-path initially, we can extend this
mapping to a subgraph isomorphism of T into G without any additional work following Idea II. Due to that
for each u ∈ V (G), we have at least k − 1 ≥ νk (u) non-neighbors in the isomorphism initially.

The idea above is the basis for an alternative mechanism that allows us to deal with G for the case
diam(G) ≥ k+1 automatically and the additional work is required only to deal with the case diam(G) ≤ k.
We turn this upper bound on the diameter of G into our advantage. In fact, we are able to take any set S
of size o(δ(G)) and construct a path of size O(k · |S|) that traverses all vertices of S. We do this iteratively
by connecting consecutive vertices in S by a shortest path in G. Since we do not want such segments to
intersect, we have to remove the prefix of the path from G before finding the shortest path to the next
vertex of S. If during this process the diameter of G becomes even greater than 2k, we make good use of it
(following Idea IV with additional arguments) and construct a path that contains enough non-neighbors of
each vertex of G.

Now we discuss finding the appropriate set S in G. This set is required to contain at least νk (u)
non-neighbors for every vertex u ∈ V (G). If the size of the graph is slightly above δ(G), that is,
|V (G)| ≤ (1 + ϵ) · δ(G), the existence of a small S is hardly possible. For this reason, we separately
deal with his case for arbitrary ϵ ≤ 1

4k . We show that if δ(G) = Ω(k2), |V (G)| ≤ (1+ ϵ) · δ(G) and ld(T ) < k,
then G contains T as a subgraph. The proof is based on extending a partial isomorphism of T into G using
unoccupied vertices. This is always possible to do because the vertices outside the partial isomorphism in
G should have many neighbors inside it. It grants many options for an outer vertex to be inserted between
the vertices of the isomorphism, and at least one option will always suffice for extension.

By achieving the lower-bound |V (G)| ≥ (1+ ϵ) · δ(G), we are able to construct the set S of bounded size.
We use the probabilistic method here. For simplicity, we slightly increase the lower bound for the number
of vertices up to |V (G)| ≥ (1 + ϵ) · δ(G) + kΩ(1) · log δ(G). (The increase is achieved by lowering the value
of ϵ.) Each vertex u in G with νk (u) > 0 has at least |V (G)| − δ(G) > ϵ · δ(G) non-neighbors in G. For
a fixed u ∈ V (G), a random choice of a vertex in V (G) gives a non-neighbor of u with probability at least
ϵ

1+ϵ . Then the expected value of deficient vertices u ∈ V (G) that are not neighbors of a random vertex of
G is at least ϵ

1+ϵ · |V (G)|, so there should be a single vertex in G that is non-neighbor to at least ϵ
1+ϵ ratio

of all deficient vertices. We find such vertex in G and put it inside S. With a careful analysis, we show
that repeating this step for O(log δ(G)/ϵ) times results in a set S having at least one non-neighbor for each
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deficient vertex of G. We have to repeat the whole process k− 2 times and obtain the required set S of size
O(k · log δ(G)/ϵ). Note that the additive part of the lower bound is required for maintaining the probability
ϵ

1+ϵ during the consecutive choices of distinct vertices into S. The value of ϵ we use is of the form 1
kΘ(1) , so

the final bound on the size of S is kO(1) · log δ(G).
The vertices of S are finally tied into a path in G of length at most kO(1) · log δ(G) as discussed above,

and a path of sufficient length in T is mapped to the path in G. The discussion sums up into filtering out
trees of diameter kΩ(1) · log δ(G), and the gap between this bound and the desirable kO(1) still remains.

3.3 Shaving off leaves from distinct neighbors The results discussed above leave us with a tree T
satisfying ld(T ) < k − 1 and diam(T ) ≤ kO(1) · log δ(G). The number of leaves in T , in this case, is at
least kΩ(1) (following the δ(G)/diam(T ) lower bound discussed before). Then we can choose at most k − 1
vertices in T , such that in total they have at least k − 1 adjacent leaves. We denote this set by W . The
strategy we want to implement in this case is to use Idea II and to construct a mapping of a connected
subtree of T containing the vertices of W into G such that at least νk (w) non-neighbors of each w ∈ W
are occupied by this mapping. The formal proof encapsulates several methods of constructing a mapping
that hits non-neighbors of W by exploiting the structure of T and G. This is the final step of filtering out
yes-instances before applying the last (and the most involved) of the algorithms we use to prove the main
theorem.

The first obstacle encountered here is that the mapping we require to construct should map all vertices
of W (as we should know their respective images in G in order to collect non-neighbors). To our advantage,
the choice of W can vary (while NT (W ) has at least k − 1 leaves) and we will make this choice depending
on the structure of T .

The initial step here filters out the case of T with diam(T ) ≥ Ω(k4). First, W is chosen in a way that
it contains two vertices on distance exactly diam(T )− 2. Then we consider the minimum spanning tree TW

of W in T . Its leaves form a subset of T , so the number of leaves in TW is at most k − 1. Since TW has
a large diameter, there exist long paths in TW consisting of degree-2 vertices, which we refer to as trivial
path. We further shrink TW by contracting edges of each long trivial path down until its length reaches 2k.
The shrank tree T ′

W has at most O(k2) vertices and we initialize the mapping with an arbitrary subgraph
isomorphism of T ′

W into G.
The rest of the work is to transform this isomorphism to the isomorphism of TW into G by embedding

vertices of G into trivial paths of the isomorphism image. We exploit the existence of a trivial path of length
Ω(k3) and embed a set S (containing k − 1 non-neighbors for the image of each w ∈ W ) into the image of
this path. The technical work here is done using the arguments that we discussed already. If it cannot be
done at some moment, then Idea IV helps us to construct a mapping in an alternative way.

The case of diam(T ) ≥ Ω(k4) is now dealt with. To proceed further, we cannot rely on path-to-path
isomorphisms anymore since T has no very long paths. Then we focus more on the structure of G. This is
when we put the notion of q-escape vertices into play (see Definition 3). We start with an isomorphism of
TW into G and show how a kΩ(1)-escape vertex helps in embedding the isomorphism with non-neighbors of
W . This, however, requires a vertex of degree kΩ(1) in T .

We partially resolve this issue by making additional assumptions of the structure of T . For this, we
give an alternative (to exploiting an escape vertex) mechanism to extend a mapping of TW with enough
non-neighbors of W . If this mechanism fails, it produces a separator of G of size kΩ(1). Finally, we use this
separator to map a size-kO(1)-separable tree T (see Definition 4) inside G.

3.4 Solving remaining case algorithmically We move on to the remaining case of Tree Contain-
ment Above Minimum Degree: G contains no kΩ(1)-escape vertices and T is not size-kΩ(1)-separable,

while δ(G) ≥ kΩ(1). We prove that there is a randomized algorithm solving such cases in 2k
O(1) · nO(1)

running time. In the rest of the current part of the overview, we discuss the main parts of the proof of this
result.

Following Idea II, the first part addresses hitting non-neighbors of images of vertices in W (the set of
leaf-adjacent vertices in T ) similar to the previous part of the overview. Before we used it to prove that G
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contains T as a subgraph. That was achieved by occupying at least νk (w) non-neighbors of the image of w
in G for each w ∈ W . But this is only a sufficient condition. In fact, not all vertices in W require so many
saved neighbors. For example, if W has exactly k − 1 vertices then we require exactly one vacant neighbor
when it comes to mapping the leaf to the neighbor of the image of w ∈ W . Then if we have one vacant
neighbor for w1, two vacant neighbors for w2, three vacant neighbors for w3, and so on, the extension of the
isomorphism is guaranteed to be possible.

The paragraph above suggests that a necessary condition should be discovered. We prove that if the
mapping of W into G is known initially then the existence of a subgraph isomorphism of T into G respecting
this mapping is equivalent to the existence of a mapping that hits specific sets in G. The details of this
are quite complex, so we refer the reader to the full version [18]. It automatically provides a one-to-many
reduction to Annotated Hitting Subtree Containment. Since the diameter of T is at most kO(1), we

obtain an algorithm that runs in 2k
O(1) ·nO(1) time and correctly decides the containment of T in G, provided

the mapping of W into G is given.
This part alone does not provide any clue on how to choose the mapping ofW intoG. Trivial enumeration

of all possible mappings gives |V (G)||W | < |V (G)|k possible options and yield only an XP-algortihm for Tree
Containment parameterized by k. To resolve this issue, we guess mapping using random sampling. This
leads to a polynomial-time randomized procedure that takes G, T , W and a single vertex u ∈ V (G) as input
and produces a mapping of W into G. If T is contained in G as a subgraph then with probability at least

2−kO(1)

, this mapping is a restriction of some subgraph isomorphism of T into G. This is the only source
of randomness in our algorithm which we do not know how to derandomize. Combining the results of two
parts we obtain a (one-sided error) randomized algorithm for the specific case of Tree Containment with

running time 2k
O(1) · nO(1).

4 Conclusion

In our exploration of algorithmic extensions of classical combinatorial theorems, we have demonstrated

that it is possible to determine, in time 2k
O(1) · nO(1), whether a graph G contains a tree T with at most

δ(G) + k vertices as a subgraph. Our algorithm is a one-sided error Monte Carlo algorithm. This naturally
raises two questions. First, can we develop a deterministic algorithm for this problem? Second, is there
room for improvement in the running time? Can the problem be solved in time 2O(k log k) · nO(1) or even in
time 2O(k) · nO(1)?

Another question related to our work. Brandt, in his work [5], extended Chvátal’s Lemma for forests.

Proposition 4.1. ([5]) Let G be a graph, and F be a forest such that |V (F )| ≤ |V (G)| and |E(F )| ≤ δ(G).
Then, G contains F as a subgraph.

Is the Forest Containment problem (for a given graph G and forest F , to decide whether G contains F )
FPT when parameterized by k = |E(F )| − δ(G)?
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