
Parallel Machine Scheduling to Minimize Energy Consumption

Antonios Antoniadis∗ Naveen Garg† Gunjan Kumar‡ Nikhil Kumar §

Abstract

Given n jobs with release dates, deadlines and processing

times we consider the problem of scheduling them on m par-

allel machines so as to minimize the total energy consumed.

Machines can enter a sleep state and they consume no en-

ergy in this state. Each machine requires L units of energy

to awaken from the sleep state and in its active state the

machine can process jobs and consumes a unit of energy per

unit time. We allow for preemption and migration of jobs

and provide the first constant approximation algorithm for

this problem.

1 Introduction

Energy is an extremely important and scarce resource,
and its consumption is progressively becoming a pivotal
concern in modern societies. Computing environments
account for a large fraction of the global energy con-
sumption and alarmingly, this fraction is growing at a
very high rate [1]. In response to this, modern hardware
increasingly incorporates various energy-saving capabil-
ities. To make use of these we need to design scheduling
algorithms, not only for time and space considerations,
but keeping energy consumption in mind as well.

We focus on one of the most common such power-
management techniques called a power-down mecha-
nism, which refers to the ability of the processor to
transition into a sleep state where it consumes negli-
gible energy. Since “waking-up” the processor requires
a certain amount of energy, there is a trade-off to be
had between the energy saved by residing in the sleep
state and the energy expended in transitioning back to
the active state. Intuitively, one should aim to keep the
number of transitions to the sleep states low and once
in a sleep state remain in it for as long as possible.

Consider a set of jobs with individual release times,
deadlines and processing times, that are to be processed
on either a single or a multiprocessor system equipped

∗Saarland University and Max-Planck-Institute for Informat-
ics, Saarland University Campus, Saarbrücken, Germany. Sup-
ported by DFG grant AN 1262/1-1.
†Indian Institute of Technology Delhi. Supported by a Janaki

and K.A. Iyer Chair.
‡Tata Institute of Fundamental Research, Mumbai.
§Indian Institute of Technology Delhi. Supported by IIT

Delhi’s CSE Research Acceleration Fund.

with a powerdown mechanism. The processor consumes
one unit of energy per unit of time when in the active
state and no energy when in the sleep state. Transi-
tioning from the sleep state to the active state incurs
a fixed energy cost. Preemption and migration of jobs
is allowed but no job can be simultaneously processed
on more than one machine. The goal is to produce a
feasible schedule which consumes the minimum energy
(or report that no feasible schedule exists). In Gra-
ham’s notation, and with E being the appropriate en-
ergy function the problems we study can be denoted as
1|rj ; dj ; pmtn|E and m|rj ; dj ; pmtn|E respectively.

The problem on a single machine was first stated
in [12], where a greedy 2-approximation algorithm called
Left-To-Right was presented. Roughly speaking, Left-
To-Right tries to keep the machine at its current state
(active or asleep) for as long as possible. However
the computational complexity of the problem remained
open and was repeatedly posed as an important open
question, in particular because “many seemingly more
complicated problems in this area can be essentially
reduced to this problem” (c.f. [11]). The complexity
question, for the single-machine setting, was eventually
settled, initially by Baptiste [6], who gave a O(n7)-time
algorithm for the case of unit-size jobs and subsequently
by Baptiste et. al. [7] who achieved a running time of
O(n4) for unit sized jobs and O(n5) when jobs can have
arbitrary processing times. Both algorithms are based
on a rather involved dynamic programming approach.

The multiprocessor case turns out to be much more
challenging than the single processor one, and obtaining
any algorithm for it with a non-trivial performance
guarantee has been a major open problem [7]. It is
also an open problem whether the problem is NP-
hard. The difficulty in obtaining a good approximation
algorithm seems to arise from two aspects: First, it
is not clear how to design a dynamic programming
table of polynomial size when the jobs have arbitrary
sizes, and a job is not allowed to run parallel to itself.
Secondly, structural properties of an optimal schedule
can be locally extracted in a single machine environment
in contrast to the multi-machine case. As an example,
we know that a single machine will be active for at
least one time-point within the interval between the
release time and the deadline of every job, but the

2758
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



number of active machines at such a time-point in the
multiprocessor setting could range from just one to all
available machines. As a result, there has been only
one previous result for the multiprocessor setting; by
Demaine et al. [9] who extended the dynamic program of
Baptiste [6] and showed an O(n7m5)-time algorithm for
the special case of unit-size jobs and m ≥ 1 machines.

1.1 Our Contribution In Section 3 we present a
pseudo-polynomial time algorithm for single machines
that produces a feasible schedule of total energy at most
OPT + P where OPT is the minimum energy of any frac-
tional solution and P the sum of processing times. The
algorithm is based on an elegant linear programming re-
laxation which we extend to the multiprocessor case in
a later section. We show that the solution of the linear
program relaxation can be decomposed into a convex
combination of integer solutions. Since the relaxation
has a strictly positive integrality gap, none of the inte-
ger solutions in the decomposition may be feasible. We
overcome this by showing how an (infeasible) integer
solution can be extended into a feasible solution while
increasing the total energy consumption by only an ad-
ditive P . Note that P is also a lower-bound on the
optimal energy consumption and hence our algorithm
can be viewed as a 2-approximation. Let n be the num-
ber of jobs and D the maximum deadline. We prove the
following theorem in Section 3.

Theorem 1.1. There is an algorithm with running
time polynomial in n,D for single machines that pro-
duces a schedule of total energy at most OPT + P .

Building upon ideas for the single machine case,
we develop, in Section 6 the first constant-factor ap-
proximation algorithm for the multiple machines case.
Checking the feasibility of an instance and formulat-
ing a linear program to minimize energy is much more
involved in the setting of multiple machines. The inter-
vals comprising the integer solutions in the convex de-
composition of the optimum fractional solution are not
disjoint anymore, and extending the intervals appropri-
ately in order to obtain feasibility is much more chal-
lenging now. We overcome these obstacles and present a
pseudo-polynomial time algorithm that produces a fea-
sible schedule of total energy at most 2OPT + P . We
prove the following theorem in Section 6

Theorem 1.2. There is an algorithm with running
time polynomial in n,D for m parallel machines that
produces a schedule of total energy at most 2OPT + P .

Finally, in the Appendix, we show that the running
time of our algorithms can be made polynomial in n, 1/ε;
we incur a (1 + ε) loss in the approximation factor in
this process.

1.2 Further Related Work An important general-
ization of our problem would be speed scaling with a
sleep state, where the processor can vary its speed when
in the active state in order to further save energy. The
power consumption of the processor when it is active
depends on its speed. In a processor with only speed
scaling (and no sleep state) one tries to keep the pro-
cessor speed as low as possible (since power is a convex
function of speed). However with both speed scaling
and a sleep state it is often beneficial to run the proces-
sor at faster speeds in order to increase the length of the
subsequent sleep states, a technique commonly referred
to as race to idle. Speed scaling with a sleep state was
first introduced in [12] who gave a 2-approximation algo-
rithm for the problem. This result was later improved
to a 4/3-approximation by Albers and Antoniadis [3],
and eventually to a fully polynomial time approxima-
tion scheme (FPTAS) by Antoniadis et al. [4]. This is
the best result one can hope for (unless P = NP), as
the problem is known to be NP-hard [3, 14].

Another problem similar to ours is that of mini-
mizing the number of gaps (a gap is a contiguous in-
terval during which the processor is idle) in the sched-
ule. If one is interested in exact solutions then this is
a special case of our problem since by choosing a large
value for energy consumed in the active state we can
ensure that every idle period results in a transition to
the sleep state; thus the optimal schedule also minimizes
the number of gaps. Chrobak et al. [8] gave a simple 2-
approximation algorithm for the gap minimization prob-
lem with a running time of O(n2 log n) and memory just
O(n). Demaine et al. [9] gave an exact algorithm for the
multiprocessor gap minimization problem with unit-size
tasks. Several further generalizations - for example the
set-cover-hard case when each job has several disjoint
release time-deadline intervals to choose from - of the
problem were considered in [9, 10].

Finally, one may consider the setting where one
knows exactly when the processor (or how many pro-
cessors at each point in time) need to be active in order
to execute jobs, and has to decide about when to transi-
tion the processor(s) between the states. Although the
offline version of the problem with a single processor
equipped just with one active and one sleep state be-
comes trivial, the online version turns out to be a gen-
eralization of the well-known ski-rental problem. Ad-
ditionally considering processor(s) with sleep states of
various depths (each having an individual power con-
sumption and an individual cost for transitioning back
to the active state) leads to many interesting algorith-
mic problems both in the offline and in the online sce-
narios that have been studied by Albers [2], Augustine
et al. [5], as well as Irani et al. [13].

2759
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



2 Preliminaries

We are given a set of jobs {j1, j2, . . . , jn}; job ji has
release time ri, deadline di and processing time pi and
we assume that all these quantities are non-negative
integers. Let rmin and dmax be the earliest release
time and furthest deadline of any job; it is no loss of
generality to assume rmin = 0 and dmax = D. For
t ∈ Z≥0, let [t, t + 1] denote the tth time-slot. Let
I = [t, t′], t, t′ ∈ Z≥0, t < t′ be an interval. The length
of I, denoted by |I| is t′ − t. We use t ∈ I = [a, b] to
denote a ≤ t ≤ b.

Two intervals I1 = [a1, b1] and I2 = [a2, b2] overlap
if there is a t such that t ∈ I1 and t ∈ I2. Thus
two intervals which are right next to each other would
also be considered overlapping. Intervals which do not
overlap are considered disjoint. I1 is contained in I2,
denoted I1 ⊆ I2, if a2 ≤ a1 < b1 ≤ b2 and it is strictly
contained in I2, denoted I1 ⊂ I2, if a2 < a1 < b1 < b2.

At any time-slot, a machine can be in the active or
the sleep state. For each time-slot that a machine is in
the active state, one unit of power is required whereas no
power is consumed in the sleep state. However, L units
of energy (called wake up energy) are expended when
the machine transitions from the sleep to the active
state. In its active state, the machine can either process
a job (in which case we refer to it as being busy) or
just be idle. On the other hand the machine cannot
perform any processing while in the sleep state. Note
that if a machine is not required to do any processing
for A consecutive time-slots, then it is advantageous to
transition it to the sleep state when A > L whereas for
A ≤ L it is preferable to keep it active but idle.

A machine can process at most one job in any time-
slot and a job cannot be processed on more than one
machine in a time-slot. However, job preemption and
migration are allowed, i.e., processing of a job can be
stopped at any time and resumed later on the same
or on a different machine. A job ji must be processed
for pi time-slots in [ri, di]. Any assignment of jobs to
machines and time slots satisfying the above conditions
is called a (feasible) schedule. We assume that the
machine is initially in the sleep state. Therefore, the
energy consumed by a schedule is the total length of
the intervals during which the machine is active plus L
times the number of intervals in which the machine is
active. The objective of the problem is to find a schedule
which consumes minimum energy.

3 An Additive P Approximation for Single
Machine

We first show how to schedule jobs on a single machine
so that the total energy consumption is at most P
more than the optimum. For any [a, b] ⊆ [0, D] (recall

D is the furthest deadline of any job), let V (a, b) =∑
i:[ri,di]⊆[a,b] pi be the total processing time of jobs

whose release and deadline are within [a, b]. For an
instance to be feasible it is necessary that for all 0 ≤
a < b ≤ D, V (a, b) ≤ b − a. The Earliest Deadline
First (EDF) algorithm for scheduling jobs with release
dates and deadlines can also be used to establish the
sufficiency of this condition.

Motivated by this necessary and sufficient condition
for determining if an instance is feasible, we consider the
following Integer Program for minimizing total energy
consumed. For I ⊆ [0, D] let xI be a variable which is
1 if the machine becomes active at the start of I and
remains so till its end when it transitions back to the
sleep state; xI is 0 otherwise. Since the machine uses L
units of energy to wake-up at the start of I and |I| units
to run during this interval, the objective is to minimize∑
I xI(L+ |I|). We next discuss the constraints of this

IP.

1. The intervals in which the machine is active are
disjoint and hence for 0 ≤ t ≤ D,

∑
I:t∈I xI ≤ 1.

2. To ensure that jobs can meet release dates and
deadlines when scheduled within active intervals we
add the constraint that for all 0 ≤ a < b ≤ D,
V (a, b) ≤

∑
I xI |I ∩ [a, b]|.

3. For any job ji, the machine should be active at
some point during [ri, di]. Hence∑
I:I∩[ri,di]6=∅ xI ≥ 1

This gives us the following integer program.

minimize
∑
I xI(L+ |I|)

subject to∑
I:t∈I xI ≤ 1 0 ≤ t ≤ D − 1∑

I xI |I ∩ [a, b]| ≥ V (a, b) 0 ≤ a < b ≤ D∑
I:I∩[ri,di]6=∅ xI ≥ 1 1 ≤ i ≤ n

xI ∈ {0, 1} I ⊆ [0, D]

Consider a feasible solution to this IP and let I =
{I|xI = 1}. A time-slot [t, t+1] is active if it is contained
in some interval of I.

Lemma 3.1. Every job ji can be assigned to pi active
time slots in [ri, di] such that each active time-slot is
assigned to at most 1 job.

Proof. Construct a bipartite graph G = (U, V,E). For
every job ji we have pi vertices in U and for every
active time slot we have a vertex in V . E has an
edge between a vertex corresponding to job ji and a
vertex corresponding to the active time-slot [t, t+ 1] iff
[t, t + 1] ⊆ [ri, di]. We want to find a matching in G
which matches all vertices of U .

2760
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



For contradiction assume that there is no such
matching. By Hall’s theorem there exists a Hall set
S ⊆ U such that |Γ(S)| < |S| where Γ(S) are the
vertices in V adjacent to vertices in S. Let S be a
minimal Hall set. Two vertices in U corresponding to
the same job have identical neighbors in V and hence
it is no loss of generality to assume that S contains all
vertices corresponding to the same job. This allows us
to view S as a set of jobs; |S| then equals the total
processing time of the jobs in S.

Consider the union of intervals [ri, di] where ji is a
job in S. The minimality of S implies that this union
is a single interval, say [a, b]. Note that V (a, b) ≥ |S|
and |Γ(S)| is the number of active time slots in [a, b].
From the second set of constraints of the IP it follows
that |S| ≤ V (a, b) ≤ |Γ(S)| which contradicts our
assumption that S is a Hall set.

The above claim implies that an optimum solution to
the integer program gives a feasible schedule which
minimizes energy. We relax the integrality constraint
on xI to 0 ≤ xI ≤ 1 and solve the resulting linear
program. Let x be the optimum fractional solution
and let I = {I|xI > 0}. We will next show that x
be decomposed into a convex combination of integer
solutions.

Ordering intervals in I: Let [a, d], [b, c] ∈ I,
[b, c] ⊂ [a, d] and x[a,d] = x[b,c] = α. We replace
these intervals in I with intervals [a, c], [b, d] and set
x[a,c] = x[b,d] = α. Doing so does not make x infeasible
nor does it change the objective value. If β = x[a,d] >
x[b,c] = α then we replace these intervals in I with three
intervals [a, d], [a, c], [b, d] and set x[a,d] = β − α and
x[a,c] = x[b,d] = α. The case when β = x[a,d] < x[b,c] = α
is handled similarly. We repeat this process whenever
an interval in I strictly contains another interval in I.
Finally, order the intervals in I by their start-times;
intervals which have the same start-time are ordered
by their end-times. Let ≺ denote this total order on
intervals of I. Note that since no interval is strictly
contained in another, we would get the same ordering if
intervals were ordered by their end-times with intervals
having the same end-time ordered by their start-times.

Decomposing x into a convex combination of
integer solutions: For I ∈ I let sI be the fractional
part of

∑
I′≺I xI′ ; thus 0 ≤ sI < 1. For k, 0 ≤ k < 1

construct Ik ⊆ I as follows: I ∈ Ik iff either sI ≤ k <
sI + xI or sI ≤ k + 1 < sI + xI .

Claim 3.1. For any k ∈ [0, 1), the intervals in Ik are
pairwise disjoint.

Proof. Let I1, I2 ∈ Ik, I1 ≺ I2 and I1 ∩ I2 6= ∅. Since
I1, I2 ∈ Ik and I1 ≺ I2, we get

∑
I1�I�I2 xI > 1.

Since I1, I2 are not disjoint, all intervals I such that
I1 � I � I2 have a common overlap, say at time t. But
this violates the LP-constraint

∑
I:t∈I xI ≤ 1 and yields

a contradiction.

Let 0 = s1 < s2 < · · · < sm < 1 be the distinct
values in the set {sI , I ∈ I}; note that m ≤ |I|. Let
sm+1 = 1. From our construction of Ik it follows
that for all k ∈ [sj , sj+1), 1 ≤ j ≤ m the set Ik
are identical; let Cj denote this set and we assign it
a weight wj = sj+1− sj . By Claim 3.1, each “solution”
Cj , 1 ≤ j ≤ m is a set of disjoint intervals.

Claim 3.2. The solutions Cj and weights wj, 1 ≤
j ≤ m, form a convex decomposition of the fractional
solution x.

Proof. First note that for all 1 ≤ j ≤ m, wj ≥ 0 and∑m
j=1 wj = 1. Now consider an interval I ∈ I and let

sI = sa and sI +xI = sb, b > a. The interval I appears
in solutions Ca, Ca+1, . . . , Cb−1 and these have a total
weight sb − sa = xI .

Remark: An alternate procedure to construct this con-
vex decomposition of x would be to replace each inter-
val I ∈ I with xI/ε intervals where ε is such that xI/ε
is an integer for all I ∈ I. Let I ′ be the multiset of
intervals obtained. Consider intervals in I ′ in the or-
der ≺ and assign them to solutions C1, C2, . . . , C1/ε in
a round robin manner. Although easy to present, this
procedure has the disadvantage that the number of so-
lutions in the convex decomposition is 1/ε and ε, which
is the granularity of the fractional solution x, could be
exponentially small. One could round x to multiples of
ε for a suitable choice of ε but this would then incur a
multiplicative constant in the approximation guarantee.
The procedure presented above is conceptually similar
to this round-robin assignment.

Extending Intervals: Although Cj , 1 ≤ j ≤ m is a
set of disjoint intervals it need not be a feasible solution,
i.e. it could be that jobs cannot meet release dates and
deadlines if they have to be scheduled within intervals
of Cj . This is illustrated by the example in Figure 1,
the details of which can be found in the Appendix.

We next show that we can extend the intervals in
any solution Cj , 1 ≤ j ≤ m by at most P units to get a
feasible solution, C′j .

Lemma 3.2. Let C = Cj , 1 ≤ j ≤ m be a solution from
the convex decomposition of x. C can be converted into
a feasible solution C′ by increasing the total length of
intervals in C by at most P .

Proof. A slot [t, t+ 1] is active if it is contained in some
interval in C. Let s(a, b) be the number of active slots in

2761
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Job Release Deadline
1 0 1
2 1 7
3 2 4
4 4 6
5 7 8

1

1

2 3

3 4

4 2 5

5

Optimal Fractional Sol.

1 2 3 4 5

Optimal Integral Sol.

Figure 1: An instance where solutions in the convex
decomposition are not all feasible. All jobs are unit
size. The top right shows the two solutions C1, C2 in
the convex decomposition of the optimum fractional
solution. The total length of intervals in C1 is 4 which
is less than the total processing time of jobs and implies
C1 is infeasible.

the interval [a, b] ⊆ [0, D] and δ(a, b) = max(0, V (a, b)−
s(a, b)) its deficiency.

If C is infeasible there exists [a, b] such that δ(a, b) >
0. Among all intervals with positive deficiency consider
those whose end-time is the least and let these be
[a1, t], [a2, t], . . . , [ak, t] where t > a1 > a2 > · · · >
ak. Let Pt be the total processing time of jobs whose
deadline is t. For 1 ≤ i ≤ k, V (ai, t) ≤ V (ai, t− 1) + Pt
and since δ(ai, t− 1) = 0 we have δ(ai, t) ≤ Pt.

We now show how to extend intervals in C by Pt
time-slots so that deficiency of intervals [ai, t], 1 ≤ i ≤ k
becomes 0.

Claim 3.3. C contains an interval which overlaps
[a1, t].

Proof. δ(a1, t) > 0 implies V (a1, t) > 0 which in turn
implies that there exists a job ji such that [ri, di] ⊆
[a1, t]. The third set of constraints of the integer
program ensure that the sum of xI where I ∈ I and
I∩[ri, di] 6= φ is at least 1. By our procedure for building
the convex decomposition it follows that at least one of
these intervals is in C. Since this interval overlaps [ri, di]
it also overlaps [a1, t] proving the claim.

Let I ∈ C overlap [a1, t]. We first extend I to the right
till we have included time-slot [t− 1, t] and continue by
extending I to the left, perhaps combining with other
intervals of C in this process. We stop when Pt time-slots
have been added or when all time-slots before t have
been included. Consider the interval [ai, t]. Either we
have added Pt time slots in this interval or extended I to
include all time-slots in this interval. In the former case
the deficiency of [ai, t] is reduced to 0. In the later case
s(ai, t) = t− ai ≥ V (ai, t), where the second inequality
follows from the fact that the instance is feasible. Hence
δ(ai, t) = 0.

After having reduced to zero the deficiency of all

intervals ending at t, we find the next set of intervals
with positive deficiency whose end-time is the least. The
process continues till all intervals have zero deficiency.
Note that the intervals of C are extended by at most∑
t Pt = P time-slots.

Since the number of intervals in C′j equals the
number of intervals in Cj and the total length of intervals
in C′j exceeds the total length of intervals in Cj by at
most P , the energy consumed by the solution C′j is at
most P more than the energy consumed by Cj . Since
this is true for all solutions C′j , 1 ≤ j ≤ m, the solution
of minimum cost among these has cost at most P more
than the optimum fractional solution.

Theorem 3.1. Given n jobs with release dates, pro-
cessing times and deadlines in [0, D], there is an al-
gorithm with running time polynomial in n,D which
schedules these jobs on a single machine such that the
total energy consumption is at most OPT+P where P is
the sum of processing times.

4 Deadline Scheduling on Parallel Machines

In this section we prove a necessary and sufficient
condition for scheduling jobs on m parallel machines so
that all release dates and deadlines are met. While this
is a standard problem in an undergraduate Algorithms
course we repeat the argument here since it will be
useful in developing the linear program for minimizing
energy consumption in the next section.

Recall we are given n jobs. Job ji, 1 ≤ i ≤ n
requires pi units of processing, is released at time ri
and has deadline di. The jobs are to be scheduled
on m identical machines and we allow for preemption
and migration. An instance is feasible iff for every job
ji, 1 ≤ i ≤ n we can assign pi distinct time-slots during
[ri, di] such that no time-slot is assigned to more than
m jobs.

For reasons that will become clear later, we consider
a minor generalization of the above problem which
we refer to as deadline-scheduling-on-intervals.
Instead of m machines, we are given k supply-intervals,
I = {I1, I2, . . . , Ik} and are required to schedule the
given jobs within these intervals. Let sj , tj denote the
start and end-times of interval Ij . The intervals in
I need not be disjoint; however any point in time is
contained in at most m intervals. Note that if each
interval in I was [0, D] then we would recover the
problem of scheduling on parallel machines. An instance
of this problem is thus specified by the processing time,
release date and deadline of each of the n jobs and
the start and end-times of the k supply-intervals. The
feasibility of an instance can be checked by formulating
it as a problem of finding a flow in a suitable network.

2762
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



s t

u1

u2

u3

v0

v1

v2

v3

v4

v5

v6

p1

p2
p
3

1

1

1

1

1

1

1

1

m3 = |{l|[3, 4] ⊆ I`}|

Figure 2: Network G = (V,E) for checking feasibility of
an instance

Construct a network G = (V,E) with source s, sink
t, a vertex ui for each job ji and a vertex vt for each
time-slot [t, t+1], 0 ≤ t ≤ D−1. Vertex ui has edges to
vertices {vt|[t, t+ 1] ⊆ [ri, di]} of capacity 1 and an edge
from s of capacity pi. Let mt be the number of intervals
in I which contain the time-slot [t, t+ 1]. Vertex vt has
an edge to the sink t of capacity mt. Let c : E → R+

denote the capacity function on the edges.
The s-t cut ({s}, V −{s}) has capacity P =

∑n
j=1 pj

and so the maximum flow between s and t cannot exceed
P .

Lemma 4.1. An instance of deadline-scheduling-

on-intervals is feasible iff P units of flow can be sent
from s to t in the network G with capacities given by c.

Proof. Let f : E → Z≥0 be an s-t flow of value P . Since
edge capacities are integral f can also be assumed to be
integral. We use f to determine an assignment of jobs to
time-slots. If f(ui, vt) = 1 then we assign job ji to the
time-slot [t, t+1]. Since f(vt, t) ≤ mt the number of jobs
assigned to time-slot [t, t+1] cannot exceed the number
of intervals in I containing this time-slot. Since f has
value P which is the capacity of the cut ({s}, V − {s}),
all edges incident to s are saturated. Hence f(s, ui) = pi
which implies that job ji is assigned to exactly pi time-
slots in [ri, di]. This assignment of jobs to time-slots is
therefore a feasible schedule.

For the converse, consider a schedule, S, which
respects release dates and deadlines. We build a flow f
from s to t of value P . If job ji is processed in time-slot
[t, t+ 1] in S then f(ui, vt) = 1; since [t, t+ 1] ⊆ [ri, di],
the edge (ui, vt) is in E and has capacity 1. The
flow on edges entering t and leaving s is determined
by conservation. Note that at most mt jobs could be
scheduled in the time-slot [t, t + 1] and hence the flow
on edge (vt, t) does not exceed its capacity. Since in

schedule S, job ji is processed for pi units, the flow on
edge (s, ui) equals pi which implies that the total flow
from s to t is P .

Let (S, S) be an s-t cut and c(S) denote its capacity.

Claim 4.1. If c(S) < P then S ∩ {v0, v1, . . . , vD−1} 6=
∅.

Proof. For contradiction assume that S does not contain
any vertex from the set {v0, v1, . . . , vD−1}. Then the
capacity of the cut (S, S) is

∑
i:ui∈S(di−ri)+

∑
i:ui 6∈S pi.

If for job ji, di − ri < pi then the instance is trivially
infeasible. Hence we assume that di−ri ≥ pi, 1 ≤ i ≤ n,
and this implies that the capacity of the cut (S, S) is at
least

∑n
i=1 pi = P .

We aggregate the time-slots corresponding to ver-
tices in S ∩ {v0, v1, . . . , vD−1} into a minimal set of in-
tervals, Q(S). No two intervals in Q(S) are overlapping
since we could combine them and obtain a smaller set of
intervals. Recall that if two intervals share an end-point
then we consider them overlapping.

Definition 4.1. The forced volume of a job ji with
respect to an interval [a, b], denoted by fv(ji, [a, b]), is
the minimum volume of ji that must be processed during
[a, b] in any feasible schedule. Let Q be a set of disjoint
intervals. The forced volume of job ji with respect to
Q denoted by fv(ji, Q), is the minimum volume of ji
that must be processed during the intervals in Q in any
feasible schedule.

If I1, I2 are disjoint intervals then fv(ji, I1) +
fv(ji, I2) ≤ fv(ji, I1 ∪ I2). For instance suppose I1 =
[0, 3], I2 = [5, 8], r1 = 2, d1 = 6 and p1 = 3. Then
fv(j1, I1)=fv(j1, I2)=0 but fv(j1, I1 ∪ I2)=1. Note
that the forced volume of a job ji with respect to
an interval [a, b] is independent of the supply-intervals
and depends only a, b, pi, ri and di. For instance, if
ri < a < di < b then fv(ji, [a, b]) = max(0, ri + pi − a).
Similarly, if ri ≤ a < b ≤ di then fv(ji, [a, b]) =
max(0, pi − (a − ri) − (di − b)). Note that if the total
length of intervals in Q∩ [ri, di] is Qi, then fv(ji, Q) =
max{0, pi − |di − ri|+Qi}.

Definition 4.2. Let Q be a set of disjoint intervals.
The deficiency of Q, denoted by def(Q), is the non-
negative difference between the sum of the forced volume
of all jobs with respect to Q and the total volume of jobs
that can be processed in Q. Thus

def(Q) = max

0,

n∑
i=1

fv(ji, Q)−
∑

t:[t,t+1]⊆Q

mt

 .

2763
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Note that deficiency of Q also depends on the supply
intervals in the instance. From the above definition it
follows that if a set of disjoint intervals, Q, has positive
deficiency then the instance is infeasible. The following
lemma will help us argue the converse.

Lemma 4.2. Let (S, S) be a s-t cut in G. Then
def(Q(S)) + c(S) ≥ P . The inequality holds with an
equality if (S, S) is a minimum s-t cut.

Proof. We consider each vertex in S and count the total
capacity of edges in the cut (S, S) incident to this vertex.

1. For the source s, this quantity is
∑
i:ui 6∈S pi.

2. Let ui ∈ S and ci be the number of edges from ui
to vertices in S. If ci > pi then fv(ji, Q(S)) = 0
and if ci ≤ pi then fv(ji, Q(S)) = pi − ci. Hence
ci ≥ pi − fv(ji, Q(S)).

3. If vt ∈ S then the edge (vt, t) of capacity mt is in
(S, S).

Combining these we get

c(S) ≥
∑
i:ui 6∈S

pi +
∑
i:ui∈S

(pi − fv(ji, Q(S)))

+
∑

t:[t,t+1]⊆Q(S)

mt

≥
n∑
i=1

pi −
n∑
i=1

fv(ji, Q(S))) +
∑

t:[t,t+1]⊆Q(S)

mt

≥ P − def(Q(S))

which proves the first part of the lemma.
Let (S, S) be a minimum s-t cut.

1. If ui ∈ S then ci ≤ pi or else we would have moved
ui to S to obtain a cut of smaller capacity. Hence
ci = pi − fv(ji, Q(S)).

2. In a maximum s-t flow, flow on edge (ui, vt),
ui 6∈ S, vt ∈ S, is 0. Since pi units enter ui,
this implies that fv(ji, Q(S)) = 0 and hence∑
i:ui∈S(pi − fv(ji, Q(S))) =

∑n
i=1 fv(ji, Q(S))).

The above two observations imply that c(S) = P −
def(Q(S)) which proves the second part of the Lemma.

By Lemma 4.1 an infeasible instance has a cut (S, S)
such that c(S) < P . Lemma 4.2 then implies that
def(Q(S)) > 0 which proves the following theorem.

Theorem 4.1. An instance of deadline-scheduling-
on-intervals is feasible iff no set of disjoint intervals
has positive deficiency.

Making an instance feasible: Given an infeasible
instance of deadline-scheduling-on-intervals, we
would like to extend the intervals of the instance to
make it feasible. We need some additional tools to
do this and shall take this up in a later section. Let
F < P be the maximum s-t flow in the network G
corresponding to this instance. We now show that an
s-t flow of value P can be routed in G by increasing
capacities of edges incident to the sink such that the
total increase in capacities is P − F .

By submodularity of the cut-function it follows
that if (S1, S1), (S2, S2) are minimum s-t cuts then
(S1 ∩ S2, S1 ∩ S2) is also a minimum s-t cut. Hence a
minimum s-t cut in which the side containing the source
is minimal is unique; let (S, S) be this cut. Since the
capacity of this cut is less than P , by Claim 4.1 it follows
that S ∩ {v0, v1, . . . , vD−1} 6= ∅.

Claim 4.2. Increasing the capacity of any edge
(vi, t), vi ∈ S by 1 increases the s-t max-flow in G by 1.

Proof. For contradiction assume that increasing the
capacity of edge (vi, t) does not increase the s-t max-
flow in G. Hence there is a minimum s-t cut, (X,X),
such that vi 6∈ X. Since vi ∈ S, this means S 6⊆ X
which implies that S is not minimal.

Claim 4.2 gives us an algorithm for increasing capacities.
At each step we find a minimum s-t cut in which the
side containing the source is minimal and increase the
capacity of any edge in this cut which is also incident
to the sink by 1. Since with every step, we increase the
s-t flow in G by 1, the number of steps, and the total
increase in edge capacities, equals P − F .

Claim 4.2 also implies that (S, S) remains a mini-
mum s-t cut in G even after we increase the capacity of
edge (vi, t), vi ∈ S, by 1; however S need not be mini-
mal. Let (S′, S′) be the new s-t minimum cut in which
the side containing the source is minimal. The fact that
(S, S) is a minimum s-t cut implies that S′ ⊆ S. Thus
with every step the s-side of the cut under consideration
shrinks. This is an important property of this process
and shall find use later.

5 Linear Programming Relaxation

We are now ready to give a linear programming relax-
ation for the problem of scheduling jobs on parallel ma-
chines so as to minimize total energy consumed. A so-
lution to the problem is completely specified by the set
of time intervals in which each machine is active; let
I be this multiset. The energy consumed by this solu-
tion equals

∑
I∈I(|I|+ L). Note that at most m inter-

vals in I can overlap at any point in time. Further, I
forms a feasible solution if the corresponding instance
of deadline-scheduling-on-intervals is feasible.

2764
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



With every interval I ⊆ [0, D] we associate a
variable x(I), 0 ≤ x(I) ≤ m which indicates the number
of times I is picked in a solution. The objective is to
minimize

∑
I x(I)(|I|+L). We now list the constraints

of this linear program.

1. Let mt =
∑
I:[t,t+1]⊆I x(I). Since at most m

intervals overlap at any time t we get that for all
t, 0 ≤ t ≤ D − 1, mt ≤ m.

2. Let f(i, t) be a variable denoting the flow in the
edge (ui, vt), 0 ≤ i ≤ n, 0 ≤ t ≤ D − 1 in the flow
network G corresponding to this instance. Then
0 ≤ f(i, t) ≤ 1.

3. The conservation constraint on vertex vt and the
capacity constraint on edge (vt, t) together give: for
all t, 0 ≤ t ≤ D − 1,

∑
i:[t,t+1]⊆[ri,di] f(i, t) ≤ mt.

4. Since P units of flow have to be routed, all edges
incident to the source are saturated. This together
with the conservation constraint at vertex ui yields:
for all i,

∑di−1
t=ri

f(i, t) = pi.

5. Consider an interval [a, b] ⊆ [0, D]. The total
forced volume of all jobs with respect to [a, b] equals∑n
i=1 fv(ji, [a, b]). If this quantity equals α(b −

a) then the number of intervals overlapping [a, b]
should be at least dαe. This yields the constraint:
for all 0 ≤ a < b ≤ D,

∑
I:[a,b]∩I 6=∅

xI ≥
⌈∑n

i=1 fv(ji, [a, b])

b− a

⌉
.

Thus our linear program for scheduling on multiple
machines to minimize energy is as follows.

minimize
∑
I x(I)(|I|+Q)

subject to
mt =

∑
I:[t,t+1]∈I x(I) 0 ≤ t < D

mt ≥
∑
i:ri≤t≤di−1 f(i, t) 0 ≤ t < D

pi =
∑di−1
t=ri

f(i, t) 0 ≤ i ≤ n∑
I:[a,b]∩I 6=∅

xI ≥
⌈ n∑
i=1

fv(ji, [a, b])

(b− a)

⌉
0 ≤ a < b ≤ D

f(i, t) ∈ [0, 1] ∀i, t
x(I),mt ∈ [0,m] ∀t, I ⊆ [0, D]

6 Minimizing Energy on Parallel Machines

Our algorithm for the case of parallel machines is along
the lines of the one for single machines. We begin by
solving the linear program from Section 5 and let x be
the optimum fractional solution and OPT the cost of this

solution. Our algorithm will produce a solution of cost
at most 2OPT + P .

Let I = {I|xI > 0}. After ensuring that no interval
of I is strictly contained in another, we order the
intervals by increasing start-times (breaking ties using
end-times) and let ≺ be this order. As in Section 3,
we construct r integral solutions, Ci, 1 ≤ i ≤ r and
associate weights wi with solutions Ci such that this
forms a convex decomposition of x. Note that Ci is no
more a disjoint set of intervals as in the single machine
case. However at most m intervals of Ci could overlap
at any point in time.

For the rest of this section we will consider one of
the integral solutions in the convex decomposition and
refer to it as C. The arguments of this section will apply
to all r solutions. Note that C need not be a feasible
instance of deadline-scheduling-on-intervals and
we will modify the intervals in C to make it a feasible
solution. Let I1 ≺ I2 ≺ · · · ≺ IN be the intervals in C.

Lemma 6.1. Suppose [a, b] ⊆ [0, D] overlaps l intervals
of C = Ci. Then [a, b] overlaps at most l+ 1 intervals of
Ck, k 6= i.

Proof. From our round-robin procedure for assigning
intervals to solutions in the convex decomposition it
follows that for any 1 ≤ i ≤ N − 1, Ck contains exactly
one interval I between Ii and Ii+1 i.e. Ii ≺ I ≺ Ii+1.
Suppose [a, b] overlaps intervals Ij , Ij+1, . . . , Ij+l−1 of C.
Then [a, b] would definitely overlap the l − 1 intervals
of Ck between Ij and Ij+l−1. In addition [a, b] could
possibly overlap the two intervals of Ck between Ij−1
and Ij and between Ij+l−1 and Ij+l. Thus [a, b] could
overlap at most l + 1 intervals of Ck.

Modifying intervals: Let sj , ej denote the start
and end times of interval Ij ∈ C. We consider the
intervals in the order ≺ and modify them as follows:

If Ij , Ij+1 overlap then replace Ij with the
interval [sj ,min{ej+1, sj+m}]. Else create a
copy of Ij+1 if it does not overlap Ij+m.

For j = 0 we add a copy of I1 if it does not overlap Im.
The set of intervals formed through this modification
continue to have the property that no interval is strictly
contained in another although now we could have two
copies of some intervals. Let I ′1 ≺ I ′2 ≺ · · · ≺ I ′M be the
new (multi)set of intervals which we denote by C′.

Claim 6.1. The sets C and C′ relate as:

1. The total length of the intervals in C′ is at most
twice the total length of intervals in C.

2. The number of intervals in C′ is at most twice the
number of intervals in C.

2765
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



3. If [a, b] ⊆ [0, D] overlaps 0 < l < m intervals of C
then it overlaps at least l + 1 intervals of C′.

4. At most m intervals of C′ overlap at any point in
time.

Proof. The first 2 statements follow from our procedure
for constructing C′. The final statement of the claim
follows from the fact that we add a copy of interval
Ij+1 only if it does not overlap Ij+m, and never extend
Ij further than sj+m.

To prove the third statement, suppose [a, b] overlaps
intervals Ij , Ij+1, . . . , Ij+l−1 of C. Then [a, b] would also
overlap the corresponding intervals of C′. Since l < m,
Ij does not overlap Ij+m−1.

Let j > 1. If Ij−1 overlaps Ij then [a, b] would also
overlap the interval in C′ that replaced Ij−1. If Ij−1
does not overlap Ij then C′ would contain a copy of Ij
which [a, b] would overlap. Finally if j = 1 then we
would have created a copy of I1 in C′ which [a, b] would
overlap. Thus [a, b] would overlap at least l+1 intervals
of C′.

Extending Intervals: We will now extend in-
tervals in C′, without creating any new ones, to
obtain a feasible instance of deadline-scheduling-

on-intervals. We begin by running the feasibility test
of Section 4 on the instance whose supply-intervals are
the intervals of C′. Suppose the test fails and returns a
set of intervals Q = {Q1, Q2, . . . Qk} of maximum defi-
ciency. Let I ′ ∈ C′ be such that it overlaps Qi without
containing Qi i.e. Qi 6⊆ I ′. Then a time-slot in Qi
can be used to extend I ′ and doing this decreases the
deficiency of Q by 1. Recall that this also decreases
the maximum deficiency of any set of intervals by 1.
We modify the intervals in C′ in this manner, always
extending an interval of C′ by a time-slot contained in
one of the intervals comprising the set of intervals with
maximum deficiency. We stop when it is not possible
to extend an interval of C′ in this manner and will now
argue that the C′ thus obtained is a feasible instance of
deadline-scheduling-on-intervals.

The intervals comprising Q shrink during the above
procedure and let {Q1, Q2, . . . , Qk} be the set of in-
tervals with maximum deficiency when we stop. Let
Qi = [ai, bi] and ci be the number of intervals of C′
which overlap Qi.

Lemma 6.2. The number of intervals in Cj , 1 ≤ j ≤ r
which overlap Qi is at most ci.

Proof. If ci = 0 then no interval in C′ overlaps Qi =
[ai, bi]. Since in going from C to C′ we have only
extended intervals or introduced new intervals, this
implies that no interval in C overlaps [ai, bi]. By

our convex decomposition procedure this implies that∑
I:I∩[ai,bi]6=∅ xI < 1. Since x is a feasible solution

to the linear program (Section 5) we conclude that∑n
k=1 fv(jk, [ai, bi]) = 0.

Since Q is a minimal set of intervals with maximum
deficiency, def(Q \Qi) < def(Q). Since no interval
of C′ overlaps Qi this implies

∑n
k=1 fv(jk, Q \Qi) <∑n

k=1 fv(jk, Q). Hence there exists a job jk such
that fv(jk, Q \Qi) < fv(jk, Q). This implies that
[rk, dk] ∩ Qi 6= ∅. Further [rk, dk] 6⊆ Qi as that would
imply fv(jk, Qi) > 0. Hence either rk < ai < dk or
rk < bi < dk; note that both conditions could also be
true.

If rk < ai < dk then expanding Qi to [ai − 1, bi]
would increase fv(jk, Q) by 1. Since Q is a set of
intervals with maximum deficiency, some interval of C′
must include the time-slot [ai − 1, ai]. Similarly, if
rk < bi < dk then by expanding Qi to [ai, bi + 1] we
conclude that an interval of C′ contains [bi, bi + 1]. In
either case, we have an interval of C′ overlapping [ai, bi]
which implies ci > 0.

By the third statement of Claim 6.1 the number of
intervals in C overlapping Qi is at most ci− 1. Then by
Lemma 6.1 the number of intervals in Cj overlapping Qi
is at most ci and this proves the lemma.

Consider x, the optimum solution to the LP. For all
t such that [t, t+ 1] ⊆ Qi we have,

mt =
∑

I:[t,t+1]⊆I

xI =
r∑
j=1

wj |{I ∈ Cj , [t, t+ 1] ⊆ I}|

≤
r∑
j=1

wjci = ci,

where the inequality follows from Lemma 6.2.
Consider the cut (S, S) where

S = {s} ∪ {vt|[t, t+ 1] ∈ Q} ∪ {ui|fv(ji, Q) > 0}.

The capacity of this cut is

∑
t:[t,t+1]⊆Q

mt +

n∑
i=1

(pi − fv(ji, Q))

≤ P −

(
n∑
i=1

fv(ji, Q)−
k∑
i=1

ci|Qi|

)
= P − def(Q),

where def(Q) is the deficiency of the set of in-
tervals Q for an instance of deadline-scheduling-

on-intervals defined by intervals of C′. If def(Q) > 0
then c(S) < P which contradicts the feasibility of x.
Thus def(Q) = 0 and so the intervals of C′ form a
feasible solution.

2766
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



By Claim 6.1, the total energy consumption of
intervals in C′ is at most twice that of the intervals in
C. Our procedure for extending intervals in C′ increases
their total length, and hence the total energy, by at
most P . Hence the solution of minimum cost among
C′j , 1 ≤ j ≤ r has cost at most 2OPT + P where OPT is
the cost of the optimum fractional solution.

Theorem 6.1. Given n jobs with release dates, pro-
cessing times and deadlines in [0, D], there is an al-
gorithm with running time polynomial in n,D which
schedules these jobs on m machines such that the to-
tal energy consumption is at most 2OPT+ P where P is
the sum of processing times.

7 Conclusions

The two algorithms with running times polynomial in n
and D can be converted to polynomial time algorithms
by limiting the number of intervals we consider in the
linear program and by suitably modifying our procedure
for extending the intervals in the integral solutions of the
convex decomposition (see Appendix). We believe that
our approach of formulating this problem of minimizing
energy as a linear program and the tools we develop in
this paper for rounding the fractional solutions, hold
much promise and can be applied to more general
machine models and power management techniques.

References

[1] How Dirty is your Data? https://www.

greenpeace.org/international/publication/

7196/how-dirty-is-your-data/, 2011.
[2] Susanne Albers. On energy conservation in data

centers. In Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA
2017, Washington DC, USA, July 24-26, 2017, pages
35–44, 2017.

[3] Susanne Albers and Antonios Antoniadis. Race to idle:
New algorithms for speed scaling with a sleep state.
ACM Trans. Algorithms, 10(2):9:1–9:31, 2014.

[4] Antonios Antoniadis, Chien-Chung Huang, and Se-
bastian Ott. A fully polynomial-time approximation
scheme for speed scaling with sleep state. In Proceed-
ings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 1102–1113, 2015.

[5] John Augustine, Sandy Irani, and Chaitanya Swamy.
Optimal power-down strategies. SIAM J. Comput.,
37(5):1499–1516, 2008.

[6] Philippe Baptiste. Scheduling unit tasks to minimize
the number of idle periods: a polynomial time algo-
rithm for offline dynamic power management. In Pro-
ceedings of the seventeenth annual ACM-SIAM sympo-
sium on Discrete algorithm, pages 364–367. Society for
Industrial and Applied Mathematics, 2006.

[7] Philippe Baptiste, Marek Chrobak, and Christoph
Dürr. Polynomial time algorithms for minimum energy
scheduling. In European Symposium on Algorithms,
pages 136–150. Springer, 2007.

[8] Marek Chrobak, Uriel Feige, Mohammad Taghi Ha-
jiaghayi, Sanjeev Khanna, Fei Li, and Seffi Naor.
A greedy approximation algorithm for minimum-gap
scheduling. Journal of Scheduling, 20(3):279–292,
2017.

[9] Erik D Demaine, Mohammad Ghodsi, Moham-
mad Taghi Hajiaghayi, Amin S Sayedi-Roshkhar, and
Morteza Zadimoghaddam. Scheduling to minimize
gaps and power consumption. In Proceedings of the
nineteenth annual ACM symposium on Parallel algo-
rithms and architectures, pages 46–54. ACM, 2007.

[10] Erik D. Demaine and Morteza Zadimoghaddam.
Scheduling to minimize power consumption using sub-
modular functions. In SPAA 2010: Proceedings of the
22nd Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures, Thira, Santorini, Greece,
June 13-15, 2010, pages 21–29, 2010.

[11] Sandy Irani and Kirk Pruhs. Algorithmic problems
in power management. SIGACT News, 36(2):63–76,
2005.

[12] Sandy Irani, Sandeep K. Shukla, and Rajesh Gupta.
Algorithms for power savings. ACM Trans. Algo-
rithms, 3(4):41, 2007.

[13] Sandy Irani, Sandeep K. Shukla, and Rajesh K. Gupta.
Online strategies for dynamic power management in
systems with multiple power-saving states. ACM
Trans. Embedded Comput. Syst., 2(3):325–346, 2003.

[14] Gunjan Kumar and Saswata Shannigrahi. On the NP-
hardness of speed scaling with sleep state. Theor.
Comput. Sci., 600:1–10, 2015.

Appendix

A From Pseudopolynomial to Polynomial Time

In this section we prove that it is sufficient to limit
ourselves to intervals with start and endpoints from a
set W of polynomially many time-slots in [0, D], with
the loss of a small factor in the approximation ratio.

Definition A.1. Let T := ∪i{ri, di} and W := T ∪
{w|w ∈ [0, D],∃t ∈ T, k ∈ N with |t−w| = d(1 + ε)ke}∪
{0, D}.

Claim A.1. |W | is polynomial in the input size, and
therefore so is the number of possible intervals that start
and end at time-slots of W .

Proof. Consider some t ∈ T . We argue about the
number of distinct w ∈ [0, D], so that |t − w| =
d(1 + ε)ke for some k ∈ N. Since t, w ∈ [0, D],
we have that for any such w, |t − w| ≤ D + 1 and
therefore for the corresponding k, k = O(logD). In turn
|W | = O(n logD), and the number of possible intervals
starting and ending at W is |W |2 = O(n2 log2D).

2767
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://www.greenpeace.org/international/publication/7196/how-dirty-is-your-data/
https://www.greenpeace.org/international/publication/7196/how-dirty-is-your-data/
https://www.greenpeace.org/international/publication/7196/how-dirty-is-your-data/


Lemma A.1. Considering only intervals that start and
end at time-slots of W, does not increase the cost of
being in the active state by more than a factor of (1+ε).

Proof. Consider an optimal solution OPT. We will
transform OPT to a solution that satisfies the lemma
property while increasing its active cost by at most
an (1 + ε) factor. We can associate intervals in OPT

with processors as follows. Recall that the intervals
are ordered by their start-time and ties are broken by
end-times. Go through the intervals in this order and
associate each interval to the smallest-index processor so
that it does not overlap with any other interval already
there. We will use the following claim to prove the
lemma:

Claim A.2. Assuming that I ∩ T 6= ∅ holds for any
interval I ∈ OPT is without loss of generality.

Consider some interval I ∈ OPT, associated with a
processor mI and let t ∈ I be a time slot of T whose
existence is guaranteed by Claim A.2.

We will expand I towards the left and the right
respectively until we hit either some time slot inW or we
hit another interval associated with this processor. In
the second case we merge the two intervals. We repeat
this for every interval, and the process will terminate
since in each step we either ”snap” one of the endpoints
to a point in W or reduce the number of intervals by
one. Note that eventually all interval endpoints will be
slots in W (W includes 0 and D).

The total increase in length of an interval I is at
most (1 + ε) · |I|, because we expand towards the left by
at most a factor (1 + ε) · |t− sI |, and similarly towards
the right by at most a factor (1 + ε) · |eI − t|. This is
because by construction there are points in W at every
(1 + ε) multiple distance away from t, and we never
expand more than that.

We conclude the proof of the lemma by proving
Claim A.2.

Proof. [Claim A.2] Assume for the sake of contradiction
that there exists an I ∈ OPT such that I ∩T = ∅. Then
we move I towards an adjacent point t ∈ T . Without
loss of generality assume that we move I leftwards. So
consider moving I leftwards one slot at a time. We break
up this moving of I one slot leftwards into consecutively
moving all units of I one slot leftwards: We first move
the leftmost unit, then the next one etc. The following
could potentially happen:

• Interval I reaches t. In this case I ∩ T 6= ∅ and we
stop.

• Interval I meets the endpoint eI of some other
interval I ′ on the same or a different processor.

This cannot happen since it would contradict the
optimality of OPT. The reason is that one can either
merge I with I ′, or use part of I to close the gap
following I ′ on its processor. Either requires one
wake-up operation less but has otherwise identical
costs to OPT.

• We are not able to move some unit of I one
more slot leftwards without producing an infeasible
schedule. Since there is still no point in T intersect-
ing I this must be because some job j running in
this unit of I would run in parallel to itself if we
move the interval one more slot leftwards. Let ` be
the slot on which j runs in I, and assume that it
runs in some slot `− 1 on some other processor. If
there is some interval I ′ on one of the other proces-
sors ending at slot `−1, we simply move the unit of
j to that processor continue shifting the remaining
slots of I to the left. Thus we may assume that slot
`− 1 contains strictly less jobs than slot `. By the
pigeon hole principle there exists some job that we
can swap with j in slot ` so that we can move one
more unit of I one slot leftwards.

Since in each step we move one unit of I one slot
leftwards, the process will eventually terminate with
I ∩ T 6= ∅. Note that the process does not increase
the number of intervals, nor the sum of interval lengths
(although it may change individual interval lengths),
and hence does not affect the cost of the solution.

Modifying the Flow Network and Linear
Program. We first show how to modify the network
for checking the feasibility of deadline-scheduling-

on-intervals. Let W = {a0, a1, . . . , ak}, with
a0 < a1 < . . . < ak. The consecutive points
in W partition [0, D] into k time intervals, ie.
IW = {[a0, a1], . . . , [ak−1ak]}. We refer to the interval
[ak−1, ak] as the kth time slot. We next discuss how to
adapt the maximum flow formulation. Firstly, instead
of nodes vt for each time t, 1 ≤ t ≤ D − 1, we now
have a node vt, 1 ≤ t ≤ k for each time slot in IW .
The capacity of edge (ui, vt) is the length of interval
[at−1, at]. Let nt be the number of intervals crossing
time slot t. The capacity of edge (vi, t) is mt, where mt

is defined as the product of nt and the length of time
slot t. Note that size of the network after doing the
above modification is O(n|W |). As in Lemma 4.1, we
can again argue that the given instance is feasible iff
P units of flow can be routed in the network. If the
instance is feasible, then P units of flow can clearly
be routed. Suppose P units of flow can be routed in
the network. Fix a time slot t. We have to schedule

2768
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



f(i, t) units of job i in the tth time slot such that
f(i, t) ≤ |at−at−1| and

∑
i f(i, t) ≤ mt = nt|at−at−1|.

Consider a schedule of all jobs (active in time slot t) on
a single machine such that job i is processed for f(i, t)
units, every job is processed contiguously and there is
no gap in the schedule. The machine runs continuously
in [0,

∑
i f(i, t)]. We replicate the schedule of this

machine in time [(i − 1)|at − at−1|, i|at − at−1|] on the
ith interval crossing time slot t. No job is processed in
two intervals at the same time as no job has length more
than |at − at−1|. We modify appropriate constraints
in the Linear Program to reflect changes made in the
network.

Modifying the Rounding Procedure. We now
argue that the rounding procedure of Section 6 can be
carried out in polynomial time. The algorithm works
in iterations. In each iteration, the rounding procedure
finds a minimal set of intervals of maximum deficiency
and increases the length of an interval in this set by
1. This results in reduction of maximum deficiency
by 1 and there can be at most P such iterations. We
make the following minor modification to this algorithm.
Assume that we extend an interval I of some solution
Cj in an iteration. Instead of extending it by one unit,
we extend it by δ, where δ is the maximum number
such that extending I by δ also reduces the maximum
deficiency of this solution by δ. We can find such a δ by
binary search, and thus in time polynomial in the input.

Recall that minimal maximum deficiency set
shrinks after every iteration. Suppose Q is the mini-
mal maximum deficiency set after I was extended by
δ. Since I was not extended any further, either it does
not overlap with Q or none of the endpoints of I are
inside Q. In either case, and because Q only shrinks, I
will never be extended in any further iteration. Hence,
the total number of iterations for each solution Cj is
bounded by the maximum number of intervals in a solu-
tion, which is O(m|W |). Furthermore, the total number
of solutions is at most the total number of sI ’s which is
upper bounded by the total number of intervals in the
support I. This is in turn upper bounded by the total
number of all possible intervals which is |W |2. Overall,
the total number of iterations required for constructing
all the solutions is at most O(m|W |3), and each itera-
tion requires time polynomial in the input size.

Also, the total length of intervals added to a solu-
tion is equal to the maximum deficiency, which is at
most P and hence the rounding procedure does not
further affect the approximation guarantee of the algo-
rithm. After extending the intervals, each solution has
a maximum deficiency of zero and hence feasible (by
discussion in the last section).

B Integrality Gap Example

Consider an instance on a single machine with 5 jobs,
j1, . . . , j5 (see Figure 1). Let r1 = 0, d1 = 1, r2 = 1, d2 =
7, r3 = 2, d3 = 4, r4 = 4, d4 = 6, r5 = 7, d5 = 8. All
jobs have unit processing time and the wake up cost
of the machine is 1. Since the wake up cost is 1 we
may assume that the machine transitions to the sleep
state whenever it is idle, in other words there exists
an optimal (integral) solution with no active but idle
periods. We claim that the aforementioned instance
requires at least three contiguous active time intervals:
First note that j1 and j5 have to be done in time slots
[0, 1] and [7, 8] respectively and since there are only
three units of work to be done in [1, 7], j1 and j5 must
be processed in two different intervals. Let I1 and I2 be
these respective intervals. If j2 is processed in I1, then
j4 cannot be processed in I1 or I2. Similarly, if j2 is
processed in I2, then j3 cannot be processed in I1 or I2.
Hence, the optimal solution must incur wake up energy
of at least 3 and the total energy of the optimal solution
is at least 8.

We now show a fractional solution with value
strictly smaller than 8. Let I1 = [0, 1], I2 = [0, 3], I3 =
[4, 6], I4 = [5, 8], I5 = [7, 8] (see Figure 1). Consider a
fractional solution with xI1 = xI2 = xI3 = xI4 = xI5 =
1/2. It can easily be verified that this is a feasible frac-
tional solution with energy 15/2. Hence, the integrality
gap of the LP is at least 16/15.

2769
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

01
/0

6/
20

 to
 1

36
.3

6.
15

8.
38

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Our Contribution
	Further Related Work

	Preliminaries
	An Additive P Approximation for Single Machine
	Deadline Scheduling on Parallel Machines
	Linear Programming Relaxation
	Minimizing Energy on Parallel Machines
	Conclusions
	From Pseudopolynomial to Polynomial Time
	Integrality Gap Example



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 14.40 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20191108085217
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     14.4000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     12
     11
     12
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 9.00 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     9.0000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     12
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     12
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move down by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Down
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     12
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



