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Abstract
Selfish Network Creation focuses on modeling real world networks from a game-theoretic point
of view. One of the classic models by Fabrikant et al. [PODC’03] is the network creation game,
where agents correspond to nodes in a network which buy incident edges for the price of α per
edge to minimize their total distance to all other nodes. The model is well-studied but still
has intriguing open problems. The most famous conjectures state that the price of anarchy is
constant for all α and that for α ≥ n all equilibrium networks are trees.

We introduce a novel technique for analyzing stable networks for high edge-price α and employ
it to improve on the best known bounds for both conjectures. In particular we show that for
α > 4n − 13 all equilibrium networks must be trees, which implies a constant price of anarchy
for this range of α. Moreover, we also improve the constant upper bound on the price of anarchy
for equilibrium trees.
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1 Introduction

Many important networks, e.g. the Internet or social networks, have been created in a
decentralized way by selfishly acting agents. Modeling and understanding such networks is
an important challenge for researchers in the fields of Computer Science, Network Science,
Economics and Social Sciences. A significant part of this research focuses on assessing the
impact of the agents’ selfish behavior on the overall network quality measured by the price
of anarchy [32]. Clearly, if there is no or little coordination among the egoistic agents, then it
cannot be expected that the obtained networks minimize the social cost. The reason for this
is that each agent aims to improve the network quality for herself while minimizing the spent
cost. However, empirical observations, e.g. the famous small-world phenomenon [40, 30, 9],
suggest that selfishly built networks are indeed very efficient in terms of the overall cost and
of the individually perceived service quality. Thus, it is a main challenge to justify these
observations analytically.
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14:2 On the Tree Conjecture for the Network Creation Game

A very promising approach towards this justification is to model the creation of a network
as a strategic game which yields networks as equilibrium outcomes and then to investigate
the quality of these networks. For this, a thorough understanding of the structural properties
of such equilibrium networks is the key.

We contribute to this endeavor by providing new insights into the structure of equilibrium
networks for one of the classical models of selfish network creation [24]. In this model, agents
correspond to nodes in a network and can buy costly links to other nodes to minimize their
total distance in the created network. Our insights yield improved bounds on the price of
anarchy and significant progress towards settling the so-called tree conjecture [24, 36].

1.1 Model and Definitions
We consider the classical network creation game as introduced by Fabrikant et al. [24]. There
are n agents V , which correspond to nodes in a network, who want to create a connected
network among themselves. Each agent selfishly strives for minimizing her cost for creating
network links while maximizing her own connection quality. All edges in the network are
undirected and unweighted and agents can create any incident edge for the price of α > 0,
where α is a fixed parameter of the game. The strategy Su ⊆ V \ {u} of an agent u denotes
which edges are bought by this agent, that is, agent u is willing to create (and pay for) all
the edges (u, x), for all x ∈ Su. Let s be the n-dimensional vector of the strategies of all
agents. The strategy-vector s induces an undirected network G(s) = (V,E(s)), where for
each edge (u, v) ∈ E(s) we have v ∈ Su or u ∈ Sv. If v ∈ Su, then we say that agent u is the
owner of edge (u, v) or that agent u buys the edge (u, v), otherwise, if u ∈ Sv, then agent
v owns or buys the edge (u, v).1 Since the created networks will heavily depend on α we
emphasize this by writing (G(s), α) instead of G(s). The cost of an agent u in the network
(G(s), α) is the sum of her cost for buying edges, called the creation cost, and her cost for
using the network, called the distance cost, which depends on agent u’s distances to all other
nodes within the network. The cost of u is defined as

cost(G(s), α, u) = α|Su|+ distcost(G(s), u),

where the distance cost is defined as

distcost(G(s), u) =
{∑

w∈V dG(s)(u,w), if G(s) is connected
∞, otherwise.

Here dG(s)(u,w) denotes the length of a shortest path between u and w in the network G(s).
We will mostly omit the reference to the strategy vector, since it is clear that a strategy
vector directly induces a network and vice versa. Moreover, if the network is clear from
the context, then we will also omit the reference to the network, e.g. writing distcost(u)
instead of distcost(G, u).

A network (G(s), α) is in pure Nash equilibrium (NE), if no agent can unilaterally change
her strategy to strictly decrease her cost. That is, in a NE network no agent can profit by a
strategy change if all other agents stick to their strategies. Since in a NE network no agent
wants to change the network, we call them stable.

The social cost, denoted cost(G(s), α), of a network (G(s), α) is the sum of the cost of all
agents, that is, cost(G(s), α) =

∑
u∈V cost(G(s), α, u). Let OPTn be the minimum social

1 No edge can have two owners in any equilibrium network. Hence, we will assume throughout the paper
that each edge in E(s) has a unique owner.
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cost of a n agent network and let maxNEn be the maximum social cost of any NE network
on n agents. The price of anarchy (PoA) [32] is the maximum over all n of the ratio maxNEn

OPTn
.

Let G = (V,E) be any undirected connected graph with n vertices. A cut-vertex x of G
is a vertex with the property that G with vertex x removed contains at least two connected
components. We say that G is biconnected if n ≥ 3 and G contains no cut-vertex. A
biconnected component H of G is a maximal induced subgraph of G which is also biconnected.
Note that we rule out trivial biconnected components which contain exactly one edge. Thus,
there exist at least two vertex-disjoint paths between any pair of vertices x, y in a biconnected
component H, which implies that there exists a simple cycle containing x and y.

1.2 Related Work
Network creation games, as defined above, were introduced by Fabrikant et al. [24]. They
gave the first general bound of O(

√
α) on the PoA and they conjectured that above some

constant edge-price all NE networks are trees. This conjecture, called the tree conjecture, is
especially interesting since they also showed that tree networks in NE have constant PoA.
In particular, they proved that the PoA of stable tree networks is at most 5. Interestingly,
the tree conjecture in its general version was later disproved by Albers et al. [1]. However,
non-tree NE networks are known only when α < n, in particular, for every ε > 0, there exist
non-tree NE networks with α ≤ n− ε [36]. It is believed that for α ≥ n the tree conjecture
may be true. Settling this claim is currently a major open problem and there has been a
series of papers which improved bounds concerning the tree conjecture.

First, Albers et al. [1] proved that for α ≥ 12n logn every NE network is a tree. Then,
using a technique based on the average degree of the biconnected component, this was
significantly improved to α > 273n by Mihalák & Schlegel [39] and even further to α ≥ 65n
by Mamageishvili et al. [36]. The main idea of this average degree technique is to prove a
lower and an upper bound on the average degree of the unique biconnected component in
any equilibrium network. The lower bound has the form “for α > c1n the average degree is
at least c2” and the upper bound has the form “for α > c3n the average degree is at most
f(α)”, where c1, c2, c3 are constants and f is a function which monotonically decreases in
α. For large enough α both bounds contradict each other, which proves that equilibrium
networks for this α cannot have a biconnected component and thus must be trees. Very
recently a preprint by Àlvarez & Messegué [5] was announced which invokes the average
degree technique with a stronger lower bound. This then yields a contradiction already for
α > 17n. For their stronger lower bound the authors use that in every minimal cycle (we
call them “min cycles”) of an equilibrium network all agents in the cycle buy exactly one
edge of the cycle. This fact has been independently established by us [35] and we also use it.

The currently best general upper bound of 2O(
√

logn) on the PoA is due to Demaine et
al. [22] and it is known that the PoA is constant if α < n1−ε for any fixed ε ≥ 1

logn [22]. Thus,
the PoA was shown to be constant for almost all α, except for the range between n1−ε, for
any fixed ε ≥ 1

logn , and α < 65n (or α ≤ 9n which is claimed in [5]). It is widely conjectured
that the PoA is constant for all α and settling this open question is a long standing problem
in the field. A constant PoA proves that agents create socially close-to-optimal networks
even without central coordination. Quite recently, a constant PoA was proven by Chauhan
et al. [16] for a version with non-uniform edge prices. In contrast, non-constant lower bounds
on the PoA have been proven for local versions of the network creation game by Bilò et
al. [10, 12] and Cord-Landwehr & Lenzner [19].

For other variants and aspects of network creation games, we refer the reader to [26, 8,
18, 15, 21, 6, 31, 33, 34, 38, 29, 2, 37, 20, 23, 13, 11, 7, 25, 17, 3, 4, 27].

STACS 2018
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1.3 Our Contribution
In this paper we introduce a new technique for analyzing stable non-tree networks for high
edge-price α and use it to improve on the current best lower bound for α for which all stable
networks must be trees. In particular, we prove that for α > 4n − 13 any stable network
must be a tree (see Section 2). This is a significant improvement over the known bound of
α > 65n by Mamageishvili et al. [36] and the recently claimed bound of α > 17n by Àlvarez
& Messegué [5]. Since the price of anarchy for stable tree networks is constant [24], our
bound directly implies a constant price of anarchy for α > 4n− 13. Moreover, in Section 3,
we also give a refined analysis of the price of anarchy of stable tree networks and thereby
improve the best known constant upper bound for stable trees.

Thus, we make significant progress towards settling the tree conjecture in network creation
games and we enlarge the range of α for which the price of anarchy is provably constant.

Our new technique exploits properties of cycles in stable networks by focusing on critical
pairs, strong critical pairs and min cycles. The latter have been introduced in our earlier
work [35] and are also used in the preprint by Àlvarez & Messegué [5]. However, in contrast
to the last attempts for settling the tree conjecture [39, 36, 5], we do not rely on the average
degree technique. Instead we propose a more direct and entirely structural approach using
(strong) critical pairs in combination with min cycles. Besides giving better bounds with a
simpler technique, we believe that this approach is better suited for finally resolving the tree
conjecture.

Due to space constraints, all omitted details can be found in the full version [14].

2 Improving the Range of α of the Tree Conjecture

In this section we prove our main result, that is, we show that for α > 4n− 13, every NE
network (G,α) with n ≥ 4 nodes must be a tree.

We proceed by first establishing properties of cycles in stable networks. Then we introduce
the key concepts called critical pairs, strong critical pairs and min cycles. Finally, we provide
the last ingredient, which is a critical pair with a specific additional property, and combine
all ingredients to obtain the claimed result.

2.1 Properties of Cycles in Stable Networks
We begin by showing that for large values of α, stable networks cannot contain cycles of
length either 3 or 4.

I Lemma 1. For α > n−1
2 , no stable network (G,α) contains a cycle of length 3.

Proof. Let (G,α) be a stable network for a fixed value of α > n−1
2 . For the sake of

contradiction, assume that G contains a cycle C of length 3. Assume that V (C) = {u0, u1, u2}
and that C contains the three edges (u0, u1), (u1, u2), and (u2, u0). Let Vi =

{
x ∈ V |

dG(ui, x) < dG(uj , x),∀j 6= i
}
. Observe that, for every i ∈ {0, 1, 2} we have |Vi| ≥ 1,

as ui ∈ Vi. Furthermore, all the Vi’s are pairwise disjoint. W.l.o.g., assume that |V0| =
max

{
|V0|, |V1|, |V2|

}
. Furthermore, w.l.o.g., assume that u1 buys the edge (u1, u2). Consider

the strategy change in which agent u1 deletes the edge (u1, u2). The building cost of the
agent decreases by α while her distance cost increases by at most |V2|. Since |V2| ≤ |V0|, from
|V0|+ |V1|+ |V2| ≤ n we obtain |V2| ≤ n−1

2 . Since G is stable, n−1
2 − α ≥ 0, i.e., α ≤ n−1

2 , a
contradiction. J

I Lemma 2. For α > n− 2, no stable network (G,α) contains a cycle of length 4.
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Proof. Let (G,α) be a stable network for a fixed value of α > n− 2. For the sake of contra-
diction, assume that G contains a cycle C of length 4. Assume that V (C) = {u0, u1, u2, u3}
and that C contains the four edges (u0, u1), (u1, u2), (u2, u3), and (u3, u0). For the rest
of this proof, we assume that all indices are modulo 4 in order to simplify notation. Let
Vi =

{
x ∈ V | dG(ui, x) < dG(uj , x),∀j 6= i

}
. Observe that for every i ∈ {0, 1, 2, 3} we have

|Vi| ≥ 1, as ui ∈ Vi. Let Zi =
{
x ∈ V | dG(ui, x) = dG(ui−1, x) and dG(ui, x), dG(ui−1, x) <

dG(uj , x),∀j 6= i, i− 1
}
. Observe that in the families of the sets Vi and Zi every pair of sets

is pairwise disjoint.
We now rule out the case in which an agent owns two edges of C. W.l.o.g., assume that

agent u0 owns the two edges (u0, u1) and (u0, u3). Consider the strategy change in which
agent u0 swaps2 the edge (u0, u1) with the edge (u0, u2) and, at the same time, deletes the
edge (u0, u3). The creation cost of agent u0 decreases by α, while her distance cost increases
by |V1| + |V3| − |V2|. Since (G,α) is stable, agent u0 has no incentive in deviating from
her current strategy. Therefore, |V1| + |V3| − |V2| − α ≥ 0, i.e., α ≤ |V1| + |V3| − |V2| ≤
n − |V0| − |V2| − |V2| ≤ n − 3, where the last but one inequality follows from the pairwise
disjointness of all Vi sets, which implies |V0|+ |V1|+ |V2|+ |V3| ≤ n. Since, α > n− 2, no
agent can own two edges of C. Therefore, to prove the claim, we need to show that no agent
can own a single edge of C.

W.l.o.g., assume that for every i ∈ {0, 1, 2, 3} agent ui owns the edge (ui, ui+1). Moreover,
w.l.o.g., assume that |V1|+ |Z2| = min0≤i≤3

{
|Vi|+ |Zi+1|

}
. Since

∑
0≤i≤3

(
|Vi|+ |Zi+1|

)
≤ n,

we have that |V1|+ |Z2| ≤ n
4 .

Consider the strategy change in which agent u0 deletes the edge (u0, u1). The creation
cost of agent u0 decreases by α, while her distance cost increases by 2|V1|+ |Z2| ≤ n

2 .
Since (G,α) is stable, agent u0 has no incentive to deviate from her current strategy.

Therefore, n2 −α ≥ 0, i.e., α ≤ n
2 ≤ n−2, when n ≥ 4. We have obtained a contradiction. J

I Definition 3 (Directed Cycle). Let C be a cycle of (G,α) of length k. We say that C is
directed if there is an ordering u0, . . . , uk−1 of its k vertices such that, for every i = 0, . . . , k−1,
(ui, u(i+1) mod k) is an edge of C which is bought by agent ui.

We now show that if α is large enough, then directed cycles cannot be contained in a stable
network as a biconnected component.

I Lemma 4. For α > n − 2, no stable network (G,α) with n ≥ 6 vertices contains a
biconnected component which is also a directed cycle.

Proof. Let (G,α) be a stable network for a fixed value of α > n− 2. Let H be a biconnected
component of G. For the sake of contradiction, assume that H is a directed cycle of length k.
We can apply Lemma 2 to exclude the case in which k = 4. Similarly, since α > n− 2 ≥ n−1

2
for every n ≥ 3, we can use Lemma 1 to exclude the case in which k = 3.

Let u0, . . . , uk−1 be the k vertices of H and, w.l.o.g., assume that every agent ui is buying
an edge towards agent u(i+1) mod k. To simplify notation, in the rest of this proof we assume
that all indices are modulo k. Let Vi =

{
x ∈ V | dG(ui, x) < dG(uj , x),∀j 6= i

}
. Observe

that Vi is a partition of V . We divide the proof into two cases.
The first case occurs when H is a cycle of length k ≥ 6. W.l.o.g., assume that |V2| =

max0≤i≤k−1 |Vi|. In this case, consider the strategy change of agent u0 when she swaps the

2 A swap of edge (a, b) to edge (a, c) by agent a who owns edge (a, b) consists of deleting edge (a, b) and
buying edge (a, c).

STACS 2018
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H H

H

v

v1

v2

u

u′

v

v1

v2

u

u′

= dG(v, u)

= dG(v, u
′) = dG(v, u)

= dG(v, u
′)

v

v1

v2

u

u′

= dG(v, u)

= dG(v, u
′)

= dG(u, v2)

Figure 1 Illustrations of a critical pair 〈v, u〉. Edge-ownership is depicted by directing edges away
from their owner. Left: Edge (u, u′) belongs to a shortest path tree T rooted at v and u′ is the
parent of u in T . Middle: Edge (u, u′) does not belong to any shortest path tree T rooted at v.
Note that in this case (v, v2) can also be on the shortest path from v to u′. Right: Illustration of a
strong critical pair 〈v, u〉.

edge (u0, u1) with the edge (u0, u2). The distance cost of agent u0 increases by |V1| − |V2| −
|V3| ≤ −1. Thus, agent u0 has an improving strategy, a contradiction.

The second and last case occurs when H is a cycle of length k = 5. If |Vi| 6= |Vj | for some
i, j ∈ {0, 1, 2, 3, 4}, then there exists an i ∈ {0, 1, 2, 3, 4} such that |Vi| < |Vi+1|. W.l.o.g.,
let |V1| < |V2|. The distance cost of agent u0 when she swaps the edge (u0, u1) with the
edge (u0, u2) increases by |V1| − |V2| ≤ −1. Thus agent u0 has an improving strategy, a
contradiction. If |V0| = |V1| = |V2| = |V3| = |V4|, then the increase in the overall cost incurred
by agent u0 when she deletes the edge (u0, u1) would be equal to 3|V1|+ |V2| − α = 4

5n− α.
Since G is stable and n is a multiple of 5, 4

5n−α ≥ 0, i.e., α ≤ 4
5n ≤ n− 2, for every n ≥ 10,

a contradiction. J

2.2 Critical Pairs
The next definition introduces the concept of a (strong) critical pair. As we will see, (strong)
critical pairs are the first key ingredient for our analysis. Essentially, we will show that stable
networks cannot have critical pairs, if α is large enough.

I Definition 5 (Critical Pair). Let (G,α) be a non-tree network and let H be a biconnected
component of G. We say that 〈v, u〉 is a critical pair if all of the following five properties
hold:
1. Agent v ∈ V (H) buys two distinct non-bridge edges, say (v, v1) and (v, v2), with v1, v2 ∈

V (H);
2. Agent u ∈ V (H), with u 6= v buys at least one edge (u, u′) with u′ ∈ V (H) and u′ 6= v;
3. dG(v, u) ≥ 2;
4. there is a shortest path between v and u in G which uses the edge (v, v1);
5. there is a shortest path between v and u′ in G which does not use the edge (u, u′).
The critical pair 〈v, u〉 is strong if there is a shortest path between u and v2 which does not
use the edge (v, v2). See Fig. 1 for an illustration.

In the rest of this section, when we say that two vertices v and u of G form a critical pair, we
will denote by v1, v2, and u′ the vertices corresponding to the critical pair 〈v, u〉 that satisfy
all the conditions given in Definition 5. We can observe the following.
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I Observation 6. If 〈v, u〉 is a critical pair of a network (G,α), then there exists a shortest
path tree T of G rooted at v, where either the edge (u, u′) is not an edge of T or u′ is the
parent of u in T .

I Observation 7. If 〈v, u〉 is a critical pair, then for every shortest path tree T of (G,α) rooted
at u, either the edge (v, v1) is not an edge of T or v1 is the parent of v in T . Furthermore, if
〈v, u〉 is a strong critical pair, then there is a shortest path tree of G rooted at u such that
the edge (v, v2) is not contained in the shortest path tree.

The next technical lemma provides useful bounds on the distance cost of the nodes involved
in a critical pair.

I Lemma 8. Let (G,α) be a stable network and let a, b be two distinct vertices of G such
that a buys an edge (a, a′), with a′ 6= b. If dG(a, b) ≥ 2 and there exists a shortest path tree T
of G rooted at b such that either (a, a′) is not an edge of T or a′ is the parent of a in T , then
distcost(a) ≤ distcost(b) + n− 3. Furthermore, if a is buying also the edge (a, a′′), with
a′′ 6= a′, a′′ 6= b, and (a, a′′) is not an edge of T , then distcost(a) ≤ distcost(b)+n−3−α.

Proof. Consider the strategy change in which agent a swaps the edge (a, a′) with the edge
(a, b) and deletes any other edge she owns and which is not contained in T , if any. Let T ′
be a shortest path tree rooted at b of the graph obtained after the swap. Observe that
dT ′(b, x) ≤ dG(b, x), for every x ∈ V . Furthermore, as dG(a, b) ≥ 2, while dT ′(a, b) = 1, we
have dT ′(a, b) ≤ dG(a, b)− 1. Therefore,

∑
x∈V dT ′(b, x) ≤ distcost(b)− 1. Moreover, the

distance from a to every x 6= a is at most 1 +dT ′(b, x). Finally, the distance from a to herself,
which is clearly 0, is exactly 1 less than the distance from b to a in T ′. Therefore the distance
cost of a in T ′ is less than or equal to distcost(b)− 1 + (n− 1)− 1 = distcost(b) + n− 3.

If besides performing the mentioned swap agent a additionally saves at least α in cost by
deleting at least one additional edge which is not in T , then distcost(a) ≤ distcost(b) +
n− 3− α. This is true since G is stable, which implies that the overall cost of a in G cannot
be larger than the overall cost of a after the strategy change. J

Now we employ Lemma 8 to prove the structural property that stable networks cannot
contain strong critical pairs if α is large enough.

I Lemma 9. For α > 2n− 6, no stable network (G,α) contains a strong critical pair.

Proof. Let (G,α) be a non-tree stable network for a fixed value of α > 2n− 6 and, for the
sake of contradiction, let 〈v, u〉 be a strong critical pair. Using Observation 6 together with
Lemma 8 (where a = u, a′ = u′, and b = v), we have that

distcost(u) ≤ distcost(v) + n− 3.

Furthermore, using Observation 7 together with Lemma 8 (where a = v, a′ = v1, a
′′ = v2,

and b = u), we have that

distcost(v) ≤ distcost(u) + n− 3− α.

By summing up both the left-hand and the right-hand side of the two inequalities we obtain
0 ≤ 2n− 6− α, i.e., α ≤ 2n− 6, a contradiction. J

STACS 2018
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e

Π

P ′

P
length = `

length = `′

length < `′

Figure 2 The cycle C containing edge e and the paths P, P ′ and Π.

2.3 Min Cycles
We now introduce the second key ingredient for our analysis: min cycles.

I Definition 10 (Min Cycle). Let (G,α) be a non-tree network and let C be a cycle in G.
We say that C is a min cycle if, for every two vertices x, x′ ∈ V (C), dC(x, x′) = dG(x, x′).

First, we show that every edge of every biconnected graph is contained in some min cycle.
This was also proven in [35] and [5].

I Lemma 11. Let H be a biconnected graph. Then, for every edge e of H, there is a min
cycle that contains the edge e.

Proof. Since H is biconnected, there exists at least a cycle containing the edge e. Among
all the cycles in H that contain the edge e, let C be a cycle of minimum length. We claim
that C is a min cycle. For the sake of contradiction, assume that C is not a min cycle.
This implies that there are two vertices x, y ∈ V (C) such that dH(x, y) < dC(x, y). Among
all pairs x, y ∈ V (C) of vertices such that dH(x, y) < dC(x, y), let x′, y′ be the one that
minimizes the value dH(x′, y′) (ties are broken arbitrarily). Let Π be a shortest path between
x′ and y′ in G. By the choice of x′ and y′, Π is edge disjoint from C. Let P and P ′ be the
two edge-disjoint paths between x′ and y′ in C and, w.l.o.g., assume that e is contained in P .
Let ` and `′ be the length of P and P ′, respectively. See Fig. 2. Clearly, the length of C is
equal to `+ `′. Since dC(x′, y′) ≤ `′, we obtain dH(x′, y′) < `′. Therefore, the cycle obtained
by concatenating P and Π has a length equal to `+ dH(x′, y′) < `+ `′, and therefore, it is
strictly shorter than C, a contradiction. J

Now we proceed with showing that stable networks contain only min cycles which are directed
and not too short. For this, we employ our knowledge about strong critical pairs.

I Lemma 12. For α > 2n − 6, every min cycle of a non-tree stable network (G,α) with
n ≥ 4 vertices is directed and has a length of at least 5.

Proof. Let (G,α) be a non-tree stable network for a fixed α > 2n− 6 and let C be a min
cycle of G. Since 2n − 6 ≥ n−1

2 for every n ≥ 4, using Lemma 1, we have that C cannot
be a cycle of length equal to 3. Furthermore, Since 2n− 6 ≥ n− 2 for every n ≥ 4, using
Lemma 2, we have that C cannot be either a cycle of length equal to 4. Therefore, C is a
cycle of length greater than or equal to 5.

For the sake of contradiction, assume that C is not directed. This means that C contains
a agent, say v, that is buying both her incident edges in C. We prove the contradiction
thanks to Lemma 9, by showing that C contains a strong critical pair.
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If C is an odd-length cycle, then v has two distinct antipodal vertices u, u′ ∈ V (C) which
are also adjacent in C.3 W.l.o.g., assume that u is buying the edge towards u′. Clearly,
dG(v, u) ≥ 2. Furthermore, since C is a min cycle, it is easy to check that 〈v, u〉 is a strong
critical pair.

If C is an even-length cycle, then let u ∈ V (C) be the (unique) antipodal vertex of v and
let u′ be a vertex that is adjacent to u in C. Observe that dG(v, u), dG(v, u′) ≥ 2. Again
using the fact that C is a min cycle, we have the following:

If u is buying the edge towards u′, then 〈v, u〉 is a strong critical pair.
If u′ is buying the edge towards u, then 〈v, u′〉 is a strong critical pair.

In both cases, we have proved that C contains a strong critical pair. J

Let (G,α) be a non-tree stable network with n ≥ 6 vertices for a fixed α > 2n− 6 and let H
be a biconnected component of G. Since 2n− 6 ≥ n− 2 for every n ≥ 4, Lemma 4 implies
that H cannot be a directed cycle. At the same time, if H is a cycle, then it is also a min
cycle and therefore, Lemma 12 implies that H must be directed, which contradicts Lemma 4.
Therefore, we have proved the following.

I Corollary 13. For α > 2n − 6, no non-tree stable network (G,α) with n ≥ 6 vertices
contains a cycle as one of its biconnected components.

2.4 Combining the Ingredients
Towards our main result, we start with proving that every stable network must contain a
critical pair which satisfies an interesting structural property. This lemma is the third and
last ingredient that is used in our analysis.

I Lemma 14. For α > 2n − 6, every non-tree stable network (G,α) with n ≥ 6 vertices
contains a critical pair 〈v, u〉. Furthermore, there exists a path P between v and v2 in G such
that (a) the length of P is at most 2dG(u, v) and (b) P uses none of the edges (v, v1) and
(v, v2).

Proof. Let (G,α) be a network of n ≥ 6 vertices which is stable for a fixed α > 2n− 6, and
let H be any biconnected component of G. By Corollary 13, we have that H cannot be a
cycle. As a consequence, H contains at least |V (H)|+ 1 edges and, therefore, it has a vertex,
say v, that buys at least two edges of H.

Let v1 and v2 be the two distinct vertices of H such that v buys the edges (v, v1) and
(v, v2). Let Ci be the min cycle that contains the edge (v, vi), whose existence is guaranteed
by Lemma 11. Lemma 12 implies that Ci is a directed cycle of length greater than or equal
to 5. Therefore, since (v, v1) is an edge of C1 bought by agent v, C1 cannot contain the edge
(v, v2), which is also bought by v. Similarly, since (v, v2) is an edge of C2 bought by agent v,
C2 cannot contain the edge (v, v1), which is also bought by v.

Let T be a shortest path tree rooted at v which gives priority to the shortest paths using
the edges (v, v1) or (v, v2). More precisely, for every vertex x, if there is a shortest path
from v to x containing the edge (v, v1), then x is a descendant of v1 in T . Furthermore, if no
shortest path from v to x contains the edge (v, v1), but there is a shortest path from v to x
containing the edge (v, v2), then x is a descendant of v2 in T .

Consider the directed version of Ci in which each edge is directed from their owner
agent towards the other end vertex. Let ui be, among the vertices of Ci which are also

3 In a cycle of length `, two vertices of the cycles are antipodal if their distance is equal to b`/2c.
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descendants of vi in T , the one which is in maximum distance from v w.r.t. the directed
version of Ci. Finally, let (ui, u′i) be the edge of Ci which is bought by agent ui. Clearly,
u′i is not a descendant of vi in T . Therefore, by construction of T , dG(v, u′i) ≤ dG(v, ui),
otherwise u′i would have been a descendant of vi in T , or there would have been a min
cycle containing both edges (v, v1) and (v, v2) (which are both bought by agent v), thus
contradicting Lemma 12.

W.l.o.g., assume that dG(v, u2) ≤ dG(v, u1). Let u = u1 and u′ = u′1. We show that
〈v, u〉 is a critical pair. By Lemma 12, C1 is a cycle of length k ≥ 5. As C1 is a min
cycle, k = dG(v, u) + 1 + dG(v, u′). Moreover, since dG(v, u′) ≤ dG(v, u), we have that
dG(v, u) ≥ k−1

2 ≥ 2. Therefore u′ 6= v. Next, the shortest path in T between v and u uses
the edge (v, v1) which is owned by agent v. Furthermore, the shortest path in T between v
and u′ does not use the edge (u, u′). Therefore, 〈v, u〉 is a critical pair.

Now, consider the path P which is obtained from C2 by removing the edge (v, v2).
Recalling that C2 does not contain the edge (v, v1), it follows that P is a path between
v and v2 which uses none of the two edges (v, v1) and (v, v2). Therefore, recalling that
dG(v, u′2) ≤ dG(v, u2), the overall length of P is less than or equal to

dG(v, u′2) + 1 + dG(v2, u2) ≤ dG(v, u2) + 1 + dG(v, u2)− 1 ≤ 2dG(v, u1) = 2dG(v, u). J

Finally, we prove our main result. For this and in the rest of the paper, given a vertex x of a
network (G,α) and a subset U of vertices of G, we denote by dG(x, U) :=

∑
x′∈U dG(x, x′).

I Theorem 15. For α > 4n− 13, every stable network (G,α) with n ≥ 4 vertices is a tree.

Proof. First of all, it is easy to check that for α > 3 every stable network with n = 4 vertices
is a tree. Moreover, the same holds true for n = 5 for α > 7.

Let α > 4n− 13 be a fixed value and let (G,α) be a stable network with n ≥ 6 vertices.
Since 4n − 13 ≥ 2n − 6, for every n ≥ 4, we have that if (G,α) is not a tree, then, by
Lemma 14, it contains a critical pair 〈v, u〉 satisfying the conditions stated in Lemma 14.
Moreover, Lemma 9 implies that 〈v, u〉 cannot be a strong critical pair. As a consequence,
every shortest path from u to v2 uses the edge (v, v2). Since 〈v, u〉 is a critical pair, this
implies that there is a shortest path from u to v2 which uses both the edges (v1, v) and
(v, v2). To finish our proof, we show that this contradicts the assumed stability of (G,α).
This implies that (G,α) must be a tree.

Let T (u) be a shortest path tree of G rooted at u having v1 as the parent of v and v
as the parent of v2. Observe that, by definition of a critical pair, there is a shortest path
between v and u containing the edge (v, v1). Therefore, T (u) is well defined. Furthermore,
let X be the set of vertices which are descendants of v2 in T (u). Note that since v2 ∈ X, we
have |X| ≥ 1.

Since 〈v, u〉 is a critical pair, thanks to Observation 6, we can use Lemma 8 (where
a = u, a′ = u′, and b = v) to obtain

distcost(u) ≤ distcost(v) + n− 3. (1)

Furthermore, observe that

distcost(u) =
∑
x∈X

(
dG(u, v) + dG(v, x)

)
+ dG(u, V \X) (2)

= dG(u, v)|X|+ dG(v,X) + dG(u, V \X).

Therefore, by substituting distcost(u) in (1) with (2) we obtain the following

dG(u, v)|X|+ dG(v,X) + dG(u, V \X) ≤ distcost(v) + n− 3. (3)
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Let T ′(u) be the tree obtained from T (u) by the the swap of the edge (v, v1) with the edge
(v, u). The distance cost incurred by agent v if she swaps the edge (v, v1) with the edge (v, u)
is at most

dT ′(u)(v, V ) = dT ′(u)(v,X) + dT ′(u)(v, V \X) = dT (u)(v,X) + dT ′(u)(v, V \X)

≤ dT (u)(v,X) +
∑

x∈V \(X∪{v})

(
1 + dT (u)(u, x)

)
≤ dG(v,X) +

∑
x∈V \X

(
1 + dG(u, x)

)
− 2

= dG(v,X) + n− |X|+ dG(u, V \X)− 2.

Since (G,α) is stable, agent v cannot decrease her distance cost by swapping any of the edges
she owns. Therefore, we obtain

distcost(v) ≤ dG(v,X) + n− |X|+ dG(u, V \X)− 2. (4)

By summing both the left-hand and the right-hand sides of the two inequalities (3) to (4)
and simplifying we obtain

dG(u, v)|X| ≤ 2n− 5− |X|. (5)

Consider the network (G′, α) induced by the strategy vector in which agent v deviates from
her current strategy by swapping the edge (v, v1) with the edge (v, u) and, at the same time,
by deleting the edge(v, v2). By Lemma 14, there exists a path P between v and v2 in G,
of length at most 2dG(u, v), such that P uses none of the edges (v, v1) and (v, v2). As a
consequence, using both (1) and (5) in the second to last inequality of the following chain,
the distance cost of v w.r.t. (G′, α) is upper bounded by

dG′(v, V ) ≤
∑
x∈X

(
2dG(u, v) + dG(v2, x)

)
+

∑
x∈V \(X∪{v})

(
1 + dG(u, x)

)
≤ 2dG(u, v)|X|+ dG(v2, X) + n− |X|+ dG(u, V \X)− 2
≤ 2dG(u, v)|X|+ dG(v,X)− |X|+ n− |X|+ dG(u, V \X)− 2
= 2dG(u, v)|X|+ dG(u,X)− dG(u, v)|X|+ n− 2|X|+ dG(u, V \X)− 2
= dG(u, v)|X|+ n− 2|X|+ distcost(u)− 2
≤ 2n− 5− |X|+ n− 2|X|+ distcost(v) + n− 3− 2
= distcost(v) + 4n− 10− 3|X| ≤ distcost(v) + 4n− 13.

By her strategy change, agent v will save α in edge cost and her distance cost will increase
by at most 4n− 13. Thus, if α > 4n− 13, then this yields a strict cost decrease for agent v
which contradicts the stability of (G,α). J

With the results from Fabrikant et al. [24] Theorem 15 yields:

I Corollary 16. For α > 4n− 13 the PoA is at most 5.

In Section 3 we improve the upper bound of 5 on the PoA for stable tree networks from
Fabrikant et al. [24]. With this, we establish the following:

I Corollary 17. For every α > 4n− 13 the PoA is at most 3 + 2n
2n+α .
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3 Improved Price of Anarchy for Stable Tree Networks

In this section we show a better bound on the PoA of stable tree networks. To prove the
bound, we need to introduce some new notation first. Let T be a tree on n vertices and, for
a vertex v of T , let T − v be the forest obtained by removing vertex v together with all its
incident edges from T . We say that v is a centroid of T if every tree in T − v has at most
n/2 vertices. It is well known that every tree has at least one centroid vertex [28].

I Lemma 18. Let (T, α) be a stable tree network rooted at a centroid c of T , and let
u, v ∈ V (T ), with u, v 6= c, be two vertices such that u buys the edge towards v in T . Then
dT (c, u) < dT (c, v), i.e. u is the parent of v in T . Furthermore, if T denotes the subtree of
T rooted at v, then v is a centroid of T .

We now show a useful bound on the number of vertices contained in each of the subtrees of a
stable tree network rooted at a centroid.

I Lemma 19. Let (T, α) be a stable tree network rooted at a centroid c of T , let u be a child
of c in T and let v be a leaf of T contained in the subtree of T rooted at u. Let c1, . . . , ck be
the vertices along the path in T between c0 = u and ck = v, where ci+1 is the child of ci, and,
finally, for every i = 1, . . . , k, let

ni =
∣∣{x ∈ V | dT (ci, x) < dT (cj , x), j 6= i

}∣∣.
We have that

∑i
j=1 nj ≥ n ·

∑i
j=1 1/2j.

We can finally prove our upper bound on the PoA of stable tree networks.

I Theorem 20. For α ≥ 2, the PoA restricted to the class of stable tree networks of n
vertices is upper bounded by 3 + 2n2−8n−4α

2n2+(α−2)n .

Proof sketch. We consider a stable tree network (T, α) rooted at a centroid vertex c. Then
we consider any child c′ of c and focus on a leaf vertex v in the subtree of T rooted at c′.
Agent v could buy an edge to vertex c′, but since (T, α) is stable, this does not yield a cost
decrease for agent v. Using Lemma 19, we then compute a lower bound on the distance cost
decrease if agent v buys the edge (v, c′) and obtain an upper bound on the distance from any
leaf v to the centroid c. This translates to an upper bound on the diameter of T . Now, using
this diameter upper bound, we compute an upper bound on the social cost of (T, α) and
compare it with the social cost of the socially optimal network, which is a n-node star [24],
to derive the claimed bound. J

4 Conclusion

In this paper we have opened a new line of attack on settling the tree conjecture and on
proving a constant price of anarchy for the network creation game for all α. Our technique
is orthogonal to the known approaches using bounds on the average degree of vertices in a
biconnected component. We are confident that our methods can be refined and/or combined
with the average degree technique to obtain even better bounds – ideally proving or disproving
the conjectures.

Another interesting approach is to modify our techniques to cope with the so-called
max-version of the network creation game [22], where agents try to minimize their maximum
distance to all other nodes, instead of minimizing the sum of distances. Also for the
max-version it is still open for which α all stable networks must be trees.
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