
Counting Homomorphisms to Cactus Graphs
Modulo 2

ú

Andreas Göbel, Leslie Ann Goldberg, and David Richerby

Department of Computer Science, University of Oxford, Oxford, UK

Abstract
A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that preserves
edges. Many combinatorial structures that arise in mathematics and computer science can be
represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms.
In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity
of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by
Valiant who famously introduced a problem for which counting modulo 7 is easy but counting
modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure
of homomorphism problems. In this case, the structure of the graph H has a big influence on the
complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution
for the class of cactus graphs, which are connected graphs in which every edge belongs to at most
one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor
networks and the comparison of genomes. We show that, for some cactus graphs H, counting
homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus
graph H, the problem is complete for the complexity class üP which is a wide complexity class to
which every problem in the polynomial hierarchy can be reduced (using randomised reductions).
Determining which H lead to tractable problems can be done in polynomial time. Our result
builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a
tree.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases modular counting, homomorphisms, cactus graph, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.350

1 Introduction

A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that preserves
edges (i.e., maps every edge of G to some edge of H). Many combinatorial structures arising
in mathematics and computer science can be represented naturally as graph homomorphisms.
For example, proper q-colourings of a graph G correspond to homomorphisms from G to
the q-clique, and independent sets of G correspond to homomorphisms from G the 2-vertex
connected graph with one self-loop (the set of vertices of G mapped to the unlooped vertex is
independent). Partition functions in statistical physics such as the Ising, Potts, and hard-core
models arise naturally as weighted sums of homomorphisms. See, e.g., [3, 11].

ú
The research leading to these results has received funding from the European Research Council under

the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no.

334828. The paper reflects only the authors’ views and not the views of the ERC or the European

Commission. The European Union is not liable for any use that may be made of the information

contained therein. Some of the initial research was supported by the EPSRC grant EP/I011528/1. A

full version with proofs appears in [10].

© Andreas Göbel, Leslie Ann Goldberg, and David Richerby;

licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).

Editors: Ernst W. Mayr and Natacha Portier; pp. 350–361

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.350
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Göbel, L .A. Goldberg, and D. Richerby 351

H
1

H
2

H
3

Figure 1 üHomsToH1 and üHomsToH3 are üP-complete, but üHomsToH2 is in FP.

We study the complexity of counting homomorphisms modulo 2. For graphs G and H,
let Hom(G, H) be the set of homomorphisms from G to H. For each fixed H, we study the
computational problem üHomsToH, i.e., computing |Hom(G, H)| mod 2, given input G.

The structure of the graph H has a big influence on the complexity of üHomsToH. For
example, consider the graphs H

1

, H
2

and H
3

depicted in Figure 1. Our result implies that
üHomsToH

1

is complete for the class üP (under polynomial-time Turing reductions). H
2

is constructed by moving the top right “bristle” from H
1

down to the bottom right. Under
the standard assumption that üP ”= FP, moving this bristle makes the problem easier – our
result implies that üHomsToH

2

is solvable in polynomial time. The graph H
3

is constructed
by moving the top bristle from left to right in H

2

. This makes the problem hard again –
üHomsToH

3

is üP-complete.
The goal of this research is to study the complexity of üHomsToH for every fixed

graph H and to determine for which graphs H the problem is in FP, for which it is üP-
complete, and whether there are any H for which the problem has intermediate complexity.
In this paper, we give a complete solution to this problem for the class of cactus graphs.

A cactus graph is a connected graph in which every edge belongs to at most one cycle.
Cactus graphs were first defined by Harary and Uhlenbeck [13] who attributed them to the
physicist Husimi and therefore called them Husimi Trees. Cactus graphs arise, for example,
in the modelling of wireless sensor networks [2] and in the comparison of genomes [18]. Some
NP-hard graph problems can be solved in polynomial time on cactus graphs [1].

1.1 The complexity of modular counting
The complexity of modular counting is an interesting topic with some surprising results
and we only mention a few highlights here. It is important to note that üP (first studied
in [12, 17]) is a very large complexity class. We treat üP from the point of view of function
computation: it is all problems of the form “compute f(x) mod 2” where computing f(x)
is in #P. üP is su�ciently powerful that there is randomised polynomial-time reduction
[19] from every problem in the polynomial hierarchy to some problem in üP. Thus, under
the natural hypothesis that problems in the higher levels of the polynomial hierarchy are
not solvable in (randomised) polynomial time, üP-complete problems are much harder than
problems in FP, which is the class of of function-computation problems that are solvable in
polynomial time.

The complexity of counting modulo 2 is di�erent from the complexity of decision problems
and counting problems. First, consider an NP-complete decision problem. The mod-2

STACS’14

352 Counting Homomorphisms to Cactus Graphs Modulo 2

counting version of this problem can be intractable, as you might expect (for example,
counting vertex covers or independent sets modulo 2 is üP-complete [20]) but it can also be
tractable. As an example, consider counting proper 3-colourings of a graph modulo 2. There
are an even number of 3-colourings that use all three colours, since there are six permutations
of these colours. There are also an even number of 3-colourings that use exactly two colours,
since the colours can be swapped. It is easy to count 1-colourings, so it is easy to count all
proper colourings modulo 2. Next, consider a #P-complete counting problem. The mod-2
counting version of this problem can be intractable or tractable, as the examples given above
illustrate. As another example where the mod-2 counting version is tractable, consider the
problem of computing the permanent of a matrix modulo 2. Since ≠1 © 1 (mod 2), the
permanent is equal modulo 2 to the determinant, so it can readily be computed in polynomial
time.

Another interesting aspect of modular counting is the fact that the value of the modulus
can a�ect the tractability of the problem. As an example, consider the well-known work of
Valiant [20] which identified a certain satisfiability problem where satisfying assignments are
easy to count modulo 7 but di�cult to count modulo 2.

1.2 Dichotomies for graph homomorphism problems
Determining the border between tractability and intractability for large classes of modular
counting problems is an important step towards understanding the structure of the problems
themselves. In this paper we work within the context of graph homomorphism problems
because graph homomorphisms are general enough to capture a wide variety of combinatorial
problems, yet they exhibit su�cient structure that dichotomies exist. Hell and Neöet�il [14]
pioneered this direction by completely classifying undirected graphs according to the di�culty
of the graph homomorphism decision problem. They showed if a fixed graph H has a self-loop,
or is bipartite then the problem of determining whether an input graph has a homomorphism
to H is in P. For every other fixed graph H, the decision problem is NP-complete.

Over recent years, dichotomy theorems have also been established for the problem of
counting graph homomorphisms and computing weighted sums of homomorphisms. Dyer
and Greenhill [7] showed that the problem of counting homomorphisms to H is solvable in
polynomial time if every component of H is an isolated vertex, a complete graph with all
self-loops present, or a complete bipartite graph with no self-loops. For every other H, it
is #P-complete. In particular, there are no graphs H for which the problem has intermediate
complexity. This dichotomy was extended to the problem of computing weighted sums of
homomorphisms to H. A dichotomy was given by Bulatov and Grohe [3] for the case where
the weights are positive, by Goldberg, Grohe, Jerrum and Thurley [11] for the case where
the weights are real, and by Cai, Chen and Lu [4] for complex weights.

1.3 Counting graph homomorphisms modulo 2
The first results on the complexity of counting graph homomorphisms modulo 2 were obtained
by Faben and Jerrum [8, 9], who made some important structural discoveries which we also
use.

An involution of a graph is an automorphism of order 2. If ‡ is an automorphism of a
graph H then H‡ denotes the subgraph of H induced by the fixed points of ‡.

I Lemma 1. ([9, Lemma 3.3]) If H is a graph and ‡ is an involution of H then, for any
graph G, |Hom(G, H)| © |Hom(G, H‡)| (mod 2).

A. Göbel, L .A. Goldberg, and D. Richerby 353

The lemma is useful because it enables us to reduce the problem of counting homomorph-
isms to H modulo 2 to the problem of counting homomorphisms to H‡ modulo 2. This
leads naturally to the idea of reduction by involutions. Let æ be the relation on graphs
where H æ H Õ if and only if there is an involution ‡ of H such that H Õ = H‡. Let æú

be the transitive closure of æ. Faben and Jerrum showed that repeatedly applying æ to a
graph H reduces H to a unique involution-free graph, up to isomorphism. Also, to classify
the complexity of counting homomorphisms to H, it su�ces to study the complexity of
counting homomorphisms to its connected components.

I Lemma 2. ([9, Theorem 6.1]) Let H be an involution-free graph. If H has a connected
component H

1

such that üHomsToH
1

is üP-hard with respect to polynomial-time Turing
reductions, then üHomsToH is also üP-hard.

It is easy to see that, if üHomsToHj is solvable in polynomial time for every connected
component Hj of H, then üHomsToH is also solvable in polynomial time. Faben and
Jerrum used the structural results to give a dichotomy for the complexity of üHomsToH
when H is a tree. Define the “involution-free reduction” H Õ of a graph H to be the
lexicographically-minimal involution-free graph such that H æú H Õ. We can state their result
as follows.

I Theorem 3. ([9, Theorem 3.8]) If H is a tree then üHomsToH is üP-complete if the
involution-free reduction of H has more than one vertex. Otherwise, it is in FP.

Every involution-free tree is asymmetric (has no non-trivial automorphisms). Thus, the
technical work of proving Theorem 3 is to show that üHomsToH is üP-hard for every
asymmetric tree H with more than one vertex. Fortunately, this can be done without too
much technical complexity. Developing a dichotomy to cover all graphs seems to be much
harder and even the dichotomy for cactus graphs requires a substantial technical e�ort, as
we will see. Nevertheless, there is a general conjecture as to what the outcome would be.

I Conjecture 4 (Faben and Jerrum). Let H be a (not necessarily simple) graph. üHomsToH
is in FP if the involution-free reduction of H is empty, a single vertex (with or without a
self-loop) or a graph with two isolated vertices, exactly one having a self-loop. Otherwise, it
is üP-complete.

1.4 Our result
Recall that a cactus graph is a connected, simple graph in which every edge belongs to at
most one cycle. Our main result gives a proof of Faben and Jerrum’s conjecture for cactus
graphs.

I Theorem 5. Let H be a simple graph with every edge in at most one cycle. If the involution-
free reduction of H has at most one vertex, then üHomsToH is solvable in polynomial time.
Otherwise, üHomsToH is complete for üP under polynomial-time Turing reductions.

To prove this, we must investigate all involution-free cactus graphs, not just the asymmetric
ones. This is because, unlike the situation for trees, there are involution-free cactus graphs,
such as H

4

in Figure 2, that have non-trivial automorphisms. This graph has no involutions
but has an automorphism of order 3 which rotates the cycle. Incidentally, it is easy to see
that the graph H

5

in the figure has an involution that moves all vertices, so üHomsToH
5

is
in FP. Our result implies that üHomsToH

4

is üP-complete.

STACS’14

354 Counting Homomorphisms to Cactus Graphs Modulo 2

H
4

H
5

Figure 2 üHomsToH4 is üP-complete but üHomsToH5 is in FP.

To prove the hardness result in Theorem 5, we introduce three graph-theoretic notions:
hardness gadgets, partial hardness gadgets, and mosaics. Hardness gadgets and partial
hardness gadgets are, as the name suggests, structures for proving üP-hardness. Mosaics
are graphs built on unions of 4-cycles. They are what is left in inductive cases where
hardness gadgets don’t exist and we use them in our inductive proof. Our approach is
therefore recursive: we decompose involution-free cactus graphs at cut vertices so that every
component contains at least one of these three induced structures. We then combine these
structures to obtain hardness gadgets in the original graph. If an asymmetric graph H contains
a hardness gadget, then it is relatively easy to show that üHomsToH is üP-complete — the
proof is by reduction from the problem of counting independent sets modulo 2, generalising
the argument for trees. We will discuss the situation in which H is not asymmetric presently.

Even when H is asymmetric, the most di�cult part of the argument is showing that every
non-trivial involution-free cactus graph does actually contain a hardness gadget. The presence
of cycles greatly complicates this argument, hence the need to define hardness gadgets, partial
hardness gadgets and mosaics and to decompose cactus graphs into components with these
three di�erent structures, which can then be combined to form hardness gadgets.

When the graph has non-trivial automorphisms, there is a further complication. Suppose
that G and H are graphs and that p is a function from V (G) to 2V (H). A homomorphism f
from G to H is said to satisfy the “pinning” function p if, for every v œ V (G), we have
f(v) œ p(v). Now suppose that H is an involution-free graph containing a hardness-gadget.
The high-level strategy for proving that üHomsToH is üP-hard is to first reduce the problem
of counting independent sets modulo 2 to the problem of counting pinned homomorphisms
from G to H (modulo 2) and then to reduce the latter problem to üHomsToH. This pinning
approach has been used successfully in dichotomy theorems in related domains [3, 5, 6].
When H is asymmetric, the application of pinning works smoothly. Building on work of
Lovász [15], Faben and Jerrum reduced the pinned problem to the unpinned one for the case
in which the pinning function pins some vertex to an orbit in the automorphism group of H.
When H is asymmetric (as it is, when H is a tree), the orbit is just a single vertex, and
this is just what is required. If H is not asymmetric, we do not know how to pin a vertex
of G to a particular vertex in H. To get around this, we augment G with a copy of H and
we pin every vertex in the copy to its own orbit in the automorphism group of H. Every
homomorphism from an involution-free cactus graph to itself that respects the orbits of all
of its vertices is, in fact, an automorphism of H, and this enables us to solve the problem.

Theorem 5 gives a dichotomy for cactus graphs. If the involution-free reduction of H has
at most one vertex then üHomsToH is in FP. Otherwise, it is üP-complete. Furthermore,
the meta-problem of determining which is the case, given input H, is computationally
easy. Finding an involution of H reduces in polynomial time to computing the size of H’s
automorphism group modulo 2. The latter problem is in FP for cactus graphs because, for
example, they are planar.

A. Göbel, L .A. Goldberg, and D. Richerby 355

1.5 Notation
Given two graphs G and H (not necessarily vertex-disjoint), G fi H is the graph (V (G) fi
V (H), E(G) fi E(H)). If E is a set of edges, let V (E) denote the set of endpoints of
edges in E and let G fi E denote the graph G fi (V (E), E). Given a set V Õ ™ V (G), let
G ≠ V Õ = G[V (G) \ V Õ]. We use the phrase “j-walk” in a graph to refer to a walk of length j.

We use �H(v) to denote the set of neighbours of vertex v in H. A rooted graph is a
pair (H, x) where H is a graph and x œ V (H) is a distinguished vertex, the root. An
automorphism of (H, x) is an automorphism of H that fixes x.

We use Aut(H) to denote the automorphism group of H and, for v œ V (H), we use
OrbH(v) to denote the set of vertices of H in the orbit of v under the action of Aut(H).

2 Pinning, gadgets and mosaics

In this section, we discuss pinning and define the gadgets we use to prove üP-hardness of
üHomsToH problems by reduction from üIS, counting independent sets modulo 2.

Recall from the introduction that a homomorphism f : V (G) æ V (H) satisfies a pinning
function p : V (G) æ 2V (H) if f(v) œ p(v) for all v œ V (G). Let HomPin(G, H, p) be the set
of homomorphisms from G to H that satisfy the pinning function p. Say that a pinning p is
r-restrictive if at most r vertices v œ V (G) have p(v) ”= V (H) and for each such vertex v, p(v)
is a union of orbits of the automorphism group of H. We consider the following computational
problem, which is parameterised by a graph H and a natural number r.
Name: ür-PinnedHomsToH.
Input: A graph G and a r-restrictive pinning function p : V (G) æ 2V (H).
Output: |HomPin(G, H, p)| (mod 2).

Extending the work of Faben and Jerrum who, in turn, built on results of Lovász [15], we
prove the following theorem.

I Theorem 6. Let H be an involution-free graph and let r be a positive integer. There is a
polynomial-time Turing reduction from ür-PinnedHomsToH to üHomsToH.

We next introduce machinery that we will use to prove that ür-PinnedHomsToH is
üP-complete when H is an involution-free cactus graph and r is defined appropriately.

I Definition 7. A hardness gadget in a graph H is a tuple (—, s, t, O, i, K, k, w) where —
is a positive integer, s, t and i are vertices of H, (O, {i}, K) is a partition of �H(s), and
k : K æ N>0

and w : K æ V (H) are functions. The following conditions must be satisfied.
1. |O| is odd.
2. For any o œ O and y œ O fi {i}, s is the unique vertex that is adjacent to o and y and

has an odd number of —-walks to t.
3. There are an even number of (1 + —)-walks from i to t.
4. For all u œ K, w(u) has an even number of k(u)-walks to u and an odd number of

k(u)-walks to every vertex in O fi {i}.

These conditions simplify if — = 1, since having an odd number of 1-walks to a vertex is
the same as being adjacent to it.

The construction used in our reduction from üIS is given formally in Definition 12.
Given a graph G and a hardness gadget �, we will produce a graph G

�

that includes a
copy of V (G). We call the vertices in this copy, “G-vertices”. We will use pinning to
consider homomorphisms from G

�

to H that map all G-vertices to neighbours of s. Part 4 of
Definition 7 ensures that there will be an even number of such homomorphisms that map any

STACS’14

356 Counting Homomorphisms to Cactus Graphs Modulo 2

G-vertices to members of K. These contribute nothing to the total modulo 2 so the e�ect is
to restrict to homomorphisms that map every G-vertex to O fi {i}. Part 3 of the definition
will ensure that the number of homomorphisms that map adjacent vertices in G to i is even,
so these also do not contribute. Thus, the homomorphisms that remain are those in which
an independent set of G-vertices are mapped to i. Our key technical result is that every
non-trivial, involution-free cactus graph contains a hardness gadget (Theorem 10).

In some cases, our decomposition might yield subgraphs that do not contain hardness
gadgets. We are still able to make progress using structures that can be combined with other
parts of the graph to produce a hardness gadget. A partial hardness gadget is, essentially, a
simplified hardness gadget that has K = ÿ and that doesn’t yet have a “t” vertex: at a later
point, we will find a vertex t with the properties necessary to produce a full hardness gadget.

I Definition 8. A partial hardness gadget in a rooted graph (H, x) is a tuple (s, i, O, P),
where s is a vertex of H, ({i}, O) is a partition of �H(s), and P is a path in H. The tuple
satisfies the following conditions.
1. |O| is odd.
2. P is the unique shortest path from x to i in H.
3. Ps is the unique shortest path from x to s in H.
4. For each o œ O, Pso is the unique shortest path from x to o in H.

The final structures arising in our decompositions are “mosaics”. Some of these (those
with “shortcuts”, defined below) already contain hardness gadgets. In other cases, a mosaic
will provide a “t” vertex for a partial hardness gadget elsewhere in the decomposed graph.

I Definition 9. An unbristled mosaic is the one-vertex rooted graph or a rooted cactus graph
that is a union of 4-cycles. A mosaic is a rooted graph (H, x) for which there is a partition
(V Õ, V ÕÕ) of V (H) such that: x œ V Õ, (H[V Õ], x) is an unbristled mosaic, and E(H) \ E(H[V Õ])
is a matching between V ÕÕ and a subset of V Õ. The edges of the matching are called bristles.

The graphs in Figure 1 would be mosaics if a root were placed at any vertex on a cycle.
Note that every vertex of a mosaic is adjacent to at most one bristle, and that the one-vertex
rooted graph and a rooted edge are both mosaics.

A shortcut in a mosaic (H, x) is a pair of odd-degree vertices, with degree at least 3, that
have a unique shortest path P between them, and this path does not contain x. In the full
paper, we show that every mosaic with a shortcut contains a hardness gadget.

3 Finding hardness gadgets

In Sections 6 and 7 of the full paper, we prove the following result.

I Theorem 10. Every involution-free cactus graph H with more than one vertex contains a
hardness gadget.

Given a cut vertex v of a graph H, let H Õ
1

, . . . , H Õ
Ÿ be the connected components of H ≠{v}.

Let the split of H at v be the set of graphs {H
1

, . . . , HŸ}, where Hj = H[V (H Õ
j) fi {v}].

To prove Theorem 10, we mostly proceed by splitting at cut vertices and investigating the
resulting components. A key point is that, if {H

1

, . . . , HŸ} is the split of an involution-free
graph H at a cut vertex v then each rooted graph (Hj , v) is involution-free, even though the
unrooted graph Hj might not be. This allows us to perform an induction on rooted graphs
to establish the following lemma. Theorem 10 then follows by choosing an appropriate root
and constructing a hardness gadget from the contents of the split at the root.

A. Göbel, L .A. Goldberg, and D. Richerby 357

x

tÕ
6

t
6

i
8

s
8

o
8

t
8

oÕ
8

oÕÕ
8

u

z

i
7

o
7

s
7

H
6

H
6

H
8

H
8

H
7

H
7

Figure 3 An example graph illustrating the proof ideas of Theorem 10 and Lemma 11.

I Lemma 11. Every involution-free rooted cactus graph (H, x) contains a hardness gadget,
contains a partial hardness gadget or is a shortcut-free mosaic.

Rather than attempting to sketch the lengthy and technical proof of Lemma 11, we will
work through an example that illustrates the main techniques. Consider the cactus graph of
Figure 3. It is involution-free (in fact, asymmetric) and its split at the vertex x gives the
three involution-free rooted graphs (H

6

, x), (H
7

, x) and (H
8

, x).
We see immediately that (H

6

, x) is a mosaic, and it is shortcut-free, since it has only
one odd-degree vertex on a cycle (the degree of x in H

6

is two). Note also that (H
6

, x) is
asymmetric but the unrooted graph H

6

has an involution that exchanges x with the vertex
at distance 2 from it on the same 4-cycle.

Consider, now, (H
7

, x). This graph contains the partial hardness gadget (s
7

, i
7

, {o
7

}, xzi
7

):
({i

7

}, {o
7

}) partitions �H7(s
7

), |{o
7

}| is odd, xzi
7

is the unique shortest x–i
7

path, xzi
7

s
7

is
the unique shortest x–s

7

path and xzi
7

s
7

o
7

is the unique shortest x–o
7

path.
Now, we turn our attention to (H

8

, x), in which we will demonstrate a hardness gadget.
In the first instance, consider the graph without the dashed path, the easier case. As the
notation suggests, we take s = s

8

and i = i
8

. A helpful feature for us here is the even-length
cycle that includes these two vertices: by choosing t to be the vertex t

8

, half way around
the cycle from i, and taking — = 2 (so the length of the cycle is 2(— + 1)), we ensure that
requirement 3 of the definition of hardness gadgets is met (an even number of (— + 1)-walks
from i to t). We take O = {o

8

, oÕ
8

, oÕÕ
8

}, which has odd cardinality so satisfies requirement 1.
Requirement 2 is that, for each o œ O and y œ O fi {i}, s is the unique vertex adjacent to
o and y that has an odd number of —-walks to t. — = 2 and s and x are the only vertices
that send an odd number of 2-walks to t. Since x is not adjacent to any vertex in O, s meets
the requirement. Finally, since (O, {i}) is already a partition of �H8(s), we set K = ÿ and
requirement 4 is vacuous. Therefore, writing ‹ for the function with empty domain,

� = (—, s, t, O, i, K, k, w) = (2, s
8

, t
8

, {o
8

, oÕ
8

, oÕÕ
8

}, i
8

, ÿ, ‹, ‹)

is a hardness gadget in H
8

.
To demonstrate a hardness gadget with non-empty K, consider the rooted cactus graph

(H Õ
8

, x) formed by adding the dashed edges to H
8

. We take s, t, O, i and — as before but,
now, (O, {i}) is not a partition of �HÕ

8
(s). Thus, we set K = {u}, k(u) = 2 and w(u) = u.

u has two 2-walks to itself and one to i and each vertex in O, so requirement 4 is met.
Let us recap: we have split the graph H at cut vertex x and demonstrated that each of

the three components of this split contains a hardness gadget or a partial hardness gadget,

STACS’14

358 Counting Homomorphisms to Cactus Graphs Modulo 2

or is a shortcut-free mosaic. We now illustrate Theorem 10 by showing how to combine these
to produce a hardness gadget in H.

In fact, this is rather easy because the hardness gadget � in H
8

is also a hardness gadget
in H. This is because the requirements for being a hardness gadget depend on the number
of 3-walks from i

8

, o
8

, oÕ
8

and oÕÕ
8

to t
8

and the number of 2-walks from u to vertices adjacent
to s

8

; however, none of these walks can ever leave H
8

. In the full version of the paper, we
give formal distance requirements that allow us to determine more generally when a hardness
gadget in an induced subgraph of H is also a hardness gadget in H.

Our goal is to illustrate the proof techniques, so we will continue and find a second
hardness gadget in H by combining the mosaic (H

6

, x) with the partial hardness gad-
get (s

7

, i
7

, {o
7

}, xzi
7

) in (H
7

, x). As we remarked earlier, if we can find appropriate values
for t and —, the partial hardness gadget will become a hardness gadget with K = ÿ. The
properties we require of t and — are the following:

there are an even number of (1 + —)-walks from i
7

to t;
s

7

is the unique vertex adjacent to o
7

that has an odd number of —-walks to t; and
s

7

is the unique vertex adjacent to both o
7

and i
7

that has an odd number of —-walks
to t.

Since s
7

is the only vertex adjacent to both o
7

and i
7

, the third property follows from the
second. To make the second property easy to verify, we will choose t to have a unique shortest
path in H to o

7

, and this path will go through s and have length 1 + —.
Consider the vertices t

6

and tÕ
6

, which are not adjacent but are on the same cycle, and
which have degree 2 and 3, respectively. Further, each has a unique shortest path to x and
these two paths di�er only in their last edge. It is not hard to see that every involution-free
mosaic with at least one cycle must contain a pair of vertices with these properties and, in
the full paper, we call such a pair of vertices, along with the shared section of their shortest
paths to x, a 2,3-path.

We are going to take — = 6 (the distance from s
7

to {t
6

, tÕ
6

}) and we claim that we can
choose one of t = t

6

or t = tÕ
6

to satisfy the first two properties. In fact, either choice satisfies
the second property, since either choice for t gives a unique 7-walk to o

7

.
To verify the claim, we will show that t

6

and tÕ
6

have di�erent numbers of 7-walks to i
7

,
modulo 2. Therefore, one of them has an even number of 7-walks, and that will be our choice
for t. There is a unique 5-path from i

7

to each of t
6

and tÕ
6

: write this path as x
1

x
2

. . . x
6

,
where i

7

= x
1

. Every 7-walk from x
1

to x
6

is of one of the following two types:
1. walks that replace one of the edges (x

3

, x
4

), (x
4

, x
5

) or (x
5

, x
6

) by going along the other
three edges of the 4-cycle that contains it; and

2. walks that replace one of the vertices xa (1 Æ a Æ 6) with the 2-walk xayxa, for some
y œ �H(xa).

There are exactly three type-1 walks from i
7

to each of t
6

and tÕ
6

. The number of type-2
walks from i

7

to tÕ
6

is exactly one greater than the number to t
6

. For 1 Æ a Æ 5, there are
the same number of choices for y in each case; however, for a = 6, there are three choices
of y from tÕ

6

but only two from t
6

. Therefore, the number of 7-walks from i
7

to exactly one
of t

6

and tÕ
6

is even, and we choose that vertex to be t. The reader is invited to check that
there are, in total, twenty 7-walks to tÕ

6

and nineteen to t
6

. Thus, the hardness gadget is

(—, s, t, O, i, K, k, w) = (6, s
7

, tÕ
6

, {o
7

}, i
7

, ÿ, ‹, ‹) .

A. Göbel, L .A. Goldberg, and D. Richerby 359

t ve

x

y

s w(u1) . . . w(uj)

Px,u1

Px,uj

Py,u1

Py,uj

Pt,e

Figure 4 The induced subgraph of G� corresponding to the edge (x, y) œ E(G), with K =

{u1, . . . , uj}. H-vertices have double circles and are pinned in the proof of Theorem 13.

4 Counting homomorphisms to cactus graphs

Having shown that every involution-free cactus graph with more than one vertex contains a
hardness gadget, we now use these gadgets to show üP-completeness of üHomsToH for
non-trivial involution-free cactus graphs H. The reduction is from üIS, which is üP-complete
[20]. The reduction is more complicated than the case for trees because an involution-free
cactus graph is not necessarily asymmetric — recall the graph H

4

in Figure 2.
In the following definition, “adding a new path P from x to y” in a graph G means

forming a graph G fi P where V (G) fl V (P) = {x, y}.

I Definition 12. Let � = (—, s, t, O, i, K, k, w) be a hardness gadget in H. For any graph G,
we construct the graph G

�

as follows. Begin with the graph GÕ = (V Õ, E(H)) where
V Õ = V (G) fi V (H) fi {ve | e œ E(G)} (these three sets are assumed to be disjoint) and add:

for every vertex x œ V (G), the edge (x, s);
for every edge e = (x, y) œ E(G), the edges (x, ve) and (y, ve);
for every edge e œ E(G), a new —-path Pt,e from t to ve; and
for every vertex x œ V (G) and every u œ K, a new k(u)-path Px,u from x to w(u).

In G
�

, we refer to vertices that are in V (G) as G-vertices and those in V (H) as H-vertices.
Figure 4 illustrates the construction.

Our construction, G
�

, is more complex than the construction used for trees, because our
hardness gadgets are more general than the corresponding structures in trees and because we
must deal with graphs H that are involution-free but still have non-trivial automorphisms.
To see the problem of non-trivial automorphisms, consider an involution-free cactus graph H
that contains a hardness gadget � that is moved by an automorphism fi of H. We want to
pin one vertex to the s-vertex of � and another to the t-vertex. However, we can only pin
to the orbits of these vertices, which include fi(s) and fi(t), respectively. We must avoid
counting “inconsistent” homomorphisms that, for example, map the first vertex to s and the
second to fi(t) because we do not know how many of these homomorphisms exist.

I Theorem 13. üHomsToH is üP-complete for every involution-free cactus graph H that
contains a hardness gadget.

Proof (sketch). Using Theorem 6, it su�ces to reduce üIS to ür-PinnedHomsToH where
r = |V (H)|. Let G be the graph whose independent sets we wish to count and let � =
(—, s, t, O, i, K, k, w) be a hardness gadget in H. Let p be the pinning function that maps
every H-vertex v to OrbH(v) and every other vertex of G

�

to V (H) and let � be the set of

STACS’14

360 Counting Homomorphisms to Cactus Graphs Modulo 2

homomorphisms from G
�

to H that satisfy p. Let I(G) be the set of independent sets in G.
We claim that |�| © |I(G)| (mod 2).

It can be shown that any „ œ � acts as an automorphism on the H-vertices. Let
�fi ™ � be set of homomorphisms where this automorphism is fi. Writing id for the trivial
automorphism, every „ œ �

id

has „(s) = s and, for all G-vertices v, „(v) œ O fi {i} fi K.
For each G-vertex v, |{„ œ �

id

| „(v) œ K}| is even because, when „(v) œ K, Pv,w(„(v))

can
map to an even number of k(„(v))-walks in H. So, to compute |�

id

| modulo 2, it su�ces
to count the homomorphisms „ œ �

id

where „(v) œ O fi {i} for all G-vertices v. For such a
homomorphism, let S„ be the set of G-vertices mapped to i. If S œ I(G), each G-vertex not
in S can map to any of the odd number of elements of O and, for each edge e, we must have
„(ve) = s and Pt,e can map to an odd number of —-walks in H. If S /œ I(G), there are an even
number of homomorphisms „ with S„ = S because, if adjacent G-vertices x and y map to i,
there are an even number of ways to map the paths Pt,(x,y)

x and Pt,(x,y)

y to (1 + —)-walks
in H. Thus, |�

id

| © |I(G)| (mod 2). For any automorphism fi of H, |�fi| = |�
id

|, so
|�| = |�

id

| | Aut H|. H is involution-free so, by Cauchy’s Group Theorem [16], | Aut(H)| is
odd, so |�| © |�

id

| © |I(G)| (mod 2). J

We can now prove our main result.

I Theorem 5. Let H be a simple graph with every edge in at most one cycle. If the involution-
free reduction of H has at most one vertex, then üHomsToH is solvable in polynomial time.
Otherwise, üHomsToH is complete for üP under polynomial-time Turing reductions.

Proof. Let H Õ be the involution-free reduction of H. If H Õ has at most one vertex then
üHomsToH Õ is trivially solvable in polynomial time. By Lemma 1, every graph G satisfies
| Hom(G, H)| © | Hom(G, H Õ)| (mod 2) so üHomsToH is also solvable in polynomial time.

If H Õ has more than one vertex, then some component H
1

of H Õ has more than one
vertex (since H Õ is involution-free). Also, H

1

is involution-free. Since H
1

is an induced
subgraph of H, it is a cactus graph. By Theorems 10 and 13, üHomsToH

1

is üP-hard. By
Lemma 2, üHomsToH Õ is üP-hard. But Lemma 1 gives a reduction from üHomsToH Õ to
üHomsToH, so üHomsToH is also üP-hard. J

References
1 B. Ben-Moshe, B. K. Bhattacharya, Q. Shi, and A. Tamir. E�cient algorithms for center

problems in cactus networks. Theor. Comput. Sci., 378(3):237–252, 2007.
2 B. Ben-Moshe, A. Dvir, M. Segal, and A. Tamir. Centdian computation in cactus graphs.

J. Graph Algorithms Appl., 16(2):199–224, 2012.
3 A. A. Bulatov and M. Grohe. The complexity of partition functions. Theor. Comput. Sci.,

348(2–3):148–186, 2005.
4 J.-Y. Cai, X. Chen, and P. Lu. Graph homomorphisms with complex values: A dichotomy

theorem. In Proc. ICALP (1), pages 275–286, 2010.
5 N. Creignou and M. Hermann. Complexity of generalized satisfiability counting problems.

Inform. Comput., 125(1):1–12, 1996.
6 M. E. Dyer, L. A. Goldberg, and M. Jerrum. The complexity of weighted Boolean #CSP.

SIAM J. Comput., 38(5):1970–1986, 2009.
7 M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomorphisms. Ran-

dom Struct. Algorithms, 17(3–4):260–289, 2000.
8 J. Faben. The Complexity of Modular Counting in Constraint Satisfaction Problems. PhD

thesis, Queen Mary, University of London, 2012.

A. Göbel, L .A. Goldberg, and D. Richerby 361

9 J. Faben and M. Jerrum. The complexity of parity graph homomorphism: an initial
investigation. CoRR, abs/1309.4033, 2013.

10 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. The complexity of counting
homomorphisms to cactus graphs modulo 2. CoRR, abs/1307.0556, 2013.

11 L. A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy for
partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402, 2010.

12 L. M. Goldschlager and I. Parberry. On the construction of parallel computers from various
bases of Boolean functions. Theor. Comput. Sci., 43:43–58, 1986.

13 F. Harary and G. E. Uhlenbeck. On the number of Husimi trees. I. Proc. Nat. Acad. Sci.
U. S. A., 39:315–322, 1953.

14 P. Hell and J. Neöet�il. On the complexity of H-coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990.

15 L. Lovász. Operations with structures. Acta Math. Acad. Sci. Hungar., 18:321–328, 1967.
16 J. H. McKay. Another proof of Cauchy’s group theorem. The American Mathematical

Monthly, 66:119, 1959.
17 Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of counting.

In Proceedings of the 6th GI-Conference on Theoretical Computer Science, pages 269–276,
London, UK, UK, 1982. Springer-Verlag.

18 B. Paten, M. Diekhans, D. Earl, J. St. John, J. Ma, B. B. Suh, and D. Haussler. Cactus
graphs for genome comparisons. J. Comput. Biol., 18(3):469–481, 2011.

19 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,
1991.

20 L. G. Valiant. Accidental algorithms. In Proc. FOCS, pages 509–517, 2006.

STACS’14

	Introduction
	The complexity of modular counting
	Dichotomies for graph homomorphism problems
	Counting graph homomorphisms modulo 2
	Our result
	Notation

	Pinning, gadgets and mosaics
	Finding hardness gadgets
	Counting homomorphisms to cactus graphs

