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ABSTRACT

We consider and analyze a new algorithm for balancing in-
divisible loads on a distributed network with n processors.
The aim is minimizing the discrepancy between the maxi-
mum and minimum load. In every time-step paired proces-
sors balance their load as evenly as possible. The direction of
the excess token is chosen according to a randomized round-
ing of the participating loads.

We prove that in comparison to the corresponding model
of Rabani, Sinclair, and Wanka (1998) with arbitrary round-
ings, the randomization yields an improvement of roughly a
square root of the achieved discrepancy in the same num-
ber of time-steps on all graphs. For the important case of
expanders we can even achieve a constant discrepancy in
O(log n (log log n)3) rounds. This is optimal up to log log n-
factors while the best previous algorithms in this setting
either require Ω(log2 n) time or can only achieve a logarith-
mic discrepancy. This result also demonstrates that with
randomized rounding the difference between discrete and
continuous load balancing vanishes almost completely.

Categories and Subject Descriptors: F.2 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity

General Terms: Algorithms, Theory

1. INTRODUCTION

Consider an application running on a parallel or distributed
network consisting of n processors connected in an arbitrary
topology. Each processor has initially a collection of jobs
(which we call tokens). The goal of load-balancing is to
reallocate the tokens by transmitting them along edges so
that each processor has nearly the same amount of load.
The problem has manifold applications in job scheduling,
routing, adaptive mesh partitioning, finite element compu-
tations, and in simulations of physical phenomena.
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There are various models for load balancing. A common
simplifying assumption is that the tokens are divisible. This
idealized process is very well understood [18]. However, the
divisibility assumption is invalid for many applications [21].
It has been shown that the deviation can be quite signifi-
cant [11, 21] and the question of a precise quantitative rela-
tionship between the discrete and the idealized process has
been posed by several authors [10, 11, 15, 18, 21].

Existing models also differ in the assumptions regarding
communication in the underlying network. Some models re-
strict the number of tokens send across a link at a time [1, 10,
16]. On the other hand, the diffusion model allows load to
be moved from each processor to all its neighbors in parallel
in each time step [8, 18, 21]. As pointed out by Ghosh and
Muthukrishnan [11], it is more efficient to send a stream of
many tokens to one neighbor than to send one token to each
neighbor. This motivates us to study the balancing circuit
model [3] where each vertex transfers an arbitrary number
of tokens to exactly one neighbor in each round [5, 11, 19].

The load-balancing process of a balancing circuit is gov-
erned by a sequence of (not necessarily perfect) matchings
together with an orientation of each edge1. In each round,
two paired vertices balance their loads as evenly as possible.
If this is not possible, the excess token is send in the direc-
tion of the edge. For an arbitrary graph it is not clear how
to choose a good sequence of matchings that balance the
load quickly. This is different for highly structured graphs.
There is for example a canonical choice of matchings for the
hypercube that uses in round i all edges across dimension
(i mod log n) [2]. In general such matching sequences with
a fixed period d are called periodic balancing circuits (note
that typically d is of order the maximum degree of G).

Let x(0) ∈ R
n be the initial load vector of the network.

The aim of load-balancing algorithms is to reduce the ini-

tial discrepancy K = maxij |x(0)
i − x

(0)
j | within a certain

number of steps. For this, Rabani, Sinclair and Wanka [19]
introduced the so-called local divergence that provides an
upper bound on the deviation between the idealized and the
discrete model over all time steps. They [19, Corollary 5]
showed in the periodic balancing circuits model that within
O(d log(Kn)/(1−λ2)) steps the discrepancy can be reduced
to O(d log n/(1 − λ2)), where (1− λ2) is the eigenvalue gap
of the balancing matrix.

1Note that the same edge may have different orientation over
time. The precise model is described in Section 2.
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Graph class Rounds Discrepancy Orientation Reference

General Graph

(Balancing Circuit)

t Ω(max{diam(G), log n/(log t)}) arb. Proposition 2.3

O(log(Kn)/(1 − λ2)) O(d log n/(1 − λ2)) arb. [19, Corollary 5]

O(log(Kn)/(1 − λ2)) O(
√

d log n/(1 − λ2) ) rand. Corollary 4.5

O(log(Kn)/(1 − λ2)) O(d log log n/(1 − λ2)) rand. Corollary 4.7

Constant-Degree Expander

(Balancing Circuit)

O(log(Kn)) O(log n) arb. [19, Corollary 5]

O(log(Kn)) O(log log n) rand. Proposition 4.8

O(log(Kn)(log log n)3) O(1) rand. Corollary 5.22

d-dim. Torus

(Balancing Circuit)

O(log(Kn) n2/d) O(d n1/d) arb. [19, Theorem 8]

O(log(Kn) n2/d) O(
√

d n1/d log n ) rand. Corollary 4.9

O(n2/d log(Kn) + dn1+1/d) 1 std. [19, Corollary 10]

General Graph O(log(Kn)/(1 − λ2)) O(log(n)/(1 − λ2)) arb. [19]2

(Random matching) O(log(Kn)/(1 − λ2)) O(
√

log(n)/(1 − λ2) log n) rand. Corollary 5.4

Expander

(Random matching)

O(log(Kn)) O(log(n)) arb. [19]2

O(log(Kn)(log log n)3) O(1) rand. Theorem 5.21

Table 1. Summary and comparison of our new upper and lower bounds on the discrepancy for different graphs. Arb., stand., and rand. refer
to an arbitrary, standard and randomized orientation of all edges, respectively. K is the initial discrepancy of the load vector. In the balancing

circuit model, λ2 is the second largest eigenvalue of the round matrix P =
∏d

k=1 P(k). In case of random matchings, λ2 is the second largest
eigenvalue of the standard diffusion matrix Q (cf. Section 2.2) in absolute value.

Our results

When balancing an odd number of indivisible tokens, it is
crucial to decide in which direction to send the excess token.
The results of Muthukrishnan, Ghosh and Schultz [18] and
most results of Rabani et al. [19] hold regardless of the orien-
tation of the matching edges. We observe in Section 2.3 that
in this case on every graph in log n time-steps the discrep-
ancy cannot be reduced below O(log n/ log log n) and that
n time-steps are necessary for constant discrepancy. This is
rather unsatisfying as the idealized process requires only a
logarithmic number of rounds to reach a constant discrep-
ancy on many important graphs like expanders, complete
graphs and hypercubes.

In order to reduce the deviation between the idealized
and the discrete process we follow a suggestion of Rabani et
al. [19] and distribute the excess token in a more balanced
manner, that is, in a random direction. Intuitively it is clear
that this discrete randomized model should be closer to the
idealized process. However, it is surprising that this small
difference in the model results in a such a vast reduction of
the discrepancy. In more detail, our results that are sum-
marized in Table 1 are as follows.

For general graphs we reduce the discrepancy to

O
(

min
{√

d log n
1−λ2

, d log log n
1−λ2

})

in O
(

d·log(Kn)
1−λ2

)

steps w.h.p.

(cf. Corollary 4.5 and 4.7). The analogous result of [19,

Corollary 5] only achieves a discrepancy of O
(

d log n
1−λ2

)

in

the same number of rounds. While this gives a quadratic
improvement for many graph, the improvement for constant-
degree expanders from O(log n) to O(log log n) is even expo-
nential. Interestingly, our proof also reveals that the devia-
tion between the discrete and idealized model is O(log log n)
for constant-degree expanders, which we prove to be tight
on any constant-degree expander (cf. Theorem 4.10). For
the d-dimensional torus graph we achieve a discrepancy of

2Rabani et al. [19] did not consider random matchings, but a
straightforward adaptation of their techniques yields this bound.

O(
√

d n1/d log n) (cf. Corollary 4.9) in a number of rounds

where [19, Theorem 8] only achieves O(d n1/d) w.h.p.

As it might be hard to define canonical matchings for non-
structured graphs, it is popular to use random matchings
instead, see e.g. [4, 5, 10, 11]. We prove results that hold
for a large class of randomly generated matchings including
the models of [5, 10, 11]. For arbitrary graphs we prove a

bound of O
(

√

log n
1−λ2

log n
)

after O
(

log(Kn)
1−λ2

)

rounds w.h.p.

(cf. Corollary 5.4). If 1/(1 − λ2) is the dominant term, we
get again a quadratic improvement over the model with ar-
bitrary directions of the matching edges. For the impor-
tant case of an expander where 1/(1 − λ2) is constant, we
do a separate analysis and show that the discrepancy gets
down to O(1) in nearly optimal time O(log(Kn)(log log n)3)
w.h.p. (cf. Theorem 5.21). This result can also be ex-
tended to constant-degree expanders in the balancing circuit
model with appropriate deterministic matchings (cf. Corol-
lary 5.22).

Overall, our results demonstrate that with an appropri-
ate randomization the gap between the discrete and ideal-
ized model decreases significantly. For the important class
of expander graphs the difference disappears almost com-
pletely. On these graphs it is interesting to look at the
time-discrepancy trade-off, which can be measured as the
product of time and the achieved discrepancy. All previ-
ous trade-offs had a time-discrepancy product of Ω(log2 n +
log(Kn)) [1, 8, 10, 18, 19, 6] while we achieve a product
O(log(Kn)(log log n)3) which is very close to the natural
lower bound of Ω(log(Kn)).

Related work

Balancing circuits were introduced by Aspnes, Herlihy and
Shavit [3]. They constructed a sequence of Θ(log2 n) match-
ings that achieve a discrepancy of one for all inputs for a
specific orientation of the edges. This result was improved
by Klugerman and Plaxton [13, 14] who constructed for the
same problem a sequence of only Θ(log n) matchings. Note
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that in contrast to the model we have described before, the
orientation of all edges must be fixed and there is no restric-
tion on the set of matching edges (this can be viewed as a
balancing circuit on complete graphs).

Recently, a special balancing circuit called block network
was examined under the assumption that edges are oriented
uniformly at random [12]. In [17] the authors showed that
the cascade of two block networks gives a discrepancy of
17 in 2 log n steps. However, the analysis of [17] is rather
tailored for this special network, while our results apply to
all graphs.

Another very surprising relationship between a discrete
process and its idealized (continuous) counterpart appears
for so-called deterministic random walks. Cooper and
Spencer [7] show a remarkable similarity between the ex-
pectation of a random walk (the idealized process) and a
deterministic analogue where instead of distributing tokens
randomly, each vertex serves its neighbors in a fixed order.
If an (almost) arbitrary distribution of token is placed on
the vertices of an infinite grid Z

d and does a simultaneous
walk in the deterministic random walk model, then at all
times and on each vertex, the number of tokens deviates
from the expected number the standard random walk would
have gotten there, by at most a constant.

Rounding the number of tokens (x
(t)
i + x

(t)
j )/2 shared at

time t by two paired vertices i and j at random can be seen
as dependent randomized rounding of half-integral numbers.
This very general approach of randomized rounding [20] up
or down with probability depending on the fractional part
is a standard method for approximating the solution of a
discrete problem by rounding the solution of an idealized
(continuous) problem.

Organization of the paper

In Section 2 we give a more formal description of our load-
balancing model. Section 3 presents the basic method and
proves some general results. In Section 4 we introduce the
local p-divergence Ψp to bound the difference between the
discrete and idealized process in the periodic setting. In
Section 5 we study random matchings and give in Section 5.1
results for arbitrary graphs. In Section 5.2 we show that we
can also achieve a discrepancy of O(1) on any expander at
the cost of an (log log n)3 factor in the runtime.

2. PRELIMINARIES AND DEFINI-

TIONS

2.1 Our Model and Notations

Let G = (V, E) be a graph with vertices V = [n], edges E ⊆
V 2, min-degree δ = minv∈V deg(v), and max-degree ∆ =
maxv∈V deg(v). For any vertex u ∈ V and integer k ∈ N,
we define Bk(u) := {v ∈ V : dist(v, u) 6 k}. All logarithms
are to the base 2. By w.h.p. (with high probability) we refer
to an event that holds with probability at least 1 − n−c for
some constant c > 1.

The iterative load-balancing process is governed by a se-
quence of (not necessarily perfect) matchings M (1), M (2), . . .
Every matching corresponds to a doubly stochastic commu-

nication matrix P(t) with P
(t)
ij = 1/2 if i and j are matched

in M (t), P
(t)
ii = 1 if i is not matched in M (t), and P

(t)
ij = 0

otherwise. The special case of periodic balancing circuits
was introduced by Aspnes et al. [3]. In the language of the
model described above they refer to a sequence of commu-
nication matrices P(t) where two matrices P(t1) and P(t2)

are identical if t1 ≡ t2 mod d.

We start with an arbitrary load vector ξ(0) ∈ R
n
+. In

round t, if two vertices i, j are matched, they balance their
loads as closely as possible. For divisible tokens the process
is just a Markov chain and can be described by

ξ(t) = ξ(t−1)
P

(t). (1)

In the discrete process with indivisible tokens, we have to
decide where to send the excess token if the sum of the to-
kens of two matched vertices is odd. Most of the results [19]
hold for an arbitrary orientation of all edges. However, for
their results about perfect load balancing, they require the
so-called standard orientation where each edge {i, j} with
i < j is oriented towards i, that is an excess token is sent
to i. In spite of the huge bias, this orientation is particularly
useful for the reduction to sorting networks [3, 14, 19]. As
a drawback, the standard orientation requires global con-
sistency. Therefore it is intuitively appealing to consider a
random orientation of all edges {i, j}. That way, the load is
distributed more evenly (in expectation). Moreover, a ran-
dom orientation can be computed locally and offers fault-
tolerance against crashes or replacement of the communica-
tion links [12].

The precise model is as follows. Whenever the vertices i
and j perform a balancing operation in round t, the vertex i
with i < j flips an unbiased coin at step t and according to

the outcome it gets either ⌊(x(t)
i +x

(t)
j )/2⌋ or ⌈(x(t)

i +x
(t)
j )/2⌉

tokens. The remaining number of tokens is sent to j. Note
that this corresponds to a randomized rounding [20] of the

idealized process which sends (x
(t)
i +x

(t)
j )/2 to both vertices.

To describe the direction of the excess token in time step t,

we use Φ
(t)
i,j to specify at edge {i, j} ∈ M (t) where it is send.

Φ
(t)
i,j is +1 if the excess token is send to i and −1 if it is send

to j. In this setting, the standard orientation of Rabani et

al. [19] corresponds to Φ
(t)
i,j = 1 for i < j and Φ

(t)
i,j = −1

otherwise. The randomized rounding implies that for each

{i, j} ∈ M (t), Φ
(t)
i,j is chosen uniformly and independently

at random from {−1, 1}. We will refer to a matching edge

{i, j} ∈ M (t) with i < j shortly as [i : j].

2.2 Preliminaries

Following the approach by [19] of relating the discrete and

idealized process, we set x(0) = ξ(0), and therefore

ξ(t) = ξ(0)
t
∏

k=1

P
(k). (2)

Note that each matching matrix P = P(k) is a symmetric,
doubly stochastic matrix that satisfies P2 = P. Hence all
eigenvalues of P(k) are real and non-negative and so are the
ones of

∏t
k=1 P(k).

Note that the idealized process is well-understood, in par-
ticular if all P(k)’s are the same. We define average load

to be x̄ =
∑n

i=1 x
(0)
i /n. We restate the following two well-

known results.

123



Lemma 2.1 (e.g. [18, Lemma 2]). For any time step

t > 0, ‖ξ(t) − x̄‖2
2 6 ‖ξ(0) − x̄‖2

2 · (λ2(P))2t.

Theorem 2.2 (e.g. [19, Theorem 1]). In the ideal-
ized process, the number of rounds for achieving a discrep-
ancy of ℓ for an initial load vector ξ(0) with discrepancy K

is bounded above by O
(

1
1−λ2(P)

· log
(

Kn
ℓ

)

)

.

Finally, we define Q := I− 1
∆+1

L with L being the Lapla-
cian matrix of G. Note that Q is a diffusion-matrix and cor-
responds to a natural random walk with loops that moves
to each neighbor with the same probability. We call a graph
with ∆/δ = O(1) an expander graph, if 1/(1 − λ2(Q)) is
bounded above by a constant. Unless otherwise stated, we
do not require an expander to be of constant-degree.

2.3 Lower Bounds on Arbitrary Round-

ing

By relatively simple arguments we show that without ran-
domly chosen directions for the excess tokens, the discrep-
ancy can still be large.

Proposition 2.3. Let G be any graph and let
M (1), M (2), . . . , M (T ) a sequence of T matchings. Then
there is an orientation of each matching edge and an initial
load vector x(0) such that the discrepancy of x(T ) is at least
max{diam(G), log n

log T
}.

Hence, for T = O(log n) the best discrepancy we can get
with an arbitrary orientation is Ω( log n

log log n
). Note that this

result matches the result of [19, Corollary 5] for constant-
degree expanders up to a factor of log log n (assuming that
the initial discrepancy K is polynomially bounded). To get
down to a constant discrepancy for an arbitrary input and
orientation of the matching edges, even Ω(n) rounds are nec-
essary. In sharp contrast, our general result achieves for any
expander a constant discrepancy in only O(log n (log log n)3)
rounds.

With the same construction as in Proposition 2.3 we ob-
tain the following result.

Corollary 2.4. There is a graph G such that for any se-
quence of matchings M (1), M (2), . . . , M (T ) with the standard
orientation, there is an initial load vector x(0) such that the
discrepancy of x(T ) is at least max{diam(G), log n

log T
}.

3. THE BASIC METHOD

We have seen that if the Φ
(t)
i,j are arbitrary (or all 1), we

cannot hope for a discrepancy that is significantly less than
logarithmic. That is why we incorporate the idea of ran-
domized rounding that can be described as follows.

We have

x(t) = x(t−1)
P

(t) + e(t) (3)

for t > 1. e(t) is the excess load allocated as a result of
rounding up and down. More precisely, for all t > 1 and
i ∈ [n], e(t) is given by

e
(t)
i =

{

1
2
Odd(x

(t−1)
i + x

(t−1)
j ) Φ

(t)
i,j if {i, j} ∈ M (t)

0 otherwise
,

where we define Odd(i) to be one if i is

odd and zero otherwise. With M
(t)
Odd :=

{

{i, j} ∈ M (t) | Odd(x
(t−1)
i + x

(t−1)
j ) = 1

}

, this is the
same as

e(t) = 1
2

∑

[i:j]∈M(t) Odd(x
(t−1)
i + x

(t−1)
j )Φ

(t)
i,j

(

ui − uj

)

= 1
2

∑

[i:j]∈M
(t)
Odd

Φ
(t)
i,j

(

ui − uj

)

with ui denoting the i-th n-dimensional row unit vector.

Unwinding equation (3) yields

x(t) = x(0)
t
∏

k=1

P
(k) +

t
∑

ℓ=1

e(ℓ)
t
∏

k=ℓ+1

P
(k). (4)

By equations (4) and (2),

x(t) − ξ(t) =
∑t

ℓ=1 e(ℓ)
∏t

k=ℓ+1 P(k)

= 1
2

∑t
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j

(

ui − uj

)
∏t

k=ℓ+1 P(k)

(

x(t) − ξ(t))

v
= 1

2

∑t
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v) (5)

with

w
[ℓ,t]
i,j (v) :=

(

(
∏t

k=ℓ+1 P(k)
)

i,v
−
(
∏t

k=ℓ+1 P(k)
)

j,v

)

.

To bound the summand (or more generally, a subset of the
summand) of equation (5) we need the following lemma.
This lemma allows us to assume that all matching edges
receive an odd number of tokens and therefore we may deal
with a sum of independent random variables. A less general,
but similar lemma has been shown in [12].

Lemma 3.1. For any triple of time steps 1 6 t1 6

t2 6 t 6 T let WOdd :=
∑t2

ℓ=t1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j , and

W :=
∑t2

ℓ=t1

∑

[i:j]∈M(ℓ) Φ
(ℓ)
i,j w

[ℓ,t]
i,j . Then for any δ > 0,

Pr [|WOdd| > δ] 6 2 Pr [|W | > δ] .

We will also frequently use the following basic lemma.

Lemma 3.2. For any pairs of steps ℓ, t with 1 6 ℓ 6

t 6 T and any vertex v, we have
∑

[i:j]∈M(ℓ) w
[ℓ,t]
i,j (v) 6

2 ‖(∏t
k=ℓ+1 P(k))uv‖2

2.

We state two results for general sequences of matching
matrices that are used later on.

Theorem 3.3. For any graph G and matchings
M1, M2, . . . , MT fix two time steps t1, t with 1 6 t1 6 t 6 T
and any vertex v. Then,

Pr
[∣

∣

∣

1
2

∑t1
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

∣

∣

∣

>

√

8t1

∥

∥

∥

(

∏t
k=t1

P(k)
)

uv

∥

∥

∥

2

2
log n

]

6 n−4.

Theorem 3.3 roughly states that the rounding errors that
have small impact (small norm) contribute only little to

x(t) − ξ(t). For the special case t1 = t, the theorem above
directly gives us the following general result.

Corollary 3.4. For any graph G, v ∈ V and step t, the
deviation between the discrete and idealized process after t
rounds is at most

√
8 log n t w.h.p.
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4. PERIODIC BALANCING CIR-

CUITS

4.1 Upper Bounds

We now consider the periodic balancing circuit model. In
this case, two matching matrices P(t1) and P(t2) are iden-
tical if t1 ≡ t2 mod d. Hence, it makes sense to define the
round matrix P =

∏d
k=1 P(k).

For bounding the deviation between the discrete and ide-
alized process, we state the following definition that gener-
alizes the one of [19] to arbitrary p-norms.

Definition 4.1. The local p-divergence is defined by

Ψp = max
v∈V





∞
∑

t=1

∑

[i:j]∈M(ℓ)

∣

∣

∣

∣

∣

(

t
∏

k=ℓ+1

P
(k)
)

i,v
−
(

t
∏

k=ℓ+1

P
(k)
)

j,v

∣

∣

∣

∣

∣

p




1/p

.

Note that Ψ2(P) 6 Ψ1(P), but also Ψ2(P)2 6 Ψ1(P), since
∏t

k=ℓ+1 P(k) is a stochastic matrix. Rabani et al. [19] ex-
pressed the deviation between the discrete and idealized pro-
cess in terms of Ψ1(P) and showed that reducing the discrep-
ancy to O(Ψ1(P)) for any initial vector with discrepancy K

can be achieved within O
(

d log(Kn)
1−λ2(P)

)

steps3.

Theorem 4.2. For any time step t > 0, the maximum
deviation between the discrete and idealized process at step t
is at most O(Ψ2(P)

√
log n ) w.h.p. If the initial discrepancy

K is polynomial in n, the maximum deviation over all time
steps is at most O(Ψ2(P)

√
log n ) w.h.p.

Using this and Theorem 2.2, we immediately get

Corollary 4.3. We achieve a discrepancy of
O
(

Ψ2(P)
√

log n
)

for any vector with discrepancy K

within O
(

log(Kn)
1−λ2(P)

)

steps w.h.p.

Let us now bound Ψ2(P) in terms of the second largest
eigenvalue.

Theorem 4.4. For any round matrix P, Ψ2(P) =

O
(√

d
1−λ2(P)

)

.

Compared to the result Ψ1(P) = O
(

d log n
1−λ2(P)

)

of [19, The-

orem 4], our bound on Ψ2(P) is much smaller, because the

ℓ2-convergence of P(t) is faster than the ℓ1-convergence. A
direct application gives the following result.

Corollary 4.5. We achieve a discrepancy of

O
(√

d
1−λ2(P)

log n
)

after O
(

d·log(Kn)
1−λ2(P)

)

steps w.h.p.

By a more subtle analysis, we get a much better result for
small values of 1−λ2(P) and d. Again we first consider the
deviation between the discrete and continuous process.

Theorem 4.6. For any time step t, the maximum devi-
ation between the discrete and idealized model at step t is

at most O
(

d log log n
1−λ2(P)

)

w.h.p. If the initial discrepancy K is

polynomial in n, the maximum deviation over all time steps

is at most O
(

d log log n
1−λ2(P)

)

w.h.p.

3Note that in contrast to Rabani et al. [19] we count the factor
of d to make our results more comparable to the ones in Section 5.

Proof. We proceed similarly as in Theorem 4.2, but here we
split the sum and bound the critical summand directly in
terms of λ2 = λ2(P). Let t > 1 be an arbitrary, but fixed
time step.

x(t)
v − ξ(t)

v =
1

2

∑t
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

=
1

2

∑
t− 8d log log n

1−λ2
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

+
1

2

∑t

ℓ=t− 8d log log n
1−λ2

+1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v).

The second term can be bounded trivially by 8d log log n
1−λ2

, since

|∑
[i:j]∈M

(ℓ)
Odd

w
[ℓ,t]
i,j (v)| 6 1 for every ℓ. It remains to bound

the first term. Note that for any 1 6 ℓ 6 t,

∑

[i:j]∈M
(ℓ)
Odd

Range
[

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

]2

6 2
∑

[i:j]∈M
(ℓ)
Odd

(

w
[ℓ,t]
i,j (v)

)2

= 2
∑

[i:j]∈M
(ℓ)
Odd

(

(
∏t

k=ℓ+1 P(k)
)

i,v
−
(
∏t

k=ℓ+1 P(k)
)

j,v

)2

6 2 ‖(∏t
k=ℓ+1 P(k))uv‖2

2 6 2λ
⌊ t−ℓ

d
⌋

2

by Lemmas 3.2 and 2.1 and therefore

∑
t− 8d log log n

1−λ2
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Range
[

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

]2

6 2
∑

t− 8d log log n
1−λ2

ℓ=1 λ
⌊ t−ℓ

d
⌋

2

= O



d
λ

8 log log n
1−λ2

−1

2

1 − λ2



 = O
(

d

1
log4 n

1 − λ2

)

.

Applying Lemma 3.1 and Hoeffding’s bound we obtain,

Pr

[∣

∣

∣

∣

∑
t− 8 log log n

1−λ2
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

∣

∣

∣

∣

> δ

]

6 2 exp









−δ2

∑
t− 8 log log n

1−λ2
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Range
[

Φ
(ℓ)
i,j w

[ℓ,t]
i,j (v)

]2









6 2 exp

(

−δ2
/

O
(

d

1
log4 n

1 − λ2

))

.

Choosing δ = Θ
(√

d
1−λ2(P)

)

, we get that the deviation is

at most δ + 8d log log n
1−λ2

= O( d log log n
1−λ2

) at time t with proba-

bility 1 − n−2.
For the second claim, assume that the initial discrepancy

satisfies K 6 nC for a constant C > 1. By Theorem 2.2,
after t = O( log n

1−λ2
) rounds the discrepancy of the idealized

process is less than 1. Moreover, by the argument above
and using a union bound, we find that the maximum devi-

ation up to step t is at most O
(

d log log n
1−λ2

)

with probability

1− n−2. Now at step t, the discrepancy of the discrete pro-
cess is at most the deviation to the idealized process plus

one, which is O
(

d log log n
1−λ2

)

. Since the discrepancy in the

discrete process may not increase, and the discrepancy of
the idealized process is also non-increasing and at most 1,

the maximum deviation is O
(

d log log n
1−λ2

)

also for all time

steps larger than t.
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We will see in Theorem 4.10 that the maximum deviation
is indeed Θ(log log n) for constant-degree expanders. Before
we prove this, we state the following implication of Theo-
rem 4.6,

Corollary 4.7. We achieve a discrepancy of

O
(

d log log n
1−λ2(P)

)

after O
(

d log(Kn)
1−λ2(P)

)

steps w.h.p.

Proposition 4.8. For any constant-degree expander G
there is a round-matrix P consisting of at most d+1 match-
ings such that 1/(1−λ2(P)) = Θ(1). Hence, we can achieve
a discrepancy of O(log log n) in time O(log(Kn)), where K
is the initial discrepancy.

Hence for the important class of constant-degree ex-
panders, we achieve a discrepancy of O(log log n) in opti-
mal time. We now apply our results to d-dimensional torus
graphs. [19, Theorem 8] showed Ψ1(P) = Θ(d n1/d). Apply-

ing Corollary 4.3 and using the fact that Ψ2(P) 6
√

Ψ1(P)
gives the following.

Corollary 4.9. Consider the d-dimensional torus with
constant d. For any load vector with initial discrepancy K,
we achieve after O(d n2/d log(Kn)) rounds a discrepancy of

O
(

√

dn1/d log n
)

w.h.p.

4.2 Lower Bounds

We now prove the following lower bound that matches The-
orem 4.6.

Theorem 4.10. Let G be an arbitrary d-regular expander
graph with d = O(1). Then there is an initial load vector
with discrepancy K = Θ(log log n) such that the maximum
deviation between the discrete and idealized process is at least
Ω(log log n) w.h.p.

Proof. Choose a subset S ⊆ V such that two vertices in S
have a distance of at least 4c1 log log n to each other, where
c1 is a large constant to be determined later. Since for every
vertex v ∈ V , |B2c1 log log n(v)| = O(log n), we can find such
a subset S of size at least Ω(n/ log n) (cf. [9]). Define the

load vector x
(0)
i = max{0, c2 log log n − dist(i, S)}, where

c2 6 c1 is a small constant that is specified later. Clearly,
the initial discrepancy equals c2 log log n.

We start by examining the idealized process. Note that
if we run the idealized process for less than c1 log log n
rounds, the load balancing processes within B2c1 log log n(s1)
and B2c1 log log n(s2) for s1, s2 ∈ S, s1 6= s2 are indepen-
dent. Hence to compute ξc1 log log n within B2c1 log log n(s) for

a fixed s ∈ S, we may also replace ξ(0) by a vector y(0) which
coincides with x(0) within B2c1 log log n(s), but is 0 elsewhere.
Now the initial quadratic error can be bounded above by

‖y(0) − y‖2
2

6

(c2/4) log log n
∑

i=0

2δi

(

c2

4
log log n − i − 1

n

)2

+ n ·
(

1

n

)2

= O(log n).

By Lemma 2.1, we define c1 > 0 to be the constant such
that after c1 log log n rounds, ‖y(t) − y‖2 6 1. Hence by
Lemma 2.1, we have for t = c1 log log n, c1 ∈ O(1) that

‖y(t) − y‖2 = O(1). Since y = O(1), we have for all i ∈
B(c1/2) log log n(s1), ξ

(t)
i = O(1).

Let us now consider the discrete process. Since each
two different vertices si, sj ∈ S have a distance of at least
4c1 log log n to each other, the balancing processes within
B2c1 log log n(si) and B2c1 log log n(sj) are independent dur-
ing the first c1 log log n steps. Now the probability that
in Bc2 log log n(s), s ∈ S all matching edges are oriented to-
wards s during the first c1 log log n rounds is at least

2−|Bc2 log log n(si)|c1 log log n
6

1√
n

,

if c2 is sufficiently small chosen. Since we have at least
Ω(n/ log n) independent events, there is at least one s ∈ S
such that all matching edges in Bc2 log log n(s) are oriented
towards s during the first c1 log log n steps w.h.p. In this
case,

|ξ(c1 log log n)
s − x(c1 log log n)

s | > c2 log log n −O(1),

and the claim follows.

The same proof technique in Theorem 4.10 also works for
torus graphs.

Theorem 4.11. For the d-dimensional torus graph with
d = O(1), there is an initial load vector with discrepancy
K = Θ(polylog(n)) such that the maximum deviation be-
tween the discrete and idealized process is Ω(polylog(n))
w.h.p.

While the actual lower bound may very well be polyno-
mial in n, this lower bound together with Theorem 4.6 still
demonstrates an exponential gap between torus graphs and
constant-degree expanders.

5. RANDOM MATCHINGS

For certain graphs, it might be non-trivial to construct ex-
plicit matching matrices such that their eigenvalue gap (or
local p-divergence) can be bounded. Also, for many graphs
it is not obvious which matching sequences are to be con-
sidered “good”. This motivates us to examine sequences of
random matchings. We choose independently for each P(i)

a random matching by a local algorithm. There are many
such algorithms available, e.g. the LR algorithm of Ghosh
and Muthukrishnan [11] or the distributed synchronous al-
gorithm of Boyd, Ghosh, Prabhakar and Shah [5].

Definition 5.1. We call a sequence of matchings M (t),
t ∈ [T ], a random matching if

(i) There is a constant α > 0 such that

Pr
[

{i, j} ∈ M (t)
]

> α/∆ for all t ∈ [T ] and

{i, j} ∈ E.

(ii) The random decisions within one time-
step do not pairwise correlate negatively,

that is, Pr
[

{i, j} ∈ M (t) | {u, v} ∈ M (t)
]

>

Pr
[

{i, j} ∈ M (t)
]

for all t ∈ [T ] and

{i, j} ∩ {u, v} = ∅.
(iii) All random decisions between different time-steps are

independent.
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Figure 1. Illustration of the four cases of Definition 5.6 with {vt, u} ∈ M (t).

Throughout this section, we will denote by λ2 the second
largest eigenvalue of Q in absolute value. Our aim is to state
bounds in terms of the (explicit) eigenvalue λ2(Q) instead of
the eigenvalues of the matching matrices (which are random
variables).

5.1 Coarse balancing and Preliminaries

Let us first consider the idealized process. Consider an ar-
bitrary step t. Let ξ(t) be any n-dimensional load vector
and let ξ(t+1) = ξ(t)P(t+1), where P(t) represents the ran-
dom matching matrix of round t. The following basic lemma
asserts that the quadratic error decreases exponentially in
λ2 = λ2(Q), if α is a constant greater than zero.

Lemma 5.2. (from [11]) Consider a randomly generated
matching with the property that each {i, j} ∈ E is chosen
with probability at least α

∆
with 0 < α 6 1. Then,

E
[

‖ξ(t−1) − x̄‖2
2 − ‖ξ(t) − x̄‖2

2

]

>
α

3
(1 − λ2(Q)) ‖ξ(t−1) − x̄‖2

2.

Using conditional expectations and Markov’s inequality, we
obtain the following theorem (cf. [5] for a similar statement).

Theorem 5.3. For any initial vector ξ(0) and any time
step t > 1,

Pr

[

∥

∥ξ(t) − x̄
∥

∥

2

2
>

(

1 − α

3
(1 − λ2(Q))

)t/2 ∥
∥ξ(0) − x̄

∥

∥

2

2

]

6

(

1 − α

3
(1 − λ2(Q))

)t/2

.

Using the theorem above and Corollary 3.4 we immediately
obtain

Corollary 5.4. The discrepancy after O
(

log(Kn)
1−λ2

)

rounds is at most O
(√

log n
1−λ2

log n
)

w.h.p.

For expanders, where 1/(1 − λ2) is a constant, this result is
rather weak, as it will be shown by a more involved analysis
below. To this end we state the following basic lemma that
relates the short-term decrease of ‖ξt‖2

2 to the eigenvalue
gap.

Lemma 5.5. Consider a randomly generated matching
with the property that each {i, j} ∈ E is chosen with proba-

bility at least α
∆

with 0 < α 6 1. Then if ‖ξ(t)‖1 = 1,

Pr

[

∥

∥ξ(t)
∥

∥

2

2
6

(

1 − α2

9
(1 − λ2(Q))2

)

∥

∥ξ(t−1)
∥

∥

2

2
+

2

n

]

> 1 −
(

1 +
α

3
(1 − λ2(Q))

)−1

.

5.2 Near-Perfect Balancing

In this section, we address the problem of near-perfect load
balancing. By this we mean a state where the discrepancy
has been reduced to a constant value. Note that [19] gave re-
sults for perfect balancing where the discrepancy is reduced
to 1. However, it is not too difficult to see that with a ran-
dom orientation of all edges, a discrepancy of 1 can only be
achieved in Ω(n) rounds for any graph (and any matchings)
(cf. [17]). Therefore, we confine ourselves with achieving
a constant discrepancy, where the constant is at least 2.
We will see that on expanders for which ∆/δ = O(1), we
can achieve a constant discrepancy in O(log(kn)(log log n)3)
steps.

To describe how packages of tokens move through the net-
work over time, we define canonical paths. This allows us
to fix a certain package “routing” through the network and
analyze the contribution to the load deviation only on this
path. This fixed-view of the w paths is crucial for the anal-
ysis, as it avoids the necessity of a union bound over all
possible paths.

Definition 5.6. The sequence (vt1 , vt1+1, . . . , vt2) is
called the canonical path of vt1 from time t1 to t2 if for
all times t with t1 < t 6 t2 the following holds: If vt is un-
matched in M (t), then vt+1 = vt. Otherwise, let u ∈ V be
such that {vt, u} ∈ M (t). Then,

• if x
(t)
vt > x

(t)
u and Φ

(t)
vt,u = 1 then vt+1 = vt,

• if x
(t)
vt > x

(t)
u and Φ

(t)
vt,u = −1 then vt+1 = u,

• if x
(t)
vt < x

(t)
u and Φ

(t)
vt,u = 1 then vt+1 = u,

• if x
(t)
vt < x

(t)
u and Φ

(t)
vt,u = −1 then vt+1 = vt.

We will denote such a canonical path from t1 to t2 that

starts at v as P [t1,t2]
v . Observe that the endpoint d(Pv) of the

path depends on (i) the randomly chosen matched edges, (ii)
their randomly chosen orientations and (iii) the load vector
at step t1. Also note that if two equal loads are balanced,
the canonical path stays where it is iff the randomly chosen
orientation of the edge points upwards.

We state two more facts about canonical paths.

Fact 5.7. Given the load vector x(t1) at step t1, a ver-
tex v and all chosen matching edges between step t1 and

t2, a path P [t1,t2]
v performs a simple random walk on G,

i.e., whenever there is an adjacent matching edge, the path
switches along this matching edge with probability 1/2, and
otherwise stays at the current vertex.

Fact 5.8. Two canonical paths P [t1,t2]
u1 = (u1, u2, . . . , uκ)

and P [t1,t2]
v1 = (v1, v2, . . . , vκ) do not intersect on a vertex on

the same time, that is, ui 6= vi for all i ∈ [κ].

The statements and proofs of this section use different
constants which are defined as follows.
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Definition 5.9. Our proofs use the following constants.

C1 := (α/20)5 · γ−5 > 0,

C2 := − 50
C1

ln
(

1−exp(−C1/50)
8

)

> 0,

C3 := 1 − α2

324
(1 − λ2(Q))2 ∈ (0, 1),

C4 := 1/(1 + α
54

(1 − λ2(Q))) ∈ (0, 1),

C5 := C1 (1 − C4)/2 > 0,

C6 := max

{

0,
24 ln(2)−8 ln

(

1−exp(−
C5
8

)
)

C5
− C2

}

> 0,

C7 := 1
1−C4

+
2
(

−4 ln
(

(1−C
1/3
4 )

))1/2

1−C
1/3
4

+ 1 > 0,

C8 := −8/ log C4 > 0,

C9 :=
√

32((⌈C7 + C6 + C2 + 2⌉)2 + 1/4) C8 > 0,

ϑ := ⌈C7 + C2 + C6 + 2⌉ > 2.

For a canonical path P , let d(P) the destination of the path,
that is the vertex at step t2 of P . It is easy to verify that a

canonical path P [t1,t2]
v visits in expectation at least C1

6
(t2 −

t1 + 1) times six different vertices in a row. The following
definition will be important in the remainder.

Definition 5.10. For a canonical path P [t1,t2]
v , we define

for t1 6 t 6 t2, Yt = 1, if t mod 6 = 0 and the canonical path
visits six different vertices within the time-interval [t, t + 5],
and Yt = 0 otherwise.

For a fixed time step t2, an arbitrary time step t1 6 t2,

and a vertex v, we set Λ
(t1)
v :=

(
∏t2

k=t1
P(k)

)

uv, where uv is
the v-th unit-vector.

Definition 5.11. For every canonical path P = P [t1,t2]
v

with destination d(P), we define the following three events,

Trans(P) :=







t2−C2
∧

ℓ=t1

t2
∑

t=ℓ+1

Yt >
C1

2
(t2 − ℓ)







,

Bal(P) :=

{

t2−C2−C6
∧

t=t1

(

∥

∥Λ(t)
ud(P)

∥

∥

2

2
6 C4

(t2−t) +
t2 − t

n

)

}

,

Success(P) :=











∣

∣

∣

∣

∣

∣

∣

t2
∑

ℓ=t1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

[ℓ,t2]
i,j (d(P))

∣

∣

∣

∣

∣

∣

∣

6 C7 + C2 + C6











.

Let us describe the intuitions behind these definitions.
Trans(P) denotes the event that the canonical path visits
approximately the correct number of times six different ver-
tices. Bal(P) means that ℓ2-norm of the weights of the ran-
dom variables (representing the rounding errors) at round t

that contribute to x
(t2)
d(P) is exponentially decreasing in t−t2.

Finally, Success(P) denotes the event that the contribution

of the rounding errors “close” to x
(t2)

d(P)
is small. Our strategy

is first to prove that Trans(P) holds with constant proba-
bility and then prove the implications

Trans(P) ⇒ Bal(P) ⇒ Success(P).

Lemma 5.12. For every canonical path P,
Pr [Trans(P )] >

7
8
.

Lemma 5.13. For every canonical path P,
Pr [Bal(P) | Trans(P)] >

7
8
.

Lemma 5.14. For arbitrary t1, t2 with t1 < t2, t2 −
t1 6 log n, let P = P [t1,t2]

v be a canonical path. Then,
Pr [Success(P) ∧ Bal(P)] > 1/2.

For the proof of our main result, we next introduce the fol-
lowing potential function. Then we prove that if the events
Success(P) and Bal(P) hold, the improvement of the po-
tential along a fixed canonical path is significant.

Definition 5.15. We define the potential in round t as

Υ(t) =
∑n

i=1 Υ
(t)
i , where Υ

(t)
i =

(∣

∣x
(t)
i − ⌊x̄⌋

∣

∣− ϑ
)2

if |x(t)
i −

⌊x̄⌋| > ϑ, and Υ
(t)
i = 0 otherwise. Moreover, we define the

improvement of the potential by ∆(t) := Υ(t) − Υ(t+1) and

the local change of a vertex i by ∆
(t)
i := Υ

(t)
i − Υ

(t+1)
i .

For simplicity, we may assume that ⌊x̄⌋ = 0 when dealing

with Υ(t) in the following, which can be justified as follows.
Clearly, for any initial load vector x(0) there is a number
γ ∈ Z such that the average of x̃(0) = x(0) + γ · 1 is between
0 and 1, where 1 denotes the all-ones vector. By definition
of our load balancing algorithm, x̃(t) = x(t) for any step t,
in particular, the discrepancy of x̃(t) and x(t) are the same.

We further observe the following properties of Υ.

Lemma 5.16. For any graph, any initial load vector x(0),
and time t ∈ N,

(i) Υ(t) ∈ N,

(ii) Υ(t+1)
6 Υ(t),

(iii) If {i, j} ∈ M (t), then ∆
(t)
i + ∆

(t)
j >

(x
(t)
i −x

(j)
j )2

4
− ϑ2.

(iv) If ϑ − 1 6 x
(t)
i 6 x

(t)
j + 2 and {i, j} ∈ M (t), then

∆
(t)
i + ∆

(t)
j > 1.

(v) Υ(t) = 0 implies that x(t) has discrepancy at most
2ϑ + 1.

The definition of the improvement of the potential is natu-

rally extended to canonical paths as follows. Let P = P [t1,t2]
v

be a canonical path and for each t ∈ [t1, t2], let vt be the
vertex at step t visited by P . Define

∆(P)(t) :=

{

0 if vt is unmatched at step t,
1
2

(

∆
(t)
vt + ∆

(t)
u

)

if vt is matched with u at step t.

Lemma 5.17. Consider a canonical path P [t1,t2]
v of length

C8 log log n. If |x(t1)
v | > ϑ + 1, |x(t2)

d(P)| 6 ϑ, then ∆(P) =
∑t2

t=t1
∆(P)(t) >

1
4

(

|x
(t1)
v |−ϑ

C9 log log n

)2
.

Proof. Fix a vertex v and consider the canonical path

P [t1,t2]
v . We proceed by a case distinction on |x(t1)

v |. First,

suppose that ϑ+1 6 |x(t1)
v | 6

√

32(ϑ2 + 1/4) C8 log log n+

ϑ. By |x(t2)

d(P)
| 6 ϑ and Definition 5.10 there is at least one

step t on the path P on which x
(t)
v′ is matched with another

vertex whose load is at least two tokens closer to ⌊x̄⌋ = 0

and |x(t)

v′ | > ϑ + 1. Hence in this case by Lemma 5.16,

t2
∑

t=t1

∆(P)(t) > 1 >

(

|x(t1)
v | − ϑ

√

32(ϑ2 + 1/4) C8 log log n

)2

.

For the second case, let |x(t1)
v | >

√

32(ϑ2 + 1/4) C8 log log n + ϑ. For simplicity, we
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will assume in the following calculations that each vertex

vt on P [t1,t2]
v is matched at step t with another vertex ut

when P is located on vt.

2

t2
∑

t=t1

∆(P)(t) =

t2
∑

t=t1

∆(t)
vt

+ ∆(t)
ut

>

t2
∑

t=t1

(x
(t)
vt − x

(t)
ut )2

4
− ϑ2

>

t2
∑

t=t1

(2x
(t)
vt − 2x

(t+1)
vt ± 1)2

4
− ϑ2

>

t2
∑

t=t1

(

(x(t)
vt

− x(t+1)
vt

)2 − (x(t)
vt

− x(t+1)
vt

)/2
)

− (ϑ2 + 1/4)(t2 − t1)

>

t2
∑

t=t1

(

(x(t)
vt

− x(t+1)
vt

)2/2
)

− (ϑ2 + 1/4)(t2 − t1)

as (x
(t)
vt − x

(t+1)
vt ) ∈ N. The sum in the previous expression

is minimized when all x
(t)
vt − x

(t+1)
vt are the same. Therefore,

2

t2
∑

t=t1

∆(P)(t)

>

t2
∑

t=t1

(

|x(t1)
v | − ϑ − 2C8 log log n

2C8 log log n

)2

− (ϑ2 + 1/4)(t2 − t1)

>

t2
∑

t=t1

(

|x(t1)
v | − ϑ

4C8 log log n

)2

− (ϑ2 + 1/4)(t2 − t1)

> (t2 − t1)

((

|x(t1)
v | − ϑ

4C8 log log n

)2

− (ϑ2 + 1/4)

)

>

(

|x(t1)
v | − ϑ

4C8 log log n

)2

− (ϑ2 + 1/4)

>

(

|x(t1)
v | − ϑ√

32 C8 log log n

)2

,

where the last inequality holds since |x(t1)
v | >

√

32(ϑ2 + 1/4) C8 log log n + ϑ implies that

(

|x(t1)
v | − ϑ

4C8 log log n

)2

> 2(ϑ2 + 1/4).

The next lemma follows directly by Theorem 3.3 and a union
bound over all n vertices and (log n)2 time steps.

Lemma 5.18. Let E1 be the event that for all ver-
tices v ∈ [n] and all timesteps t1 < t = O(log2 n)

with
∥

∥

∥

(
∏t

k=t1+1 P(k)
)

uv

∥

∥

∥

2

2
6 (log n)−4 it holds that

∣

∣

∣

∑t1
ℓ=1

∑

[i:j]∈M
(ℓ)
Odd

Φ
(ℓ)
i,j w

(ℓ)
i,j (v)

∣

∣

∣
6 1. Then, Pr [E1] > 1−n−2.

Intuitively, the lemma says that the rounding errors from
step 1 to t1 for the load of a vertex v at step t never cause a
large deviation, provided that the load is “well distributed”
at the neighborhood of v during the steps t1 and t2.

The next lemma is a simple application of Theorem 5.3.

Lemma 5.19. Let E2 denote the event that the discrepancy
of the idealized process is 1 after C log(Kn)/(1 − λ2) steps,
where C is a sufficiently large constant. Then, Pr [E2] >

1 − n−4.

Basically, we now prove that the event Success(P) implies
that the vertex w = d(P) at the end of a canonical path
P deviates from the average by only a constant. Then we
use this fact together with Lemma 5.17 to show that the
potential along each P with Success(P) decreases.

Lemma 5.20. Let t1 > Ω(log(Kn)/(1−λ2)). Assume that

E1 and E2 hold and consider a canonical path P = P [t1,t2]
v ,

t2 = t1 + 8 log log n
− log C4

with destination d(P) = w such that

Success(P) and Bal(P) holds. Then,
∣

∣xt2
w − x̄

∣

∣ 6 C7 +
C6 + C2 + 2.

Now we are ready to prove the main result of this section.

Theorem 5.21. For expanders with a constant degree-
ratio ∆/δ, the discrepancy of any initial load vec-
tor of discrepancy K is reduced to 2ϑ + 2 within
O(log(Kn)(log log n)3) steps.

Proof. Choose t2 = t1 + 8 log log n
− log C4

. Moreover assume that

we know Υ(t1). Then by linearity of expectations, the
fact that two canonical paths are vertex-disjoint and Lem-
mas 5.14, 5.18, 5.19, and 5.20,

E
[

Υ(t1) − Υ(t2) | E1 ∧ E2

]

=
1

2

∑

v∈[n]

E
[

∆(P [t1,t2]
v ) | E1 ∧ E2

]

>
1

2
Pr [E1 ∧ E2]

∑

v∈[n]

Pr [Success(Pv) ∧ Bal(Pv) | E1 ∧ E2]

· E
[

∆(P [t1,t2]
v ) | Success(Pv) ∧ Bal(Pv) ∧ E1 ∧ E2

]

>
1

4
· (1 − 4n−2) ·

∑

v∈[n]

(

|x(t1)
v | − ϑ

C9 log log n

)2

>
1

8(C9 log log n)2
Υ(t1).

It follows from Corollary 5.4 that E
[

Υ(t1)
]

6 n2 w.h.p., if

t1 = Θ
( log(Kn)

1−λ2

)

. As shown above for every pair of timesteps

t1, t2 = t1 + 8 log log n
− log C4

,

E
[

Υ(t2)
]

6

(

1 − 1

8(C9 log log n)2

)

Υ(t1).

Iterating this argument yields

E
[

Υ(t1+8(C9 log log n)2C8 log log n·6 ln n)
]

6

(

1 − 1

8(C9 log log n)2

)8(C9 log log n)2·6 ln n

Υ(t1)

6 n−6 n2 = n−4.
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Finally, using the integrality of Υ we arrive at

Pr
[

|x(t1+8(C9 log log n)2C8 log log n·6 ln n) − x̄|∞ > ϑ + 1
]

6 Pr
[

Υ(t1+8(C9 log log n)2C8 log log n·6 ln n) > 0
]

6 E
[

Υ(t1+8(C9 log log n)2C8 log log n·6 lnn)
]

6 n−4.

Our techniques also apply to constant-degree expanders in
the balancing circuit model.

Corollary 5.22. Let G be a constant-degree expander
and consider the balancing circuit model with a round matrix
P satisfying (1 − λ2(P))−1 = O(1). Then we can achieve a

discrepancy of O(1) in O( log(Kn)
1−λ2(P)

(log log n)3) rounds w.h.p.

6. CONCLUSIONS

We present the first analysis of a natural local load balanc-
ing algorithm that directs the excess tokens at random. It is
shown that on many important graphs this simple random-
ization improves over its deterministic counterpart [19] by at
least a quadratic factor for many graphs. For the important
case of expanders, we show that the load is balanced almost
perfectly within O(log(Kn)(log log n)3) rounds. This result
is optimal up to a factor of O(log log n)3) while all previ-
ous approaches were only optimal up to a factor of O(log n).
Nevertheless, an interesting open question is to close the gap
between our upper bound of O(log(Kn)(log log n)3) and the
(trivial) lower bound of Ω(log(Kn)).
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