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Abstract

We provide a perfect sampling algorithm for the hard-sphere model on subsets of Rd

with expected running time linear in the volume under the assumption of strong spatial
mixing. A large number of perfect and approximate sampling algorithms have been
devised to sample from the hard-sphere model, and our perfect sampling algorithm
is efficient for a range of parameters for which only efficient approximate samplers
were previously known and is faster than these known approximate approaches. Our
methods also extend to the more general setting of Gibbs point processes interacting
via finite-range, repulsive potentials.

1 Introduction

Gibbs point processes, or classical gases, are mathematical models of interacting particles. In
statistical physics they are used to model gases, fluids, and crystals, while in other fields they
are used to model spatial phenomena such as the growth of trees in a forest, the distribution
of stars in the universe, or the location of cities on a map (see e.g. [71, 62, 76, 12]).

Perhaps the longest and most intensively studied Gibbs point process is the hard-sphere
model: a model of a gas in which the only interaction between particles is a hard-core
exclusion in a given radius around each particle. That is, it is a model of a random packing
of equal-sized spheres. Despite the simplicity of its definition, the hard-sphere model is
expected to exhibit the qualitative behavior of a real gas [2], and in particular exhibit
gas, liquid, and solid phases, thus giving evidence for the hypothesis, dating back to at
least Boltzmann, that the macroscopic properties of a gas or fluid are determined by its
microscopic interactions. This rich behavior exhibited by the hard-sphere model is very
difficult to analyze rigorously, and the most fundamental questions about phase transition
in this model are open mathematical problems [71, 52].
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In studying the hard-sphere model (or Gibbs point processes more generally), a funda-
mental task is to sample from the model. Sampling is used to estimate statistics, observe
evidence of phase transitions, and perform statistical tests on data. A wide variety of meth-
ods have been proposed to sample from these distributions; for instance, the Markov chain
Monte Carlo (MCMC) method was first proposed by Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller [55] to sample from the two-dimensional hard-sphere model. Understand-
ing sampling methods for point processes in theory and in practice is a major area of
study [61, 62, 16, 39, 49], and advances in sampling techniques have led to advances in the
understanding of the physics of these models [55, 2, 52, 6, 5, 16].

In this paper we will be concerned with provably efficient sampling from the hard-sphere
model. Rigorous guarantees for sampling algorithms come in several different varieties. One
question is what notion of ‘efficient’ to use; another is what guarantee we insist on for the
output. In this paper we will provide an efficient sampling algorithm under the strictest
possible terms with respect to both running time and accuracy of the output: a linear-time,
perfect sampling algorithm.
For simplicity we focus on sampling from the hard-sphere model defined on finite boxes

in Rd. For fixed parameter values of the model, the typical number of points appearing in
such a region is linear in the volume, and so any sampling algorithm will require at least
this much time.
As for guarantees on the output, there are two main types of guarantees. The first type

is an approximate sampler : the output of such an algorithm must be distributed within ε
total variation distance of the desired target distribution. Perhaps the main approach to
efficient sampling from distributions normalized by intractable normalizing constants is the
MCMC method. In this approach, one devises a Markov chain with the target distribution
as the stationary distribution and runs a given number steps of the chain from a chosen
starting configuration; if the number of steps is at least the ε-mixing time, then the final
state has distribution within ε total variation distance of the target [42, 68, 13]. In general,
however, computing or bounding the mixing time can be a very challenging problem.
The second type of guarantee is that of a perfect sampler [66]. Such an algorithm has

a running time that is random, but the distribution of the output is guaranteed to be
exactly that of the target distribution. The main advantage of perfect sampling algorithms
– and the primary reason they are studied and used in practice – is that one need not
prove a theorem or understand the mixing time of a Markov chain to run the algorithm
and get an accurate sample; one can simply run the algorithm and know that the output
has the correct distribution. The drawback is that the running time may be very large,
depending on the specific algorithm and on the parameter regime. Some naive sampling
methods such as rejection sampling return perfect samples but are inefficient on large
instances (exponential expected running time in the volume). The breakthrough of Propp
and Wilson in introducing ‘coupling from the past’ [66, 67] was to devise a procedure for
using a Markov chain transition matrix to design perfect sampling algorithms which, under
some conditions, could run in time polylogarithmic in the size of a discrete state space
(polynomial-time in the size of the graph of a spin system), matching the efficiency of fast
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mixing Markov chains which only return approximate samples (see also [4, 51] for precedents
in perfect sampling). The work of Propp and Wilson led to numerous constructions of
perfect sampling algorithms for problems with both discrete and continuous state spaces
including [17, 27, 45, 63, 28, 21, 46, 61, 23]. Notably, many of the first applications of
Propp and Wilson’s technique were in designing perfect sampling algorithms for Gibbs point
processes (though often without rigorous guarantees on the efficiency of the algorithms).

Perfect sampling continues to be a very active area of research today, with a special focus
on improving the range of parameters for which perfect sampling algorithms can (provably)
run in expected linear or polynomial time [8, 40, 30]
In this paper we design a perfect sampling algorithm for the hard-sphere model (and

Gibbs point processes interacting with a finite-range, repulsive pair potential more generally)
that is guaranteed to run in linear expected time for activity parameters up to the best
known bound for efficient approximate sampling via MCMC.
What is this bound and how do we design the algorithm? One central theme in the

analysis of discrete spin systems is the relationship between spatial mixing (correlation decay
properties) and temporal mixing (mixing times of Markov chains) [35, 1, 75, 54, 15]. At
a high level, these works show that for discrete lattice systems a strong correlation decay
property (strong spatial mixing) implies a near-optimal convergence rate for local-update
Markov chains like the Glauber dynamics. Recently it has been showed that strong spatial
mixing in a discrete lattice model also implies the existence of efficient perfect sampling
algorithms [18, 3]. In parallel, there has been work establishing the connection between
strong spatial mixing and optimal temporal mixing for Markov chains in the setting of the
hard-sphere model and Gibbs point processes [33, 57, 58]. At a high level, our aim is to
combine these threads to show that strong spatial mixing for Gibbs point processes implies
the existence of an efficient perfect sampler. One challenge is that the approaches of [18, 3]
are inherently discrete in that key steps of the algorithms involve enumerating over all
possible configurations in a subregion, something that is not possible in the continuum. To
overcome this we make essential use of Bernoulli factories – a method for perfect simulation
of a coin flip with a bias f(p) given access to coin flips of bias p. Bernoulli factories have
recently been used in perfect sampling algorithms for solutions to constraint satisfaction
problems in [31, 32].

1.1 The hard-sphere model, strong spatial mixing, and perfect sampling

The hard-sphere model is defined on a bounded, measurable subset Λ of Rd with an activity
parameter λ ≥ 0 that governs the density of the model and a parameter r > 0 that governs
the range of interaction (though by re-scaling there is really only one meaningful parameter,
and we could take r = 1 without loss of generality). In words, the hard-sphere model is the
distribution of finite point sets in Λ obtained by taking a Poisson point process of activity λ
on Λ and conditioning on the event that all pairs of points are at distance at least r from
each other; in other words, on the event that spheres of radius r/2 centered at the given
points form a sphere packing.
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We can equivalently define the model more explicitly, and in doing so, introduce objects
and notation we work with throughout the paper. To begin, let NΛ be the set of all finite
point sets in Λ and write RΛ ⊆ 2N for the σ-field generated by the maps

{
N → N0, η 7→

|η ∩B|
∣∣ B ⊆ Λ Borel-measurable

}
. The hard-sphere model (or in fact any Gibbs point

process) is a probability measure µλ on the space (NΛ,RΛ).
Define for every x1, . . . , xk ∈ Rk the indicator that the points are centers of non-overlapping

spheres of radius r/2; that is,

D(x1, . . . , xk) =
∏

{i,j}∈([k]
2 )

1dist(xi,xj)≥r .

Then define the partition function

ZΛ(λ) =
∑
k≥0

λk

k!

∫
Λk
D(x1, . . . , xk) dx1 . . . dxk .

For an event A ∈ RΛ, the hard-sphere model assigns the probability

µλ(A) =
1

ZΛ(λ)

∑
k≥0

λk

k!

∫
Λk
1{x1,...,xk}∈AD(x1, . . . , xk) dx1 . . . dxk . (1)

A very useful generalization of this model is to allow for a non-constant (but measurable)
activity function λλλ : Λ→ [0,∞). Here the model is a Poisson process with inhomogenous
activity λλλ conditioned on the points forming the centers of a sphere packing; the partition
function is now

ZΛ(λλλ) =
∑
k≥0

1

k!

∫
Λk

k∏
i=1

λλλ(xi)D(x1, . . . , xk) dx1 . . . dxk

and the measure µλλλ is defined analogously to (1). This generalization allows modeling of
non-homogenous spaces and generalizes the concept of imposing boundary conditions on the
model. To see this, suppose we fix a particle configuration η ∈ NΛ as boundary conditions.
Additional points are forbidden within the balls of radius r around each point x ∈ η; we
can implement the distribution of additional points by considering the measure µλλλ with
λλλ(y) = 0 if dist(y, x) < r for some x ∈ η; and λλλ(y) = λ otherwise. We denote the resulting
activity function by λλλ by λη. Further, we can use this generalization to restrict a point
process to only place points in a subregion Λ′ ⊆ Λ by considering the measure µλ1Λ′ with
activity function λ1Λ′ : x 7→ λ1x∈Λ′ . Of course the generalization to measurable activity
functions is much more general than this, and activity functions λλλ need not be realizable by
boundary conditions or restriction to a subregion, nor take only two values.
This generalization to activity functions is crucial for defining strong spatial mixing, the

condition under which we can guarantee the efficiency of our perfect sampling algorithm.
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To define the concept of strong spatial mixing we consider projections of the measure µλλλ
to subregions Λ′ ⊆ Λ. We write µλλλ[Λ′] for the probability measure on (NΛ′ ,RΛ′) induced
by µλλλ (we make this definition formal in Section 3). We can impose two distinct boundary
conditions on Λ′ by choosing two different activity functions λλλ,λλλ′. Strong spatial mixing
asserts that the distributions µλλλ[Λ′], µλλλ′ [Λ′] are close in total variation when λλλ,λλλ′ differ only
on points far from Λ′; i.e., when dist(Λ′, supp(λλλ− λλλ′)) is large (as supp(λλλ− λλλ′) is the set of
points at which the two activity functions disagree).

Writing |Λ′| for the volume of Λ′, strong spatial mixing with exponential decay is defined
as follows.

Definition 1.1. Given a, b ∈ R>0, the hard-sphere model on Rd exhibits (a, b)-strong
spatial mixing up to λ ∈ R>0 if for all bounded measurable Λ ⊂ Rd the following holds:
For all measurable Λ′ ⊆ Λ and all activity functions λλλ,λλλ′ ≤ λ it holds that

dTV
(
µλλλ
[
Λ′
]
, µλλλ′

[
Λ′
])
≤ a

∣∣Λ′∣∣e−b·dist(Λ′,supp(λλλ−λλλ′)),

where dTV (·, ·) denotes total variation distance.

This definition of strong spatial mixing comes from [58], which in turn adapted similar
notions from discrete spin systems [15, 77]. Strong spatial mixing has proved to be an
essential definition in the analysis, both probabilistic and algorithmic, of spin systems on
graphs, and many recent works are focused on either proving strong spatial mixing for a
particular model, range of parameters, and class of graphs (e.g. [77, 22, 53, 72, 69, 9]) or
deriving consequences of strong spatial mixing (e.g. [73, 19, 50, 18, 3]).

Our main result is a linear expected-time perfect sampling algorithm for the hard-sphere
model under the assumption of strong spatial mixing.

Theorem 1.2. There is a perfect sampling algorithm for the hard-sphere model on finite boxes
Λ ⊂ Rd with the property that if the hard-sphere model exhibits (a, b)-strong spatial mixing
up to λ, then the expected running time of the algorithm at activity λ is O(|Λ|), where the
implied constant is a function of a, b, and λ.

In particular, one can run the algorithm for any value of λ (without knowing whether
or not strong spatial mixing holds) and the algorithm will terminate in finite time with
an output distributed exactly as µλ; under the assumption of strong spatial mixing the
expected running time is guaranteed to be linear in the volume.

Using bounds from [58] on strong spatial mixing in the hard-sphere model, we obtain the
following explicit bounds on the activities for which the algorithm is efficient.

Corollary 1.3. The above perfect sampling algorithms runs in expected time O(|Λ|) when
λ < e

vd(r) , where vd(r) is the volume of the ball of radius r in Rd.

In comparison, near-linear time MCMC-based approximate samplers were given in [58] for
the same range of parameters (following results for more restricted ranges in [43, 33]). For
perfect sampling from the hard-sphere model, linear expected time algorithms were given
in [36, 25] for more restrictive ranges of parameters.
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1.2 Gibbs point processes with finite-range repulsive potentials

We now give a closely related result in the more general setting of Gibbs point processes
interacting via finite-range, repulsive pair potentials.

Gibbs point processes are defined via a density against an underlying Poisson point process.
In general, this density is the exponential of (the negative of) an energy function on point
sets that captures the interactions between points. In many of the most studied cases, this
energy function takes a special form: it is the sum of potentials over pairs of points in a
configuration.
A pair potential is a measurable symmetric function φ : Rd × Rd → R ∪ {∞}. For a

bounded, measurable activity function λλλ on Λ the Gibbs point process with pair potential φ
on Λ is defined via the partition function

ZΛ(λλλ) =
∑
k≥0

1

k!

∫
Λk

∏
i∈[k]

λλλ(xi)

e−H(x1,...,xk) dx1 . . . dxk

where
H(x1, . . . , xk) =

∑
{i,j}∈([k]

2 )

φ(xi, xj) .

Again the corresponding probability measure µλλλ is obtained as in (1). A pair potential
φ is repulsive if φ(x, y) ≥ 0 for all x, y. It is of finite-range if there exists r ≥ 0 so that
φ(x, y) = 0 whenever dist(x, y) > r. As with the hard-sphere model, we can use the
activity function to encode the influence of boundary conditions by defining the activity
function λη : y 7→ λe−

∑
x∈η φ(x,y) for any activity λ ∈ [0,∞) and particle configuration

η ∈ NΛ. Moreover, strong spatial mixing for a Gibbs point process is defined exactly as in
Definition 1.1.

The hard-sphere model is one example of a model interacting via a finite-range, repulsive
pair potential; it is obtained by letting φ(x, y) take the value +∞ if dist(x, y) ≤ r and 0
otherwise. The Strauss process [74, 44] is another such example.

Our next result is a near-linear expected time perfect sampling algorithm for Gibbs point
processes interacting via finite-range, repulsive potentials under the assumption of strong
spatial mixing.

Theorem 1.4. Suppose φ is a finite-range, repulsive potential on Rd and suppose φ exhibits
(a, b)-strong spatial mixing up to λ for some constants a, b > 0. Then there is a perfect
sampling algorithm for the Gibbs point process defined by φ and activity functions bounded
by λ on boxes Λ in Rd with expected running time O

(
|Λ| logO(1)|Λ|

)
.

One difference between this algorithm and the hard-sphere algorithm of Theorem 1.2 is
that this algorithm needs knowledge of the constants a, b in the assumption of strong spatial
mixing, whereas the hard-sphere algorithm does not.
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Using the results of [58], we can get explicit bounds for the existence of efficient perfect
sampling algorithms in terms of the temperedness constant of the potential defined by

Cφ := sup
x∈Rd

∫
Rd
|1− e−φ(x,y)| dy . (2)

Under the assumption that φ is repulsive and of finite range r, we have 0 ≤ Cφ ≤ vd(r).

Corollary 1.5. The above perfect sampling algorithm runs in expected time O
(
|Λ| logO(1)|Λ|

)
when λ < e

Cφ
.

Remark 1.6. In fact, using the results of Michelen and Perkins [56], one can push the bound
for strong spatial mixing up to e/∆φ, where ∆φ ≤ Cφ is the potential-weighted connective
constant defined therein; our perfect sampling algorithm is efficient up to that point.

1.3 Related work and future directions

Related work

In recent years there has been a moderate flurry of activity around proving rigorous results
for Gibbs point processes in both the setting of statistical physics and probability theory
and in the setting of provably efficient sampling algorithms.

Work on provably efficient approximate sampling methods for the hard-sphere model begins
with the seminal paper of Kannan, Mahoney, and Montenegro [43], who used techniques
from the analysis of discrete spin systems to prove mixing time bounds for Markov chains
for the hard-sphere model. Improvements to the range of parameters for which fast mixing
holds came in [29, 33], before Michelen and Perkins proved the bound e/vd(r) in [58], which
we match with a perfect sampling algorithm in Corollary 1.3.

Perfect sampling algorithms for the hard sphere model have been considered in [27, 46,
21, 25, 38]. In terms of rigorous guarantees of efficiency, Huber proved a bound of 2/vd(r)
for a near-linear expected time perfect sampler in [36]. The perfect sampling algorithm of
Guo and Jerrum in [25] does not match this bound, but the algorithm, based on ‘partial
rejection sampling’ [26] is novel and particularly simple. Several of these approaches also
apply for finite-range, repulsive potentials or can be extended to that setting (e.g. [60]).

In parallel, there has been much work on proving bounds on the range of activities for which
no phase transition can occur in the hard-sphere model; and, in recent years in particular,
the techniques used have close connections to algorithms and the study of Markov chains.
The classic approach to proving absence of phase transition is by proving convergence of the
cluster expansion; the original bound here is 1/(evd(r)) due to Groeneveld [24]. In small
dimensions (most significantly in dimension 2) improvements to the radius of convergence
can be obtained [20]. On the other hand, this approach is inherently limited by the presence
of non-physical singularities on the negative real axis. Alternative approaches avoiding
this obstruction include using the equivalence of spatial and temporal mixing [33, 58]; or
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disagreement percolation [10, 34, 7]. The best current bound for absence of phase transition
for the hard-sphere model and for repulsive pair potentials is the bound of e/Cφ (and e/∆φ)
obtained by Michelen and Perkins [57, 58, 56]. Theorem 1.4 brings the bound for efficient
perfect sampling up to this bound.
On a technical level, the most relevant past work is [18], in which the authors prove

that for discrete spins systems, strong spatial mixing and subexponential volume growth
of a sequence of graphs imply the existence of an efficient perfect sampling algorithm. We
take their approach as a starting point but need new ideas to replace their exhaustive
enumeration of configurations.
A key step in our algorithm is the use of a Bernoulli factory to implement a Bayes

filter. Bernoulli factories are algorithms by which a Bernoulli random variable with success
probability f(p) can be simulated (perfectly) by an algorithm with access to independent
Bernoulli p random variables, where the algorithm does not know the value p. Whether a
Bernoulli factory exists (and how efficient it can be) depends on the function f(·) and a
priori bounds on the possible values p. Bernoulli factories have been studied in [64, 37, 14]
and recently used in the design of perfect sampling algorithms for CSP solutions in [31, 32].

Future directions

There are a number of extensions and improvements to these results one could pursue.
Perhaps most straightforward would be to relax the notion of strong spatial mixing from
exponential decay to decay faster than the volume growth of Rd and to extend the results
to repulsive potentials of unbounded range but finite temperedness constant Cφ. Moreover,
it would be nice to upgrade the guarantees of the algorithm in Theorem 1.4 to that of
Theorem 1.2: that the algorithm does not need prior knowledge of the strong spatial mixing
constants a, b to run correctly.
An ambitious and exciting direction would be to remove the assumption of a repulsive

potential and find efficient perfect sampling algorithms for the class of stable potentials (see
e.g. [65, 70, 71] for a definition). A stable potential is repulsive at short ranges but can
include a weak attractive part; such potentials include the physically realistic Lenard-Jones
potential among others [78]. This would require some very new ideas, as much of the recent
probabilistic and algorithmic work on Gibbs point processes (e.g. [57, 58, 7, 41, 56]) has
used repulsiveness as an essential ingredient (for one, repulsiveness of the potential implies
stochastic domination by the underlying Poisson point process).

1.4 Outline of the paper

In Section 2, we describe the high-level idea and intuition behind the algorithm. In Section 3
we introduce some notation and present some preliminary results that we will use throughout
the paper. In Section 4 we present the algorithm that we will apply to both hard spheres
and more general processes. In Section 5 we prove correctness of the algorithm. In Section 6
we prove a technical lemma that will be crucial for showing efficiency of our algorithm under
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the assumption of strong spatial mixing. In Section 7 we specialize to the hard-sphere model
to complete the proof of Theorem 1.2. In Section 8 we work with finite-range, repulsive
potentials to complete the proof of Theorem 1.4. In Section 9 we prove the running time
bound for the Bernoulli factory used by our algorithm. The appendix contains some technical
lemmas on measure theory and stochastic processes.

2 Intuitive idea behind the algorithm

Our algorithm is an adaptation to continuum models of the work by Feng, Guo, and Yin
[18] on perfect sampling from discrete spin systems. We mimic their setting of a spin system
on a graph G = (V,E) by putting a graphical structure on sub-regions of our continuous
space.

Let Λ = [0, L)d ⊂ Rd be the region considered, λ > 0 the activity, and let φ be a repulsive
potential of range r > 0. We subdivide Λ into (Λvvv)vvv∈V , a set of smaller boxes of side length
r indexed by vertices of a graph: each box corresponds to a vertex and boxes are connected
if they are within r of each other, i.e., particles in the boxes can interact directly through the
potential φ. We fix the index set for the boxes to be V ⊂ Nd

0, where each vvv ∈ V corresponds
to the box Λvvv = [v1r, (v1 + 1)r)× · · · × [vdr, (vd + 1)r). We extend this notation to sets of
indices S ⊆ V by setting ΛS =

⋃
vvv∈S Λvvv. Further, we denote by Bk(vvv) the set of indices

www ∈ V with ‖vvv −www‖∞ ≤ k. To shorten notation, we write ∂S =
(⋃

vvv∈S B1(vvv)
)
\ S for the

outer boundary of a set of boxes indexed by S ⊆ V.
Our algorithm runs iteratively, keeping track of two random variables: a point configuration

Xt ∈ NΛ with X0 = ∅, and a set of ‘incorrect’ boxes Ut ⊆ V with U0 = V. With each
iteration t we maintain the following invariant : the partial configuration Xt ∩ (ΛUt)

c is
distributed according to the projection of µλ to (ΛUt)

c under the boundary condition Xt∩ΛUt .
It follows that Xt is distributed according to µλ once we reach the state Ut = ∅.
We proceed by sketching an iteration of the algorithm. An example for the involved

subregions is given in Figure 1. Each iteration runs as follows:

1. We choose uuut ∈ Ut uniformly at random and attempt to ‘repair’ it by updating Xt on
a neighborhood of boxes B = {uuut} ∪ (B`(uuut) \ Ut) for some update radius ` ∈ N.

2. We sample a Bayes filter Ft (i.e., a Bernoulli random variable) with probability
depending on the potential φ, the activity λ, and the current point configuration Xt

on Λuuut and Λ∂B.

3. a) If Ft = 1, we set Ut+1 = Ut\{uuut} and we getXt+1 by updatingXt on ΛB according
to a projection of µλ conditioned on the boundary configuration Xt ∩ (ΛB)c.

b) If Ft = 0, the configuration is unchanged and we add the boundary boxes to our
‘incorrect’ list, i.e., Xt+1 = Xt and Ut+1 = Ut ∪ ∂B.

We use the Bayes filter, as in [18], to remove bias from the resulting distribution. To
give some intuition for its role, suppose we run a naive version of the algorithm where we
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ut

Ut

B

∂B

H

Figure 1: The box-shaped region Λ ⊂ R2 is divided into
boxes of side length r (dotted lines). The boxes Ut
are bordered by bold black lines. For uuut as given
and update radius ` = 2, the corresponding set B
of boxes to be updated is indicated by the red
hatched area (falling left to right). Its boundary
boxes ∂B are shown as blue hatched area (rising
left to right). The boxes in H = (Ut ∪ B)c are
shown with gray background.

always update Xt on ΛB as in step 3.a) above. Assuming the desired invariant holds after
t iterations, this naive algorithm gives a bias to the distribution of Xt+1 proportional to
ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

)
ZΛB (λXt∩Λ∂B )

. We choose the Bayes filter such that, conditioned on Ft = 1, the

bias term gets canceled. This suggests the choice

P[Ft = 1 | Xt,Ut,uuut ] = C(Ut,uuut, Xt) ·
ZΛB (λXt∩Λ∂B )

ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

) , (3)

where the choice C(Ut,uuut, Xt) serves three main purposes.
First, it must guarantee that the right-hand side of (3) is a probability. To achieve this

we need, for H = (Ut ∪B)c and almost all realizations of Xt, Ut and uuut, that

C(Ut,uuut, Xt) ≤ inf
ξ∈NΛH

ZΛB\{uuut}

(
λξ∪(Xt∩ΛUt )

)
ZΛB

(
λξ∪(Xt∩ΛUt\{uuut})

) . (4)

Second, C(Ut,uuut, Xt) must introduce no new bias. This is guaranteed if C(Ut,uuut, Xt) only
depends on Xt ∩ΛUt . Finally, it must ensure that the algorithm terminates almost surely. It
suffices to ensure C(Ut,uuut, Xt) is uniformly bounded away from 0 for almost all realizations
of Xt, implying that the same holds for the right-hand side of (3). We refer to a function
C(·) satisfying these requirements as a Bayes filter correction.
If we use a Bayes filter as given in (3), keeping Xt and Ut unchanged whenever Ft = 0

introduces new bias. To prevent this, we set Ut+1 = Ut∪∂B in step 3.b). Since the algorithm
only terminates once Ut = ∅, we further require the Bayes filter correction to ensure that
the probability of Ft = 0 is small to guarantee efficiency.
Constructing a Bayes filter correction that satisfies the requirements above and allows

for efficient sampling of Ft is a non-trivial task. In the next subsections, we present two
approaches for this, the first specialized to the hard-sphere model without requirements, and
the second one for more general potentials with strong spatial mixing of the point process.
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Crucially, assuming strong spatial mixing, both constructions allow us to control the success
probability of the Bayes filter via the update radius ` in the construction of the updated set
of boxes B (see step 1).

2.1 Bayes filter for the hard-sphere model

To construct a Bayes filter for the hard-sphere model, we efficiently approximate the right-
hand side of (4). To approximate the infimum over the uncountable set of configurations
ξ ∈ NΛH we take the minimum over a finite, but sufficiently rich set of configurations,
balancing the quality of approximation with the computation required. In fact the number
of configurations needed will depend only on the volume of ΛB∪∂B. We approximate the
fraction of partition functions in (4) with running time only depending on the volume of
ΛB∪∂B . As a result, we efficiently compute a Bayes filter correction Cε(·), with the parameter
ε > 0 controlling how much Cε(Ut,uuut, Xt) deviates from the right-hand side of (4).
While our construction of Cε(·) guarantees correctness of the sampling algorithm for

any ε > 0, proving efficiency requires more. With strong spatial mixing, we choose ε so
that the probability that Ft = 0 is uniformly bounded above, ensuring O(|Λ|) iterations in
expectation.
It remains to argue that we can efficiently sample Ft, using the Bayes filter correction

Cε(·). Explicitly computing the success probability of Ft as in (3) would require computing
the fraction of partition functions on the right-hand side exactly, while approximating these
partition functions would require that the approximation error only depends on Xt ∩ ΛUt ,
to avoid new bias.

It is unclear how to implement these approaches, so instead we use Bernoulli factories to
sample Ft without knowing the success probability. To do so, we observe that the fraction of
partition functions can be written as a ratio of probabilities for drawing the empty set from a
conditional hard-sphere model on ΛB and ΛB\{uuut}. Since both regions have constant volume,
rejection sampling obtains Bernoulli random variables with these success probabilities in
constant time, and hence construct a Bernoulli factory for Ft with constant expected running
time. Wald’s identity yields a total expected running time O(|Λ|) for the algorithm.

2.2 Bayes filter for general potentials

We now consider the case of general bounded-range, repulsive potentials. Unlike the hard
sphere model, it is not clear here how to approximate the infimum in (4) from a finite set of
boundary configurations. However, given constants a, b > 0 such that φ satisfies (a, b)-strong
spatial mixing, we can explicitly compute a function δ(a, b) so that

Ca,b(Ut,uuut, Xt) = δ(a, b) ·
ZΛB\{uuut}

(
λXt∩ΛUt

)
ZΛB

(
λXt∩ΛUt\{uuut}

)

11



is a Bayes filter correction. With strong spatial mixing, we use Ca,b(·) to construct a Bayes
filter such that probability that Ft = 0 is bounded above, again implying a bound of O(|Λ|)
on the expected number of iterations of the algorithm.
Note that in this setting, we require spatial mixing for both correctness and efficiency,

while for the hard-sphere model we only need it for efficiency. Another crucial difference
is that, while we can explicitly compute δ(a, b), the same does not hold for Ca,b(·) due to
the fraction of partition functions involved. Again we circumvent this by rewriting the
success probability of the Bayes filter in a suitable way and applying a Bernoulli factory for
sampling Ft. Finally, we point out that we do not obtain a constant bound for the expected
running time of each iteration, but instead the bound depends on the number of points in
Xt ∩Λ∂B . Possible dependencies between the configuration Xt and the number of iterations
prevent us from bounding the total expected running time using Wald’s identity. Instead,
we provide tail bounds on the number of iterations and the running time of each iteration,
allowing us to derive an expected total running time that is linear in the volume of Λ up to
polylogarithmic factors.

3 Preliminaries

Throughout the paper, we write N for the set of strictly positive integers, and we write
N0 = N ∪ {0}. For any k ∈ N, we denote by [k] the set [1, k] ∩N.

For a bounded measurable region Λ ⊂ Rd and any finite point configuration η ∈ NΛ, we
write |η| for the number of points in η. Note that this notation is the same that as the one
we use for the volume of a region. The particular meaning will be clear from the context.
Moreover, for k ∈ N, we write

(
η
k

)
for the set {η′ ⊆ η | |η′| = k}.

3.1 Gibbs point processes

We introduce some additional notation for Gibbs point processes, used in the rest of the
paper. Firstly, when dealing with a tuple (x1, . . . , xk) ∈ (Rd)k we frequently denote it by
the corresponding bold letter xxx. Based on this, we write dxxx for dx1 . . . dxk and H(xxx) for
H(x1, . . . , xk). Moreover, for any k ∈ N0 and xxx = (x1, . . . , xk) ∈ (Rd)k we write ηxxx for the
set {x1, . . . , xk}, where the case k = 0 results in ηxxx = ∅. Finally, for xxx ∈ Λk we write λλλxxx for∏
i∈[k]λλλ(xi). This simplifies the definition of µλλλ given in the introduction to

µλλλ(A) =
1

ZΛ(λλλ)

∑
k≥0

1

k!

∫
Λk
1ηxxx∈Aλλλ

xxxe−H(xxx) dxxx.

Next, we formalize two different notions of restricting a Gibbs point process on Λ to a
subregion Λ′ ⊆ Λ that are relevant throughout the paper.
The first is based on restricting the support of λλλ by defining a new activity function

λλλ1Λ′ : y 7→ λλλ(y) · 1y∈Λ′ (for constant activity λ, we write λ1Λ′ : y 7→ λ1y∈Λ′). The resulting

12



Gibbs point process is a probability measure on (NΛ,RΛ) with

µλλλ1Λ′
(A) =

1

ZΛ(λλλ1Λ′)

∑
k≥0

1

k!

∫
Λk
1ηxxx∈A(λλλ1Λ′)

xxxe−H(xxx) dxxx

=
1

ZΛ′(λλλ)

∑
k≥0

1

k!

∫
Λ′k
1ηxxx∈Aλλλ

xxxe−H(xxx) dxxx

for all A ∈ RΛ. In particular, for A = {η ∈ NΛ | η ∩ (Λ′)c > 0}, it holds that µλλλ1Λ′
(A) = 0.

The second way of restricting a Gibbs point process µλλλ is by projecting it to a measurable
subregion Λ′ ⊆ Λ. To this end, we write µλλλ[Λ′] for the image measure of µλλλ under the map
NΛ → NΛ′ , η 7→ η ∩ Λ′. By construction, µλλλ[Λ′] is a probability distribution on (NΛ′ ,RΛ′)
that, for every A ∈ RΛ′ , assigns a probability

µλλλ
[
Λ′
]
(A) =

1

ZΛ(λλλ)

∑
k≥0

1

k!

∫
Λk
1ηxxx∩Λ′∈Aλλλ

xxxe−H(xxx) dxxx.

As discussed in Section 1, we frequently modify the activity function to encode the effect
of fixing a certain point set (boundary condition). More precisely, for a fixed potential φ, an
activity function λλλ and a point set η ∈ NΛ we write λλλη for the function y 7→ λλλ(y)e−

∑
x∈η φ(x,y).

Similarly, for k ∈ N and xxx ∈ Λk we write λλλxxx for the activity function y 7→ λλλ(y)e−
∑
i∈[k] φ(xi,y).

We extend this notation to constant activity λ ∈ R≥0, writing λη : y 7→ λe−
∑
x∈η φ(x,y) and

λxxx : y 7→ λe−
∑
i∈[k] φ(xi,y). Using this notation, a useful alternative definition of µλλλ[Λ′] is

given by

µλλλ
[
Λ′
]
(A) =

1

ZΛ(λλλ)

∑
k≥0

1

k!

∫
Λ′k
1ηxxx∈Aλλλ

xxxe−H(xxx)ZΛ

(
λλλxxx1(Λ′)c

)
dxxx

=
1

ZΛ(λλλ)

∑
k≥0

1

k!

∫
Λ′k
1ηxxx∈Aλλλ

xxxe−H(xxx)Z(Λ′)c(λλλxxx) dxxx

for A ∈ RΛ′ . In particular, note that

µλλλ1Λ′

[
Λ′
]
(A) =

1

ZΛ′(λλλ)

∑
k≥0

1

k!

∫
Λ′k
1ηxxx∈Aλλλ

xxxe−H(xxx) dxxx.

While µλλλ1Λ′
[Λ′] and µλλλ1Λ′

seem similar, the difference is that the former is a distribution on
(NΛ′ ,RΛ′) whereas the latter is defined on (NΛ,RΛ).

We introduce further concepts related to Gibbs point processes, such a point density
functions when they are required. Moreover, various useful properties of Gibbs point
processes are given in Appendix C.
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3.2 Bernoulli factories

In designing our sampling algorithm, it will be useful to consider the following Bernoulli
factory problem. We are given access to a sampler for Ber(p) and for Ber(q), that is samplers
of Bernoulli random variables with parameters p and q respectively, where we further assume
p < q. We want to sample a random variable Z ∼ Ber

(
p
q

)
.

Most work on Bernoulli factories studies their running time in terms of the number of coin
flips required. In our setting, the time needed to generate each of these coin flips is random
variable. Fortunately, suitable independence assumptions hold in our setting allowing us to
prove the following lemma.

Lemma 3.1. Fix some p, q ∈ [0, 1] such that q − p ≥ ε for some ε > 0. Further assume that
we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:

1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;

2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), condi-
tioned on previously obtained samples, is uniformly bounded by some t ∈ R≥0.

Then we can sample from Ber
(
p
q

)
in O

(
tε−2

)
expected time.

Lemma 3.1, will play a key role in bounding the expected running time of our algorithm.
To proceed with the formal description of our algorithm, we defer the proof of this lemma
to Section 9.

4 The algorithm

Let Λ = [0, L)d and consider a Gibbs point processes on Λ with uniform activity λλλ(x) ≡ λ
for some λ ∈ R>0 and repulsive potential φ with finite range r ∈ R>0. Throughout the
analysis of our algorithm, it will be useful to focus on configurations η ∈ NΛ such that
φ(x, y) <∞ for all {x, y} ∈

(
η
2

)
, in which case we call η a feasible configuration.

Before stating our algorithm, we first formalize how we divide Λ into smaller boxes,
following the description given in Section 2. For a r and L as above, let N = dL/re.
We set V = {0, . . . , N − 1}d to be the set of box indices and associate each box index
vvv = (v1, . . . , vd) ∈ V with the region Λvvv =

(
[v1r, (v1 + 1)r)× · · · × [vdr, (vd + 1)r)

)
∩ Λ. As

in Section 2, we extend this notation to sets of box indices S ⊆ V by setting ΛS =
⋃
vvv∈S Λvvv.

Further, recall that, for vvv ∈ V , we write Bk(vvv) for the set of boxes www ∈ V with ‖vvv −www‖∞ < k.
As mentioned earlier, our algorithm tries to update in each step the point configuration on
a subset of boxes B ⊆ V. To this end, for S ⊆ V, vvv ∈ S, r ∈ R>0 and ` ∈ N, we define

B(S,vvv, `) := {vvv} ∪
(
B\(`)S

)
.

We refer to the parameter ` as the update radius. Finally, recall that we write ∂S =
(
⋃
vvv∈S B1(vvv)) \ S for the outer boundary of S ⊆ V.

14



If the algorithm updates the point configuration in any iteration t depends on the outcome
of a Bernoulli random variable Ft, called the Bayes filter. We introduce the following
definition.

Definition 4.1. Fix a repulsive potential φ of range r ∈ R>0, an activity λ ∈ R>0 and some
` ∈ N. We call a function C : 2V × V × NΛ → [0, 1] a Bayes filter correction if, for all
non-empty S ⊆ V and vvv ∈ S, it holds that

1. C(S,vvv, ·) is RΛS -measurable (in particular C(S,vvv, η) = C(S,vvv, η ∩ ΛS) for all η ∈
NΛ),

2. there is some ε > 0 such that for B = B(S,vvv, `), H = (S ∪B)c and all feasible η ∈ NΛ

it holds that

ε ≤ C(S,vvv, η) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

 ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
.

Our perfect sampling procedure is stated in Algorithm 1.

Algorithm 1: Perfect sampling algorithm for repulsive Gibbs point processes
Data: region Λ = [0, L)d, repulsive potential φ of range at most r ∈ R>0, activity

λ ∈ R>0, update radius ` ∈ N
1 set t = 0, Ut = V, Xt = ∅
2 while Ut 6= ∅ do
3 draw uuut ∈ Ut uniformly at random
4 set B = B(Ut,uuut, `)

5 draw Ft from Ber

(
C(Ut,uuut, Xt) ·

ZΛB (λXt∩Λ∂B )
ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

)
)

where C is a Bayes

filter correction as in Definition 4.1
6 if Ft = 1 then
7 draw Y from µλXt∩(ΛB)c1ΛB

[ΛB]

8 set Xt+1 = (Xt \ ΛB) ∪ Y
9 set Ut+1 = Ut \ {uuut}

10 else
11 set Ut+1 = Ut ∪ ∂B
12 increase t by 1

13 return Xt

Before we analyze Algorithm 1, we first argue that the success probability of the Bayes
filter that we require in line 5 is indeed a well defined probability. For this, we use the
following lemma.
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Lemma 4.2. Suppose C is a Bayes filter correction. Let S ⊆ V be non-empty, vvv ∈ S and
B = B(S,vvv, `). There is some ε > 0 such that, for all feasible η ∈ NΛ, it holds that

ε ≤ C(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≤ 1.

Proof. Fix S and vvv. For the lower bound, note that for all η ∈ NΛ

ZΛB (λη∩Λ∂B ) ≥ ZΛB\{vvv}(λη∩Λ∂B ) ≥ ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
.

Thus, by the definition of a Bayes filter correction, there is some ε > 0 such that for all
feasible η ∈ NΛ

C(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≥ C(S,vvv, η) ≥ ε.

To derive the upper bound, note that by Lemma C.2 ZΛB (λη∩Λ∂B ) = ZΛB

(
λη∩(ΛB)c

)
and

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
= ZΛB\{vvv}

(
λη∩(ΛB\{vvv})c

)
. Note that, for feasible η ∈ NΛ, it further

holds that (η∩ΛH)∪ (η∩ΛS) is feasible as well. By the definition of a Bayes filter correction,
this implies

C(S,vvv, η) ≤
ZΛB\{vvv}

(
λη∩(ΛB\{vvv})c

)
ZΛB

(
λη∩(ΛB)c

) .

Consequently, it holds that

C(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) = C(S,vvv, η) ·
ZΛB

(
λη∩(ΛB)c

)
ZΛB\{vvv}

(
λη∩(ΛB\{vvv})c

) ≤ 1,

which proves the claim

We use the previous lemma to derive the following statement.

Lemma 4.3. For all t ∈ N0 the following holds almost surely

1) Xt is a feasible configuration

2) there is some ε > 0 such that, given Ut 6= ∅,

ε ≤ C(Ut,uuut, Xt) ·
ZΛB (λXt∩Λ∂B )

ZΛB\{uuut}

(
λXt∩Λ∂B∪{uuut}

) ≤ 1.

16



Proof. We prove this statement via induction over the iteration t ∈ N0. For t = 0, note
that X0 = ∅. Thus, 1) is trivially true. Moreover, 2) follows from applying Lemma 4.2 to
C(V, vvv, ∅) for every vvv ∈ V.

Now, suppose our claim holds at some iteration t ∈ N . We start by showing that 1) holds
in iteration t+ 1. First, note that if Ut = ∅, then there is nothing to prove. Thus, we may
assume Ut 6= ∅. If Ft = 0, then Xt+1 = Xt. Thus, in this case, Xt+1 is feasible if and only if
Xt was feasible, which holds almost surely by the induction hypothesis. Next, consider the
case Ft = 1 and set B = B(Ut,uuut, `). Note that∑
{x,y}∈(Xt+1

2 )

φ(x, y) =
∑

{x,y}∈(Xt+1∩(ΛB)c

2 )

φ(x, y)+
∑

{x,y}∈(Xt+1∩ΛB
2 )

φ(x, y)+
∑

x∈Xt+1∩ΛB
y∈Xt+1∩(ΛB)c

φ(x, y).

Since Xt+1 ∩ (ΛB)c = Xt ∩ (ΛB)c and Xt is almost surely feasible, we have∑
{x,y}∈(Xt+1∩(ΛB)c

2 )

φ(x, y) <∞

with probability 1. Moreover, note that Xt+1 ∩ΛB ∼ µλXt∩(ΛB)c1ΛB
[ΛB]. Thus, it also holds

that ∑
{x,y}∈(Xt+1∩ΛB

2 )

φ(x, y) +
∑

x∈Xt+1∩ΛB
y∈Xt+1∩(ΛB)c

φ(x, y) =
∑

{x,y}∈(Xt+1∩ΛB
2 )

φ(x, y) +
∑

x∈Xt+1∩ΛB
y∈Xt∩(ΛB)c

φ(x, y)

<∞

with probability 1. Consequently, Xt+1 is almost surely feasible, proving 1). For 2), assume
that Ut+1 6= ∅. Applying Lemma 4.2 for every non-empty S ⊆ V and vvv ∈ S yields the
desired bounds on C(Ut+1,uuut+1, Xt+1) whenever Xt+1 is feasible. As we have just shown,
this is the case almost surely, which concludes the proof.

Considering Algorithm 1, an immediate question is how to construct the Bayes filter
correction in line 5, and in particular, how to do so in such a way that the Bayes filter Ft
can be sampled efficiently. However, we will defer this question for now and first prove that
Algorithm 1 produces the correct output distribution.

5 Proof of correctness

In this section we prove that Algorithm 1 produces the correct output distribution. That
is for T = inf{t ∈ N0 | Ut = ∅} it holds that XT ∼ µλ. We first show that the number of
iterations T is finite almost surely. This directly follows as a corollary of Lemma 4.3.

Corollary 5.1. Algorithm 1 terminates almost surely after finitely many iterations. That is,
for T = inf{t ∈ N0 | Ut = ∅} we have P[T <∞] = 1.
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Proof. By Lemma 4.3, the probability that |Ut| decreases in each step is uniformly bounded
away from 0. Thus, there is a positive probability of going from any Ut to the empty set in
|Ut| steps. Since |Ut| ≤ |V|, this means for every k ∈ N, it holds that the probability that
Uk·|V| = ∅ is bounded away from 0 uniformly in k. Thus, T is dominated by a geometric
random variable with strictly positive success probability, which proves the claim.

To analyze Algorithm 1, we consider it as a Markov chain (Xt,Ut, Ft,uuut)t∈N0 , which we set
to remain constant for t ≥ T . Throughout this section, we write Ω = (NΛ×2V×{0, 1}×V)N0

for the state space of all trajectories of that Markov chain. Further, we equip Ω with the
σ-field A = (RΛ ⊗ 22V ⊗ 2{0,1} ⊗ 2V)⊗N0 , and we denote by P the distribution on (Ω,A)
induced by Algorithm 1.
Before going into the technical part of proving correctness, a few remarks about our

notation are in place. Firstly, for any A ∈ A with P[A] > 0 we write PA as shorthand for the
probability measure PA[ ·] = P[ · | A ]. Note that for all events A,B ∈ A with P[A ∩B] > 0
it holds that PA∩B = (PA)B. Throughout our proofs, we use conditional expectations
to make conditioning on partial point configurations Xt ∩ Λ′ rigorous. In particular, we
frequently condition on a sub-σ-field F ⊆ A and an event A ∈ A with P[A] > 0 at the
same time. Formally, for a measurable function f : Ω → R we write E[f | F ;A ] for the
conditional expectation of f given F under the conditional measure PA. Note that any
identity involving E[f | F ;A ] should be understood to hold PA-almost surely. More details
on conditional expectations can be found in Appendix A.1. Moreover, we often make use of
the concept of regular condition distributions. For more details, see Appendix A.2. Lastly,
for every bounded measurable Λ′1 ⊆ Λ′2 ⊆ Rd, we write πΛ′1,Λ′2 : NΛ′1 → NΛ′2 for the
projection η 7→ η ∩ Λ′2.
Our main result in this section is the following statement.

Theorem 5.2. For all t ∈ N0 with P[Ut = ∅] > 0 and all A ∈ RΛ, it holds that

P[Xt ∈ A | Ut = ∅ ] = µλ(A).

Since the algorithm terminates when Ut = ∅, this implies that the output of Algorithm 1
follows the distribution µλ(A). We deduce Theorem 5.2 from the following invariant.

Lemma 5.3. For all t ∈ N0, S ⊆ V with P[Ut = S] > 0 and A ∈ R(ΛS)c it holds that

E
[
1Xt∩(ΛS)c∈A

∣∣ Xt ∩ ΛS ;Ut = S
]

= µλXt∩ΛS
1(ΛS)c

[(ΛS)c](A).

In particular, the map

(ω,A) 7→ µλXt(ω)∩ΛS
1(ΛS)c

[(ΛS)c](A) ω ∈ Ω, A ∈ R(ΛS)c

is a regular conditional distribution of Xt ∩ (ΛS)c given σ(Xt ∩ ΛS) under the probability
measure P{Ut=S}.

Before we get into proving Lemma 5.3, we first show how Theorem 5.2 follows from it.
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Proof of Theorem 5.2. Note that Λ∅ = ∅. Thus, it holds that (Λ∅)
c = Λ and σ(Xt ∩ Λ∅) =

{∅,Ω} for all t ∈ N0. Using Lemma 5.3, we obtain for all A ∈ RΛ

P[Xt ∈ A | Ut = ∅ ] = E[1Xt∈A | Ut = ∅ ]

= E[1Xt∈A | Xt ∩ Λ∅;Ut = ∅ ]

= µλ(A),

which proves the theorem.

We proceed by stating and proving several lemmas that we will use to prove Lemma 5.3.

Lemma 5.4. Fix t ∈ N0, and assume that for all S ⊆ V with P[Ut = S] > 0 and all
A ∈ R(ΛS)c it holds that

E
[
1Xt∩(ΛS)c∈A

∣∣ Xt ∩ ΛS ;Ut = S
]

= µλXt∩ΛS
1(ΛS)c

[(ΛS)c](A).

Let E = {Ut = S,uuut = vvv} for some S ∈ 2V \ {∅} and vvv ∈ S such that P[E] > 0. For any
measurable region Λ′ ⊆ (ΛS)c and any event A ∈ RΛ′ it holds that

E[1Xt∩Λ′∈A | Xt ∩ ΛS ;E ] = µλXt∩ΛS
1(ΛS)c

[
Λ′
]
(A).

In particular,
(ω,A) 7→ µλXt∩Λ′1(ΛS)c

[
Λ′
]
(A) ω ∈ Ω, A ∈ RΛ′

is a regular conditional distribution of Xt ∩ Λ′ given σ(Xt ∩ ΛS) under PE.

Proof. Fix some measurable region Λ′ ⊆ (ΛS)c and note that µλXt∩ΛS
1(ΛS)c

[Λ′] is a proba-
bility distribution on (NΛ′ ,RΛ′). Thus, it suffices to show that µλXt∩ΛS

1(ΛS)c
[Λ′](A) is also

a version of the conditional expectation E
[
1Xt∩(Λ′)c∈A

∣∣ Xt ∩ ΛS ;E
]
for all events A ∈ RΛ′ .

Write πΛ′ as shorthand for the projection π(ΛS)c,Λ′ . By the assumptions of the lemma, we
have

E[1Xt∩Λ′∈A | Xt ∩ ΛS ;Ut = S ] = E
[
1Xt∩(ΛS)c∈π−1

Λ′ (A)

∣∣∣ Xt ∩ ΛS ;Ut = S
]

= µλXt∩ΛS
1(ΛS)c

[(ΛS)c]
(
π−1

Λ′ (A)
)

= µλXt∩ΛS
1(ΛS)c

[
Λ′
]
(A).

Next, we use Lemma A.3 part (2) to argue that this still holds if we change the probability
measure from P{Ut=S} to PE . Note that, given Ut = S, uuut is chosen uniformly from S
independent of Xt. Therefore, we have

E[1uuut=vvv | Xt ∩ ΛS ;Ut = S ] = E[1uuut=vvv | Ut = S ]

= E
[
1uuut=vvv

∣∣ Xt ∩ ΛS , Xt ∩ Λ′;Ut = S
]
.
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Lemma 5.5. Under the assumptions of Lemma 5.4, let E1 = {Ut = S,uuut = vvv, Ft = 1} for
some S ∈ 2V \ {∅} and vvv ∈ S such that P[E1] > 0, and set R = S \ {vvv}. For all A ∈ R(ΛR)c

it holds that

E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt+1 ∩ ΛR;E1

]
= µλXt+1∩ΛR

1(ΛR)c
[(ΛR)c](A).

Proof. Let E = {Ut = S,uuut = vvv} for S and vvv as in the definition of E1, and set B = B(S,vvv, `)
and H = V \ (S ∪ B). The main idea of the proof is to prove the claim for pairs of
events AB ∈ RB, AH ∈ RH and use the fact that such events form a generating π-system
since (R)c = U∪H. To establish this, we derive a suitable version of the conditional
expectation E

[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]
, which we do by first deriving

an expression for E
[
1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]
and integrating it over AH against a

regular conditional distribution for Xt ∩ ΛH given σ(Xt ∩ ΛS) under the measure PE .
We start by deriving an expression for E

[
1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]
. Note that

given the event E1, the point set Xt+1 ∩ ΛB is sampled from µλXt∩(ΛB)c1ΛB
[ΛB]. Therefore

we have for all AB ∈ RΛB that

E
[
1Xt+1∩ΛB∈AB

∣∣ Xt ∩ (ΛB)c;E1

]
= µλXt∩(ΛB)c1ΛB

[ΛB].

Since the above is true independently of the partial configuration Xt ∩Λvvv, we may add it to
the condition and obtain

E
[
1Xt+1∩ΛB∈AB

∣∣ Xt ∩ (ΛB\{vvv})
c;E1

]
= E

[
1Xt+1∩ΛB∈AB

∣∣ Xt ∩ (ΛB)c, Xt ∩ Λvvv;E1

]
= µλXt∩(ΛB)c1ΛB

[ΛB](AB)

Note that the right-hand side of the latter equality is a function on Ω, and denote this
function by g. Moreover, given E and Xt∩(ΛB)c, Ft is drawn as a Bernoulli random variable
with success probability

C(S,vvv,Xt) ·
ZΛB (λXt∩Λ∂B )

ZΛB\{vvv}

(
λXt∩Λ∂B∪{vvv}

) ,
where C is a Bayes filter correction as in Definition 4.1. Thus, it holds that

E
[
Ft
∣∣ Xt ∩ (ΛB\{vvv})

c;E
]

= C(S,vvv,Xt) ·
ZΛB (λXt∩Λ∂B )

ZΛB\{vvv}

(
λXt∩Λ∂B∪{vvv}

)
= C(S,vvv,Xt ∩ ΛS) · ZΛB (λXt∩Λ∂B )

ZΛB\{vvv}

(
λXt∩Λ∂B∪{vvv}

) ,
where the second equality holds since C(S,vvv, ·) = C(S,vvv, · ∩ ΛS) by definition. We denote
the function on the right-hand side of the last equality by h. By Lemma A.1, we have

E
[
1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ (ΛB\{vvv})
c;E

]
(ω) = g(ω) · h(ω)
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for PE-almost all ω ∈ Ω.
Our next step is to use Theorem A.4 to derive an expression for the conditional expectation

E
[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]
for every AH ∈ RΛH . To this end, note

that

E
[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]

= E
[
1Xt∩ΛH∈AH · E

[
1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ (ΛB\{vvv})
c;E

] ∣∣ Xt ∩ ΛS ;E
]

= E[1Xt∩ΛH∈AH · g · h | Xt ∩ ΛS ;E ], (5)

where the first equality comes from the fact that σ(Xt ∩ ΛS) ⊆ σ(Xt ∩ (ΛB\{vvv})
c). By

Lemma 5.4, the map

(ω,AH) 7→ µλXt(ω)∩ΛS
1(ΛS)c

[ΛH ](AH) for ω ∈ Ω, AH ∈ RΛH

is a regular conditional distribution for Xt∩ΛH given Xt∩ΛS under the probability measure
PE . To use this regular conditional probability to obtain an expression for the conditional
expectation in (5), define functions ĝ, ĥ : NΛH ×NΛS → R≥0 via

ĝ(η1, η2) = µλ(η1∪η2)∩(ΛB)c1ΛB
[ΛB](AB)

ĥ(η1, η2) = C(S,vvv, η2) ·
ZΛB

(
λ(η1∪η2)∩Λ∂B

)
ZΛB\{vvv}

(
λ(η1∪η2)∩Λ∂B∪{vvv}

) .
Now, observe that for all ω ∈ Ω it holds that ĝ(Xt(ω) ∩ ΛH , Xt(ω) ∩ ΛS) = g(ω) and
ĥ(Xt(ω) ∩ ΛH , Xt(ω) ∩ ΛS) = h(ω). Thus, Theorem A.4 yields

E[1Xt∩ΛH∈AH · g · h | Xt ∩ ΛS ;E ](ω)

= E
[
1Xt∩ΛH∈AH · ĝ(Xt ∩ ΛH , Xt ∩ ΛS) · ĥ(Xt ∩ ΛH , Xt ∩ ΛS)

∣∣∣ Xt ∩ ΛS ;E
]
(ω)

=

∫
NΛH

1η∈AH · ĝ(η,Xt(ω) ∩ ΛS) · ĥ(η,Xt(ω) ∩ ΛS)µλXt(ω)∩ΛS
1(ΛS)c

[ΛH ]( dη)

=
1

Z(ΛS)c

(
λXt(ω)∩ΛS

) ∑
n≥0

1

n!

∫
ΛnH

1ηxxx∈AH · ĝ(ηxxx, Xt(ω) ∩ ΛS) · ĥ(ηxxx, Xt(ω) ∩ ΛS)

· (λXt(ω)∩ΛS )xxx · e−H(xxx) · Z(ΛS)c∩(ΛH)c

(
λ(Xt(ω)∩ΛS)∪ηxxx

)
dxxx

=
1

Z(ΛS)c

(
λXt(ω)∩ΛS

) ∑
n≥0

1

n!

∫
ΛnH

1ηxxx∈AH · ĝ(ηxxx, Xt(ω) ∩ ΛS) · ĥ(ηxxx, Xt(ω) ∩ ΛS)

· (λXt(ω)∩ΛS )xxx · e−H(xxx) · ZΛB\{vvv}

(
λ(Xt(ω)∩ΛS)∪ηxxx

)
dxxx. (6)

We proceed by simplifying (6). Observe that

ĥ(ηxxx, Xt ∩ ΛS) = C(S,vvv,Xt ∩ ΛS) ·
ZΛB

(
λ(ηxxx∪(Xt∩ΛS))∩Λ∂B

)
ZΛB\{vvv}

(
λ(ηxxx∪(Xt∩ΛS))∩Λ∂B∪{vvv}

)
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= C(S,vvv,Xt ∩ ΛS) ·
ZΛB

(
λ(ηxxx∪(Xt∩ΛS))∩Λ(B)c

)
ZΛB\{vvv}

(
λ(ηxxx∪(Xt∩ΛS))∩(ΛB\{vvv})c

)
= C(S,vvv,Xt ∩ ΛS) ·

ZΛB

(
ληxxx∪(Xt∩ΛR)

)
ZΛB\{vvv}

(
ληxxx∪(Xt∩ΛS)

) .
Here, the second equality follows from Lemma C.2 and the fact that for all η ∈ NΛ it
holds that the distance between (η ∩ (ΛB)c)∆(η ∩ Λ∂B) and ΛB, and the distance between
(η ∩ (ΛB\{vvv})

c)∆(η ∩Λ∂B∪{vvv}) and ΛB\{vvv} are at least r. Moreover, the last equality follows
from the fact that S∩(B)c = S\{vvv} = R, ηxxx ⊆ ΛH ⊆ (ΛB)c ⊆ (ΛB\{vvv})

c and S ⊆ (B\{vvv})c.
Further, note that

ĝ(ηxxx, Xt ∩ ΛS) = µλ(ηxxx∪(Xt∩ΛS))∩(ΛB)c1ΛB
[ΛB](AB)

= µληxxx∪(Xt∩ΛR)1ΛB
[ΛB](AB)

=

∑
m≥0

1
m!

∫
ΛmB
1ηyyy∈AB · (ληxxx∪(Xt∩ΛR))

yyy · e−H(yyy) dyyy

ZΛB

(
ληxxx∪(Xt∩ΛR)

) .

Substituting both back into (6) and canceling ZΛB

(
ληxxx∪(Xt∩ΛR)

)
and ZΛB\{vvv}

(
ληxxx∪(Xt∩ΛS)

)
yields

E
[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]

= E[1Xt∩ΛH∈AH · g · h | Xt ∩ ΛS ;E ]

=
C(S,vvv,Xt ∩ ΛS)

Z(ΛS)c(λXt∩ΛS )

∑
n≥0

1

n!

∫
ΛnH

1ηxxx∈AH · (λXt∩ΛS )xxx · e−H(xxx)

·

∑
m≥0

1

m!

∫
ΛmB

1ηyyy∈AB · (ληxxx∪(Xt∩ΛR))
yyy · e−H(yyy) dyyy

 dxxx.

Moreover, note dist(Λvvv,ΛH) ≥ r. Thus, it holds for n ∈ N0 and xxx = (x1, . . . , xn) ∈ ΛnH that

(λXt∩ΛS )xxx = λne
−
∑n
i=1

∑
z∈Xt∩ΛS

φ(xi,z)

= λne
−
∑n
i=1

∑
z∈Xt∩ΛR

φ(xi,z)

= (λXt∩ΛR)xxx.

Consequently, we have

E
[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]

=
C(S,vvv,Xt ∩ ΛS)

Z(ΛS)c(λXt∩ΛS )

∑
n≥0

1

n!

∫
ΛnH

1ηxxx∈AH · (λXt∩ΛR)xxx · e−H(xxx)
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·

∑
m≥0

1

m!

∫
ΛmB

1ηyyy∈AB · (ληxxx∪(Xt∩ΛR))
yyy · e−H(yyy) dyyy

 dxxx.

To shorten notation, let πΛB denote the projection π(ΛR)c,ΛB and write πΛH for π(ΛR)c,ΛH .
Since H ∪B = (R)c, we obtain

∑
n≥0

1

n!

∫
ΛnH

1ηxxx∈AH · (λXt∩ΛR)xxxe−H(xxx)

∑
m≥0

1

m!

∫
ΛmB

1ηyyy∈AB (ληxxx∪(Xt∩ΛR))
yyye−H(yyy) dyyy

 dxxx

= Z(ΛR)c(λXt∩ΛR) · µλXt∩ΛR
1(ΛR)c

[(ΛR)c]
(
π−1

ΛH
(AH) ∩ π−1

ΛB
(AB)

)
.

This finally yields the expression

E
[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]

= C(S,vvv,Xt ∩ ΛS) ·
Z(ΛR)c(λXt∩ΛR)

Z(ΛS)c(λXt∩ΛS )

· µλXt∩ΛR
1(ΛR)c

[(ΛR)c]
(
π−1

ΛH
(AH) ∩ π−1

ΛB
(AB)

)
.

Our next goal is to use Lemma A.1 to switch from PE to PE1 . To this end, note that

E[Ft | Xt ∩ ΛS ;E ] = E
[
1Xt∩ΛH∈NΛH

· 1Xt+1∩ΛB∈NΛB
· Ft

∣∣∣ Xt ∩ ΛS ;E
]

= C(S,vvv,Xt ∩ ΛS) ·
Z(ΛR)c(λXt∩ΛR)

Z(ΛS)c(λXt∩ΛS )
.

Thus, by Lemma A.1 it holds that

E
[
1Xt∩ΛH∈AH1Xt+1∩ΛB∈AB

∣∣ Xt ∩ ΛS ;E1

]
=
E
[
1Xt∩ΛH∈AH · 1Xt+1∩ΛB∈AB · Ft

∣∣ Xt ∩ ΛS ;E
]

E[Ft | Xt ∩ ΛS ;E ]

= µλXt∩ΛR
1(ΛR)c

[(ΛR)c]
(
π−1

ΛH
(AH) ∩ π−1

ΛB
(AB)

)
.

Moreover, given E1, it holds that Xt+1 ∩ ΛH = Xt ∩ ΛH , which implies

E
[
1Xt+1∩ΛH∈AH · 1Xt+1∩ΛB∈AB

∣∣ Xt ∩ ΛS ;E1

]
= µλXt∩ΛR

1(ΛR)c
[(ΛR)c]

(
π−1

ΛH
(AH) ∩ π−1

ΛB
(AB)

)
(7)

We now generalize (7) to arbitrary events A ∈ R(ΛR)c . To this end, note that ΛH ∪ ΛB =
(ΛR)c. Thus, Lemma C.1 shows that events of the form{

π−1
ΛH

(AH) ∩ π−1
ΛB

(AB)
∣∣∣ AH ∈ RΛH , AB ∈ RΛB

}
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are a generating π-system for R(ΛR)c . Since further µλXt∩ΛR
1(ΛR)c

[(ΛR)c] is a probability
distribution on (N(ΛR)c ,R(ΛR)c), Lemma A.5 implies that for all A ∈ RΛR

E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt ∩ ΛS ;E1

]
= µλXt∩ΛR

1(ΛR)c
[(ΛR)c](A). (8)

Note that the right-hand side of (8) is σ(Xt∩ΛR)-measurable. As σ(Xt∩ΛR) ⊂ σ(Xt∩ΛS),
this implies that it is also a version of the conditional expectation E

[
1Xt+1∩(ΛR)c∈A

∣∣ Xt ∩ ΛR;E1

]
.

Finally, observing that, given E1, it holds that Xt+1 ∩ ΛR = Xt ∩ ΛR we obtain

E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt+1 ∩ ΛR;E1

]
= µλXt+1∩ΛR

1(ΛR)c
[(ΛR)c](A).

The next lemma is the counterpart of Lemma 5.5 for the case Ft = 0.

Lemma 5.6. Under the assumptions of Lemma 5.4, let E0 = {Ut = S,uuut = vvv, Ft = 0} for
some S ∈ 2V \ {∅} and vvv ∈ S such that P[E0] > 0, and set B = B(S,vvv, `) and R = S ∪B.
For all A ∈ R(ΛR)c it holds that

E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt+1 ∩ ΛR;E0

]
= µλXt+1∩ΛR

1(ΛR)c
[(ΛR)c](A).

Proof. Let E = {Ut = S,uuut = vvv} for S and vvv as in the definition of E0. Our first step is to
show that for all A ∈ R(ΛR)c it holds that

E
[
1Xt∩(ΛR)c∈A

∣∣ Xt ∩ ΛR;E
]

= µλXt∩ΛR
1(ΛR)c

[(ΛR)c](A). (9)

Define f : Ω→ [0, 1] to be the right-hand side of the equality above. Since f is σ(Xt ∩ ΛR)-
measurable, it suffices to prove that

E[1Xt∩ΛR∈D · f | E ] = E
[
1Xt∩ΛR∈D · 1Xt∩(ΛR)c∈A

∣∣ E ] (10)

for all events D ∈ RΛR . For this, it suffices to prove this statement for some π-system of
events D ⊆ RΛR that generates RΛR . Write πΛ∂B\S for the projection πΛR,Λ∂B\S , and write
πΛS for πΛR,ΛS . Since R is the union of the disjoint sets S and ∂B \ S, Lemma C.1 shows
that such a generating π-system for RΛR is given by

D =
{
π−1

Λ∂B\S
(D1) ∩ π−1

ΛS
(D2)

∣∣∣ D1 ∈ RΛ∂B\S , D2 ∈ RΛS

}
.

Let D1 ∈ RΛ∂B\S and D2 ∈ RΛS . Writing

E
[
1Xt∩Λ∂B\S∈D1 · 1Xt∩S∈D2 · f

∣∣∣ E ] = E
[
1Xt∩S∈D2 · E

[
1Xt∩Λ∂B\S∈D1 · f

∣∣∣ Xt ∩ ΛS ;E
] ∣∣∣ E ]

shows that, for proving (10) for all D ∈ D (and by extension for all D ∈ RΛR), it suffices to
prove

E
[
1Xt∩Λ∂B\S∈D1 · f

∣∣∣ Xt ∩ ΛS ;E
]

= E
[
1Xt∩Λ∂B\S∈D1 · 1Xt∩(ΛR)c∈A

∣∣∣ Xt ∩ ΛS ;E
]
.

24



To this end, define f̂ : NΛ∂B\S ×NΛS → [0, 1] by

f̂(η1, η2) = µλη1∪η21(ΛR)c
[(ΛR)c](A)

and note that f̂(Xt(ω) ∩ Λ∂B\S , Xt(ω) ∩ ΛS) = f(ω) for all ω ∈ Ω. Therefore, we have

E
[
1Xt∩Λ∂B\S∈D1 · f

∣∣∣ Xt ∩ ΛS ;E
]

= E
[
1Xt∩Λ∂B\S∈D1 · f̂(Xt ∩ Λ∂B\S , Xt ∩ ΛS)

∣∣∣ Xt ∩ ΛS ;E
]
.

We proceed by deriving an explicit expression for the right-hand side. By Lemma 5.4 and
the assumption of the lemma, we know that

(ω, ·) 7→ µλXt(ω)∩ΛS
1(ΛS)c

[
Λ∂B\S

]
(·)

is regular conditional distribution for Xt ∩ Λ∂B\S given Xt ∩ ΛS under PE . Thus, using
Theorem A.4, we obtain

E
[
1Xt∩Λ∂B\S∈D1 · f̂(Xt ∩ Λ∂B\S , Xt ∩ ΛS)

∣∣∣ Xt ∩ ΛS ;E
]
(ω)

=

∫
D1

f̂(η,Xt(ω) ∩ ΛS)µλXt(ω)∩ΛS
1(ΛS)c

[
Λ∂B\S

]
( dη)

=
1

Z(ΛS)c

(
λXt(ω)∩ΛS

) ∑
n≥0

1

n!

∫
Λn
∂B\S

1ηxxx∈D1 · f̂(ηxxx, Xt(ω) ∩ ΛS)

· (λXt(ω)∩ΛS )xxx · e−H(xxx) · Z(Λ∂B\S)c∩(ΛS)c

(
λ(Xt(ω)∩ΛS)∪ηxxx

)
dxxx

=
1

Z(ΛS)c

(
λXt(ω)∩ΛS

) ∑
n≥0

1

n!

∫
Λn
∂B\S

1ηxxx∈D1 · f̂(ηxxx, Xt(ω) ∩ ΛS)

· (λXt(ω)∩ΛS )xxx · e−H(xxx) · Z(ΛR)c

(
λ(Xt(ω)∩ΛS)∪ηxxx

)
dxxx

for PE-almost all ω ∈ Ω. Further, note that

f̂(ηxxx, Xt(ω) ∩ ΛS)

= µλ(Xt(ω)∩ΛS)∪ηxxx1(ΛR)c
[(ΛR)c](A)

=
1

Z(ΛR)c

(
λ(Xt(ω)∩ΛS)∪ηxxx

) ∑
m≥0

1

m!

∫
((ΛR)c)m

1ηyyy∈A · (λ(Xt(ω)∩ΛS)∪ηxxx)yyy · e−H(yyy) dyyy.

Thus, after canceling Z(ΛR)c

(
λ(Xt(ω)∩ΛS)∪ηxxx

)
, we obtain

E
[
1Xt∩Λ∂B\S∈D1 · f̂(Xt ∩ Λ∂B\S , Xt ∩ ΛS)

∣∣∣ Xt ∩ ΛS ;E
]
(ω)

=
1

Z(ΛS)c

(
λXt(ω)∩ΛS

) ∑
n≥0

1

n!

∫
Λn
∂B\S

1ηxxx∈D1 · (λXt(ω)∩ΛS )xxx · e−H(xxx)
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·

∑
m≥0

1

m!

∫
((ΛR)c)m

1ηyyy∈A · (λ(Xt(ω)∩ΛS)∪ηxxx)yyy · e−H(yyy) dyyy

 dxxx

= µλXt(ω)∩ΛS
1(ΛS)c

[(ΛS)c]
(
π−1

Λ∂B\S
(D1) ∩ π−1

(ΛR)c(A)
)

= E
[
1Xt∩Λ∂B\S∈D1 · 1Xt∩(ΛR)c∈A

∣∣∣ Xt ∩ ΛS ;E
]
(ω)

for PE-almost all ω ∈ Ω, where the last equality is once again due to Lemma 5.4. This
shows (10) and consequently (9).

In the next step, we aim for changing the probability measure from PE to PE0 . To achieve
this, note that by definition Ft does only depend on Xt via Xt ∩ ΛR. Thus, it holds that

E[1Ft=0 | Xt ∩ ΛR;E ] = E[1Ft=0 | Xt ∩ ΛR, Xt ∩ (ΛR)c;E ].

Therefore, Lemma A.3 implies

E
[
1Xt∩(ΛR)c∈A

∣∣ Xt ∩ ΛR;E0

]
= E

[
1Xt∩(ΛR)c∈A

∣∣ Xt ∩ ΛR;E
]

= µλXt∩ΛR
1(ΛR)c

[(ΛR)c](A).

Finally, observe that, given E0, it holds that Xt+1 = Xt. Thus, we have

E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt+1 ∩ ΛR;E0

]
= µλXt+1∩ΛR

1(ΛR)c
[(ΛR)c](A)

as desired.

Combining Lemmas 5.5 and 5.6, we now prove Lemma 5.3.

Proof of Lemma 5.3. First, note that is suffices to show that, for all t ∈ N0 and S ⊆ V
with P[Ut = S] > 0, it holds that µλXt∩ΛS

1(ΛS)c
[(ΛS)c](A) is a version of the conditional

expectation E
[
1Xt∩(ΛS)c∈A

∣∣ Xt ∩ ΛS ;Ut = S
]
. The second part of the statement then

follows as µλη1(ΛS)c
[(ΛS)c] is a probability distribution on (N(ΛS)c ,R(ΛS)c) for all η ∈ NΛS .

We proceed by proving our claim by an induction over t. For t = 0, the statement is
trivially true since U0 = V and (ΛV)c = ∅.
Now, assume the lemma holds for some fixed t ∈ N and let R ⊆ V be such that

P[Ut+1 = R] > 0. We start with the case R 6= ∅. We consider two sets of event C0 and
C1, where Ci for i ∈ {0, 1} consists of all events of the form C{Ut = S,uuut = vvv, Ft = i} with
S ∈ 2V \ {∅} and vvv ∈ S such that P[C ∩ {Ut+1 = R}] > 0. Set C = C0 ∪ C1 and note that
all events in C are pairwise disjoint. Moreover, it is easy to check that

P{Ut+1=R}

[⋃
C∈C

C
]

= P
[⋃

C∈C
C
∣∣∣ Ut+1 = R

]
= 1.

Thus, given we show that

E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt ∩ ΛR;C
]

= µλXt+1∩ΛR
1(ΛR)c

[(ΛR)c](A) (11)

26



for all C ∈ C, Lemma A.2 implies that µλXt+1∩ΛR
1(ΛR)c

[(ΛR)c](A) is also a version of
E
[
1Xt+1∩(ΛR)c∈A

∣∣ Xt ∩ ΛR;Ut+1 = R
]
as desired. Suppose that C ∈ C1. Then C must

have the form {Ut = S,uuut = vvv, Ft = 1} for some S and vvv with R = S \ {vvv}. Thus, using
the induction hypothesis and applying Lemma 5.5 proves (11). Otherwise, if C ∈ C0, then
C is of the form {Ut = S,uuut = vvv, Ft = 0} with R = S ∪ ∂B(S,vvv, `). Using the induction
hypothesis and Lemma 5.6 shows (11).
It remains to consider the case R = ∅. We construct C0 and C1 as before, but we set
C = C0 ∪ C1 ∪ {{Ut = ∅}}. Again, by Lemma A.2 it suffices to argue (11) for all C ∈ C. The
cases C ∈ C1 and C ∈ C0 are handled as before and we focus on C = {Ut = ∅}. By our
definition of the process, we fixed Xt and Ut to remain constant once Ut = ∅. Thus, (11)
follows directly from the induction hypothesis, concluding the proof.

6 Strong spatial mixing and success probabilities of Bayes
filters

Recall that for Algorithm 1 to terminate rapidly, we need to ensure that the success
probability of the Bayes filter is close to 1. In this section, we prove a general statement
that allows us to control the success probabilities of the Bayes filters we will construct in
the upcoming sections. Readers only interested in the actual construction of the Bayes filter
may skip this section for now and return to it later for the running time analysis.
The main technical lemma of this section states that, under strong spatial mixing, a

certain fraction of partition functions that is central for the construction of our Bayes filters
can be brought arbitrarily close to 1 by increasing the update radius `.

Lemma 6.1. Let S ⊆ V be non-empty, vvv ∈ S, ` ∈ N, and set B = B(S,vvv, `) and H = (S∪B)c.
Suppose φ exhibits (a, b)-strong spatial mixing up to λ. Then, for all feasible η ∈ NΛ and all
ξ1, ξ2 ∈ NΛH it holds that

exp
(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
≤

ZΛB\{vvv}

(
λξ1∪(η∩ΛS)

)
ZΛB

(
λξ1∪(η∩ΛS\{vvv})

) · ZΛB

(
λξ2∪(η∩ΛS\{vvv})

)
ZΛB\{vvv}

(
λξ2∪(η∩ΛS)

)
≤ exp

(
a3drde2br

(
λrd + eλ3drd

)
e−br`

)
.

Before we prove Lemma 6.1, we briefly sketch how it helps control the success probability
of the Bayes filter. Recall Definition 4.1 and assume we would directly use

C(S,vvv, η) = inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

 ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
 (12)
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as Bayes filter correction. Assuming Xt = η, Ut = S and uuut = vvv ∈ S, Lemma C.2 yields that
the probability that Ft = 1 is

inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

 ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
 · ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
= inf

ξ∈NΛH
ξ∪(η∩ΛS) is feasible

 ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) · ZΛB

(
λ(η∩ΛH)∪(η∩ΛS\{vvv})

)
ZΛB\{vvv}

(
λ(η∩ΛH)∪(η∩ΛS)

)
.

Applying Lemma 6.1 with ξ1 = ξ and ξ2 = η ∩ ΛH allows us to lower bound the probability
that Ft = 1 by exp

(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
. Thus, by increasing the update radius

` we could bring the success probability of the Bayes filter arbitrary close to 1. While we
will not use exactly (12) as Bayes filter correction, we can apply Lemma 6.1 in a similar
fashion when using a suitable approximation. More on that in Section 7 and Section 8.

To prove Lemma 6.1, we first show that strong spatial mixing implies correlation decay in
terms of k-point density functions. The converse of this statement was previously shown in
[58]. We then use an identity from [58, 56] to derive our lemma.

6.1 Strong spatial mixing and point density functions

For k ∈ N and xxx ∈ Λk the k-point density function of a Gibbs point process µλλλ is defined as

ρλλλ(xxx) = λλλxxx
ZΛ(λλλxxx)

ZΛ(λλλ)
e−H(xxx).

Recall Definition 1.1 and note that, for a measurable space (Ω,A) and probability measures
P and Q, an equivalent definition of total variation distance is

dTV (P,Q) = sup
f :Ω→[−1,1]

|EP [f ]− EQ[f ]|,

where the supremum is taken over measurable functions. Using this definition we obtain the
following statement.

Lemma 6.2. Let φ be a repulsive pair potential of range r and let λ, a, b ∈ R>0 such that φ
exhibits (a, b)-strong spatial mixing up to λ. Let Λ ⊂ Rd be bounded and measurable, and
consider activity functions λλλ,λλλ′ < λ. For all measurable Λ′ ⊆ Λ disjoint from supp(λλλ− λλλ′),
all k ∈ N and all xxx ∈ Λ′k it holds that

|ρλλλ(xxx)− ρλλλ′(xxx)| ≤ λλλxxxe−H(xxx)a
∣∣∣Λ′(r)∣∣∣ebre−b·dist(Λ′,supp(λλλ−λλλ′)),

where Λ′(r) = {y ∈ Λ | dist(y,Λ′) < r}, and ρλλλ and ρλλλ′ are the k-point densities on Λ for
the potential φ and activity functions λλλ and λλλ′.
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Proof. For every k ∈ N and xxx = (x1, . . . , xk) ∈ Λ′k define fxxx : NΛ → [0, 1] by

fxxx(η) = e−
∑
i∈[k]

∑
y∈η φ(xi,y).

By definition, it holds that

ρλλλ(xxx) = λλλxxx
ZΛ(λλλxxx)

ZΛ(λλλ)
e−H(xxx)

= λλλxxxe−H(xxx)Eµλλλ [fxxx].

Since the range of φ is bounded by r, it holds that fxxx is local on Λ′(r) = {y ∈ Λ | dist(y,Λ′) < r}.
That is, for every η ∈ NΛ it holds that fxxx(η) = fxxx(η ∩ Λ′(r)). Consequently, we have
Eµλλλ [fxxx] = Eµλλλ[Λ′(r)]

[fxxx]. Applying the same reasoning to ρλλλ′(xxx) and observing that λλλ = λλλ′

on Λ′ yields

|ρλλλ(xxx)− ρλλλ′(xxx)| = λλλxxxe−H(xxx)
∣∣∣Eµλλλ[Λ′(r)][fxxx]− Eµλλλ′ [Λ′(r)][fxxx]

∣∣∣
≤ λλλxxxe−H(xxx)dTV

(
µλλλ

[
Λ′

(r)
]
, µλλλ′

[
Λ′

(r)
])
,

where the inequality follows from the definition of the total variation distance given above
and the fact that fxxx has domain [0, 1]. Finally, applying (a, b)-strong spatial mixing and
noting that dist

(
Λ′(r), supp(λλλ− λλλ′)

)
≥ dist(Λ′, supp(λλλ− λλλ′))− r concludes the proof.

Remark 6.3. Note that, without fixing a particular region Λ′ ⊆ Λ that contains x1, . . . , xk in
Lemma 6.2, we can always set Λ′ = {x1, . . . , xk}, which yields

∣∣∣Λ′(r)∣∣∣ ≤ kvdrd with vd being
the volume of a unit ball in d dimensions.

The following multiplicative bound for k-point densities with different activity functions
follows immediately.

Corollary 6.4. Consider the setting of Lemma 6.2. It holds that

ρλλλ(xxx) ≤
(

1 + a
∣∣∣Λ′(r)∣∣∣ebr+λ∣∣∣Λ′(r)∣∣∣e−b·dist(Λ′,supp(λλλ−λλλ′))

)
ρλλλ′(xxx).

Proof. Since λλλ = λλλ′ on Λ′, it holds that λλλxxxe−H(xxx) = λλλ′xxxe−H(xxx). If λλλxxxe−H(xxx) = 0, then the
desired inequality holds trivially since both sides are 0.

Assume λλλxxxe−H(xxx) > 0. Defining fxxx as in the proof of Lemma 6.2 and following the same
arguments we have

ρλλλ′(xxx) = λλλ′xxxe−H(xxx)Eµλλλ′ [Λ′(r)]
[fxxx] = λλλxxxe−H(xxx)Eµλλλ′ [Λ′(r)]

[fxxx].

Observe that fxxx is non-negative and fxxx(∅) = 1. Combined with Poisson domination, we
obtain

Eµλλλ′ [Λ′(r)]
[fxxx] ≥ µλλλ′

[
Λ′

(r)
]
({∅}) ≥ e

−λ
∣∣∣Λ′(r)∣∣∣

,
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which implies ρλλλ′(xxx) ≥ λλλxxxe−H(xxx)e
−λ
∣∣∣Λ′(r)∣∣∣. In particular, we have ρλλλ′(xxx) > 0, and applying

Lemma 6.2 yields

ρλλλ(xxx) ≤
(

1 +
|ρλλλ(xxx)− ρλλλ′(xxx)|

ρλλλ′(xxx)

)
ρλλλ′(xxx)

≤
(

1 + a
∣∣∣Λ′(r)∣∣∣ebr+λ∣∣∣Λ′(r)∣∣∣e−b·dist(Λ′,supp(λλλ−λλλ′))

)
ρλλλ′(xxx).

6.2 Proof of Lemma 6.1

To prove the main lemma of the section, we use the following identity by Michelen and
Perkins [58, 56].

Lemma 6.5 ([58, Lemma 12]). Let Λ′ ⊆ Λ be measurable. Fix a point in z ∈ Λ′ and, for any
given activity function λλλ and any point y ∈ Λ, let

λ̂λλy(w) =

{
0 if d̃ist(z, w) < d̃ist(z, y)

λλλ(w) otherwise
,

where d̃ist(u, v) = dist(u, v) + diam(Λ′) ·1{u,v}*Λ′ for u, v ∈ Rd. For all k ∈ N and xxx ∈ Λ′k,
it holds that

λλλxxx
Z(Λ′)c(λλλxxx)

ZΛ(λλλ)
e−H(xxx) = ρλλλ(xxx)exp

(
−
∫

Λ′
ρ

(̂λλλxxx)y
(y) dy

)
.

Moreover, we have
Z(Λ′)c(λλλ)

ZΛ(λλλ)
= exp

(
−
∫

Λ′
ρ
λ̂λλy

(y) dy
)
.

We use Corollary 6.4 to show the following intermediate statement.

Lemma 6.6. Consider the setting of Lemma 6.2. For all k ∈ N0 and all xxx ∈ Λ′k it holds that

λλλxxx
Z(Λ′)c(λλλxxx)

ZΛ(λλλ)
e−H(xxx) ≤ exp

(
a
∣∣∣Λ′(r)∣∣∣ebr(λ∣∣Λ′∣∣+ e

λ
∣∣∣Λ′(r)∣∣∣)

e−b·dist(Λ′,supp(λλλ−λλλ′))
)
λλλ′xxx

Z(Λ′)c(λλλ′xxx)

ZΛ(λλλ′)
e−H(xxx),

where Λ′(r) = {y ∈ Λ | dist(y,Λ′) < r}, and ZΛ(λλλ) and ZΛ(λλλ′) are the partition functions
on Λ for the potential φ.

Proof. Using Lemma 6.5 we have

λλλxxx
Z(Λ′)c(λλλxxx)

ZΛ(λλλ)
e−H(xxx) = ρλλλ(xxx)exp

(
−
∫

Λ′
ρ

(̂λλλxxx)y
(y) dy

)
,

where we treat case that xxx is the empty tuple by setting ρλλλ(xxx) = 1. By Corollary 6.4, we
have

ρλλλ(xxx) ≤
(

1 + a
∣∣∣Λ′(r)∣∣∣ebr+λ∣∣∣Λ′(r)∣∣∣e−b·dist(Λ′,supp(λλλ−λλλ′))

)
ρλλλ′(xxx)
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≤ exp

(
a
∣∣∣Λ′(r)∣∣∣ebr+λ∣∣∣Λ′(r)∣∣∣e−b·dist(Λ′,supp(λλλ−λλλ′))

)
ρλλλ′(xxx).

Moreover, observe that supp
(

(̂λλλxxx)y − (̂λλλ′xxx)y

)
⊆ supp(λλλ− λλλ′), (̂λλλxxx)y ≤ λλλ < λ and (̂λλλ′xxx)y ≤

λλλ′ < λ for all y ∈ Λ′. Thus, Lemma 6.2 implies

−
∫

Λ′
ρ

(̂λλλxxx)y
(y) dy ≤ −

∫
Λ′
ρ

(̂λλλ′xxx)y
(y) dy +

∫
Λ′

∣∣∣∣ρ(̂λλλxxx)y
(y)− ρ

(̂λλλ′xxx)y
(y)

∣∣∣∣ dy
≤ −

∫
Λ′
ρ

(̂λλλ′xxx)y
(y) dy + a

∣∣∣Λ′(r)∣∣∣ebre−b·dist(Λ′,supp(λλλ−λλλ′)) ·
∫

Λ′
(̂λλλ′xxx)y(y) dy

≤ −
∫

Λ′
ρ

(̂λλλ′xxx)y
(y) dy + a

∣∣∣Λ′(r)∣∣∣ebre−b·dist(Λ′,supp(λλλ−λλλ′)) · λ
∣∣Λ′∣∣.

We conclude that

λλλxxx
Z(Λ′)c(λλλxxx)

ZΛ(λλλ)
e−H(xxx)

≤ exp

(
a
∣∣∣Λ′(r)∣∣∣ebr(λ∣∣Λ′∣∣+ e

λ
∣∣∣Λ′(r)∣∣∣)

e−b·dist(Λ′,supp(λλλ−λλλ′))
)
ρλλλ′(xxx)exp

(
−
∫

Λ′
ρ

(̂λλλ′xxx)y
(y) dy

)
.

Applying Lemma 6.5 again concludes the proof.

With Lemma 6.6, we can prove Lemma 6.1.

Proof of Lemma 6.1. We aim to apply Lemma 6.6. To this end, we start by writing the
involved partition functions in terms of two new activity functions λλλ,λλλ′.
Set λλλ = λξ1∪(η∩ΛS\{v})1ΛB and λλλ′ = λξ2∪(η∩ΛS\{v})1ΛB , and observe that λλλ,λλλ′ ≤ λ. Let

xxx ∈ Λ
|η∩Λvvv |
vvv be any fixed tuple of points such that ηxxx = η ∩ Λvvv (i.e., any tuple containing

exactly the points in η ∩ Λvvv). Note that

λξ1∪(η∩ΛS)1ΛB\{vvv} = λλλη∩Λvvv1(Λvvv)c = λλλxxx1(Λvvv)c

and analogously λξ2∪(η∩ΛS)1ΛB\{vvv} = λλλ′xxx1(Λvvv)c . Thus, we obtain

ZΛB\{vvv}

(
λξ1∪(η∩ΛS)

)
ZΛB

(
λξ1∪(η∩ΛS\{vvv})

) · ZΛB

(
λξ2∪(η∩ΛS\{vvv})

)
ZΛB\{vvv}

(
λξ2∪(η∩ΛS)

) =
ZΛ(λλλ′)Z(Λvvv)c(λxxx)

ZΛ(λλλ)Z(Λvvv)c(λ′xxx)
(13)

We proceed by lower bounding the distance between supp(λλλ− λλλ′) and Λvvv. Note that
ξ1 ∪ (η ∩ ΛS\{vvv}) and ξ2 ∪ (η ∩ ΛS\{vvv}) agree on ΛS\{vvv} and can only disagree on ΛH . By
construction, it holds that dist(ΛH ,Λvvv) ≥ `r. As the potential range is bounded by r, it
follows that dist(supp(λλλ− λλλ′),Λvvv) ≥ (`− 1)r.

Now, note that in particular λλλ and λλλ′ agree on Λvvv and λλλxxx = λλλ′xxx. We may assume λ > 0,
since otherwise all involved partition functions are 1 and the statement holds trivially.
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Since further η is feasible we have λλλxxxe−H(xxx) = λλλ′xxxe−H(xxx) > 0. Thus, multiplying (13) with
λλλxxxe−H(xxx)

λλλ′xxxe−H(xxx) = 1 yields

ZΛB\{vvv}

(
λξ1∪(η∩ΛS)

)
ZΛB

(
λξ1∪(η∩ΛS\{vvv})

) · ZΛB

(
λξ2∪(η∩ΛS\{vvv})

)
ZΛB\{vvv}

(
λξ2∪(η∩ΛS)

) =
λλλxxxZΛ(λλλ′)Z(Λvvv)c(λλλxxx)e−H(xxx)

λλλ′xxxZΛ(λλλ)Z(Λvvv)c(λλλ′xxx)e−H(xxx)

=
λλλxxx

Z(Λvvv)c (λλλ′xxx)

ZΛ(λλλ) e−H(xxx)

λλλ′xxx
Z(Λvvv)c (λλλ′xxx)

ZΛ(λλλ′) e−H(xxx)
.

Finally, by Lemma 6.6 we have the upper bound

ZΛB\{vvv}

(
λξ1∪(η∩ΛS)

)
ZΛB

(
λξ1∪(η∩ΛS\{vvv})

) · ZΛB

(
λξ2∪(η∩ΛS\{vvv})

)
ZΛB\{vvv}

(
λξ2∪(η∩ΛS)

) ≤ exp
(
a3drde2br

(
λrd + eλ3drd

)
e−br`

)
,

and applying the same reasoning after swapping the roles of λλλ and λλλ′ results in the
corresponding lower bound, which proves the claim.

7 Hard-sphere model

In this section we focus on the hard-sphere model. Recall that for an interaction range
r > 0, the hard-sphere model is defined by the potential

φ(x, y) =

{
∞ if dist(x, y) < r

0 otherwise
.

To simplify notation, define for every xxx ∈ Rk and yyy ∈ Rm

D(xxx) = e
−
∑
{i,j}∈([k]

2 )
φ(xi,xj)

=
∏

{i,j}∈([k]
2 )

1dist(xi,xj)≥r and

D(xxx | yyy) = e−
∑
i∈[k]

∑
j∈[m] φ(xi,yj) =

∏
i∈[k]

∏
j∈[m]

1dist(xi,yj)≥r.

We extend this definition from tuples of points to finite point sets in the obvious way. This
allows us to write

ZΛ′(λη) =
∑
k≥0

λk

k!

∫
Λ′k

D(xxx)D(xxx | η) dxxx,

for all measurable Λ′ ⊆ Λ and all η ∈ NΛ.
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7.1 Constructing the Bayes filter

We start by constructing a suitable Bayes filter correction for the hard-sphere model. The
key ingredient will be computing such a correction by enumerating a finite set of boundary
configurations that closely approximates all possible boundary conditions. This is made
precise by the following lemma.

Lemma 7.1. Let S ⊆ V be non-empty, vvv ∈ S, η ∈ NΛ, B = B(S,vvv, `) and H = (S ∪ B)c.
For all ε > 0, ξ ∈ NΛH and

δ ≤ ε ·
(
|ξ ∩ Λ∂B|2drd−1d3/2λeλ(2`+1)drd

)−1

there is some γ ⊆ (δZ)d ∩ ΛH∩∂B such that

e−ε ·
ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) ≤ ZΛB\{uuut}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

) ≤ eε ·
ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) .
Proof. Fix some ξ ∈ NΛH , let Φ map every point in ΛH∩∂B to its closest point in (δZ)d ∩
ΛH∩∂B in `∞-distance and set γ = {Φ(x) | x ∈ ξ ∩ Λ∂B}. We first prove that

e−
ε
2 · ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
≤ ZΛB\{uuut}

(
λγ∪(η∩ΛS)

)
≤ e

ε
2 · ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
.

To this end, note that by Lemma C.2

ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
= ZΛB\{uuut}

(
λ(ξ∩Λ∂B)∪(η∩ΛS)

)
.

Thus, we have∣∣∣ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
− ZΛB\{uuut}

(
λγ∪(η∩ΛS)

)∣∣∣
≤
∑
k≥1

λk

k!

∫
(ΛB\{vvv})k

D(xxx) · |D(xxx | (ξ ∩ Λ∂B) ∪ (η ∩ ΛS))−D(xxx | γ ∪ (η ∩ ΛS))| dxxx

≤
∑
k≥1

λk

k!

∫
(ΛB\{vvv})k

|D(xxx | (ξ ∩ Λ∂B) ∪ (η ∩ ΛS))−D(xxx | γ ∪ (η ∩ ΛS))| dxxx.

Next, observe that for every xxx ∈ (ΛB\{vvv})
k it holds that D(xxx | (ξ ∩ Λ∂B) ∪ (η ∩ ΛS)) 6=

D(xxx | γ ∪ (η ∩ ΛS)) implies that there is some i ∈ [k] and some y ∈ ξ ∩Λ∂B such that either
dist(xi, y) ≥ r > dist(xi,Φ(y)) or dist(xi, y) < r ≤ dist(xi,Φ(y)). Further, note that for
every y ∈ ΛH∩∂B (and particular y ∈ ξ ∩ Λ∂B) it holds that dist(y,Φ(y)) ≤

√
dδ. Using

union bound and the fact that D(· | (ξ ∩ Λ∂B) ∪ (η ∩ ΛS)) D(· | γ ∪ (η ∩ ΛS)) are symmetric
functions, we obtain∣∣∣ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
− ZΛB\{uuut}

(
λγ∪(η∩ΛS)

)∣∣∣
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≤ |ξ ∩ Λ∂B| ·
[
(r +

√
dδ)d − (r +

√
dδ)d

]
·
∑
k≥1

λk

k!
k
∣∣ΛB\{vvv}∣∣k−1

≤ |ξ ∩ Λ∂B| ·
[
(r +

√
dδ)d − (r +

√
dδ)d

]
· λeλ|ΛB\{vvv}|.

Elementary calculations yield[
(r +

√
dδ)d − (r +

√
dδ)d

]
≤ d3/2δ(r +

√
dδ)d−1 ≤ d3/2δ2d−1rd−1.

Further, it holds that ∣∣ΛB\{vvv}∣∣ ≤ |ΛB| ≤ (2`+ 1)drd.

Thus, for our choice of δ we obtain∣∣∣ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
− ZΛB\{uuut}

(
λγ∪(η∩ΛS)

)∣∣∣ ≤ ε

2
,

and, since
min

{
ZΛB\{uuut}

(
λξ∪(η∩ΛS)

)
, ZΛB\{uuut}

(
λγ∪(η∩ΛS)

)}
≥ 1,

this proves the desired multiplicative bound.
It remains to show

e−
ε
2 · ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
≤ ZΛB

(
λγ∪(η∩ΛS\{vvv})

)
≤ e

ε
2 · ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
,

which is done analogously, concluding the proof.

In particular, we obtain the following corollary.

Corollary 7.2. Let S ⊆ V be non-empty, vvv ∈ S, η ∈ NΛ, B = B(S,vvv, `) and H = (S ∪B)c.
For all ε > 0 and

δ ≤ ε ·
(

4dr−1d(d+3)/2(2`+ 3)drdλeλ(2`+1)drd
)−1

it holds that

e−ε · min
γ⊆(δZ)d∩ΛH∩∂B

ZΛB\{vvv}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) .
Proof. Note that, if ξ ∈ NΛH is such that ξ ∪ (η ∩ ΛS) is feasible, this implies in particular
that ξ′ = ξ ∩Λ∂B is feasible. Thus, the claim follows from Lemma 7.1 by arguing that every

feasible configuration ξ′ ∈ NΛH∩∂B satisfies |ξ′| ≤
(

2
√
d
r

)d
(2`+ 3)drd. To see this, note that

every point in ξ′ blocks at least a volume of
(

r
2
√
d

)d
, where no other point can be placed.

Moreover, it holds that
|ΛH∩∂B| ≤ |ΛB∪∂B| ≤ (2`+ 3)drd,

which concludes the proof.
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Corollary 7.2 allows us to replace the minimization over the uncountable set of boundary
conditions NΛH by a minimization over the finite set (δZ)d ∩ΛH∩∂B . The second ingredient
that we need for computing a suitable Bayes filter correction is a way to approximate the
involved partition functions.
To this end, for every non-empty S ⊆ V, η ∈ NΛ and δ > 0, define

Ẑ(S, η, δ) =
∑

γ⊆(δZ)d∩ΛS

λ|γ|δ|γ| ·D(γ) ·D(γ | η ∩ Λ∂S). (14)

The follow lemma justifies using Ẑ(S, η, δ) as an approximation for the hard-sphere partition
function ZΛS (λη), given that δ is chosen sufficiently small.

Lemma 7.3. Let S ⊆ V be non-empty and η ∈ NΛ. For all ε > 0 and

δ ≤ ε
[
d3/22d max

{
r−1, rd−1

}
max

{
λ, λ2

}
(|η ∩ Λ∂S |+ |ΛS∪∂S |)eλ|ΛS∪∂S |

]−1

it holds that
e−ε · ZΛS

(
λη∩(ΛS)c

)
≤ Ẑ(S, η, δ) ≤ eε · ZΛS

(
λη∩(ΛS)c

)
,

where Ẑ(S, η, δ) is defined as in (14).

Proof. Define ΛS,δ =
⋃
x∈⊆(δZ)d∩ΛS

B
(∞)
δ/2 (x), where B(∞)

δ/2 (x) is the closed δ/2-ball around x
in infinity norm. Moreover, let Φ map every point in ΛS,δ to its closest point in (δZ)d ∩ ΛS
in `∞-distance, breaking ties arbitrarily. With some abuse of notation, we extend Φ to
tuples xxx ∈ ΛS,δ by setting Φ(xxx) = (Φ(x1), . . . ,Φ(xk)). Now, note that

Ẑ(S, η, δ) =
∑
k≥0

λk

k!
δk

∑
xxx∈(δZ)dk∩ΛkS

D(xxx) ·D(xxx | η ∩ Λ∂S)

=
∑
k≥0

λk

k!

∫
ΛkS,δ

D(Φ(xxx)) ·D(Φ(xxx) | η ∩ Λ∂S) dxxx,

where the first equality uses the fact D(xxx) = 0 whenever xxx contains the same point more
than once.
We proceed by relating Ẑ(S, η, δ) to ZΛS

(
λη∩(ΛS)c

)
in two steps. First, we compare

ZΛS

(
λη∩(ΛS)c

)
with ZΛS,δ(λη∩Λ∂S ), and then we compare ZΛS,δ(λη∩Λ∂S ) with Ẑ(S, η, δ)

using the expression above.
For the first part, note that by Lemma C.2 it holds that ZΛS

(
λη∩(ΛS)c

)
= ZΛS (λη∩Λ∂S ).

Moreover, we have

ZΛS (λη∩Λ∂S ) ≤ ZΛS\ΛS,δ(λη∩Λ∂S ) · ZΛS∩ΛS,δ(λη∩Λ∂S )

≤ eλ|ΛS	ΛS,δ| · ZΛS,δ(λη∩Λ∂S ),
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where 	 denotes the symmetric difference. Analogously, it holds that

ZΛS,δ(λη∩Λ∂S ) ≤ eλ|ΛS	ΛS,δ| · ZΛS (λη∩Λ∂S ).

Thus, if we show that λ|ΛS 	 ΛS,δ| ≤ ε/2 for our choice of δ, then

e−ε/2ZΛS

(
λη∩(ΛS)c

)
≤ ZΛS,δ(λη∩Λ∂S ) ≤ eε/2ZΛS

(
λη∩(ΛS)c

)
. (15)

To this end, note that, if x ∈ ΛS,δ \ ΛS , then x /∈ ΛS but dist(x,ΛS) ≤
√
dδ
2 . Similarly, if

x ∈ ΛS \ ΛS,δ, then x ∈ ΛS but dist(x, (ΛS)c) ≤
√
dδ
2 . Taking the union bound over vvv ∈ S

yields

|ΛS 	 ΛS,δ| ≤ |S| ·
[
(r +

√
dδ/2)d − (r −

√
dδ/2)d

]
≤ |S|d3/2δ · (r +

√
dδ/2)d−1

≤ |ΛS |d3/22d−1r−1δ.

Thus, for δ ≤ ε
(
λ|ΛS |d3/22dr−1

)−1 the desired inequality is satisfied.
We proceed by relating ZΛS,δ(λη∩Λ∂S ) to Ẑ(S, η, δ). First, note that∣∣∣ZΛS,δ(λη∩Λ∂S )− Ẑ(S, η, δ)

∣∣∣
≤
∑
k≥0

λk

k!

∫
ΛkS,δ

|D(xxx) ·D(xxx | η ∩ Λ∂S)−D(Φ(xxx)) ·D(Φ(xxx) | η ∩ Λ∂S)| dxxx

≤
∑
k≥2

λk

k!

∫
ΛkS,δ

|D(xxx)−D(Φ(xxx))| dxxx+
∑
k≥1

λk

k!

∫
ΛkS,δ

|D(xxx | η ∩ Λ∂S)−D(Φ(xxx) | η ∩ Λ∂S)| dxxx.

We bound each of the terms in this sum separately. To this end, note that for any xxx ∈ ΛkS,δ
it holds that D(xxx) 6= D(Φ(xxx)) implies that there are i < j such that either dist(xi, xj) <

r ≤ dist(Φ(xi),Φ(xj)) or dist(xi, xj) ≥ r > dist(Φ(xi),Φ(xj)). Since dist(x,Φ(x)) ≤
√
dδ
2 ,

applying union bound over 1 ≤ i < j ≤ k yields∑
k≥2

λk

k!

∫
ΛkS,δ

|D(xxx)−D(Φ(xxx))| dxxx ≤
[
(r +

√
dδ)d − (r −

√
dδ)d

]∑
k≥2

λk

k!
k(k − 1)|ΛS,δ|k−1

≤ d3/2δ · (r +
√
dδ)d−1λ2|ΛS,δ|eλ|ΛS,δ|

≤ d3/2δ2d−1rd−1λ2|ΛS,δ|eλ|ΛS,δ|.

Similarly, we have∑
k≥1

λk

k!

∫
ΛkS,δ

|D(xxx | η ∩ Λ∂S)−D(Φ(xxx) | η ∩ Λ∂S)| dxxx ≤ d3/2δ2d−1rd−1λ|η ∩ Λ∂S |eλ|ΛS,δ|.
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Combining both and noting that ΛS,δ ⊆
⋃
x∈ΛS

B
(∞)
δ/2 (x) ⊆ ΛS∪∂S yields∣∣∣ZΛS,δ(λη∩Λ∂S )− Ẑ(S, η, δ)

∣∣∣ ≤ d3/2δ2d−1rd−1 max
{
λ, λ2

}
(|η ∩ Λ∂S + |ΛS∪∂S ||)eλ|ΛS∪∂S |.

For δ ≤ ε
(
d3/22drd−1 max

{
λ, λ2

}
(|η ∩ Λ∂S + |ΛS∪∂S ||)eλ|ΛS∪∂S |

)−1 this gives∣∣∣ZΛS,δ(λη∩Λ∂S )− Ẑ(S, η, δ)
∣∣∣ ≤ ε/2,

and, since ZΛS,δ(λη∩Λ∂S ) ≥ 1 and Ẑ(S, η, δ) ≥ 1,

e−ε/2 · ZΛS,δ(λη∩Λ∂S ) ≤ Ẑ(S, η, δ) ≤ eε/2 · ZΛS,δ(λη∩Λ∂S ).

Combining this with (15) concludes the proof.

We now combine Corollary 7.2 and Lemma 7.3 to obtain our Bayes filter correction for
the hard-sphere model.

Lemma 7.4. For ε > 0, non-empty S ⊆ V, vvv ∈ S and feasible η ∈ NΛ set

δ1 = δ1(ε) :=
ε

2
·
(

4dr−1d(d+3)/2(2`+ 3)drdλeλ(2`+1)drd
)−1

and

δ2 = δ2(ε) :=
ε

4
·
(
d3/22d max

{
r−1, rd−1

}
max

{
λ, λ2

}
meλ(2`+3)drd

)−1
,

where m = 2d(2`+ 3)drd
(
δ−d1 + dd/2r−d

)
+ (2`+ 3)drd, and define

Cε(S,vvv, η) := e−ε · min
γ⊆(δ1Z)d∩ΛH∩∂B

Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2)

Ẑ
(
B, γ ∪ (η ∩ ΛS\vvv), δ2

) ,

where B = B(S,vvv, `) and H = (S ∪B)c. Then Cε(S,vvv, η) is a Bayes filter correction as in
Definition 4.1.

Proof. We start by arguing that Cε is a Bayes filter correction. For the measurability, note
that for every fixed non-empty S ⊆ V and vvv ∈ S it holds that Cε(S,vvv, ·) is a minimum of a
finite set of RΛS -measurable functions. In particular, it holds that Cε(S,vvv, η) = Cε(S,vvv, η

′)
for every two configurations η, η′ ∈ NΛ that agree on ΛS .

Next, we argue that for all feasible η ∈ NΛ it holds that Cε(S,vvv, η) is bounded away from
0 and

Cε(S,vvv, η) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) .
For the lower bound, note that for all γ ⊆ (δ1Z)d ∩ ΛH∩∂B it holds that

Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2)

Ẑ
(
B, γ ∪ (η ∩ ΛS\{vvv}), δ2

) ≥ (1 + λδ2)−|(δ2Z)d∩ΛB| > 0
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independent of η. For the upper bound, we start by observing that, for our choice of δ1,
Corollary 7.2 yields

e−ε/2 · min
γ⊆(δ1Z)d∩ΛH∩∂B

ZΛB\{vvv}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) .
Note that

∣∣ΛB\{vvv}∣∣ ≤ |ΛB| ≤ (2` + 1)drd and
∣∣ΛB\{vvv}∪∂(B\{vvv})

∣∣ ≤ |ΛB∪∂B| ≤ (2` + 3)drd.
Moreover, we have the crude bound

∣∣(δ1Z)d ∩ ΛH∩∂B
∣∣ ≤ 2dδ−d1 (2`+ 3)drd, and, for every

feasible η ∈ NΛ, it holds that
∣∣η ∩ ΛS∩∂(B\{vvv})

∣∣ ≤ 2ddd/2r−d(2`+ 3)drd. Therefore, for all

γ ⊆ (δ1Z)d ∩ ΛH∩∂B we have
∣∣(γ ∪ (η ∩ ΛS)) ∩ Λ∂(B\{vvv})

∣∣ ≤ 2d(2`+ 3)drd
(
δ−d1 + dd/2r−d

)
.

Analogously, it holds that
∣∣(γ ∪ (η ∩ ΛS\{vvv})) ∩ Λ∂B)

∣∣ ≤ 2d(2` + 3)drd
(
δ−d1 + dd/2r−d

)
.

Thus, Lemma 7.3 yields for our choice of δ2

e−ε/2 ·
ZΛB\{vvv}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

) ≤ Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2)

Ẑ
(
B, γ ∪ (η ∩ ΛS\{vvv}), δ2

) ≤ eε/2 ·
ZΛB\{vvv}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

) .
In particular, this proves

e−ε · min
γ⊆(δ1Z)d∩ΛH∩∂B

Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2)

Ẑ
(
B, γ ∪ (η ∩ ΛS\vvv), δ2

) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

) ,
implying that Cε is a Bayes filter correction.

7.2 Efficiency of the algorithm

We now argue that under the assumption of strong spatial mixing we can use Cε to obtain
an efficient implementation of Algorithm 1. Our argument will consist of two steps. First,
we discuss how to implement each step of the algorithm efficiently. In particular, we argue
that we can efficiently update the configuration (line 7), and that we can efficiently sample
a Bayes filter based on Cε(·) (line 5). For the latter, we make use of a Bernoulli factory to
circumvent the lack of an algorithm for exact computation of partition functions. In the
second part, we focus on the overall number of iterations of the algorithm. This is where the
assumption of strong spatial mixing comes into play to ensure that the success probability
of our Bayes filter is sufficiently large, which implies rapid termination of the algorithm.

We start with discussing the running time of each iteration of Algorithm 1. For updating
the configuration, we will use a rejection sampling method which, as long as the updated
region ΛB has constant volume, will be efficient enough for our setting. Since apply the
same argument for more general repulsive potentials, the following lemma is stated in this
general setting.
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Lemma 7.5. Let B ⊆ V and η ∈ NΛ. For any repulsive finite-range potential φ we can
sample from µλη∩(ΛB)c1ΛB

[ΛB] in expected time (λ|ΛB|+ |η ∩ Λ∂B|) · λ|ΛB|eλ|ΛB |.

Proof. Let PΛB ,λ denote a Poisson point process on ΛB with intensity λ. We consider the
rejection sampling algorithm given in Algorithm 2.

Algorithm 2: Sample from µλη∩(ΛB)c1ΛB
[ΛB]

1 repeat
2 Draw Y ∼ PΛB ,λ

3 Compute w = e
−
∑
{x,y}∈(Y2)

φ(x,y)
· e−

∑
x∈η∩Λ∂B,y∈Y

φ(x,y)

4 Draw W ∼ Ber(w)

5 until W = 1;
6 return Y

To prove that this rejection sampling method produces the correct out put distribution,
it suffices to argue that w is proportional to the density of µλη∩(ΛB)c1ΛB

[ΛB] with respect to
PΛB ,λ for PΛB ,λ-almost all ξ ∈ NΛB . This is true since for all ξ ∈ NΛB∑

x∈η∩(ΛB)c,y∈ξ

φ(x, y) =
∑

x∈η∩Λ∂B ,y∈ξ
φ(x, y) +

∑
x∈η∩(ΛB∪∂B)c,y∈ξ

φ(x, y)

=
∑

x∈η∩Λ∂B ,y∈ξ
φ(x, y),

where the last equality follows from the fact that dist(ΛB, (ΛB∪∂B)c) ≥ r and therefore
φ(x, y) = 0 for all x ∈ (ΛB∪∂B)c, y ∈ ΛB.
We proceed by using Wald’s identity as given in Lemma B.1 to bound the expected

running time of the procedure above. To this end, let (Yn)n∈N be a sequence of independent
samples from PΛB ,λ. Assume the algorithm draws Y = Yn at iteration n ∈ N. Let Sn denote
the running time of the rejection sampler in iteration n and let N be the (random) number
of iterations until the algorithm terminates. We aim for bounding E

[∑N
n=1 Sn

]
.

First, observe that Sn is dominated by the time for computing w, implying Sn ≤
|Yn|2 + |Yn| · |η ∩ ΛB|. Since further |Yn| follows a Poisson distribution with parameter λ|ΛB|,
we have E[Sn] ≤ λ2|ΛB|2 + λ|ΛB| · |η ∩ Λ∂B| = (λ|ΛB|+ |η ∩ Λ∂B|) · λ|ΛB|.

Moreover, observe that the random variable 1N≥n only depends on (Yi)i≤n−1, whereas
Sn only depends on Yn. Therefore, Sn and 1N≥n are independent and E[Sn1N≥n] =
E[Sn]E[1N≥n].

Applying Lemma B.1 yields E
[∑N

n=1 Sn

]
≤ (λ|ΛB|+ |η ∩ Λ∂B|) · λ|ΛB| ·E[N ]. To obtain

a bound E[N ] on, observe that the algorithm always terminates if Y = ∅, which happens
in every iteration independently with a probability of e−λ|ΛB |. Thus, N is dominated by
a geometric random variable with success probability e−λ|ΛB | and E[N ] ≤ eλ|ΛB |, which
concludes the proof.
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Note that, in the case of the hard-sphere model with r > 0, if η ∈ NΛ is feasible, then
|η ∩ Λ∂B| is a linear function of the volume |Λ∂B|.
We proceed with bounding the running time for sampling the Bayes filter for the hard-

sphere model in each step. To this end, we start with the following observation.

Observation 7.6. Consider the setting of Lemma 7.4. The required running time for comput-
ing Cε(S,vvv, η) does only depend on ε, `, r, λ and d.

This follows directly from enumerating all subsets γ ⊆ (δ1Z)d ∩ ΛH∩∂B and brute-force
computation of Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2) and Ẑ

(
B, γ ∪ (η ∩ ΛS\vvv), δ2

)
, where δ1, δ2 are

as in Lemma 7.4.
In fact, we will not use Cε directly for our Bayes filter, but rather a slightly scaled version

e−εCε, which is again a Bayes filter correction. The slack due to the additional scaling
allows us to efficiently sample the Bayes filter by using a Bernoulli factory, as we argue in
the next lemma.

Lemma 7.7. Let S ⊆ V be non-empty, vvv ∈ S and η ∈ NΛ be feasible, and set B = B(S,vvv, `).
For all ε > 0 we can sample a Bernoulli random variable with success probability

e−εCε(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
with expected running time only depending on ε, `, r, λ and d.

Proof. Our goal is to use a Bernoulli factory of the form p
q to perform this task. To bring

the desired success probability into such a form, note that

ZΛB (λη∩Λ∂B ) =
1

µλη∩Λ∂B
1ΛB

({∅})

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
=

1

µλη∩Λ∂B∪{vvv}1ΛB\{vvv}
({∅})

.

Moreover, note that 0 ≤ e−εCε(S,vvv, η) ≤ 1. Thus, by setting p = e−εCε(S,vvv, η) ·
µλη∩Λ∂B∪{vvv}1ΛB\{vvv}

({∅}) and q = µλη∩Λ∂B
1ΛB

({∅}) we have p ∈ [0, 1], q ∈ [0, 1] and

e−εCε(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) =
p

q
.

We are now going to use Lemma 3.1 to prove that we can obtain a sample from Ber
(
p
q

)
within the desired expected running time. To this end, we need to provide a positive lower
bound on q−p and we need an efficient way for generating independent samples from Ber(q)
and Ber(p).
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For the lower bound, note that by Lemma C.2 ZΛB (λη∩Λ∂B ) = ZΛB

(
λη∩(ΛB)c

)
and

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
= ZΛB\{vvv}

(
λη∩(ΛB\{vvv})c

)
. Moreover, since Cε(S,vvv, η) is a Bayes filter

correction by Lemma 7.4 and η is feasible, we have

Cε(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≤ 1.

Consequently, pq ≤ e−ε and

q − p ≥
(
1− e−ε

)
q =

(
1− e−ε

)
· (ZΛB (λη∩Λ∂B ))−1 ≥

(
1− e−ε

)
e−λ|ΛB |.

Using the upper bound |ΛB| ≤ (2`+ 1)drd yields q − p ≥ (1− e−ε)e−λ(2`+1)drd .
We proceed by arguing that we can obtain an oracle for Ber(p) and Ber(q) as required by

Lemma 3.1. Firstly, note that by Observation 7.6 we can compute Cε(S,vvv, η) with running
time only depending on ε, `, r, λ and d. After computing Cε(S,vvv, η), each independent
sample from Ber(e−εCε(S,vvv, η)) can be obtained in constant time. Thus, it remains to
argue that we can efficiently sample independent Bernoulli random variables with success
probabilities µλη∩Λ∂B∪{vvv}1ΛB\{vvv}

({∅}) and µλη∩Λ∂B
1ΛB

({∅}). To this end, note that for
Y ∼ µλη∩Λ∂B

1ΛB
it holds that Y ∩ (ΛB)c = ∅ almost surely. Thus, it holds that

µλη∩Λ∂B
1ΛB

({∅}) = µλη∩Λ∂B
1ΛB

[ΛB]({∅}).

Observe that for Y ∼ µλη∩Λ∂B
1ΛB

[ΛB] it holds that 1Y=∅ is a Bernoulli random variable with
success probability µλη∩Λ∂B

1ΛB
({∅}). By Lemma 7.5, we can obtain independent samples

from µλη∩Λ∂B
1ΛB

[ΛB], each in expected time at most (λ|ΛB|+ |η ∩ Λ∂B|) ·λ|ΛB|eλ|ΛB |. Note
that |ΛB| ≤ (2` + 1)drd and that, for feasible η ∈ NΛ, |η ∩ Λ∂B| ≤ (2

√
d/r)d|Λ∂B| ≤

(2
√
d/r)d · (2` + 3)drd. Therefore, the expected running time for obtaining independent

Bernoulli samples with success probability µλη∩Λ∂B
1ΛB

({∅}) is bounded by some function of
ε, `, r, λ and d.
Treating µλη∩Λ∂B∪{vvv}1ΛB\{vvv}

({∅}) analogously and applying Lemma 3.1 now proves our
claim.

We conclude the following bound on the running time of each iteration.

Corollary 7.8. Suppose we run Algorithm 1 on a hard-sphere model with C(·) = e−εCε(·)
as Bayes filter correction in line 5 for some ε > 0, and let Rt denote the running time of
iteration t ∈ N. Then, for all t ∈ N, E[Rt | Xt−1,Ut−1,uuut−1 ] is almost surely bounded by
some function of ε, `, r, λ and d.

Proof. Set B = B(Ut−1,uuut−1, r), and note that the bulk of the running time in each
iteration of Algorithm 1 is due to sampling the Bayes filter in line 5 and updating the point
configuration on ΛB in line 7.

41



For line 5, note that Xt−1 is almost surely feasible by Lemma 4.3. Thus, Lemma 7.7
yields that the expected time for sampling the Bayes filter, conditioned on Xt−1,Ut−1 and
uuut−1, almost surely bounded by some function of ε, `, r, λ and d.

For line 7, we can use Lemma 7.5 to bound the expected time for sampling from
µλXt−1∩(ΛB)c1ΛB

[ΛB] is bounded by (λ|ΛB|+ |Xt−1 ∩ Λ∂B|) · λ|ΛB|eλ|ΛB |. Note that |ΛB| ≤
(2`+ 1)drd and, if Xt−1 is feasible, |Xt−1 ∩ Λ∂B| ≤ (2

√
d/r)d|Λ∂B| ≤ (2

√
d/r)d · (2`+ 3)drd.

Since Xt−1 is indeed almost surely feasible, the expected running for line 7, conditioned on
Xt−1,Ut−1 and uuut−1, is almost surely bounded by some function of ε, `, r, λ and d as well,
which concludes the proof.

We proceed by bounding the expected number of iterations of Algorithm 1, running on a
hard-sphere model. To this end, we start with the following lower bound on the success
probability of the Bayes filter with correction e−εCε(·) for a particular choice of ε.

Lemma 7.9. Consider a hard-sphere model that exhibits (a, b)-strong spatial mixing up to
λ. Then there are constants a′, b′, only depending on a, b, r, λ and d, such that for all
non-empty S ⊆ V, vvv ∈ S and feasible η ∈ NΛ it holds that

e−e−`Ce−`(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≥ 1− a′e−b′`.

Proof. Set δ1 = δ1

(
e−`
)
and δ2 = δ2

(
e−`
)
as defined in Lemma 7.4. Note that by Lemma C.2

we have
ZΛB (λη∩Λ∂B ) = ZΛB

(
λη∩(ΛB)c

)
= ZΛB

(
λ(η∩ΛH)∪(η∩ΛS\{vvv})

)
,

where the last equality comes from the fact that H and S \ {vvv} form a partitioning of (B)c.
Similarly, we obtain

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
= ZΛB\{vvv}

(
λη∩(ΛB\{vvv})c

)
= ZΛB\{vvv}

(
λ(η∩ΛH)∪(η∩ΛS)

)
.

Thus, applying Lemma 6.1 with ξ1 = γ and ξ2 = η ∩ ΛH yields

min
γ⊆(δ1Z)d∩ΛH∩∂B

 ZΛB\{vvv}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

)
 · ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
≥ exp

(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
.

Moreover, following the same arguments as in Lemma 7.4, we have

e−e−`/2 · min
γ⊆(δ1Z)d∩ΛH∩∂B

ZΛB\{vvv}

(
λγ∪(η∩ΛS)

)
ZΛB

(
λγ∪(η∩ΛS\{vvv})

) ≤ min
γ⊆(δ1Z)d∩ΛH∩∂B

Ẑ(B \ {vvv}, γ ∪ (η ∩ ΛS), δ2)

Ẑ
(
B, γ ∪ (η ∩ ΛS\{vvv}), δ2

) .
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Recalling the definition of Ce−`(S,vvv, η) in Lemma 7.4 and noting that for ` ≥ 2 it holds that
b · (`− 1)r ≥ br

2 `, this implies

e−e−`Ce−`(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≥ exp
(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
· exp

(
2e−`

)
≥ 1− a′e−b′`

for b′ = min{1, br} and a′ = a3drde2br
(
λrd + eλ3drd

)
+ 2, which concludes the proof.

Lemma 7.9 allows us to control the success probability of the Bayes filter in terms of `.
This leads to the following statement.

Lemma 7.10. Consider a hard-sphere model that exhibits (a, b)-strong spatial mixing up to λ.
Suppose we run Algorithm 1 with C(·) = e−e−`Ce−`(·) as Bayes filter correction in line 5, and
let T = inf{t ∈ N0 | Ut = ∅} denote the number of iterations until the algorithm terminates.
Then, for ` sufficiently large depending on a, b, r, λ and d, it holds that E[T ] ≤ 2|V|.

Proof. We aim for applying Theorem B.2 to prove our claim. To this end, consider the process
(|Ut|)t∈N0 and the filtration (Ft)t∈N0 defined by Ft = σ((Xj ,Uj ,uuuj)j≤t). Further, observe
that our desired hitting time can equivalently be written as T = inf{t ∈ N0 | |Ut| ≤ 0}.
Since we are interested in the expectation of T , we only need to check assumptions a) and
b) of Theorem B.2.
For a) of Theorem B.2, observe that |Ut| ≥ 0 for all t ∈ N0. For b), we prove that

E[(|Ut| − |Ut+1|)1T>t | Ft ] ≥ 1
21T>t if ` is sufficiently large. Since

E[(|Ut| − |Ut+1|)1T>t | Ft ] = (|Ut| − E[|Ut+1| | Ft ])1T>t

it suffices to show that E[|Ut+1| | Ft ]1T>t ≤
(
|Ut| − 1

2

)
1T>t.

To simplify notation, we will omit the indicator of T > t while still restricting ourselves
to the setting where Ut 6= ∅. Next, observe that, if Ft = 1, then |Ut+1| = Ut − 1. On the
other hand, if Ft = 0, then

|Ut+1| = |Ut|+ |∂B| ≤ |Ut|+ |B ∪ ∂B| ≤ |Ut|+ (2`+ 3)d,

where B = B(Ut,uuut, `). Thus, it suffices if

(2`+ 3)d · (1− E[Ft | Ft ])− E[Ft | Ft ] ≤ −
1

2
.

Since, by Lemma 7.9,

E[Ft | Ft ] ≥ 1− a′e−b′`,

for a′ and b′ only depending on a, b, λ, r and d, this is satisfied for ` sufficiently large,
depending on a, b, λ, r and d. Applying Theorem B.2 then yields E[T ] ≤ 2|V|, which
concludes the proof.
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We conclude the following theorem.

Theorem 7.11. Consider Algorithm 1 on a hard-sphere model with C(·) = e−e−`Ce−`(·) as
Bayes filter correction in line 5. We can run the algorithm in almost-surely finite running
time and, on termination, it outputs a sample from the hard-sphere Gibbs measure µλ on Λ.
Moreover, if the hard-sphere model satisfies (a, b)-strong spatial mixing and if ` is chosen as
a sufficiently large constant, depending on a, b, r, λ and d, then we can run the algorithm
in expected time O(|Λ|).

Proof. For the first part of the statement, note that the correct output distribution follows
directly from Theorem 5.2 and the fact that e−e−`Ce−`(·) is a Bayes filter correction by
Lemma 7.4. Let T denote that number of iterations of Algorithm 1, and let Rt denote
the running time in iterations t ∈ N. By Corollary 5.1 we know that T is almost surely
finite. Moreover, it holds that E[Rt] = E[E[Rt | Xt−1,Ut−1,uuut−1 ]]. Since by Corollary 7.8
E[Rt | Xt−1,Ut−1,uuut−1 ] ≤ t(`, r, λ, d) for some function t : R3

≥0 ×N0 → R≥0, it also holds
that E[Rt] ≤ t(`, r, λ, d). Consequently, Rt must be finite almost surely, and Algorithm 1
has almost surely finite running time.

For the second part of the statement, suppose the hard-sphere model satisfies (a, b)-strong
spatial mixing up to λ. Observe that the expected running time of Algorithm 1 can be
expressed as

E

[
T∑
t=1

Rt

]
= E

∑
t≥1

1t≥TE[Rt | Xt−1,Ut−1,uuut−1 ]


≤ t(`, r, λ, d)E

∑
t≥1

1t≥T


= t(`, r, λ, d)E[T ],

where the first equality uses the fact that 1t≥T = 1Ut−1 6=∅ is σ(Ut−1)-measurable. By
Lemma 7.10, we can choose ` sufficiently large, depending on a, b, r, λ and d only, such
that E[T ] ≤ 2|V| ∈ O(|Λ|), proving linear expected running time of the algorithm for any
such choice of `.

8 General repulsive potentials

We now extend our perfect sampling algorithm to the setting of more general bounded-range
repulsive potentials φ. In contrast to the hard-sphere model, it is not clear how to perform
the minimization task in involved in constructing the Bayes filter in this setting. We will
instead assume knowledge of the rate of strong spatial mixing for constructing the Bayes
filter.
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Lemma 8.1. Let S ⊆ V be non-empty and vvv ∈ S. Let η ∈ NΛ be feasible and set B =
B(S,vvv, `). Suppose a, b > 0 are such that φ satisfies (a, b)-strong spatial mixing up to λ, and
set

δ = δ(a, b) := exp
(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
and

Ca,b(S,vvv, η) := δ ·
ZΛB\{vvv}(λη∩ΛS )

ZΛB

(
λη∩ΛS\{vvv}

) .
Then Ca,b(S,vvv, η) is a Bayes filter correction as in Definition 4.1. Moreover, it holds that

exp
(
−2a3drde2br

(
λrd + eλ3drd

)
e−br`

)
≤ Ca,b(S,vvv, η) ·

ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≤ 1.

Proof. We start by checking that Ca,b(·) is a Bayes filter correction. For the measurability,
note that for all non-empty S ⊆ V, vvv ∈ S and η ∈ NΛ it holds that Ca,b(S,vvv, η) does only
depend on η ∩ ΛS . Moreover, observe that

Ca,b(S,vvv, η) ≥ exp
(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
· e−λ|ΛB∪∂B |

≥ exp
(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
· exp

(
−λ(2`+ 3)drd

)
uniformly in η. For the upper bound, we apply Lemma 6.1 with ξ1 = ∅ and ξ2 = ξ to obtain

ZΛB\{vvv}(λη∩ΛS )

ZΛB

(
λη∩ΛS\{vvv}

) · inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
ZΛB\{vvv}

(
λξ∪(η∩ΛS)

) ≤ exp
(
a3drde2br

(
λrd + eλ3drd

)
e−br`

)
.

Therefore, multiplying both sides with δ yields

Ca,b(S,vvv, η) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible

ZΛB\{vvv}

(
λξ∪(η∩ΛS)

)
ZΛB

(
λξ∪(η∩ΛS\{vvv})

)
as desired.
For the second part of the statement, note that by Lemma C.2 we have

ZΛB (λη∩Λ∂B ) = ZΛB

(
λη∩(ΛB)c

)
= ZΛB

(
λ(η∩ΛH)∪(η∩ΛS\{vvv})

)
,

where the last equality comes from the fact that H and S \ {vvv} form a partitioning of (B)c.
Similarly, we obtain

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
= ZΛB\{vvv}

(
λη∩(ΛB\{vvv})c

)
= ZΛB\{vvv}

(
λ(η∩ΛH)∪(η∩ΛS)

)
.
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Since Ca,b(S,vvv, η) is a Bayes filter correction, it follows that

Ca,b(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≤ 1.

Moreover, applying Lemma 6.1 with ξ1 = ∅ and ξ2 = η ∩ ΛH yields

ZΛB\{vvv}(λη∩ΛS )

ZΛB

(
λη∩ΛS\{vvv}

) · ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≥ exp
(
−a3drde2br

(
λrd + eλ3drd

)
e−br`

)
and multiplying both sides with δ proves the claim.

While the first part of Lemma 8.1 is sufficient to guarantee correctness of Algorithm 1,
the second part of the statement will be useful for bounding the running by allowing us to
control the probability of the event Ft = 0 for each iteration t ∈ N0. Similarly as in the
setting of the hard-sphere model, we will not work directly with Ca,b(S,vvv, η), but rather use
a slightly scaled version, which is a Bayes filter correction in its own right.

Corollary 8.2. In the setting of Lemma 8.1, it holds that e−e−`Ca,b(S,vvv, r) is a Bayes filter
correction, and there are constants a′, b′, only depending on a, b, r, λ and d, such that

1− a′e−b′` ≤ e−e−`Ca,b(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≤ e−e−` .

Proof. Since 0 < e−e−` ≤ 1, it is obvious that e−e−`Ca,b(S,vvv, r) satisfies Definition 4.1. Now,
note that for ` ≥ 2 it holds that b(` − 1)r ≥ br

2 `. The statement directly follows from

Lemma 8.1 by setting b′ = min{1, br} and a′ = 2a3drde2br
(
λrd + eλ3drd

)
+ 1, and observing

that exp
(
−a′e−b′`

)
≥ 1− a′e−b′`.

Next, we focus on how to sample the Bayes filter, using e−e−`Ca,b(·) as in Corollary 8.2
as Bayes filter correction. In contrast to our approach for the hard-sphere model, we do
not know how to compute Ca,b(·) directly. Again, we solve this problem using a Bernoulli
factory.

Lemma 8.3. Let S ⊆ V be non-empty, vvv ∈ S and η ∈ NΛ be feasible, and set B = B(S,vvv, `).
Suppose a, b > 0 are such that φ satisfies (a, b)-strong spatial mixing up to λ and let Ca,b(·)
be as in Lemma 8.1. We can sample a Bernoulli random variable with success probability

e−e−`Ca,b(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
with expected running time in O

(∣∣η ∩ Λ{vvv}∪∂B
∣∣), where the constants only depend on `, r, λ

and d.
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Proof. Our goal is to use a Bernoulli factory of the form p
q to perform this task. To bring

the desired success probability into such a form, note that

ZΛB (λη∩Λ∂B ) =
1

µλη∩Λ∂B
1ΛB

({∅})

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

)
=

1

µλη∩Λ∂B∪{vvv}1ΛB\{vvv}
({∅})

.

Moreover, using Lemma C.2 we have

ZΛB\{vvv}(λη∩ΛS ) = ZΛB\{vvv}

(
λη∩Λ(∂B∩S)∪{vvv}

)
=

1

µλη∩Λ(∂B∩S)∪{vvv}1ΛB\{vvv}
({∅})

ZΛB

(
λη∩ΛS\{vvv}

)
= ZΛB (λη∩Λ∂B∩S ) =

1

µλη∩Λ∂B∩S1ΛB
({∅})

.

Finally, note that e−e−` ∈ [0, 1] and, for δ = δ as in Lemma 8.1, δ ∈ [0, 1]. Thus, by setting

p := e−e−`δ · µλη∩Λ∂B∩S1ΛB
({∅}) · µλη∩Λ∂B∪{vvv}1ΛB\{vvv}

({∅})

q := µλη∩Λ(∂B∩S)∪{vvv}1ΛB\{vvv}
({∅}) · µλη∩Λ∂B

1ΛB
({∅})

we have p ∈ [0, 1], q ∈ [0, 1] and

e−e−`Ca,b(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) =
p

q
.

We are now going to use Lemma 3.1 to prove that we can obtain a sample from Ber
(
p
q

)
within the desired expected running time. To this end, we need to provide a positive lower
bound on q−p and we need an efficient way for generating independent samples from Ber(q)
and Ber(p).
For the lower bound, note that by Corollary 8.2 it holds that

e−e−`Ca,b(S,vvv, η) ·
ZΛB (λη∩Λ∂B )

ZΛB\{vvv}

(
λη∩Λ∂B∪{vvv}

) ≤ e−e−` .

Consequently, we have

q − p ≥
(

1− e−e−`
)
q

=
(

1− e−e−`
)
·
(
ZΛB\{vvv}

(
λη∩Λ(∂B∩S)∪{vvv}

)
· ZΛB (λη∩Λ∂B )

)−1

≥
(

1− e−e−`
)

e−2λ|ΛB |.
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Using the upper bound |ΛB| ≤ (2`+ 1)drd yields q − p ≥
(

1− e−e−`
)

e−λ(2`+1)drd .
We proceed by arguing that we can obtain an oracle for Ber(p) and Ber(q) as required

by Lemma 3.1. In particular, we focus on Ber(p) since Ber(q) can be treated analogously.
Firstly, note that we can sample a Bernoulli random variable with success probability
e−e−`δ in constant time, since we can compute it explicitly. It remains to argue that we
can sample Bernoulli random variables with success probability µλη∩Λ∂B∩S1ΛB

({∅}) and
µλη∩Λ∂B∪{vvv}1ΛB\{vvv}

({∅}) in the desired running time. Again, we focus on µλη∩Λ∂B∩S1ΛB
({∅})

and treat µλη∩Λ∂B∪{vvv}1ΛB\{vvv}
({∅}) analogously. To this end, note that for Y ∼ µλη∩Λ∂B∩S1ΛB

it holds that Y ∩ (ΛB)c = ∅ almost surely. Thus, it holds that

µλη∩Λ∂B
1ΛB

({∅}) = µλη∩Λ∂B
1ΛB

[ΛB]({∅}),

and, for Y ∼ µλη∩Λ∂B
1ΛB

[ΛB], it holds that 1Y=∅ is a Bernoulli random variable with success
probability µλη∩Λ∂B

1ΛB
({∅}). By Lemma 7.5, we can obtain independent samples from

µλη∩Λ∂B
1ΛB

[ΛB], each in expected time at most (λ|ΛB|+ |η ∩ Λ∂B|) · λ|ΛB|eλ|ΛB |. Noting
that |ΛB| ≤ (2`+ 1)drd and that |η ∩ Λ∂B| ≤

∣∣η ∩ Λ{vvv}∪∂B
∣∣ yields an expected running time

of O
(∣∣η ∩ Λ{vvv}∪∂B

∣∣). Applying the same argument to sample a Bernoulli random variable
with success probability µλη∩Λ∂B∪{vvv}1ΛB\{vvv}

({∅}) yields an oracle for Ber(p) with expected

running time in O
(∣∣η ∩ Λ{vvv}∪∂B

∣∣). Finally, applying the same procedure for Ber(q) and
using Lemma 3.1 concludes the proof.

We obtain the following bound for the running time of each iteration.

Corollary 8.4. Let a, b > 0 be such that φ satisfies (a, b)-strong spatial mixing up to λ.
Suppose we run Algorithm 1 on φ with C(·) = e−e−`Ca,b(·) as Bayes filter correction in
line 5, and let Rt denote the running time for iteration t ∈ N. Then, for all t ∈ N, it holds
that

E[Rt | Xt−1,Ut−1,uuut−1 ] ≤ O
(∣∣Xt−1 ∩ Λ{uuut−1}∪∂B

∣∣),
where B = B(Ut−1,uuut−1, `), and the constants in the asymptotic notation only depend on `,
r, λ and d.

Proof. Set B = B(Ut−1,uuut−1, `), and note that the bulk of the running time in each
iteration of Algorithm 1 is due to sampling the Bayes filter in line 5 and updating the point
configuration on ΛB in line 7.

For line 5, note that Xt−1 is almost surely feasible by Lemma 4.3. Thus, Lemma 8.3 yields
that the expected time for sampling the Bayes filter, conditioned on Xt−1,Ut−1 and uuut−1,
almost surely bounded by some function in O

(∣∣Xt−1 ∩ Λ{uuut−1}∪∂B
∣∣). Further, for line 7, we

can use Lemma 7.5 to bound the expected time for sampling from µλXt−1∩(ΛB)c1ΛB
[ΛB] is

bounded by (λ|ΛB|+ |Xt−1 ∩ Λ∂B|) · λ|ΛB|eλ|ΛB | ∈ O
(∣∣Xt−1 ∩ Λ{uuut−1}∪∂B

∣∣) as desired.
Next, we derive a bound on the expected number of iterations of Algorithm 1 given strong

spatial mixing.
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Lemma 8.5. Let a, b > 0 be such that φ satisfies (a, b)-strong spatial mixing up to λ. Suppose
we run Algorithm 1 with C(·) = e−e−`Ca,b(·) as Bayes filter correction in line 5, and let
T = inf{t ∈ N0 | Ut = ∅} denote the number of iterations until the algorithm terminates.
Then, for ` sufficiently large depending on a, b, r, λ and d, it holds that E[T ] ≤ 2|V|, and
for all k ≥ 4|V| it holds that P[T ≥ k] ≤ exp

(
− k
α

)
for some constant α ∈ R>0 that only

depends on `, d and r.

Proof. We aim for applying Theorem B.2 to prove our claim. For bounding E[T ], we proceed
analogously as in the proof of Lemma 7.10. In particular, we consider the process (|Ut|)t∈N0

with the filtration (Ft)t∈N0 defined by Ft = σ((Xj ,Uj ,uuuj)j≤t) and rewrite our desired hitting
time as T = inf{t ∈ N0 | |Ut| ≤ 0}. Since a) of Theorem B.2 is trivially satisfied, we only
need to check b). Using the lower bound from Corollary 8.2 and the same arguments as
in the proof of Lemma 7.10, we can show that E[(|Ut| − |Ut+1|)1T>t | Ft ] ≥ 1

21T>t if ` is
sufficiently large, depending on a, b, r, λ and d. Thus, applying the first part of Theorem B.2
proves our bound on E[T ].
To obtain the tail bound on T , we apply the second part of Theorem B.2. For c), note

that |U0| = |V| and, for d), observe that

||Ut| − |Ut−1|| ≤ max
{

1, (2`+ 3)drd
}
.

Thus, setting α ≥ 64 ·max
{

1, (2`+ 3)2dr2d
}
concludes the proof.

Note that, in contrast to Corollary 7.8, Corollary 8.4 does not give a deterministic bound
on the running time of each iteration. Due to potential dependencies between the running
time of each iteration and termination of the algorithm, it is unclear if we can simply apply
Wald’s equation to derive the total running time of the algorithm. Instead, we will use a
more subtle argument for this. As a first ingredient, we need upper-bound the probability
of ever observing a large number of points in any box Λvvv for vvv ∈ V up to a given iteration
k ∈ N0.

Lemma 8.6. There is a constant α ∈ R≥1, only depending on `, d and r, such that, for all
k ∈ N0, all γ > 1 and all x ≥ eγλrd, it holds that

P

[
k⋃
t=0

⋃
vvv∈V
{|Xt ∩ Λvvv| ≥ x}

]
≤ (k + 1)αe−(γ−1)x.

Proof. Let α ≥ (2`+ 1)d. We show the statement via induction over k. First, for k = 0,
note that X0 = ∅. Thus, we have that the left-hand side is 0 for all x > 0 and the right-hand
side is at least 1 for x = 0, proving the base case.
Next, assume the statement holds for some fixed k ∈ N≥0. Let B̂ ⊆ V be the set

of boxes updated in iteration k + 1 (possibly the empty set). Formally, that is B̂ =
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{vvv ∈ V | Xk+1 ∩ Λvvv 6= Xk ∩ Λvvv }. By the induction hypothesis and union bound, it holds
that

P

[
k+1⋃
t=0

⋃
vvv∈V
{|Xt ∩ Λvvv| ≥ x}

]
= P

[
k⋃
t=0

⋃
vvv∈V
{|Xt ∩ Λvvv| ≥ x} ∪

{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

}]

≤ P

[
k⋃
t=0

⋃
vvv∈V
{|Xt ∩ Λvvv| ≥ x}

]
+ P

[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

}]
≤ (k + 1)α · e−(γ−1)x + P

[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

}]
.

It now suffices to show that

P
[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

}]
≤ α · P[Y ≥ x].

First, note that B̂ = ∅ if Fk = 0. Thus, we have

P
[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

} ∣∣∣ Fk = 0
]
≤ α · P[Y ≥ x]

for all x ∈ R≥0. Now, fix S ⊆ V and www ∈ S such that P[Uk = S,uuuk = www,Fk = 1] > 0. Set
B = B(S,www, `) and observe that, given Uk = S, uuuk = uuu and Fk = 1, it holds that B̂ = B.
Using union bound, we have

P
[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

} ∣∣∣ Uk = S,uuuk = www,Fk = 1
]

= P

[⋃
vvv∈B
{|Xk+1 ∩ Λvvv| ≥ x}

∣∣∣∣∣ Uk = S,uuuk = www,Fk = 1

]
≤
∑
vvv∈B

P[|Xk+1 ∩ Λvvv| ≥ x | Uk = S,uuuk = www,Fk = 1].

Given Uk = S, uuuk = www and Fk = 1, it holds that Xk+1∩ΛB is sampled from µλη∩(ΛB)c1ΛB
[ΛB]

for some feasible η ∈ NΛ. Therefore, for all vvv ∈ B, |Xk+1 ∩ Λvvv| is dominated by a Poisson
random variable Y with parameter λ|Λvvv| ≤ λrd. Further, observing that |B| ≤ α yields

P
[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

} ∣∣∣ Uk = S,uuuk = www,Fk = 1
]
≤ α · P[Y ≥ x].

Using the law of total expectation and Corollary B.4, we obtain

P
[{
∃vvv ∈ B̂ s.t. |Xk+1 ∩ Λvvv| ≥ x

}]
≤ α · e−(γ−1)x,

which proves the claim.

Using Lemma 8.6, we derive our main result on perfect sampling for repulsive bounded-
range potentials based on Algorithm 1.
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Theorem 8.7. Let a, b > 0 be such that φ satisfies (a, b)-strong spatial mixing up to λ.
Consider Algorithm 1 with C(·) = e−e−`Ca,b(·) as Bayes filter correction in line 5. On
termination, the algorithm outputs a sample from the Gibbs measure µλ on Λ. Moreover, if
` is chosen as a sufficiently large constant, depending on a, b, r, λ and d, then we can run
the algorithm in expected time Õ(|Λ|).

Proof. If φ satisfies (a, b)-strong spatial mixing up to λ, we know by Corollary 8.2 that
e−e−`Ca,b(·) is a Bayes filter correction. Thus, the first part of the statement follows from
Theorem 5.2.

Next, let ` be chosen as a sufficiently large constant, depending on a, b, r, λ and d to
satisfy Lemma 8.5. We rewrite the running time of Algorithm 1 as

E

[
T∑
t=1

Rt

]
= E

[
E

[ ∞∑
t=1

1T≥tRt

∣∣∣∣∣ Ut−1, Xt−1,uuut−1

]]

= E

[ ∞∑
t=1

1T≥tE[Rt | Ut−1, Xt−1,uuut−1 ]

]

Moreover, by Corollary 8.4, there are constants a1, a2, only depending on `, d, λ and r, such
that

E[Rt | Ut−1, Xt−1,uuut−1 ] ≤ α1

∣∣Xt−1 ∩ Λ{uuut−1}∪∂Bt
∣∣+ α2

where Bt = B(Ut−1,uuut−1, `). Thus, we have

E

[
T∑
t=1

Rt

]
≤ α1E

[ ∞∑
t=1

1T≥t
∣∣Xt−1 ∩ Λ{uuut−1}∪∂Bt

∣∣]+ α2E

[ ∞∑
t=1

1T≥t

]
.

Note that by Lemma 8.5

∞∑
t=1

E[1T≥t] =
∞∑
t′=0

P[1T>t′ ] = E[T ] ∈ O(|Λ|).

It remains to bound

E

[ ∞∑
t=1

1T≥t ·
∣∣Xt−1 ∩ Λ{uuut−1}∪∂Bt

∣∣].
To this end, write W =

∑∞
t=1 1T≥t ·

∣∣Xt−1 ∩ Λ{uuut−1}∪∂Bt
∣∣. Since W is non-negative, we have

E[W ] =

∫
R≥0

P[W > w] dw ≤ ŵ +

∫ ∞
ŵ
P[W > w] dw
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for every ŵ ∈ R≥0. Next, observe that for every t ∈ N

|{uuut−1} ∪ ∂Bt| ≤ |Bt ∪ ∂Bt| ≤ (2`+ 1)d =: α3.

Thus, for every w ∈ R≥0 and every k : R≥0 → N the following holds: if W > w, then
T > k(w) or there is a time point t ≤ k(w) and a box vvv ∈ V such that |Xt−1 ∩ Λvvv| > w

k(w)α3
.

Consequently, we have

P[W > w] ≤ P

{T > k(w)} ∪
k(w)⋃
t=1

⋃
vvv∈V

{
|Xt−1 ∩ Λvvv| >

w

k(w)α3

}
≤ P[T > k(w)] + P

k(w)⋃
t=1

⋃
vvv∈V

{
|Xt−1 ∩ Λvvv| >

w

k(w)α3

}.
Moreover, applying Lemma 8.6 shows that there is a constant α4, only depending on `, r
and d, such that for all w ≥ e2α3λr

dk(w) it holds that

P[W > w] ≤ P[T ≥ k(w)] + (k(w)− 1)α4exp

(
− w

k(w)α3

)
,

Now, suppose that k is measurable, we get for ŵ ∈ R≥0

E[W ] ≤ ŵ +

∫ ∞
ŵ
P[T ≥ k(w)] dw + α4

∫ ∞
ŵ

k(w)exp

(
− w

k(w)α3

)
dw.

We now claim that for a suitable choice of ŵ and k the right-hand side is in Õ(|Λ|).
To this end, let k(w) = max{d4e|V|e, d2α5 ln(w)e}, where α5 is the constant from the tail

bound in Lemma 8.5, which only depends on `, r and d. Moreover, choose ŵ ≥ 1 sufficiently
large such that for all w ≥ ŵ it holds that w ≥ k(w), w ≥ e2α3λr

dk(w) and w
ln(w) ≥ 3α3k(w).

Note that this can be achieved for some ŵ ∈ Õ(|V|).
For our choice of k(w), Lemma 8.5 yields∫ ∞

ŵ
P[T ≥ k(w)] dw ≤

∫ ∞
ŵ

w−2 dw,

which is bounded by 1 for ŵ ≥ 1. Moreover, for w ≥ k(w) and w
ln(w) ≥ 3α3k(w) we have

exp

(
− w

k(w)α3

)
≤ 1

k(w)w2

and thus ∫ ∞
ŵ

k(w)exp

(
− w

k(w)α3

)
dw ≤

∫ ∞
ŵ

w−2 dw ≤ 1.

Consequently, we have
E[W ] ≤ ŵ + O(1) ∈ Õ(|V|)

and, since |V| ∈ O(|Λ|), this concludes the proof.
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Remark 8.8. Since Theorem 8.7 requires knowing constants a, b such that the Point process
satisfies (a, b)-strong spatial mixing (in contrast to Theorem 7.11), we can use these constant
to compute a sufficiently large value for `. Elementary calculations suggest to choose
` > max

{
1+7r

2 , 16a′b′2
}
, where b′ = min{1, br} and a′ = 2a3drde2br

(
λrd + eλ3drd

)
+ 1.

9 Bernoulli Factories

In this section we prove Lemma 3.1, showing how to sample a random variable from Ber
(
p
q

)
given access to a Ber(p) and Ber(q) sampler, when q − p > ε. This happens in the following
three steps.

The first step is to sample a random variable according to Ber
(

1−(q−p)
2

)
given access to

Ber(p) and Ber(q). This is achieved by Algorithm 3 bellow. It is easy to verify that this

Algorithm 3: Ber
(

1−(q−p)
2

)
from Ber(p) and Ber(q)

1 Draw u ∼ Ber(1/2)
2 if u = 1 then
3 Draw y ∼ Ber(q)
4 return 1− y
5 else
6 Draw x ∼ Ber(p)
7 return x

algorithm returns 1 with the correct probability.
For the second step, let % = 1−(q−p)

2 . From Algorithm 3 we now assume to have access to a
Ber(%) random variable. The next step is to use Huber’s algorithm [37] and obtain a Ber(2%).
For the algorithm to work within the required run-time guarantees, we need % < 1−ε

2 , which
holds since we assumed q − p > ε. For convenience, we provide the pseudocode of Huber’s
algorithm in Algorithm 4. The correctness of the algorithm can be found in [37, Section 2.3].

Algorithm 4 now gives us access to a Ber(2%) sampler and consequently to a Ber(1− 2%) =
Ber(q − p) sampler, simply by flipping the returned bit. The final step is to sample from
Ber
(
p
q

)
when given access to a sampler for Ber(q − p). This is done via Algorithm 5.

Regarding the correctness of Algorithm 5 note that, within a single while-loop, the
probability the algorithm returns 1 is p/2, while the probability that the algorithm enters
the while-loop again is 1− q/2. Conditioned on the fact that the algorithm will terminate,
we observe that Algorithm 5 returns 1 with probability p/q.

We are now ready to prove Lemma 3.1, whose statement we repeat here for convinience.
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Algorithm 4: Ber(2%) from Ber(%)

1 ε← min{ε, 0.644}, k ← 23
5ε , i← 1, R← 1, C ← 2

2 while i 6= 0 and R 6= 0 do
3 while 0 < i < k do
4 Draw u ∼ Ber(%)

5 Draw g ∼ Geo
(
C−1
C

)
6 i← i− 1 + (1− u)g

7 if i ≥ k then
8 Draw R ∼ Ber

((
1 + ε

2

)−i)
9 if R = 0 then

10 return 0

11 C ← C(1 + ε
2), ε← ε

2 , k ← 2k

12 return 1

Algorithm 5: Ber
(
p
q

)
from Ber(p) and Ber(q − p)

1 Set b = −1
2 while b = −1 do
3 Draw u1 ∼ Ber(1/2)
4 if u1 = 1 then
5 Draw x ∼ Ber(p)
6 if x = 1 then
7 Set b = 1

8 else
9 Draw y ∼ Ber(q − p)

10 if y = 1 then
11 Set b = 0

12 return b
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Lemma 3.1. Fix some p, q ∈ [0, 1] such that q − p ≥ ε for some ε > 0. Further assume that
we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:

1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;

2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), condi-
tioned on previously obtained samples, is uniformly bounded by some t ∈ R≥0.

Then we can sample from Ber
(
p
q

)
in O

(
tε−2

)
expected time.

Proof. We use Algorithm 5 which calls Algorithm 4, which in turn calls Algorithm 3, as we
explained above. For simplicity, we may assume that, every time we sample Ber(p), we also
sample from Ber(q) and vice versa. Thus, let (Xi)i∈N ∈ ({0, 1}2)N be a sequence of samples
from the product distribution (Ber(p) ⊗ Ber(q))⊗N and assume that Xi = (X

(p)
i , X

(q)
i ) is

the outcome of the ith time the algorithm samples from Ber(p) and Ber(q). Moreover, let
(Ti)i∈N be the running time for obtaining the Xi using the assumed oracle, and let N denote
the total number of samples from Ber(p) and Ber(q) that Algorithm 5 requires.

Our goal is to show that E
[∑N

i=1 Ti

]
∈ O

(
tε−2

)
. To this end, note that, for every i ∈ N,

the event N ≥ i does only depend on the sequence (Xi)i∈N via the subsequence (Xj)j<i.
Moreover, by our assumptions on the oracle, it holds that E[Ti | (Xj)j<i ] ≤ 2t, where the
factor of 2 comes from the fact that we sample both Ber(p) and Ber(q). Thus, by Wald’s
equation, we have

E

[
N∑
i=1

Ti

]
= E

∑
i≥1

1N≥iE[Ti | (Xj)j<i ]

 ≤ 2tE[N ].

It remains to show that E[N ] ∈ O
(
ε−2
)
.

Algorithm 5 will do 2/q ∈ O
(
ε−1
)
while-loops in expectation, as each while-loop terminates

with probability q/2. Furthermore, each while-loop calls either Ber(p) or Algorithm 4, both
with probability 1/2. As the total number of loops is determined by the outcome of the
final loop, we can use Wald’s equation again to get that E[N ] ∈ O

(
ε−1 + ε−1E[N ′]

)
, where

N ′ is the number of Xi samples that Algorithm 4 requires. Observe (from the pseudocode
of Algorithm 3) that each Ber(%)-call Algorithm 4 requires only a single Xi sample. From
[37, Theorem 1.1] we get that Algorithm 4 requires at most O

(
ε−1
)

Ber(%) samples in
expectation, which implies that E[N ′] ∈ O

(
ε−1
)
. This concludes the proof of the lemma.
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A Measure theory and conditional expectations

A.1 Conditional expectation

We start with a brief recap of the notation used in the appendix.
Let (Ω,A,P) be a probability space. For an event A ∈ A with P[A] > 0, we write PA

for the probability measure PA[ ·] = P[ · | A ] on (Ω,A). Note that for all events A,B ∈ A
with P[A ∩B] > 0 it holds that PA∩B = (PA)B . Let f, g : Ω→ R be measurable maps. We
denote by E[f ] the expectation of f under the measure P. For a sub-σ-field F ⊆ A, we write
E[f | F ] as a placeholder for any version of a conditional expectation of f given F under the
probability measure P. Further, we write E[ · | f ] for conditional expectations given σ(f),
the σ-field generated by f , and E[ · | f, g ] for conditional expectations given σ(σ(f) ∪ σ(g)).
Finally, for an event A ∈ A with P[A] > 0 and a sub-σ-field F ⊆ A, we write E[f | A ] for
the expectation of f under PA and E[f | F ;A ] for the conditional expectation of f given F
under the measure PA.
The following two statements allow us to relate conditional expectations under different

probability distributions.

Lemma A.1. Let (Ω,A,P) be a probability space, X be an integrable random variable, let
F ⊆ A be a sub-σ-field and let A ∈ A with P[A] > 0. Then

E[1AX | F ] = E[X | F ;A ]E[1A | F ]

P-almost surely. Moreover, it holds that

E[X | F ;A ] =
E[1AX | F ]

E[1A | F ]

PA-almost surely.
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Proof. By definition, E[X | F ;A ]E[1A | F ] is F-measurable. Moreover, for any B ∈ F it
holds that

E[1BE[X | F ;A ]E[1A | F ]] = E[1B1AE[X | F ;A ]]

= E[1A]E[1BE[X | F ;A ] | A ]

= E[1A]E[1BX | A ]

= E[1B1AX]

= E[1BE[1AX | F ]].

Thus, it holds that
E[1AX | F ] = E[X | F ;A ]E[1A | F ]

P-almost surely. Next, observe that for A ∈ A with P[A] > 0 it holds that E[A | F ] > 0
PA-almost surely. Thus, it follows immediately that

E[X | F ;A ] =
E[1AX | F ]

E[1A | F ]

PA-almost surely.

The following properties can be concluded.

Lemma A.2. Let (Ω,A,P) be a probability space, X be an integrable random variable and
F ⊆ A be a sub-σ-field. Let A1, . . . , An ∈ A be disjoint and such that P[Ai] > 0 for all
1 ≤ i ≤ n and P[

⋃n
i=1Ai] = 1. If an F-measurable function f : Ω → R is a version of

E[X | F ;Ai ] for all 1 ≤ i ≤ n, then f is also a version of E[X | F ].

Proof. Since the events A1, . . . , An ∈ A and satisfy P[
⋃n
i=1Ai] = 1, we have

X = X1⋃n
i=1 Ai

=
n∑
i=1

X1Ai

P-almost surely. Thus, by linearity of expectation, we have

E[X | F ] =
n∑
i=1

E[X1Ai | F ].

Furthermore, since P[Ai] > 0 for all 1 ≤ i ≤ n Lemma A.1 gives
n∑
i=1

E[X1Ai | F ] =

n∑
i=1

E[X | F ;Ai ]E[1Ai | F ] = f

n∑
i=1

E[1Ai | F ]

P-almost surely. Finally, observing that
n∑
i=1

E[1Ai | F ] = E
[
1⋃n

i=1 Ai

∣∣∣ F ] = 1

concludes the proof.
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Lemma A.3. Let (Ω,A,P) be a probability space, X be an integrable random variable, let
F ⊆ A be a sub-σ-field and let A ∈ A with P[A] > 0.

(1) If A ∈ F then E[X | F ] = E[X | F ;A ] PA-almost surely.

(2) If E[1A | F ] = E[1A | F ,G ] for a σ-field G ⊆ A with σ(X) ⊆ G, then E[X | F ] =
E[X | F ;A ] PA-almost surely.

Proof. For (1), note that for A ∈ F we have E[X1A | F ] = 1AE[X | F ]. Moreover,
Lemma A.1 yields

E[X1A | F ] = E[1A | F ]E[X | F ;A ] = 1AE[X | F ;A ].

Thus, we have 1AE[X | F ] = 1AE[X | F ;A ] and, in particular, E[X | F ] = E[X | F ;A ]
PA-almost surely.
For (2), observe that

E[X1A | F ] = E[E[X1A | F ,G ] | F ]

= E[XE[1A | F ,G ] | F ]

= E[XE[1A | F ] | F ]

= E[X | F ]E[1A | F ]

P-almost surely, where the second equality follows from σ(X) ⊆ G and the third follows
from E[1A | F ] = E[1A | F ,G ]. The claim now follows from Lemma A.1.

A.2 Regular conditional distributions

Consider a probability space (Ω,A,P) with a sub-σ-field F ⊆ A, a measure space (D,D) and
(D,D)-valued random variable X. A map Q : Ω×D → [0, 1] is called a regular conditional
distribution of X given F if

(1) Q(ω, ·) is a probability measure on (D,D) for all ω ∈ Ω and

(2) Q(·, A) is a version of E[1X∈A | F ] for all A ∈ D.

The following statements makes regular conditional distributions particularly useful.

Theorem A.4 ([11][Theorem 2.19]). Let (Ω,A,P) be a probability space, let X be a (D,D)-
valued random variable and let Y be a (E, E)-valued random variable. If Q : Ω×D is a regular
conditional distribution of X given σ(Y ), then, for all D ⊗ E-measurable f : D × E → R≥0

it holds that
E[f(X,Y ) | Y ](ω) =

∫
D
f(x, Y (ω))Q(ω, dx)

for P-almost all ω ∈ Ω.

63



Moreover, the following lemma helps to identify regular conditional distributions based
on a π-system.

Lemma A.5. Let (Ω,A,P) be a probability space and let F ⊆ A be a sub-σ-field. Let X be a
(D,D)-valued random variable on (Ω,A,P) and let G ⊆ D be a π-system that generates D.
Assume there is a function Q : Ω×D such that

(1) Q(ω, ·) is a probability distribution on (D,D) for all ω ∈ Ω and

(2) Q(·, G) is a version of E[1X∈G | F ] for all G ∈ G .

Then Q(·, A) is a version of E[1X∈A | F ] for all A ∈ D and, in particular, Q is a regular
conditional distribution for X given F .

Proof. Consider the set of events

H = {A ∈ D | Q(·, A) is a version of E[1X∈A | F ]}.

Our goal is to prove H = D. To this end, note that G ⊆ H ⊆ D. Thus, if we prove that H
is a Dynkin system, then the π-λ Theorem implies that D = σ(G) ⊆ H, which proves our
claim. To show that H is a Dynkin system, we need to argue that D ∈ H and that H is
closed under complements and countable disjoint unions.
To see that D ∈ H, note that Q(ω,D) = 1 for all ω ∈ Ω. Thus, Q(·,Ω) is trivially
F-measurable. Moreover, for any B ∈ F , it holds that

E[1BQ(·, D) | F ] = E[1B | F ] = E[1B1X∈D | F ],

which shows that Q(·, D) is indeed a version of E[1X∈D | F ].
Next, fix some G ∈ H and observe that Q(ω, (G)c) = 1 −Q(ω,G) for all ω ∈ Ω. Since

Q(·, G) is by assumption a version of E[1X∈G | F ] (therefore F-measurable), this shows
that Q(·, (G)c) is F-measurable. Moreover, for all B ∈ F , we have

E[1BQ(·, (G)c) | F ] = E[1B | F ]− E[1BQ(·, G) | F ]

= E[1B1X∈D | F ]− E[1B1X∈G | F ]

= E
[
1B1X∈(G)c

∣∣ F ],
which proves that (G)c ∈ H.

Finally, consider some sequence of disjoint events (Gn)n∈N ∈ HN and set G =
⋃
n∈NGn.

Note that Q(ω,G) =
∑

n∈NQ(ω,Gn) for all ω ∈ Ω. Since each function Q(·, Gn) is a version
of E[1X∈Gn | F ], this implies that Q(·, G) is F-measurable. Moreover, for all B ∈ F it
holds that

E[1BQ(·, G) | F ] =
∑
n∈N

E[1BQ(·, Gn) | F ] =
∑
n∈N

E[1B1X∈Gn | F ] = E[1B1X∈G | F ],

showing that G ∈ H. Thus, H is a Dynkin system, which concludes the proof.
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B Hitting times and tail bounds

We frequently make use of the following version of Wald’s identity.

Lemma B.1. Let (Ω,A,P) be a probability space, let (Xn)n∈N≥1
be a sequence of random

variables on (Ω,A,P) with values in R≥0 and let F ⊆ A be a sub-σ-field. Suppose there
is a F-measurable random variable M such that for all n ∈ N it holds that E[Xn | F ] ≤
M almost surely. Let N be a random variable in N such that for all n ∈ N it holds
that E[Xn1N≥n | F ] = E[Xn | F ]E[1N≥n | F ] almost surely. Then E

[∑N
n=1Xn

∣∣∣ F ] ≤
ME[N | F ] almost surely.

Proof. Using monotone convergence we have

E

[
N∑
n=1

Xn

∣∣∣∣∣ F
]

=
∞∑
n=1

E[1N≥nXn | F ] =
∞∑
n=1

E[Xn | F ]E[1N≥n | F ]

≤ME

[ ∞∑
n=1

1N≥n

∣∣∣∣∣ F
]

= ME[N | F ]

Moreover, we use the following drift theorem to bound the expected number of iterations
of our sampling algorithm.

Theorem B.2 ([48, Theorem 1], [47, Theorem 2]). Let (Xt)t∈N0 be an integrable random
process over R that is adapted to a filtration (Ft)t∈N0 and let T = inf{t ∈ N0 | Xt ≤ 0}.
Assume

a) Xt1T≥t ≥ 0 for all t ∈ N and

b) there is some ε ∈ R>0 such that E[(Xt −Xt+1)1T>t | Ft ] ≥ ε1T>t for all t ∈ N .

Then E[T ] ≤ E[X0]
ε . Further, suppose that

c) X0 ≤ x for some x ∈ R>0 and

d) there is some c ∈ R>0 such that |Xt −Xt+1| < c for all t ∈ N0.

Then, for all s ≥ 2x
ε , P[T ≥ s] ≤ exp

(
− sε2

16c2

)
.

Finally, we make use of the following tail bound for Poisson random variables.

Theorem B.3 ([59, Theorem 5.4]). Let Y ∼ Pois(ρ) for some ρ ∈ R>0. For all y > ρ it
holds that P[Y ≥ y] ≤ e−ρ

(
eρ
y

)y
.

In particular, we use the following corollary of the above bound.

Corollary B.4. Let Y ∼ Pois(ρ) for some ρ ∈ R>0. For all γ > 1 all y ≥ eγρ it holds that
P[Y ≥ y] ≤ e−(γ−1)y.

Proof. Since y ≥ eγρ > ρ, Theorem B.3 implies that

P[Y ≥ y] ≤ e−ρ
(

eρ

y

)y
≤
(

eρ

eγρ

)y
= e−(γ−1)y.
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C Gibbs point processes

Here we collect some useful lemmas about Gibbs point processes.
The following technical lemma will come in handy.

Lemma C.1. Let Λ′1 ⊂ Λ′ ⊂ Rd be bounded and measurable. Denote by πΛ′,Λ′1 : NΛ′ → NΛ′1

the projection η 7→ η ∩ Λ′1. Then πΛ′,Λ′1 is RΛ′-measurable. Moreover, for Λ′2 = Λ′ \ Λ′1 it
holds that

G =
{
π−1

Λ′,Λ′1
(A1) ∩ π−1

Λ′,Λ′2
(A2)

∣∣∣ A1 ∈ RΛ′1 , A2 ∈ RΛ′2

}
is a π-system that generates RΛ′.

Proof. We start by showing that πΛ′,Λ′1 is RΛ′-measurable. To this end, set E(1)
B,k =

{η ∈ NΛ′1 | |η ∩B| = k} ∈ RΛ′1 for every Borel set B ⊆ Λ′1 and k ∈ N0, and observe that
E(1) = {EB,k | k ∈ N0, B ⊆ Λ′1 Borel} generates RΛ′1 . Thus, it suffices to show for every
E

(1)
B,k ∈ E

(1) that π−1
Λ′,Λ′1

(
E

(1)
B,k

)
∈ RΛ′ . By definition, we have

π−1
Λ′,Λ′1

(
E

(1)
B,k

)
=
{
η ∈ NΛ′

∣∣ ∣∣(η ∩ Λ′1) ∩B
∣∣ = k

}
= {η ∈ NΛ′ | |η ∩B| = k} ∈ RΛ′ ,

which proves the first part of the claim.
For the second part, note that G is non-empty and, since RΛ′1 and RΛ′2 are closed under

countable intersections, the same holds for G. In particular, G satisfies the definition of a
π-system. It remains to show that G generates RΛ′ . Analogously to the first part of the
proof, set E(2)

B,k = {η ∈ NΛ′2 | |η ∩B| = k} ∈ RΛ′2 for every Borel set B ⊆ Λ′2 and k ∈ N0,
set EB,k = {η ∈ NΛ′ | |η ∩B| = k} ∈ RΛ′ for every Borel set B ⊆ Λ′ and k ∈ N0, and
define E = {EB,k | k ∈ N0, B ⊆ Λ′ Borel}. Since E generates RΛ′ , it suffices to show that
E ⊆ σ(G). To this end, fix some EB,k ∈ E and observe that

EB,k =

k⋃
k1=0

({
η ∈ NΛ′

∣∣ ∣∣η ∩ (B ∩ Λ′1)
∣∣ = k1

}
∩
{
η ∈ NΛ′

∣∣ ∣∣η ∩ (B ∩ Λ′2)
∣∣ = k − k1

})
=

k⋃
k1=0

(
π−1

Λ′,Λ′1

(
E

(1)
B∩Λ′1,k1

)
∩ π−1

Λ′,Λ′2

(
E

(2)
B∩Λ′2,k−k1

))
.

Thus, every EB,k ∈ E can be written as a finite union of sets in G and E ⊆ σ(G), which
proves the claim.

In this bounded-range setting, the following lemma might be seen as a version of the
spatial Markov property for partition functions.

Lemma C.2. Let φ be a repulsive potential with bounded range r ∈ R≥0. Moreover, let
Λ′ ⊆ Λ and let be any activity function λλλ : Rd → R≥0. For every two point configurations
η1, η2 ∈ NΛ with dist(Λ′, η1 	 η2) ≥ r, where 	 denotes the symmetric difference, it holds
that ZΛ′(λλλη1) = ZΛ′(λλλη2).
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Proof. Since the range of φ is bounded by r, it holds that λλλη1(x) = λλλη2(x) for all x ∈ Λ.
Therefore, we have

ZΛ′(λλλη1) =
∑
k≥0

1

k!

∫
Λ′k

λλλxxxη1
e−H(xxx) dxxx =

∑
k≥0

1

k!

∫
Λ′k

λλλxxxη2
e−H(xxx) dxxx = ZΛ′(λλλη2),

which proves the claim.
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