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Abstract
Many important graph theoretic notions can be encoded as counting graph homomorphism prob-
lems, such as partition functions in statistical physics, in particular independent sets and col-
ourings. In this article we study the complexity of #pHomsToH, the problem of counting
graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and
Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homo-
morphisms depends on the structure of the target graph. Many intractable cases in non-modular
counting become tractable in modular counting due to the common phenomenon of cancellation.
In subsequent studies on counting modulo 2, however, the influence of the structure of H on the
tractability was shown to persist, which yields similar dichotomies.

Our main result states that for every tree H and every prime p the problem #pHomsToH is
either polynomial time computable or #pP-complete. This relates to the conjecture of Faben and
Jerrum stating that this dichotomy holds for every graph H when counting modulo 2. In contrast
to previous results on modular counting, the tractable cases of #pHomsToH are essentially the
same for all values of the modulo when H is a tree. To prove this result, we study the structural
properties of a homomorphism. As an important interim result, our study yields a dichotomy for
the problem of counting weighted independent sets in a bipartite graph modulo some prime p.
These results are the first suggesting that such dichotomies hold not only for the one-bit functions
of the modulo 2 case but also for the modular counting functions of all primes p.
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1 Introduction

Edge preserving functions between the vertices of two graphs, known as graph homomorphisms,
generate a powerful language expressing important notions; examples include constraint
satisfaction problems and partition functions in statistical physics. As such, the computational
complexity of graph homomorphism problems has been studied extensively from a wide
range of views. Early results include that of Hell and Nešetřil [14], who study the complexity
of HomsToH, the problem of deciding if there exists a homomorphism from an input graph
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xL xR

v1

v2 u3

u2

u1

Figure 1 The graph H will be our recurring example and the labelling of the vertices is justified
later in the introduction.

G to a fixed graph H. They show the following dichotomy: if H is bipartite or has a loop,
the problem is in P and in every other case HomsToH is NP-complete. In particular, this
is of interest since a result of Ladner [15] shows that if P ‰ NP, then there exist problems
that are neither in P nor NP-hard.

Dyer and Greenhill [5] show a dichotomy for the problem #HomsToH, the problem
of counting the homomorphisms from an input graph G to H. Their theorem states that
#HomsToH is tractable if H is a complete bipartite graph or a complete graph with loops
on all vertices; otherwise #HomsToH is # P-complete. This dichotomy was progressively
extended to weighted sums of homomorphisms with integer weights, by Bulatov and Gohe [1];
with real weights, by Goldberg et al. [11]; finally, with complex weights, by Cai, Chen and
Lu [2].

We study the complexity of counting homomorphisms modulo a prime p. The set of homo-
morphisms from the input graph G to the target graph H is denoted by Hom pGÑ Hq. For
each pair of fixed parameters p and H, we study the computational problem #pHomsToH,
that is the problem of computing |Hom pGÑ Hq | modulo p. The value of p and the structure
of the target graph H influence the complexity of #pHomsToH. Consider the graph H

in Figure 1. Our results show that #pHomsToH is computable in polynomial time when
p “ 2, 3 while it is hard for any other prime p.

Our main goal is to fully characterise the complexity of #pHomsToH in a dichotomy
theorem. In this manner we aim to determine for which pair of parameters pH, pq the problem
is tractable and show that for every other pair of parameters the problem is hard. As the
theorem of Ladner [15] extends to the modular counting problems, it is not obvious that
there are no instances of #pHomsToH with an intermediate complexity.

The first study of graph homomorphisms under the setting of modular counting has been
conducted by Faben and Jerrum [7]. Their work is briefly described in the following and
we assume the reader to be familiar with the notion of an automorphism and its order. We
provide the formal introduction in the full version. Given a graph H and an automorphism %

of H, H% denotes the subgraph of H induced by the fixpoints of %. We write H ñk H
1 if

there is an automorphism % of order k of H such that H% “ H 1 and we write H ñ˚
k H

1 if
either H is isomorphic to H 1 (written H – H 1) or, for some positive integer t, there are
graphs H1, . . . ,Ht such that H – H1, H1 ñk ¨ ¨ ¨ ñk Ht, and Ht – H 1.

Faben and Jerrum showed [7, Lemma 3.3] that if the order of % is a prime p, then
|Hom pGÑ Hq | is equivalent to |Hom pGÑ H%q | modulo p. Furthermore, they showed [7,
Theorem 3.7] that there is (up to isomorphism) exactly one graphH˚p without automorphisms
of order p, such that H ñ˚

p H
˚p. This graph H˚p is called the order p reduced form of H

(see Figure 4 of the full version). If H˚p falls into the polynomial computable cases of the
theorem of Dyer and Greenhill, then #pHomsToH is computable in polynomial time as
well. For p “ 2, Faben and Jerrum conjectured that these are the only instances computable
in polynomial time and that in every other case #2HomsToH is #2 P-complete, where #k P
is the “canonical” hardness class for modular counting problems (see Section 1.1).

§ Conjecture 1.1 (Faben and Jerrum [7]). Let H be a graph. If its order 2 reduced form H˚2
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has at most one vertex, then #2HomsToH is in FP; otherwise, #2HomsToH is #2 P-
complete.

Faben and Jerrum [7, Theorem 3.8] underlined their conjecture by proving it for the case
in which H is a tree. In subsequent works this proof was extended to cactus graphs in [10]
and to square-free graphs in [9], by Göbel, Goldberg and Richerby.

The present work follows a direction orthogonal to the aforementioned. Instead of proving
the conjecture for richer classes of graphs, we show a dichotomy for all primes, starting again
by studying trees.

§ Theorem 1.2. Let p be a prime and let H be a graph, such that its order p reduced form H˚p

is a tree. If H˚p is a star, then #pHomsToH is computable in polynomial time; otherwise,
#pHomsToH is #p P-complete.

Our results are the first to suggest that the conjecture of Faben and Jerrum might apply
to counting graph homomorphisms modulo every prime p instead of counting modulo 2.
This suggestion, however, remains hypothetical. Borrowing the words of Dyer, Frieze and
Jerrum [4]: “One might even rashly conjecture” it “(though we shall not do so)”.

To justify our title we give the following corollary, stating a dichotomy for all trees H.

§ Corollary 1.3. Let p be a prime and let H be a tree. If the order p reduced form H˚p of H
is a star, then #pHomsToH is computable in polynomial time; otherwise, #pHomsToH is
#p P-complete.

We illustrate Theorem 1.2 using the following discussion on Figure 1. The order 2 and
the order 3 reduced form of H both are the graph with one vertex, whereas for any other
prime the graph stays as such.

The polynomial computable cases follow directly from the results of Faben and Jerrum.
Thus, to prove Theorem 1.2 it suffices to show that #pHomsToH is #p P-complete for every
tree H that is not a star and has no automorphism of order p. The reductions in [7, 10, 9] show
hard instances of #2HomsToH by starting from #2IS, the problem of computing |IpGq|
pmod 2q, where IpGq is the set of independent sets of G. #2IS was shown to be #2 P
complete by Valiant [18]. Later on, Faben [6] extended this result by proving #kIS to be
#k P-complete for all integers k. For reasons to be explained in Section 1.3 we do not use
this problem as a starting point for our reductions.

We turn our attention to #pBIS, the problem of counting the independent sets of a
bipartite graph modulo p. In the same work Faben [6] includes a construction to show
hardness for #pBIS. We employ the weighted version #pBISλ`,λr as a starting point for
our reduction extending the research on #BIS.

§ Problem 1.4. #pBISλ`,λr

Parameter. p prime and λ`, λr P Zp.
Input. Bipartite graph G “ pVL, VR, Eq.
Output. Zλ`,λr pGq “

ř

IPIpGq
λ

|VLXI|

` λ
|VRXI|
r pmod pq.

In fact, we obtain the following dichotomy.

§ Theorem 1.5. Let p be a prime and let λ`, λr P Zp. If λ` ” 0 pmod pq or λr ” 0 pmod pq,
then #pBISλ`,λr is computable in polynomial time. Otherwise, #pBISλ`,λr is #p P-complete.

In order to prove hardness for #pHomsToH we employ a reduction in three phases: (i)
we reduce the “canonical” #p P-complete problem #pSAT to #pBISλ`,λr ; (ii) we reduce
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49:4 Counting Homomorphisms to Trees Modulo a Prime

#pBISλ`,λr to #pPartLabHomsToH, a restricted version of #pHomsToH which we
define in Section 1.3; (iii) we reduce #pPartLabHomsToH to #pHomsToH.

Section 1.1 provides background knowledge on modular counting. In Section 1.2 we will
discuss some related work. A high level proof of our three way reduction is provided in
Section 1.3. There we also explain the technical obstacles arising from values of the modulo p ą
2 and how we overcome them by generalising the techniques used for the case p “ 2. First,
we explain step (i), the reduction from #pSAT to #pBISλ`,λr . Afterwards, we describe
step (iii), the reduction from #pPartLabHomsToH to #pHomsToH establishing the
required notation for the subsequent illustration of step (ii), the reduction from #pBISλ`,λr
to #pPartLabHomsToH. In Section 1.4 we discuss the limits of our techniques, which do
not yield a dichotomy modulo any integer k.

1.1 Modular counting

Modular counting was originally studied from the decision problem’s point of view. Here, the
objective is to determine if the number of solutions is non-zero modulo k. The complexity
class ‘P was first studied by Papadimitriou and Zachos [16] and by Goldschlager and
Parberry [12]. ‘P consists of all problems of the form “is fpxq odd or even?”, where fpxq is
a function in # P. A result of Toda [17] states that every problem in the polynomial time
hierarchy reduces in polynomial time to some problem in ‘P. This result suggests that
‘P-completeness represents strong evidence for intractability.

For an integer k the complexity class #k P consists of all problems of the form “compute
fpxq modulo k”, where fpxq is a function in # P. In the special case of k “ 2, #2 P “ ‘P,
as the instances of #2 P require a one bit answer. Throughout this paper though, instead of
the more traditional notation ‘P, we will use #2 P to emphasise our interest in computing
functions.

If a counting problem can be solved in polynomial time, the corresponding decision and
modular counting problems can also be solved in polynomial time. The converse, though,
does not necessarily hold. The reason is that efficient counting algorithms rely usually
on an exponential number of cancellations that occur in the problem, e.g. compute the
determinant of a non-negative matrix. The modulo operator introduces a natural setting for
such cancellations to occur.

For instance, consider the # P-complete problem of counting proper 3-colourings of a
graph G in the modulo 3 (or even modulo 6) setting. 3-colourings of a graph assigning all
three colours can be grouped in sets of size 6, since there are 3! “ 6 permutations of the
colours. Thus, the answer to these instances is always a multiple of 6, and therefore “cancels
out”. It remains to compute the number of 3-colourings assigning less than 3 colours. For
the case of using exactly 2 colours we distinguish the following two cases: G is not bipartite
and there are no such colourings; G is bipartite and the number of 3-colourings of G that
use exactly 2 colours is 3p2cq, where c is the number of components of G. Finally, computing
the number of proper 3-colourings of G that use exactly one colour is an easy task. Either G
has an edge and there are no such colourings, or G has no edges and for every vertex there
are 3 colours to choose from.

Valiant [18] observed a surprising phenomenon in the tractability of modular counting
problems. He showed that for a restricted version of 3-SAT computing the number of solutions
modulo 7 is in FP, but computing this number modulo 2 is #2 P-complete. This mysterious
number 7 was later explained by Cai and Lu [3], who showed that the k-SAT version of
Valiant’s problem is tractable modulo any prime factor of 2k ´ 1.



A. Göbel, J. A. G. Lagodzinski, K. Seidel 49:5

1.2 Related work
We have already mentioned earlier work on counting graph homomorphisms. In this section
we highlight the work of Faben [6] and the work of Guo et al. [13] on the complexity of the
modular counting variant of the constraint satisfaction problem.

§ Problem 1.6. #kCSPpFq

Parameter. k P Zą0 and a set of functions F “ tf1, . . . , fmu, where for each j P rms,
fj : t0, 1urj Ñ Zp and rj P Zą0.

Input. Finite set of constraints over Boolean variables x1, . . . , xn of the form
fjlpxil,1 , xil,2 , . . . , xil,rjl

q.
Output.

ř

x1,...,xnPt0,1u

ś

l fjlpxil,1 , xil,2 , . . . , xil,rjl
q pmod kq.

Faben showed a dichotomy theorem [6, Theorem 4.11] when the functions in F have
Boolean domain and Boolean range, i.e. f : t0, 1u Ñ t0, 1u. Guo et al. extended this
dichotomy [13, Theorem 4.1] to #kCSP, when the functions in F have Boolean domain
t0, 1u but range in Zk.

Constraint satisfaction problems generalise graph homomorphism problems, when the
domain of the constraint functions is arbitrarily large. In order to illustrate that #kCSP is a
generalisation of #kHomsToH, let G be an input for #kHomsToH, for which we describe an
equivalent #kCSP instance. The domain of the constraint satisfaction problem is D “ V pHq

and F contains a single binary relation RH , with RHpu, vq “ 1 whenever pu, vq P EpHq and
RHpu, vq “ 0 otherwise. Thus, #kHomsToH is an instance of #kCSPptRHuq. The input of
#kCSPptRHuq contains a variable xv for every vertex v P V pGq and a constraint RHpxu, xvq
for every edge pu, vq P EpGq. As can be observed from the construction, every valid
homomorphism σ : V pGq Ñ V pHq corresponds to an assignment of the variables txvuvPV pGq
satisfying every constraint in the CSP.

These results of Faben and of Guo et al. are incomparable to ours. We consider prime
values of the modulo and a single binary relation, however the domain of our relations
is arbitrarily large. Furthermore, the results of Faben [6, Theorem 4.11] show that the
constraint language F for which #2CSP is tractable is richer than the constraint language
for which #kCSP is tractable, where k ą 2. In contrast, our results show that the dichotomy
criterion of #pHomsToH remains the same for all primes p, when H is a tree.

1.3 Beyond one-bit functions
Weighted bipartite independent sets

To explain how we prove Theorem 1.5, consider a bipartite graph G “ pVL, VR, Eq and let
λ` “ 0 (the case λr “ 0 is symmetric). We observe that every independent set I which
contributes a non-zero summand to Zλ`,λr pGq can only contain vertices in VR (Zλ`,λr pGq
is defined in Problem 1.4). This yields the closed form Zλ`,λr pGq “ pλr ` 1q|VR|, which
is computable in polynomial time. Regarding the case λ`, λr ı 0 pmod pq, we employ a
generalisation of a reduction used by Faben. In [6, Theorem 3.7] Faben reduces #pSAT
to #pBIS1,1, the problem of counting independent sets of a bipartite graph.

We have to generalise this reduction for the weighted setting, in particular allowing different
vertex weights for the vertices of each partition. Furthermore, during the construction we
have to keep track of the assignment of vertices to their corresponding part, VL or VR. For
this purpose we need to show the existence of bipartite graphs B, where Zλ`,λr pBq takes
specific values. These graphs are then used as gadgets in our reduction. In the unweighted
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49:6 Counting Homomorphisms to Trees Modulo a Prime

setting #pBIS1,1 the graphs B are complete bipartite graphs. However, in the weighted
setting #pBISλ`,λr complete bipartite graphs are not sufficient. Therefore, we prove the
existence of the necessary bipartite gadgets B constructively. Key results appear in Section 2
and the technical proofs appear in Section 3 of the full version.

Pinning

Similar to the existing hardness proofs on modular counting graph homomorphisms we deploy
a “pinning” technique. A partial function from a set X to a set Y is a function f : X 1 Ñ Y

for some X 1 Ď X. For any graph H, a partially H-labelled graph J “ pG, τq consists of an
underlying graph G and a pinning function τ , which is a partial function from V pGq to V pHq.
A homomorphism from a partially labelled graph J “ pG, τq to H is a homomorphism
σ : G Ñ H such that, for all vertices v P dompτq, σpvq “ τpvq. The resulting problem
is denoted by #pPartLabHomsToH, that is, given a prime p and graph H, compute
|Hom pJ Ñ Hq | pmod pq. In Section 3, we show that #pPartLabHomsToH reduces to
#pHomsToH. This allows us to establish hardness for #pHomsToH, by proving hardness
for #pPartLabHomsToH. The reduction generalises the pinning reduction of Göbel,
Goldberg and Richerby [9] from #2PartLabHomsToH to #2HomsToH.

We explain how to prove pinning when we restrict the value of the modulo to 2 and the
pinning function τpJq “ tu ÞÑ vu to “pin” a single vertex. Given two graphs with distinguished
vertices pG, uq and pH, vq, let Hom ppG, uq Ñ pH, vqq be the set of homomorphisms from G

to H mapping u to v. Given a graph with a distinguished vertex pG, uq and a graph
H, we define wHpGq to be the t0, 1u-vector containing the entries |Hom ppG, uq Ñ pH, vqq |

pmod 2q for each vertex v P V pHq. Observe that for two vertices v1, v2 P V pHq, such
that pH, v1q – pH, v2q, and any graph G the relevant entries in wGpHq will always be
equal. Therefore, we can contract all such entries to obtain the orbit vectors vHpGq.
Suppose that there exists a graph with a distinguished vertex pΘ, uΘq, such that vHpΘq “
0 . . . 010 . . . 0, where the 1-entry corresponds to the vertex v of H. Given our input J
for #2PartLabHomsToH we can now define an input G for #2HomsToH, such that
|Hom pJ Ñ Hq | ” |Hom ppGpJq, uq Ñ pH, vqq | ” |Hom pGÑ Hq | pmod 2q. G contains a
disjoint copy of GpJq and Θ, where the vertices u and uΘ are identified (recall that u is the
vertex of J mapped by τpJq). Due to the value of vHpΘq and the structure of G there is
an even number of homomorphisms mapping u to any vertex v1 ‰ v, which establishes the
claim.

Such a graph Θ, however, is not guaranteed to exist. Instead, we can define a set
of operations on the vectors vH corresponding to graph operations and show that for
any vector in t0, 1u|V pHq| there exist a sequence of graphs with distinguished vertices
pΘ1, u1q, . . . , pΘt, utq that “generate” this vector. Thus, there exists a set of graphs that
“generate” v “ 0 . . . 010 . . . 0, which yields the desired reduction. This technique of [9] exploits
the value of the modulo to be 2. Applying this technique to counting modulo any prime p
directly, one can establish pinning for asymmetric graphs, that is graphs whose automorphism
group contains only the identity. A dichotomy for #pHomsToH, when H is an asymmetric
tree appears in the first author’s doctoral thesis [8].

In order to go beyond asymmetric graphs, one has to observe that information redundant
only in the modulo 2 case is lost from the contraction of the vectors wH to the vectors vH .
This works on asymmetric graphs, since then these two vectors are identical. For general
graphs we are able to restore pinning for counting homomorphisms modulo any prime p by
utilising the non-contracted vectors wH .
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§ Theorem 1.7. Let p be a prime and let H be a graph. Then #pPartLabHomsToH
reduces to #pHomsToH via polynomial time Turing reduction.

To obtain hardness for #pHomsToH we only need to pin two vertices when H is a tree,
i.e. the domain of the pinning function τ has size two. For a study of a more general class of
target graphs H (see [9]), the size of the domain has to be larger. As our pinning theorem
applies to all primes p, all graphs H and pinning functions of arbitrary domain size, it can
potentially be used to show hardness for #pHomsToH for all primes and any class of target
graphs H. The key lemmas are presented in Section 3 and the formal proofs in Section 5 of
the full version.

Gadgets

Gadgets are structures appearing in the target graph H that allow to reduce #2IS to
#2PartLabHomsToH (the hardness of #2HomsToH is then immediate from Theorem 1.7).
For illustrative purposes we simplify the definitions appearing in [9]. #2HomsToH–gadgets
consist of two partially labelled graphs with distinguished vertices pJ1, yq, pJ2, y, zq along with
two “special” vertices i, o P V pHq. Given the input G for #2IS, we construct an input G1 for
#2PartLabHomsToH as follows. We attach a copy of J1 to every vertex u of G (identifying
u with y) and replace every edge pu, vq of G with a copy of J2 (identifying u with y and v
with z). The properties of J1 ensure that there is an odd number of homomorphisms from
G1 to H where the original vertices of G are mapped to i or o, while the number of the
remaining homomorphisms cancels out. The properties of J2 ensure that there is an even
number of homomorphisms from G1 to H when two adjacent vertices of G are both mapped
to i, and an odd number of homomorphisms in every other case. We can now observe that
|IpGq| ” |Hom pG1 Ñ Hq | pmod 2q, as the set of homomorphisms that does not cancel out
must map every vertex of G to i or o and no pair of adjacent vertices both to i. Every vertex
of G that is in an independent set must be mapped to i, and every vertex that is out of the
independent set must be mapped to o.

Generalising the described approach to modulo any prime p ą 2 one would end up
reducing from a restricted #pCSP instance, containing a binary relation and a unary weight
that must be applied to every variable of the instance (this is known as external field in
statistical physics). Similar to the modulo 2 case the edge interaction is captured by the
binary relation and size of the set of “special” vertices by the unary weights. Since for primes
p ą 2 there are more non-zero values than 1 (odd) a study of the external field is no longer
trivial in this case. Instead we choose a different approach and reduce from #pBISλ`,λr . This
seems to capture the structure that produces hardness in #pHomsToH in a more natural
way.

We formally present our reduction in Section 4. In the following we sketch our proof
method and focus our attention on the example graph H in Figure 1. Let G “ pVL, VR, Eq
be a bipartite graph. Homomorphisms from G to H must respect the partition of G, i.e.
the vertices in VL can only be mapped to the vertices in txL, u1, u2, u3u and the vertices in
VR can only be mapped to the vertices in txR, v1, v2u, or vice versa. Any homomorphism σ

from G to H, which maps the vertex w P V pGq to any vertex in tu1, u2, u3u, must map
every neighbour of w to xR. Similarly, any homomorphism σ from G to H, which maps
the vertex w P V pGq to any vertex in tv1, v2u, must map every neighbour of w to xL.
Thus, homomorphisms from G to H express independent sets of G: tu1, u2, u3u represent
the vertices of VL in the independent set and tv1, v2u represent the vertices of VR in the
independent set, or vice versa. We construct a partially labelled graph J from G to fix the
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49:8 Counting Homomorphisms to Trees Modulo a Prime

choice of VL and VR in the set of homomorphisms from G to H. GpJq contains a copy of G,
where every vertex in VL is attached to the new vertex û and every vertex in VR is attached to
the new vertex v̂. In addition, τpJq “ tû ÞÑ xR, v̂ ÞÑ xLu is the pinning function. We observe
that the vertices in VL can only be mapped to vertices in txL, u1, u2, u3u and vertices in VR
can only be mapped to vertices in txR, v1, v2u. This observation yields that the number of
homomorphisms from J to H is equivalent to

ř

IPIpGq 3|VLXI|2|VRXI| pmod pq. Furthermore,
the cardinality of the sets tu1, u2, u3u and tv1, v2u introduces weights in a natural way.

For the reduction above we need the following property easily observable in H: there
exist two adjacent vertices of degree a “ λ` ` 1 ı 1 pmod pq and b “ λr ` 1 ı 1 pmod pq.
Recall that in order to obtain hardness for #pBISλ`,λr Theorem 1.5 requires λ`, λr ı 0
pmod pq. In fact, as we will show in Section 4, these vertices need not be adjacent. During
the construction of J we can replace the edges of G with paths of appropriate length. We
call such a structure in H an pa, b, pq-path. In Lemma 4.4 we formally prove that if H has
an pa, b, pq-path, then #pHomsToH is #p P-hard. In particular, observe that stars cannot
contain pa, b, pq-paths. Finally, we show that every non-star tree H contains an pa, b, pq-path,
which yields our main result on #pHomsToH (Lemma 4.2).

1.4 Composites
We outline the obstacles occurring when extending the dichotomy for #kHomsToH to
any integer k. Let H be a graph and let k “

śm
i“1 ki, where ki “ prii is an integer with

its prime factorisation. Assuming #kHomsToH can be solved in polynomial time, then
for each i P rms, #kiHomsToH can also be solved in polynomial time. The reason is
that ki is a factor of k and we can apply the modulo ki operator to the answer for the
#kHomsToH instance. The Chinese remainder theorem shows that the converse is also
true: if for each i P rms we can solve #kiHomsToH in polynomial time, then we can also
solve #kHomsToH in polynomial time. By the previous observations we can now focus on
powers of primes k “ pr. Assuming #kHomsToH is computable in polynomial time yields
again that #pHomsToH is also computable in polynomial time. However, the converse is
not always true.

Guo et al. [13] were able to obtain this reverse implication for the constraint satisfaction
problem. They showed [13, Lemma 4.1 and Lemma 4.3] that when p is a prime #prCSP
is computable in polynomial time if #pCSP is computable in polynomial time. In the full
version we show that their technique cannot be transferred to the #kHomsToH setting. We
show that there is a graph (P4) such that #2HomsToP4 is computable in polynomial time,
while #4HomsToP4 is #2 P-hard.

2 Weighted bipartite independent set

We study the complexity of Problem 1.4, the problem of computing the weighted sum over
independent sets in a bipartite graph. We begin by identifying the tractable instances.

§ Proposition 2.1. If λ` ” 0 pmod pq or λr ” 0 pmod pq then #pBISλ`,λr is computable in
polynomial time.

To prove the hardness of the remaining cases, we reduce from #pSAT. Our reduction
starts with a Boolean formula ϕ and constructs, in two stages, a graph Gϕ, such that
Zλ`,λr pGϕq ” K| satpϕq| pmod pq, where satpϕq denotes the set of satisfying assignments of
ϕ and K is a constant depending on the values of the weights λ` and λr. In the first stage
we define the graph G1ϕ. For every variable xi in ϕ, G1ϕ contains three vertices ui, ūi and
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wi to the left vertex set VLpG1ϕq as well as three vertices vi, v̄i and zi to the right vertex
set VRpG1ϕq. For every clause cj of ϕ, G1ϕ further contains a vertex yj in the right vertex
set VRpG1ϕq. We further introduce the edges forming the cycle uiviwiv̄iūiziui to EpG1ϕq for
every variable xi in ϕ. Additionally for all i P rns, if xi appears as a literal in clause cj of ϕ,
we introduce the edge pui, yjq in G1ϕ and if x̄i appears as a literal in clause cj , we introduce
the edge pūi, yjq in G1ϕ. The left part of Figure 2 illustrates an example of this construction.

The second stage uses copies of a bipartite graph B, which is obtained by the following
key lemma.

§ Lemma 2.2. Let p be a prime and λ`, λr P Z˚p . There exists a bipartite graph B “

pVL, VR, Eq with distinguished vertices uL P VL and vR P VR, that satisfies
1. Zλ`,λr pBq ” 0 pmod pq,
2. Zλ`,λr pB ´ uLq ı 0 pmod pq,
3. Zλ`,λr pB ´ vRq ı 0 pmod pq.

In the second and final stage, we construct the graph Gϕ. Let pB, uL, vRq be the graph
obtained from Lemma 2.2. Gϕ is a copy of G1ϕ together with two copies of B for every
variable of ϕ and one copy of B for every clause. The first n copies B1, . . . , Bn are connected
to G1ϕ by identifying the distinguished vertex uiL in the left component with wi P VLpG1ϕq
for all i P rns. The second n copies Bn`1, . . . , B2n are connected to G1ϕ by identifying
the distinguished vertex vn`iR in their right components with zi P VRpG

1
ϕq for all i P rns.

The remaining m copies B2n`1, . . . , B2n`m of B are connected to G1ϕ by identifying the
distinguished vertex v2n`j

R in their right components with yj P VRpG1ϕq for all j P rms. For
an example see the right part of Figure 2.

From this construction we obtain the desired result.

§ Theorem 1.5. Let p be a prime and let λ`, λr P Zp. If λ` ” 0 pmod pq or λr ” 0 pmod pq

then #pBISλ`,λr is computable in polynomial time. Otherwise, #pBISλ`,λr is #p P-complete.

3 Homomorphisms of partially labelled graphs

We study the following problem.

§ Problem 3.1. #pPartLabHomsToH.

Parameter. Graph H and prime p.
Input. Partially H-labelled graph J “ pG, τq.
Output. |HompJ Ñ Hq| pmod pq.

We observe the following theorem for all primes p.

§ Lemma 3.2 (Göbel, Goldberg and Richerby [9]). Let p be a prime and let pH, v̄q and
pH 1, v̄1q be graphs having no automorphism of order p, each with r distinguished vertices.
Then pH, v̄q – pH 1, v̄1q if and only if, for all (not necessarily connected) graphs pG, ūq with
r distinguished vertices,

|Hom ppG, ūq Ñ pH, v̄qq | ” |Hom
`

pG, ūq Ñ pH 1, v̄1q
˘

| pmod pq .

Instead of orbit vectors, which are used in the pinning proof of [9], we employ tuple
vectors. The tuple vectors include the sizes of the orbits OrbHpv̄q, for all v P V pHqr, and
this information is vital for the proof of our pinning theorem.

MFCS 2018
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B8

B7

B4B1

B5B2

B6B3

u1 v1

u1 v1

w1 z1

u2 v2

u2 v2

w2 z2

u3 v3

u3 v3

w3 z3

y1

y2

u1 v1

u1 v1

u1
L = w1 z1 = v4R

u2 v2

u2 v2

u2
L = w2 z2 = v5R

u3 v3

u3 v3

u3
L = w3 z3 = v6R

y1 = v7R

y2 = v8R

Figure 2 The graphs G1
ϕ and Gϕ for ϕ “ px1 _ x2q ^ px̄1 _ x2 _ x3q.

§ Definition 3.3. Let H be a graph with no automorphism of order p, r P Zą0 and let
w̄1, . . . , w̄ν be an enumeration of pV pHqqr, i.e., ν “ |V pHq|r. Let pG, ūq be a graph with
r distinguished vertices. We define the tuple vector wHpG, ūq P pZpqν where, for each j P rνs,
the j-th component of wHpG, ūq is given by

`

wHpG, ūq
˘

j
” |Hom ppG, ūq Ñ pH, w̄jqq | pmod pq .

We say that pG, ūq implements this vector.

Not all tuple vectors in pZpqν are implementable. We only require the following set to be
implementable.

§ Definition 3.4. Let H be a graph with no automorphism of order p, r P Zą0 and let
w̄1, . . . , w̄ν be an enumeration of pV pHqqr, i.e., ν “ |V pHq|r. Denote by F pH, rq Ď pZpqν the
set of vectors w, such that, for all i, j P rνs with pH, w̄iq – pH, w̄jq, we have pwqi “ pwqj .

§ Lemma 3.5. Let H be a graph with no automorphism of order p, r P Zą0 and w̄1, . . . , w̄ν
an enumeration of pV pHqqr, i.e., ν “ |V pHq|r. Then every w P F pH, rq is H-implementable.

Using the above in the full version we prove the following theorem.

§ Theorem 1.7. Let p be a prime and let H be a graph. Then #pPartLabHomsToH
reduces to #pHomsToH via polynomial-time Turing reduction.

4 Hardness for trees

The structure in H that yields hardness for #pHomsToH is formally defined as follows.
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H :
x0 x1 x2

G :

u2

u1

v1

e

f

J : x0

û

u2 = zf0

u1 = ze0

xk

v̂zf2 = v1

ze2 = v1
ze1

zf1

Figure 3 An instance for p “ 5 of #pBIS3,1 reducing to #pPartLabHomsToH. H contains
the p4, 2, 5q-path x0x1x2. G is transformed to the partially labelled graph J , where the mappings of
τpJq are shown as vertices encircling the target of the mapping.

§ Definition 4.1. Let H be a graph, p be a prime and a, b P Zpzt1u. Assume H contains a
path P “ x0 . . . xk for k ą 0, such that the following hold
1. P is the unique path between x0 and xk in H.
2. degHpx0q ” a pmod pq and degHpxkq ” b pmod pq.
3. For all 0 ă i ă k, degHpxiq ” 1 pmod pq.
Then, we will call P an pa, b, pq-path in H and denote it QH .

§ Lemma 4.2. Let H be a tree that has no automorphism of order p. Then, either H is a
star or there are a, b P Zpzt1u such that H contains an pa, b, pq-path.

In order to show that #pHomsToH is #p P-hard we are going to establish a reduction
from #pBISλ`,λr to #pPartLabHomsToH. Let p be a prime and let H be a tree, target
graph in #pPartLabHomsToH. Given a graph G “ pVL, VR, Eq input for #pBISλ`,λr ,
we construct a partially labelled graph J , input for #pPartLabHomsToH, such that
Zλ`,λr pGq ” |Hom pJ Ñ Hq | pmod pq. Assume H contains an pa, b, pq-path Q “ x0 . . . xk
and let Pk “ z0 . . . zk be the k-path of length k. For every edge e P E, we take a copy of Pk
denoted P ek “ ze0 . . . z

e
k. Then, J is constructed starting with G by adding two vertices û and

v̂ and connecting them to every vertex in VL and VR, respectively. Subsequently, every edge
e P E is substituted with a the path P ek . Finally, the pinning function of J maps û to x0 as
well as v̂ to xk. See Figure 3 for an example.

The following lemma gives the key properties of J , which establish the reduction.

§ Lemma 4.3. Let p be a prime, G “ pVL, VR, Eq a bipartite graph and H be a tree. Assume
there are a, b P Zpzt1u such that H contains an pa, b, pq-path QH “ x0 . . . xk. We denote the
diminished neighbourhoods of x0 and xk by WL “ ΓHpx0q ´ x1 and WR “ ΓHpxkq ´ xk´1,
respectively. Additionally, let J be the partially labelled graph described above. Then, for
every homomorphism σ from J to H the following hold.
1. Let u P VL and v P VR, then σpuq P ΓHpx0q and σpvq P ΓHpxkq, respectively;
2. Let Oσ “ tu P VL | σpuq “ x1u Y tv P VR | σpvq “ xk´1u and Iσ “ pVL Y VRqzOσ. Given

another homomorphism σ1 from J to H, the relation σ „I σ
1 if Iσ “ Iσ1 is an equivalence

relation with equivalence class denoted rr¨ssI;
3. Let σ1, . . . , σµ be representatives from each „I-equivalence class. Then, the set IpGq of

independent sets of G is exactly the set t Iσi | i P rµs u.
4. For the diminished neighbourhoods holds |rrσssI| ” |WL|

|IσXVL||WR|
|IσXVR| pmod pq.
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§ Lemma 4.4. Let p be a prime and let H be a graph with no automorphism of order p. If
there are a, b P Zpzt1u such that H has an pa, b, pq-path QH then #pHomsToH is #p P-hard
under Turing reductions.

5 Dichotomy theorems

The results of Faben and Jerrum [7] combined with Lemma 4.4 give the following dichotomy
theorem.

§ Theorem 1.2. Let p be a prime and let H be a graph, such that its order p reduced form H˚p

is a tree. If H˚p is a star, then #pHomsToH is computable in polynomial time; otherwise,
#pHomsToH is #p P-complete.

To justify our title, we use the following proposition showing that our dichotomy theorem
holds for all trees. In [7, Section 5.3] this was stated as an obvious fact, however for the sake
of completeness we provide a formal proof.

§ Proposition 5.1. Let H be a tree and % an automorphism of H. Then the subgraph H% of
H induced by the fixed points of % is also a tree.

The claim implies that if H is a tree, then its order p reduced form H˚p is also a tree.
This yields the following corollary.

§ Corollary 1.3. Let p be a prime and let H be a tree. If the order p reduced form H˚p of H
is a star, then #pHomsToH is computable in polynomial time; otherwise, #pHomsToH is
#p P-complete.

To deal with disconnected graphs, Faben and Jerrum [7, Theorem 6.1] show the following
theorem.

§ Theorem 5.2 (Faben and Jerrum). Let H be a graph that has no automorphism of order 2.
If H 1 is a connected component of H and #2HomsToH 1 is #2 P-hard, then #2HomsToH
is #2 P-hard.

The only part where the value 2 of the modulo is required, is the application of their
pinning theorem [7, Theorem 4.7]. Since we have already shown the more general Theorem 1.7,
we conclude that the theorem holds in the following form.

§ Theorem 5.3. Let p be a prime and let H be a graph that has no automorphism of order p.
If H1 is a connected component of H and #pHomsToH1 #p P-hard, then #pHomsToH is
#p P-hard.

The latter strengthens Theorem 1.2 to the following version.

§ Theorem 5.4. Let H be a graph whose order p reduced form H˚p is a forest. If every
component of H˚p is a star, #pHomsToH is computable in polynomial time, otherwise
#pHomsToH is #p P-complete.

A discussion of our results was already conducted in the introduction. Again we refer the
curious reader to the full version of the paper, available at https://arxiv.org/abs/1802.
06103.
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