
comput. complex. 26 (2017), 421 – 467

c© Springer International Publishing 2016

1016-3328/17/020421-47

published online June 2, 2016

DOI 10.1007/s00037-016-0137-8 computational complexity

ON THE CONNECTION BETWEEN

INTERVAL SIZE FUNCTIONS AND

PATH COUNTING

Evangelos Bampas , Andreas-Nikolas Göbel,

Aris Pagourtzis, and Aris Tentes

Abstract. We investigate the complexity of hard (#P-complete)
counting problems that have easy decision version. By ‘easy decision,’
we mean that deciding whether the result of counting is nonzero is
in P. This property is shared by several well-known problems, such as
counting the number of perfect matchings in a given graph or counting
the number of satisfying assignments of a given DNF formula. We focus
on classes of such hard-to-count easy-to-decide problems which emerged
through two seemingly disparate approaches: one taken by Hemaspaan-
dra et al. (SIAM J Comput 36(5):1264–1300, 2007), who defined classes
of functions that count the size of intervals of ordered strings, and one
followed by Kiayias et al. (Lect Notes Comput Sci 2563:453–463, 2001),
who defined the class TotP, consisting of functions that count the to-
tal number of paths of NP computations. We provide inclusion and
separation relations between TotP and interval size counting classes, by
means of new classes that we define in this work. Our results imply that
many known #P-complete problems with easy decision are contained
in the classes defined by Hemaspaandra et al., but are unlikely to be
complete for these classes under reductions under which these classes
are downward closed, e.g., parsimonious reductions. This, applied to
the #MonSat problem, partially answers an open question of Hemas-
paandra et al. We also define a new class of interval size functions
which strictly contains FP and is strictly contained in TotP under rea-
sonable complexity-theoretic assumptions. We show that this new class
contains hard counting problems.

Keywords. Counting functions, interval size functions, path counting,
feasibility constraints, easy decision.

http://orcid.org/0000-0002-0047-5415

422 Bampas et al. cc 26 (2017)

Subject classification. 03D15, 06A05, 68Q05, 68Q10, 68Q15, 68Q17

1. Introduction

Valiant’s pioneering work on counting problems associated with
NP computations (Valiant 1979a) revealed the existence of func-
tions that are quite hard to compute exactly (#P-complete), de-
spite the fact that deciding whether the function value is nonzero
is easy (in P). This category contains the problem of evaluating
the permanent of a 0-1 matrix (Permanent), which is equivalent
to counting perfect matchings in bipartite graphs, the problem of
counting satisfying assignments to monotone Boolean formulae in
2-CNF form (#Mon2Sat), and many more (Valiant 1979b). A
common feature of all these problems is that their #P completeness
property holds under the Cook (polynomial-time Turing) reduc-
tion, which blurs structural differences between complexity classes,
since counting classes are not necessarily downward closed under
the Cook reduction. For example, Permanent is complete un-
der the Cook reduction not only for #P, but also for the whole
counting version of the polynomial hierarchy (Toda 1991; Toda &
Watanabe 1992) and for subclasses of #P (Kiayias et al. 2001).
Hence, #P is not considered to be the most appropriate class to
describe the complexity of these problems.

During the last three decades, there has been increasing in-
terest in the complexity of counting problems with easy decision
version, due to their relevance in various disciplines and to the fact
that many of them can be well approximated (Jerrum et al. 2004;
Karp et al. 1989; Liu et al. 2014; Weitz 2006). A path taken by
some researchers is to identify subclasses of #P containing such
problems (Àlvarez & Jenner 1993; Dyer et al. 2003; Hemaspaan-
dra et al. 2007; Kiayias et al. 2001; Pagourtzis 2001; Pagourtzis
& Zachos 2006; Saluja et al. 1995) and study their properties and
relations among them.

In this work, we investigate the relations among subclasses
of #P defined and studied through two independent lines of re-
search: (a) classes IF≺

p and IF≺
t (Hemaspaandra et al. 2007) that

consist of functions that count the size of intervals of strings un-

cc 26 (2017) Interval size functions and path counting 423

der polynomial-time decidable partial or total (respectively) orders
that admit efficient adjacency checks and (b) the class TotP (Ki-
ayias et al. 2001) that consists of functions that count the total
number of paths of nondeterministic polynomial-time Turing ma-
chines (NPTMs), and the class #PE (Pagourtzis 2001) that con-
tains all functions of #P, for which deciding whether the function
value is nonzero is easy (in P). Since it is clear from properties
of IF≺

p shown in (Hemaspaandra et al. 2007) that IF≺
p = #PE, we

turn our focus to the relation between IF≺
t and TotP, which are

subclasses of IF≺
p . To this end, we define new interval size function

classes by replacing efficient adjacency checks with other suitable
feasibility constraints. In summary, we prove the following:

◦ TotP is equal to IFLN
t , i.e., the class of interval size func-

tions defined on total p-orders with efficiently computable
lexicographically nearest function. This new characteriza-
tion of TotP functions supplies formal evidence for the fact
that, among several structural properties of TotP computa-
tions, being able to find a computation path whose encoding
is lexicographically closest to a given string actually charac-
terizes the class. Moreover, this characterization resolves in
a strong sense the question of comparing TotP to the interval
size function framework of Hemaspaandra et al. (2007).

◦ IFLN
t , hence also TotP, is contained in IF≺

t . The inclusion is
strict unless P = UP ∩ coUP. This, among others, implies
that several problems that lie in TotP are unlikely to be IF≺

t -
complete via reductions under which TotP is downward closed
(for example, under Karp reductions); in particular, the class
of problems that reduce to #MonSat by such reductions
is strictly contained in IF≺

t unless P = UP ∩ coUP. This
partially answers an open question posed in Hemaspaandra
et al. (2007), concerning the downward closure, under various
reductions, of #MonSat, of IF≺

t , and of IF≺
p (see Section 6

for a more detailed discussion).

◦ We define a new class, namely IFrmed
t , that lies between FP

and IFLN
t = TotP. We prove that the inclusions are strict,

assuming FP �= #P and P �= NP, respectively. We also

424 Bampas et al. cc 26 (2017)

show that IFrmed
t contains hard counting problems: We de-

fine #SAT+2n , a problem in IFrmed
t which is #P-complete

under Cook reductions. We also show that any #P function
can be obtained by subtracting a function in FP from a func-
tion in IFrmed

t . Therefore, IFrmed
t is Cook-interreducible with

TotP, IF≺
t , IF≺

p = #PE, and #P.

In order to obtain inclusions between complexity classes, we de-
scribe nondeterministic computations that employ feasibility con-
straints on string orders as oracles. We also define appropriate
string orders based on structural properties of NPTMs. For our
separation results, we make use of operators that act on function
classes yielding classes of decision problems.

2. Definitions and preliminaries

We assume a fixed alphabet Σ, conventionally Σ = {0, 1}. For
a ∈ Σ and k a nonnegative integer, we use the standard notation
ak for the string consisting of k repetitions of a (a0 is the empty
string ε). The symbol Σ� denotes the set of all finite strings over
the alphabet Σ. The length of a string x ∈ Σ� is denoted by |x|.
If S is a set, ‖S‖ denotes the cardinality of S.

2.1. Interval size functions. A binary relation over Σ� is a
partial order if it is reflexive, antisymmetric, and transitive. A
partial order A is a total order if for any x, y ∈ Σ�, it holds that
(x, y) ∈ A or (y, x) ∈ A. An order A is called a p-order if there
exists a bounding polynomial p such that for all (x, y) ∈ A it holds
that |x| ≤ p(|y|).

Definition 2.1. For any order A, we will use the following nota-
tion:

(i) x ≤A y is equivalent to (x, y) ∈ A.

(ii) x <A y is equivalent to (x ≤A y ∧ x �= y).

(iii) x ≺A y is equivalent to (x <A y ∧ ¬∃z ∈ Σ�(x <A z <A y)).
We say that x is a predecessor of y, or y is a successor of x.

cc 26 (2017) Interval size functions and path counting 425

(iv) A≺
def
= {(x, y) : x ≺A y}. A is said to have efficient adjacency

checks if A≺ ∈ P.

(v) (x, y)A
def
= {z ∈ Σ� : x <A z ∧ z <A y}. (x, y)A will be

called an interval, even if A is a partial order. We will also
use [x, y]A, [x, y)A, and (x, y]A for the closed, right-open, and
left-open intervals respectively.

We will use lex to denote the standard lexicographic order of the
strings in Σ�.

Remark 2.2. For any p-order A with bounding polynomial p and
any y ∈ Σ�, ‖{x : x ≤A y}‖ ≤ 2p(|y|)+1 − 1. As a corollary, every
p-order has a bottom element.

Definition 2.3. For any total order A, we will use the following
notation:

(i) succA : Σ� → Σ� is the successor function for A.

(ii) predA : Σ� → Σ� is the predecessor function for A. If A con-
tains a bottom element, predA is undefined for that element.

(iii) medA : Σ� × Σ� → Σ� is the median function for A, defined
recursively as follows:

◦ if y <A x then medA(x, y) is undefined,

◦ otherwise if x = y or x ≺A y then medA(x, y) = y,

◦ otherwise medA(x, y) = medA(succA(x), predA(y)).

(iv) LNA : Σ� × Σ� × Σ� → Σ� is the lexicographically nearest
function for A: LNA(x, y, z) is the string w ∈ [x, y]A such
that w is closest to z in the lexicographic order, breaking ties
arbitrarily. If [x, y]A is empty, then LNA(x, y, z) is undefined
for any z.

(v) For c ∈
(
0, 1

2

]
, f : Σ� × Σ� → Σ� is a c-relaxed median

function for A, if it satisfies the following properties:

426 Bampas et al. cc 26 (2017)

◦ if y <A x, then f(x, y) is undefined,

◦ otherwise, if x = y or x ≺A y, then f(x, y) = y,

◦ otherwise, f(x, y) is a string z ∈ (x, y)A such that

‖[x, z)A‖ ≥
c · ‖[x, y]A‖�
and ‖[z, y]A‖ ≥ �c · ‖[x, y]A‖� .

For a total order A, we define rmedA to be the family of c-
relaxed median functions for all c ∈

(
0, 1

2

]
. We will slightly

abuse notation and say that rmedA ∈ FP (instead of rmedA ∩
FP �= ∅) if there is some c-relaxed median function in FP, for
some c ∈

(
0, 1

2

]
.

Remark 2.4. Observe that medA satisfies the properties of a 1
2
-

relaxed median function, therefore if medA ∈ FP then also rmedA ∈
FP.

We say that a function f : Σ� → N is an interval size function
defined on an order A if there exist boundary functions b, t : Σ� →
Σ� such that for all x ∈ Σ�, f(x) = ‖(b(x), t(x))A‖. In the fol-
lowing, we will primarily be concerned with interval size functions
defined on P-decidable p-orders via polynomial-time computable
boundary functions.

Definition 2.5 (Hemaspaandra et al. 2007). IF≺
p (resp. IF≺

t) is
the class of interval size functions defined on P-decidable partial
(resp. total) p-orders with efficient adjacency checks via polynomial-
time computable boundary functions.

Remark 2.6. Note that in Hemaspaandra et al. (2007), IF≺
p and

IF≺
t were called IFp and IFt, respectively. We will use the superscript

in order to highlight the fact that the functions contained in these
classes are defined on orders that possess efficient adjacency checks.

Furthermore, we will be interested in interval size functions
defined on P-decidable p-orders with various other feasibility con-
straints, apart from A≺ ∈ P. We define the following classes:

cc 26 (2017) Interval size functions and path counting 427

Definition 2.7. IFsucc
t (resp. IFpred

t , IFLN
t , IFrmed

t , IFmed
t) is the class

of interval size functions each of which is defined on some P-
decidable total p-order A via polynomial-time computable bound-
ary functions, where in addition succA ∈ FP (resp. predA, LNA,
rmedA, medA ∈ FP).

2.2. Counting with Turing Machines. The computational
model we are going to use is the nondeterministic polynomial-time
Turing machine (NPTM). For an NPTM M , we denote by M(x)
the computation of M on input x. For our purposes, M(x) is the
computation tree which results from considering all possible non-
deterministic choices of M at each step of the computation with
input x. We consider only NPTMs with at most two nondeter-
ministic choices at each step (this does not affect the definitions of
classes used in this paper). A computation path is encoded by a
binary string representing the sequence of nondeterministic choices
in this path; a deterministic step is represented by a ‘0’ choice. The
length of the encoding is at most p(|x|), where p is the polynomial
that bounds the running time of M . Without loss of generality,
p can be assumed to be strictly increasing in |x|, e.g., of the form
|x|k + k for some constant k.

We say that an NPTM M is in standard form if for any input x,
each path of M(x) is encoded by a string of length exactly p(|x|).
We say that M is in normal form if it is in standard form and,
in addition, for any input x there are exactly 2p(|x|) computation
paths in M(x).

We use the notation accM(x) for the number of accepting com-
putation paths of M(x) and the notation totM(x) for the total
number of computation paths of M(x). In the descriptions of our
algorithms, we will occasionally use statements of the form ‘σ ←
choose from {0, 1},’ which implement nondeterministic branchings.
Upon execution of such a statement, the current computation path
is split into two computation paths, in each of which the variable
σ assumes a different value in {0, 1}.

Definition 2.8 (Valiant 1979b). #P is the class of all total func-
tions f for which there exists an NPTM M such that for all x ∈ Σ�,
f(x) = accM(x).

428 Bampas et al. cc 26 (2017)

Definition 2.9 (Pagourtzis 2001). #PE (#P-easy) is the class of
#P functions f whose corresponding language Lf = {x ∈ Σ� :
f(x) > 0} is in P.

Definition 2.10 (Kiayias et al. 2001). TotP is the class of all to-
tal functions f for which there exists an NPTM M such that for
all x ∈ Σ�, f(x) = totM(x) − 1.

Note that the classes #P and #PE can be defined using only
NPTMs in normal form, whereas TotP can be defined using only
NPTMs in standard form.

In Pagourtzis & Zachos (2006), it is proved that TotP is exactly
the closure under Karp (parsimonious) reduction of the set of self-
reducible functions of #PE. The results can be summarized by the
following chain of inclusions:

FP ⊆ TotP ⊆ #PE ⊆ #P ,

where all the inclusions are proper unless P = NP.
Hemaspaandra et al. (2007) show implicitly that #PE = IF≺

p ,
and furthermore that:

FP ⊆ IF≺
t ⊆ IF≺

p ⊆ #P .

Again, the inclusions are proper unless unlikely complexity class
collapses occur.

Definition 2.11. Polynomial-time reductions between functions:

◦ Cook (polynomial-time Turing): f ≤p
T g if and only if f

can be computed in polynomial time using an oracle for g:
f ∈ FPg.

◦ Karp (parsimonious): f ≤p
m g if and only if there exists h ∈

FP such that for all x ∈ Σ�, f(x) = g(h(x)).

For a function f and a reduction ≤p
x, x ∈ {m,T}, we define

Rp
x(f) = {g : g ≤p

x f}, following notation from Hemaspaandra
& Ogihara (2002, p. 307). For a function class F and a reduc-
tion ≤p

x, x ∈ {m,T}, we use the notation Rp
x(F) =

⋃
f∈F Rp

x(f) for
the downward closure of F under ≤p

x.

cc 26 (2017) Interval size functions and path counting 429

Proposition 2.12. For every interval size function class F that
contains functions defined via polynomial-time boundary functions,
Rp

m(F) ⊆ F .

Proof. Consider f ∈ F via an arbitrary order A and boundary
functions b, t ∈ FP. That is, for every x, f(x) = ‖(b(x), t(x))A‖.
Assume also that g ≤p

m f , that is ∃h ∈ FP such that ∀x, g(x) =
f(h(x)). This implies that g(x) = f(h(x)) = ‖(b(h(x)), t(h(x)))A‖,
therefore g ∈ F via the same order A and boundary functions
b′ = b ◦ h ∈ FP and t′ = t ◦ h ∈ FP. �

It is not hard to verify the following:

Fact 2.13. Rp
m(F) ⊆ F holds for F ∈ {#P, #PE,TotP}.

The above fact can be shown either by direct construction of
appropriate NPTMs or by means of Proposition 2.12; the latter has
to be combined with the (explicit or implicit) characterizations of
#P and #PE via interval size functions (Hemaspaandra et al. 2007)
and the analogous characterization of TotP that we provide later
in this paper (Theorem 4.1).

3. The status quo between TotP and IF≺
t

As we already mentioned in the previous section, both TotP and
IF≺

t are contained in #PE = IF≺
p . In this section, we investigate

the relationship between these two classes. Specifically, we show
that TotP ⊆ IF≺

t and that the inclusion is, in fact, proper unless
P = UP∩ coUP. The first step of the proof consists in establishing
that TotP ⊆ IFsucc

t . We actually prove in Theorem 3.2 a slightly
stronger result, namely that any TotP function is also an inter-
val size function defined on some P-decidable total order with FP
computable boundary functions, in which both the successor and
predecessor functions are also FP-computable.

Definition 3.1. IFsucc,pred
t is the class of interval size functions

defined on P-decidable total p-orders via polynomial-time com-
putable boundary functions, in which additionally succA ∈ FP and
predA ∈ FP.

430 Bampas et al. cc 26 (2017)

Theorem 3.2. TotP ⊆ IFsucc,pred
t .

Proof. Let f be a TotP function and M be the corresponding
NPTM such that for all x ∈ Σ�, f(x) = totM(x) − 1. Let p
be the polynomial that bounds the running time of M . Without
loss of generality, we assume that M is in standard form; hence,
there always exists a computation path encoded by the string 0p(|x|),
which we will refer to as the leftmost path. Similarly, the rightmost
path is the computation path whose encoding is lexicographically
larger than the encoding of any other path in M(x).

We define a total order A on Σ� as follows: A coincides with
the lexicographic order except that, for every x ∈ Σ�, the interval
[x0p(|x|)+2, x10p(|x|)+1]lex is ordered in the following way:

◦ First come the elements of the set

{x0y0 : |y| = p(|x|) ∧ y encodes a path of M(x)} ,

in lexicographic order (note that x0p(|x|)+2 is always an ele-
ment of this set),

◦ next comes x10p(|x|)+1,

◦ and last come the elements of the set

{x0y0 : |y| = p(|x|) ∧ y does not encode a path of M(x)}
∪{x0y1 : |y| = p(|x|)} ,

in lexicographic order.

It is not hard to see that A is a p-order, since ∀w, z ∈ Σ�, w ≤A

z → |w| ≤ |z|. Moreover, A ∈ P since, given two strings w, z ∈ Σ�,
we can check in polynomial time whether w ≤A z as follows1:

◦ If w = x0ya and z = x0y′b, where y ≤lex y′, |y| = |y′| =
p(|x|), and a, b ∈ Σ, then z ≤A w if and only if b = 0 ∧ y′

encodes a computation path of M(x) ∧ y does not encode a
computation path of M(x).

1Note that, assuming p is a strictly increasing polynomial, we can efficiently
decide for any given string w whether it can be decomposed into the form
w = xayb, where a, b ∈ Σ and |y| = p(|x|), and find such a decomposition if it
exists.

cc 26 (2017) Interval size functions and path counting 431

◦ If w = x0ya and z = x10p(|x|)+1, where |y| = p(|x|) and a ∈ Σ,
then w ≤A z if and only if a = 0 ∧ y encodes a computation
path of M(x).

◦ Otherwise, w ≤A z if and only if w ≤lex z.

We define the boundary functions b, t ∈ FP as follows, for any x ∈
Σ�:

b(x) = x0p(|x|)+2, t(x) = x10p(|x|)+1 .

These functions satisfy ‖(b(x), t(x))A‖ = totM(x) − 1 = f(x), for
any x ∈ Σ�, since by definition the size of (b(x), t(x))A is exactly
equal to the number of computation paths of M(x) minus one (the
leftmost path is excluded from the interval).

It remains to be shown that both succA ∈ FP and predA ∈ FP.
Algorithm 1 computes the successor of a given string w in polyno-
mial time. The predecessor function for A can also be computed
in polynomial time in a similar manner.

Algorithm 1. The successor for an order associated with a TotP
function.

Input: a string w ∈ Σ�

Goal: compute the successor of w in the order A defined in the
proof of Theorem 3.2

1. If w is not of the form x10p(|x|)+1 or x0ya, where |y| = p(|x|)
and a ∈ Σ

then
2. Return succlex(w)
3. Else if w = x10p(|x|)+1 then
4. Return x0p(|x|)+11
5. Else if w = x0y0, where y encodes a path of M(x) then
6. simulate the NPTM M on input x, following the nondeter-

ministic choices encoded in y
7. If y is the rightmost path in the computation then
8. Return x10p(|x|)+1

9. Else
10. backtrack until the last point where path y follows a

choice of ‘0,’ while a choice of ‘1’ is also available

432 Bampas et al. cc 26 (2017)

11. at that point choose ‘1’ and continue the simulation of
M , always choosing ‘0’ instead of ‘1’ whenever there
is a choice

12. Return x0y′0, where y′ is the encoding of the new com-
putation path

13. Else if w = x0y0, where y does not encode a path of M(x)
then

14. Return x0y1
15. Else if w = x0y1 then
16. If y = 1p(|x|) then
17. Return succlex(x10p(|x|)+1)
18. Else
19. Return x0y′b, where y′ = succlex(y) and b = 1 iff y′

encodes a path of M(x)

�

It is immediate from the definitions that IFsucc,pred
t ⊆ IFsucc

t and
IFsucc,pred

t ⊆ IFpred
t . Moreover, if A is a total order, then x ≺A

y ⇐⇒ y = succA(x) ⇐⇒ x = predA(y). Thus, if succA ∈ FP or
predA ∈ FP, then the adjacency relationship ≺A can be decided in
polynomial time. This implies that IFsucc

t ⊆ IF≺
t and IFpred

t ⊆ IF≺
t .

In fact, we prove in Theorem 3.3 the equivalence of the succes-
sor and predecessor functions as polynomial-time feasibility con-
straints on P-decidable total p-orders with FP computable bound-
ary functions.

Theorem 3.3. IFsucc
t = IFpred

t .

Proof. We only prove that IFsucc
t ⊆ IFpred

t . The other inclusion
can be derived by similar arguments. Let f ∈ IFsucc

t , so there is
some total p-order A with bounding polynomial p and succA ∈
FP, and boundary functions b, t ∈ FP such that for all x ∈ Σ�,
f(x) = ‖(b(x), t(x))A‖. Moreover, let pad : Σ� × Σ� → Σ� be a
padding function defined as follows: For any x ∈ Σ� and z ∈ Σ�

with |z| ≤ p(|t(x)|), pad(x, z) is a string of length exactly 2p(|t(x)|)
that is produced by replacing every occurrence of ‘0’ in z by ‘01,’
every occurrence of ‘1’ by ‘10,’ and padding left with ‘0’s. Clearly,

cc 26 (2017) Interval size functions and path counting 433

both pad and pad−1, the inverse of pad with respect to the first
argument, are FP-computable. (Definition of pad−1: for x, y ∈
Σ�, pad−1(x, y) is the unique z such that y = pad(x, z), or it is
undefined if no such z exists.)

We will prove that f ∈ IFpred
t . Consider a total order B which

coincides with the lexicographic order on Σ� except that, for ev-
ery x ∈ Σ�, the interval [x02p(|t(x)|)+1, x12p(|t(x)|)+1]lex is ordered as
follows:

◦ First come the elements of {xy0 : pad−1(x, y) ∈ [b(x), t(x)]A},
ordered so that xy0 <B xy′0 if and only if pad−1(x, y) >A

pad−1(x, y′),

◦ and then come the rest of the strings of the form xya, where
|y| = 2p(|t(x)|) and a ∈ Σ, in lexicographic order.

Now, B is clearly a p-order since ∀w, z ∈ Σ�, w ≤B z → |w| ≤
|z|. Moreover, given two strings w, z ∈ Σ�, we can check in poly-
nomial time whether w ≤B z as follows:

◦ If w = xya and z = xy′b, where y ≤lex y′, |y| = |y′| =
2p(|t(x)|), and a, b ∈ Σ, then w ≤B z if and only if one of the
following holds:

–
(
pad−1(x, y′) �∈ [b(x), t(x)]A or it is undefined

)
and (a =

0 ∨ b = 1 ∨ y �= y′).

–
(
pad−1(x, y) �∈ [b(x), t(x)]A or it is undefined

)
and b =

1 and pad−1(x, y′) ∈ [b(x), t(x)]A.

– {pad−1(x, y), pad−1(x, y′)} ⊆ [b(x), t(x)]A and (b = 1 ∨
(a = 0 ∧ b = 0 ∧ pad−1(x, y) ≥A pad−1(x, y′))).

◦ Otherwise, w ≤B z if and only if w ≤lex z.

Therefore, B ∈ P. If we define the boundary functions as
b′(x) = xy0, where y = pad(x, t(x)), and t′(x) = xz0, where z =
pad(x, b(x)), then for any x ∈ Σ� it holds that ‖(b′(x), t′(x))B‖ =
‖(b(x), t(x))A‖ = f(x).

Finally, using the polynomial-time computable successor func-
tion for A, it is possible to compute the predecessor function for B
also in polynomial time. Algorithm 2 contains the details.

434 Bampas et al. cc 26 (2017)

Algorithm 2. The predecessor for an order associated with an
IFsucc

t function.

Input: a string w ∈ Σ�

Goal: compute the predecessor of w in the order B defined in the
proof of Theorem 3.3

1. If w is not of the form xy, where |y| = 2p(|t(x)|) + 1 then
2. Return predlex(w)
3. Else if w = xy0, where pad−1(x, y) ∈ [b(x), t(x)]A then
4. If pad−1(x, y) = t(x) then
5. Return predlex(x02p(|t(x)|)+1)
6. Else
7. Return xy′0, where y′ = pad(x, succA(pad−1(x, y)))
8. Else if w = xy1, where pad−1(x, y) ∈ [b(x), t(x)]A then
9. If y = 02p(|t(x)|) then

10. Return xy′0, where y′ = pad(x, b(x))
11. Else
12. Return xy′1, where y′ = predlex(y)
13. Else if w = x02p(|t(x)|)+1 then
14. Return xy′0, where y′ = pad(x, b(x))
15. Else
16. Return predlex(w)

�

Note that, even though IFsucc
t = IFpred

t , this does not imply that,
for a given total order A, succA ∈ FP is equivalent to predA ∈ FP.
Indeed, in the proof of Theorem 3.3, we had to define a different or-
der B in which predB was polynomial-time computable. Therefore,
IFsucc,pred

t is not necessarily equal to IFsucc
t and IFpred

t . We summarize
the results obtained so far in this section in the following theorem:

Theorem 3.4. TotP ⊆ IFsucc,pred
t ⊆ IFsucc

t = IFpred
t ⊆ IF≺

t .

Finally, we show that IFsucc
t , and therefore also TotP in view

of Theorem 3.4, is strictly contained in IF≺
t under the assumption

that P �= UP ∩ coUP. We begin by defining a generalization of
the ∃· and Sig· operators used by Hemaspaandra et al. (2007) and
Hempel & Wechsung (2000), respectively.

cc 26 (2017) Interval size functions and path counting 435

Definition 3.5. For any integer constant k ≥ 0, we define the
operator C>k . If F is any function class, then C>k ·F is the following
class of languages:

C>k · F = {L : ∃f ∈ F , ∀x ∈ Σ� (x ∈ L ⇐⇒ f(x) > k)} .

Observe that if F ⊆ G, then C>k · F ⊆ C>k · G.
Next, we make use of the existence of a unique decisive path

in any UP ∩ coUP computation, in order to show that each such
computation can be mapped to an interval size function where
one or two strings fall into an appropriate interval, depending on
whether the decisive path is rejecting or accepting, respectively.
Therefore, applying the C>1 · operator would reveal which is the
case. This leads to the following lemma:

Lemma 3.6. UP ∩ coUP ⊆ C>1 · IF≺
t .

Proof. Let L ∈ UP ∩ coUP, so there is an NPTM M that
decides L with the property that, for any input x, M(x) has exactly
one decisive path (either accepting or rejecting) and all the other
paths terminate in an indecisive state ‘?.’ We assume that M is in
normal form and let p be the polynomial that bounds the running
time of M .

We construct an order A that coincides with the lexicographic
order of Σ�, except that, for every x ∈ Σ�, the corresponding in-
terval [x0p(|x|)+2, x1p(|x|)+2]lex is ordered in the following way:

◦ First comes x0p(|x|)+2,

◦ if x �∈ L, then next comes x01z, where z encodes the unique
rejecting path of M on input x, while if x ∈ L, then next
come x01z and x10z, where z encodes the unique accepting
path of M on input x,

◦ next comes x110p(|x|),

◦ and last come the rest of the strings of the form xw, where
|w| = p(|x|) + 2, in lexicographic order.

436 Bampas et al. cc 26 (2017)

Table 3.1: Different cases in deciding the order A defined in the
proof of Lemma 3.6. Specifically, for two strings w, u of the
form w = xabz and u = xa′b′z′, where a, b, a′, b′ ∈ Σ such that
ab ≤lex a′b′ and |z| = |z′| = p(|x|), the table provides necessary
and sufficient conditions for w ≤A u. Each row contains the nec-
essary and sufficient condition for the corresponding combination
of values of a, b, a′, b′.

ab a′b′ w ≤A u if and only if

00 00 z ≤lex z′

00 01 z′ indecisive ∨ z = 0p(|x|)

00 10 z′ indecisive ∨ z = 0p(|x|) ∨ z′ rejects
00 11 z = 0p(|x|) ∨ z′ �= 0p(|x|)

01 01 z accepts ∨ z rejects ∨ (z′ indecisive ∧ z ≤lex z′)
01 10 ¬ (z indecisive ∧ z′ accepts)
01 11 z accepts ∨ z rejects ∨ z′ �= 0p(|x|)

10 10 z accepts ∨ (z rejects ∧ (z′ rejects ∨ z ≤lex z′)) ∨ (z′

does not accept ∧ z ≤lex z′)
10 11 z accepts ∨ z′ �= 0p(|x|)

11 11 z ≤lex z′

The order A is clearly a p-order since lex is a p-order. Moreover,
given any string one can efficiently decide whether it belongs to
some interval of the form [x0p(|x|)+2, x1p(|x|)+2]lex, and if so, whether
it corresponds to an accepting, rejecting, or indecisive computation
path of M(x); this information clearly suffices in order to decide
its order relative to any other string. In more detail, if w = xabz
and u = xa′b′z′, where a, b, a′, b′ ∈ Σ with ab ≤lex a′b′ and |z| =
|z′| = p(|x|), then we can decide in deterministic polynomial time
whether w ≤A u by consulting Table 3.1. In case that w and u are
not of that form, then w ≤A u if and only if w ≤lex u. Therefore,
A ∈ P. By similar arguments, the adjacency relation ≺A is also
deterministically decidable in polynomial time.

We now define the boundary functions b, t ∈ FP: for any x ∈
Σ�, b(x) = x0p(|x|)+2 and t(x) = x110p(|x|). It holds that, for any

cc 26 (2017) Interval size functions and path counting 437

x ∈ Σ�, ‖(b(x), t(x))A‖ > 1 if and only if x ∈ L. Therefore,
L ∈ C>1 · IF≺

t . �

Lemma 3.7. C>1 · IFsucc
t ⊆ P.

Proof. For any f ∈ IFsucc
t , we can decide in polynomial time the

set {x : f(x) > 1} as follows: For a given x, compute succA(b(x))
and succA(succA(b(x))), where A is the underlying total p-order
with succA ∈ FP and b, t ∈ FP are the boundary functions for f .
If either of the computed strings is equal to t(x), then reject, else
accept. �

By Lemmas 3.6 and 3.7, we obtain immediately the following:

Theorem 3.8. If IF≺
t = IFsucc

t , then P = UP ∩ coUP.

4. TotP as an interval size function class

This section is devoted to the characterization of TotP as the class
of interval size functions defined on polynomial-time decidable p-
orders with FP computable boundary and lexicographically nearest
functions:

Theorem 4.1. TotP = IFLN
t .

We prove the inclusion TotP ⊆ IFLN
t in Lemma 4.2. The crux

of the argument is that, given an NPTM M in standard form, an
input x, and a string y which has the right length to possibly encode
a computation path of M(x), we can compute in polynomial time
a string which actually encodes a computation path of M(x) and
is lexicographically closest to the given string y.

Lemma 4.2. TotP ⊆ IFLN
t .

Proof. Let f be a TotP function and M be the corresponding
NPTM in standard form such that for all x ∈ Σ�, f(x) = totM(x)−
1. Let p(n) = nk + k be the polynomial that bounds the running
time of M .

438 Bampas et al. cc 26 (2017)

A

lex

Figure 4.1: A high-level illustration of the order A used in the
proofs of Theorem 3.2 and Lemma 4.2. The horizontal axis con-
tains the binary strings ordered under A, and the vertical axis
represents the rank of the strings in the lexicographic order. The
ranks in the two orders (A and lex) are identical (thus yielding in
this lex-rank plot the dotted line going from bottom left to top
right), except for those strings belonging in the intervals I(x) (for
x ∈ Σ�), which locally deviate from the lexicographic order (de-
picted as shaded boxes in the figure and as thick intervals on the
A-axis).

We will use the order A and the boundary functions b and t
that we defined in the proof of Theorem 3.2. Recall that the or-
der A is essentially the same as the lex order, except that, for
each x, the interval which we will henceforth denote by I(x) =
[x0p(|x|)+2, x10p(|x|)+1]lex (and which is equal, as a set, to the interval
[x0p(|x|)+2, x01p(|x|)+1]A) is ordered differently. Figure 4.1 illustrates
the order A against lex. Figure 4.2 illustrates an example of an in-
terval I(x). Recall also that b(x) = x0p(|x|)+2 and t(x) = x10p(|x|)+1.

It suffices to show that the order A admits a polynomial-time
computable lexicographically nearest function. We can compute
LNA(u, v, z) as follows: If [u, v]A is empty, then LNA(u, v, z) is

cc 26 (2017) Interval size functions and path counting 439

(i)

(ii)

(iii)
x
0
0
1
0
0

x
0
1
0
1
1

x
0
1
1
0
1

x
0
1
1
1
0

x
0
1
1
1
1

x
0
1
1
0
0

x
0
0
0
0
1

x
0
0
0
1
0

x
0
0
0
1
1

x
0
0
1
0
1

x
0
0
1
1
0

x
0
0
1
1
1

x
0
1
0
0
1

x
0
1
0
1
0

x
0
1
0
0
0

b(
x
)
=

x
0
0
0
0
0

t(
x
)
=

x
1
0
0
0
0

A

lex

Figure 4.2: Example of an interval I(x) in the proof of Lemma 4.2.
The horizontal axis contains the strings of I(x) ordered under A,
and the vertical axis represents the rank of the strings in the lex-
icographic order. For this particular x, all computation paths
of M(x) have length 3. The only paths that appear in M(x)
are {000, 010, 100, 110}. The following calculations of z̃ or of z̃−

and z̃+ are illustrated: (i) for z = x0 010 0, z̃ = x0 010 1 (Case 1 of
the proof of Lemma 4.2), (ii) for z = x0 011 1, z̃− = x0 010 0 and
z̃+ = x0 100 0 (Case 2 of the proof of Lemma 4.2 when y = 011 does
not correspond to a computation path), and (iii) for z = x0 110 1,
z̃− = z̃+ = x0 110 0 (Case 2 of the proof of Lemma 4.2 when
y = 110 corresponds to a computation path).

undefined. If z ∈ [u, v]A, then clearly LNA(u, v, z) = z. In the
following, we assume that u ≤A v and z /∈ [u, v]A.

Note that, for any given z ∈ Σ�, we can find in polynomial time
an x such that z ∈ I(x), or decide that no such x exists. If, for
all x, z /∈ I(x), then by construction of the order A, z is lexico-
graphically larger than all of its preceding elements under A and

440 Bampas et al. cc 26 (2017)

it is lexicographically smaller than all of its subsequent elements
under A (see Figure 4.1). Therefore, since z /∈ [u, v]A, we know
that LNA(u, v, z) is either the lexicographically maximum string
in [u, v]A (if v <A z), or the lexicographically minimum string in
[u, v]A (if z <A u). In view of the structure of the intervals I(w)
(see Figure 4.2), for any two strings u, v with u ≤A v, we can
compute the lexicographically maximum and minimum strings in
[u, v]A in polynomial time as follows:

lex-max(u, v) =

{
t(w), if v ∈ I(w) and u ≤A t(w) ≤A v
v, otherwise

lex-min(u, v) =

⎧
⎨

⎩

w0p(|w|)+11, if u ∈ I(w) and b(w) <A u ≤A

w0p(|w|)+11 ≤A v
u, otherwise

Finally, assume that z ∈ I(x), for some x ∈ Σ�. We distinguish
the following two cases:

Case 1: z ≤A t(x). We define a string z̃ ∈ I(x) as follows:
If z = x0y0, where y encodes a computation path of M(x), then
z̃ = x0y1, whereas if z = t(x), then z̃ = x01p(|x|)+1. Figure 4.2
illustrates an example of computing z̃ in this case (item (i) in the
figure). Note that it always holds that t(x) <A z̃ ≤A x01p(|x|)+1,
and thus in particular z <A z̃. We have the following subcases for
computing LNA(u, v, z):

◦ [u, v]A contains z̃: Since z /∈ [u, v]A and z̃ is, by construc-
tion, adjacent to z in the lexicographic order, we can safely
return z̃.

◦ [u, v]A is located before z in the order A: Because z is lexico-
graphically larger than all of its preceding elements under A,
and thus in particular it is lexicographically larger than all
of the elements of [u, v]A, we can safely return lex-max(u, v)
in this case.

◦ [u, v]A is located after z̃ in the order A: Because z is lexico-
graphically smaller than z̃ and z̃ is lexicographically smaller
than all of its subsequent elements under A, and thus in par-
ticular it is lexicographically smaller than all of the elements
of [u, v]A, we can safely return lex-min(u, v) in this case.

cc 26 (2017) Interval size functions and path counting 441

◦ [u, v]A is located between z and z̃ in A: As can be verified by
inspection of Figure 4.2, in this case we have that either (a):
u ≤lex v, in which case the whole of [u, v]A is lexicographically
between u and v, whereas z /∈ [u, v]lex, or (b): v <lex u, in
which case the whole of [u, v]A is lexicographically outside of
(v, u)lex, whereas z ∈ (v, u)lex. In both cases, we can safely
return either u or v, whichever is lexicographically closer to z.

To summarize Case 1, if z ∈ I(x), z ≤A t(x), and z /∈ [u, v]A,
then we compute z̃ as explained above and LNA(u, v, z) is given
by:

LNA(u, v, z) =
⎧
⎪⎪⎨

⎪⎪⎩

z̃, if u ≤A z̃ ≤A v
lex-max(u, v), if u ≤A v <A z
lex-closest to z among {u, v}, if z <A u ≤A v <A z̃
lex-min(u, v), if z̃ <A u ≤A v

Case 2: z >A t(x). In this case, z is of the form z = x0ya,
where |y| = p(|x|) and a ∈ {0, 1}. We simulate M(x) following the
nondeterministic choices encoded in y, until the computation ends
or we encounter a choice of ‘1’ that is not available (recall that,
by definition of the encoding, a choice of ‘0’ is always available).
If we encounter an unavailable nondeterministic choice, then y is
clearly not a computation path of M(x). In this case, we produce
two strings z̃− and z̃+ as follows:

z̃− = x0y−0, where y− is the string that encodes the
computation path obtained by following the available
choice of ‘0’ at the point where the simulation of y
stopped, and then following a choice of ‘1’ wherever it
is available.

z̃+ = x0y+0, where y+ is the string that encodes the
computation path obtained by rolling back the simu-
lation of y to the last point where a nondeterministic
choice of ‘1’ was available, but y dictated to follow the
choice of ‘0.’ At that point, follow the choice of ‘1’
and after that always choose ‘0.’ If there is no point at

442 Bampas et al. cc 26 (2017)

which a nondeterministic choice of ‘1’ is available, then
set z̃+ = t(x).

On the other hand, if all nondeterministic choices encoded in y
are available, then y is actually a computation path of M(x) and
we set z̃− = z̃+ = x0y0. Figure 4.2 illustrates the two different
scenarios for computing z̃− and z̃+ in this case (items (ii) and (iii)
in the figure). Note that in all cases we have z̃−, z̃+ ∈ [b(x), t(x)]A
and z̃−, z̃+ are either equal or adjacent in A. We have the following
subcases for computing LNA(u, v, z):

◦ [u, v]A contains both z̃− and z̃+: By inspection of Figure 4.2,
in this case the lexicographically nearest to z is clearly one
of {z̃−, z̃+, v}.

◦ [u, v]A is located before z̃− in A (possibly with v = z̃−): Be-
cause z is lexicographically larger than z̃− and z̃− is lexico-
graphically larger than all of its preceding elements under A,
we return lex-max(u, v) in this case.

◦ [u, v]A is located between z̃+ and z (possibly with u = z̃+):
Similarly to the subcase z <A u ≤A v <A z̃ in Case 1 above,
we return either u or v, whichever is lexicographically closer
to z.

◦ [u, v]A is located after z in A: Because z is lexicographically
smaller than all of its subsequent elements under A, we return
lex-min(u, v) in this case.

To summarize Case 2, if z ∈ I(x), z >A t(x), and z /∈ [u, v]A,
then we compute z̃− and z̃+ as explained above and LNA(u, v, z)
is given by:

LNA(u, v, z) =
⎧
⎪⎪⎨

⎪⎪⎩

lex-closest to z among {z̃−, z̃+, v}, if u ≤A z̃− ≤A z̃+ ≤A v
lex-max(u, v), if u ≤A v ≤A z̃−

lex-closest to z among {u, v}, if z̃+ ≤A u ≤A v <A z
lex-min(u, v), if z <A u ≤A v

�

cc 26 (2017) Interval size functions and path counting 443

For the other inclusion, IFLN
t ⊆ TotP, we need a preliminary

result concerning the functions LN−
A and LN+

A defined as follows:

Definition 4.3. For a total order A, we define the following par-
tial functions:

(i) LN−
A(u, v, x) is the lexicographically largest y ∈ [u, v]A such

that y ≤lex x.

(ii) LN+
A(u, v, x) is the lexicographically smallest y ∈ [u, v]A such

that x ≤lex y.

It is immediate that if LN−
A ∈ FP and LN+

A ∈ FP, then also
LNA ∈ FP. We now prove the converse:

Lemma 4.4. For a total p-order A, if LNA ∈ FP then LN−
A ∈ FP

and LN+
A ∈ FP.

Proof. We prove the claim only for LN+
A, since the proof for

LN−
A is completely symmetric. Let p be the bounding polynomial

of A. For given u, v, x ∈ Σ�, we compute LN+
A(u, v, x) as follows:

Let y = LNA(u, v, x). If x ≤lex y, then by definition of the func-
tion LNA we have (x, y)lex ∩ [u, v]A = ∅. Thus, LN+

A(u, v, x) = y.
For the rest of the proof, we assume that y <lex x and let δ =
‖[y, x)lex‖.

We compute a sequence of strings x = x0 <lex x1 <lex · · · <lex

xk where for all i in the range 0 ≤ i ≤ k − 1:

‖[y, xi)lex‖ = ‖[xi, xi+1)lex‖ = 2i · δ ,

and k ≥ 1 is the smallest index such that LNA(u, v, xk) = y′ �= y.
We prove that LN+

A(u, v, x) = y′. We have LNA(u, v, xk−1) =
y <lex xk−1, but LNA(u, v, xk) = y′ �= y and ‖[y, xk−1)lex‖ =
‖[xk−1, xk)lex‖. Therefore, we must have y′ ≥lex xk >lex x (other-
wise, if we had y <lex xk, then y′ would be lexicographically closer
to xk−1 than y is, and thus we would have LNA(u, v, xk−1) = y′)
and also (xk, y

′)lex ∩ [u, v]A = ∅ (if there was a y′′ ∈ [u, v]A such
that xk <lex< y′′ <lex y′, then we would have LNA(u, v, xk) = y′′).
In fact, it is clear that either y′ = xk or xk �∈ [u, v]A (this follows
from the observation that, if xk ∈ [u, v]A, then certainly y′ = xk),

444 Bampas et al. cc 26 (2017)

so we can rewrite the equation (xk, y
′)lex ∩ [u, v]A = ∅ in a slightly

stronger form:

(4.5) [xk, y
′)lex ∩ [u, v]A = ∅ .

Furthermore, for all i in the range 0 ≤ i ≤ k − 1, we know
that LNA(u, v, xi) = y. Thus, from the definition of LNA, we have
(xi, xi+1)lex ∩ [u, v]A = ∅. Moreover, it is clear that xi �∈ [u, v]A, so
we actually have [xi, xi+1)lex ∩ [u, v]A = ∅. Taking the union for all
i, we deduce:

(4.6)
k−1⋃

i=0

([xi, xi+1)lex ∩ [u, v]A) = [x0, xk)lex ∩ [u, v]A = ∅ .

Equations (4.5) and (4.6) yield [x, y′)lex ∩ [u, v]A = ∅; therefore,
LN+

A(u, v, x) = y′.
If, during the process of computing the sequence of xi’s, we

stumble upon some xi with length |xi| > p(|v|), then for all w ≥lex

xi we have |w| ≥ |xi| > p(|v|), which implies that w �∈ [u, v]A. Since
it is also clear that [x0, xi)lex ∩ [u, v]A = ∅, we can safely conclude
that [u, v]A does not contain any strings lexicographically larger
than x, and we can halt the computation leaving LN+

A(u, v, x) un-
defined. Note that the size of [y, xi)lex is doubled after each it-
eration, so in any case no more than O(p(|v|)) elements of the
sequence will need to be computed. �

In order to show that IFLN
t ⊆ TotP, we essentially reduce the

problem of counting the strings in (b(x), t(x))A to the problem of
counting the strings in (wmin, wmax)lex, where wmin and wmax are,
respectively, the lexicographically smallest and largest strings in
(b(x), t(x))A. At the same time, we use the functions LN+

A and
LN−

A in such a way as to avoid creating computation paths for those
strings of (wmin, wmax)lex that are not actually inside the interval
(b(x), t(x))A.

Lemma 4.7. IFLN
t ⊆ TotP.

Proof. Let f be an IFLN
t function, via a total p-order A ∈ P

with bounding polynomial p and boundary functions b, t ∈ FP.

cc 26 (2017) Interval size functions and path counting 445

By definition, LNA ∈ FP, therefore by Lemma 4.4 we also have
LN+

A ∈ FP and LN−
A ∈ FP.

We claim that the NPTM N that executes Algorithm 3 below
performs a computation with exactly ‖(b(x), t(x))A‖ + 1 computa-
tion paths, given input x. First, note that if the procedure make-

tree is correct, then Algorithm 3 is indeed correct: In Steps 1–2,
u and v are assigned the lexicographically smallest and the lexico-
graphically largest strings in [b(x), t(x)]A, respectively (assuming
the interval is nonempty). Steps 3–4 catch all the cases in which
‖(b(x), t(x))A‖ = 0: This happens exactly when t(x) <A b(x),
or b(x) = t(x) (which is equivalent to u = v), or b(x) ≺A t(x)
(which is equivalent to u = LN−

A(b(x), t(x), predlex(v))). Finally, if
maketree is correct, Steps 5–8 produce a computation tree with
exactly ‖(b(x), t(x))A‖ + 1 paths, since u, v, x clearly satisfy the
input assertion.

Algorithm 3. Computing an IFLN
t function in the TotP sense.

Input: a string x ∈ Σ�

Goal: produce a computation tree with ‖(b(x), t(x))A‖+1 compu-
tation paths

1. u ← LNA(b(x), t(x), ε)
2. v ← LNA(b(x), t(x), 0p(|t(x)|)+1)
3. If t(x) <A b(x) ∨ u ∈ {v, LN−

A(b(x), t(x), predlex(v))} then
4. halt
5. σ ← choose from {0, 1}
6. If σ = 1 then
7. maketree(u, v, x)
8. halt

9. procedure maketree(u, v, x)

Input: strings u, v, x such that u, v ∈ [b(x), t(x)]A, u <lex v, and
‖[u, v]lex ∩ (b(x), t(x))A‖ > 0

Goal: produce a computation tree with ‖[u, v]lex ∩ (b(x), t(x))A‖
computation paths

10. z ← medlex(u, v)
11. z− ← LN−

A(b(x), t(x), z)
12. z+ ← LN+

A(b(x), t(x), z)

446 Bampas et al. cc 26 (2017)

13. If z− = z+ then
14. z− ← LN−

A(b(x), t(x), predlex(z
−))

15. branch left ← u �∈ {b(x), t(x)}
∨u �∈ {z−, LN−

A(b(x), t(x), predlex(z
−))}

∨ z− �∈ {b(x), t(x)}
16. branch right ← v �∈ {b(x), t(x)}

∨ v �∈ {z+, LN+
A(b(x), t(x), succlex(z

+))}
∨ z+ �∈ {b(x), t(x)}

17. If branch left ∧ branch right then
18. σ ← choose from {0, 1}
19. Else if branch left then
20. σ ← 0
21. Else if branch right then
22. σ ← 1
23. If σ = 0 ∧ u �= z− then
24. maketree(u, z−, x)
25. If σ = 1 ∧ z+ �= v then
26. maketree(z+, v, x)
27. end procedure

We now show the correctness of procedure maketree. By the
input assertion, we obtain immediately Claim 4.8:

Claim 4.8. After the execution of Steps 10–14 in Algorithm 3, we
have the following:

(i) u, v, z−, z+ ∈ [b(x), t(x)]A,

(ii) u ≤lex z− <lex z+ ≤lex v, and

(iii) (z−, z+)lex ∩ (b(x), t(x))A = ∅.

Claim 4.9. After the execution of Steps 15–16 in Algorithm 3,
branch left is true if and only if [u, z−]lex ∩ (b(x), t(x))A �= ∅ and
branch right is true if and only if [z+, v]lex ∩ (b(x), t(x))A �= ∅.

Proof. We prove the claim for branch left only. The proof for
branch right is similar. By Step 15 in Algorithm 3, if branch left
is true, then we must have one of the following:

cc 26 (2017) Interval size functions and path counting 447

1. u �∈ {b(x), t(x)} ∨ z− �∈ {b(x), t(x)}, or

2. u �∈ {z−, LN−
A(b(x), t(x), predlex(z

−))}.

In the first case, by Claim 4.8(i), [u, z−]lex ∩ (b(x), t(x))A �= ∅. In
the second case, assuming {u, z−} = {b(x), t(x)}, we have that
u �= LN−

A(b(x), t(x), predlex(z
−)), and hence there is at least one

element of (b(x), t(x))A in [u, z−]lex.
For the other direction, assume that branch left is false. Then,

we must have u, z− ∈ {b(x), t(x)} and also

u ∈ {z−, LN−
A(b(x), t(x), predlex(z

−))} .

If u = z−, then clearly [u, z−]lex ∩ (b(x), t(x))A = ∅. On the other
hand, if u �= z− and u = LN−

A(b(x), t(x), predlex(z
−)), then we

must have {u, z−} = {b(x), t(x)} and there cannot be any string
of (b(x), t(x))A in [u, z−]lex, thus [u, z−]lex ∩ (b(x), t(x))A = ∅. �

Claim 4.10. After the execution of Steps 15–16 in Algorithm 3,
branch left and branch right are not both false.

Proof. By Claim 4.9, if both flags are false, then

[u, z−]lex ∩ (b(x), t(x))A = [z+, v]lex ∩ (b(x), t(x))A = ∅ .

In view of Claim 4.8(iii), this implies that [u, v]lex ∩ (b(x), t(x))A =
∅. However, this contradicts the input assertion. �

By Claim 4.10, exactly one of the assignments to the vari-
able σ in Steps 17–22 in Algorithm 3 is executed. In any case,
Claims 4.9, 4.8(i), and 4.8(ii) guarantee that, if a recursive call in
Steps 24 or 26 in Algorithm 3 is executed, then its input satis-
fies the input assertion and, in fact, ‖[u, z−]lex‖ < ‖[u, v]lex‖ and
‖[z+, v]lex‖ < ‖[u, v]lex‖. The correctness of maketree follows by
a straightforward induction on ‖[u, v]lex‖.

Finally, note that the maximum recursion depth is at most poly-
nomial in |x|: By construction (Steps 10–14 in Algorithm 3), we

have ‖[u, z−]lex‖ ≤
⌈

‖[u,v]lex‖
2

⌉
and ‖[z+, v]lex‖ ≤

⌈
‖[u,v]lex‖

2

⌉
. How-

ever, the maximum possible lexicographic distance between the

448 Bampas et al. cc 26 (2017)

two arguments u and v of maketree in Step 7 in Algorithm 3
is 2p(|t(x)|)+1. It follows that the recursion depth is at most O(p(|t
(x)|)), which is polynomial because t ∈ FP. �

Remark 4.11. Note that in Pagourtzis & Zachos (2006) it was
shown that #Mon2Sat is in TotP but the proof can be easily
adapted to show that #MonSat is in TotP as well. In fact, by
slightly extending a property shown in Hemaspaandra et al. (2007),
namely that it is easy to find the least satisfying assignment that
is lexicographically greater than a given assignment, it is possible
to show directly that #MonSat is in IFLN

t .

5. Inside TotP

In this section, we give a characterization of FP as an interval
size function class and show that IFrmed

t is a class that contains FP
and is contained in TotP. We provide strong evidence that these
inclusions are proper.

Theorem 5.1. FP = IFmed
t ⊆ IFrmed

t ⊆ TotP.

Proof. For the inclusion FP ⊆ IFmed
t , just note that any FP

function can be defined on the lexicographic order by appropriately
setting the boundary functions and that the median function for
the lexicographic order is trivially in FP.

For the opposite direction, let f ∈ IFmed
t via a total p-order A ∈

P with bounding polynomial p and boundary functions b, t ∈ FP.
We claim that succA ∈ FP. To compute the successor of a given
string x, first compute w = 0p(|x|)+1. Since A is a total p-order with
bounding polynomial p, it must be that x <A w. Then, compute a
sequence of strings w0, . . . , wk, where k ≥ 1, such that w0 = w, for
each i, wi+1 = medA(x,wi), and k is the smallest index such that
wk = wk−1. It then follows from the definition of the median func-
tion that wk = succA(x). Moreover, the computation is concluded
in polynomial time, since the size of [x,w0]A is O(2p(p(|x|)+1)), and
after each iteration, the size of [x,wi]A is halved. Thus the claim
is proved.

cc 26 (2017) Interval size functions and path counting 449

Now, given any two strings x, y ∈ Σ� with x <A y, we can
decide in polynomial time if ‖[x, y)A‖ is odd or even: ‖[x, y)A‖ is
odd if and only if medA(x, y) = medA(succA(x), y). This implies
that we can compute in polynomial time the size of [x, y)A: If
y = succA(x) then ‖[x, y)A‖ = 1, otherwise the size of [x, y)A is
computed recursively as follows:

◦ if ‖[x, y)A‖ is odd then ‖[x, y)A‖ = 2‖[x, medA(x, y))A‖ − 1,

◦ else ‖[x, y)A‖ = 2‖[x, medA(x, y))A‖.

Therefore, we can compute f(x) in polynomial time as follows:
f(x) = ‖[b(x), t(x))A‖ − 1.

The inclusion IFmed
t ⊆ IFrmed

t follows from Remark 2.4.
For the last inclusion, IFrmed

t ⊆ TotP, recall that if f ∈ IFrmed
t ,

then there exists a total p-order A ∈ P, a c-relaxed median func-
tion rmedc

A ∈ FP, for some c ∈
(
0, 1

2

]
, and b, t ∈ FP such that

f(x) = ‖(b(x), t(x))A‖. Observe that for two strings u, v ∈ Σ�,
u ≺A v ⇐⇒ rmedc

A(u, v) = v. The latter gives us an efficient
adjacency check. In order to prove that f ∈ TotP, we construct an
NPTM N which, given a string x, performs a computation with
exactly ‖[b(x), t(x))A‖ = ‖(b(x), t(x))A‖ + 1 computation paths.
A straightforward induction on ‖[b, t)A‖ shows that Algorithm 4
below produces the correct number of computation paths. On the
other hand, by the properties of the c-relaxed median function,
the size of the interval [b, t)A in each iteration is at most (1 − c)
times the size of the interval in the previous iteration. Moreover,
‖[b(x), t(x)]A‖ ≤ 2O(p(|t(x)|); therefore, each computation path halts
in polynomial time.

Algorithm 4. Computing an IFrmed
t function in the TotP sense.

Input: a string x ∈ Σ�

Goal: produce a computation tree with ‖(b(x), t(x))A‖+1 compu-
tation paths

1. b ← b(x), t ← t(x)
2. While b �≺A t do 3–8
3. z ← rmedc

A(b, t)
4. σ ← choose from {0, 1}

450 Bampas et al. cc 26 (2017)

5. If σ = 0 then
6. t ← z
7. If σ = 1 then
8. b ← z

�

We now proceed to define the exponential gap operator, which
will bring out the differences between the function classes TotP and
IFrmed

t .

Definition 5.2. We define the exponential gap operator Ceg· as
follows: If F is a function class, then Ceg · F contains exactly the
languages L for which there exist an f ∈ F , an asymptotically
positive polynomial q, and a γ ∈ ω(1) such that for all x: if x �∈ L
then f(x) ≤ 2q(|x|), while if x ∈ L then f(x) ≥ 2q(|x|)·γ(|x|).

It turns out that for any language in NP, there exists a TotP
function which has an exponential gap between yes and no in-
stances of the language. On the other hand, we can approximate
in polynomial time the value of any IFrmed

t function well enough to
be able to discern between yes and no instances of any language
defined by means of an exponential gap on that function. These
claims are proved in Lemmas 5.3 and 5.4.

Lemma 5.3. NP ⊆ Ceg · TotP.

Proof. Let L ∈ NP, let N be the NPTM that decides L, and
let p be the polynomial that bounds the running time of N . We
construct an NPTM N ′ as follows: On input x, first simulate N(x).
If the simulation reaches a rejecting state of N , halt. If an accepting
state of N is reached, pick nondeterministically a string of length
p(|x|) · log p(|x|) and then halt. Now, it is not hard to see that
if x �∈ L then totN ′(x) ≤ 2p(|x|), while if x ∈ L then totN ′(x) ≥
2p(|x|)·log p(|x|). This proves that L ∈ Ceg · TotP. �

Lemma 5.4. Ceg · IFrmed
t ⊆ P.

cc 26 (2017) Interval size functions and path counting 451

Proof. Let L ∈ Ceg · IFrmed
t , so there exist an f ∈ IFrmed

t , an
asymptotically positive polynomial q, and a γ ∈ ω(1) as per Defi-
nition 5.2. Moreover, let A ∈ P be the p-order with bounding poly-
nomial p and b, t ∈ FP that are implied by the fact that f ∈ IFrmed

t .
Let c be the constant of the associated c-relaxed median function
rmedA ∈ FP. Finally, let θ be a constant such that for all n ≥ θ,
the following hold:

(5.5) q(n) ≥ log
1

c
≥ 1 and γ(n) ≥ 4 ·

log 1
c

log 1
1−c

Such a θ must exist in view of the fact that q is asymptotically
positive and γ ∈ ω(1).

In order to decide membership of an input string x in L, we
proceed as follows: First, if |x| ≤ θ, then membership is decided
by using a lookup table of constant size 2θ+1 − 1. If |x| > θ, then
we compute a sequence of strings t(x) = z0 >A z1 >A · · · >A zk,
where for all i in the range 1 ≤ i ≤ k:

zi = rmedA(b(x), zi−1)

and k is the smallest index such that b(x) ≺A zk. Finally, we
accept if and only if 1

(1−c)k
− 1

c
> 2q(|x|). Note that we can check

whether b(x) ≺A zi in polynomial time, since it is equivalent to
b(x) �= zi ∧ rmedA(b(x), zi) = zi.

The correctness of the algorithm is based on the following claim:

Claim 5.6.
1

(1−c)k
− 1

c
≤ f(x) < 2

ck
.

Proof. We prove first the upper bound. For i ≥ 0, we denote
Si = ‖[b(x), zi)A‖. By definition of the relaxed median, we have
for i ≥ 1:

Si ≥
c · ‖[b(x), zi−1]A‖� =
c · Si−1 + c� > c · Si−1 + c − 1 .

From this recurrence, we obtain for all i:

(5.7) Si ≥ ci · S0 + ci − 1 .

We set i = k in (5.7) and, since S0 = f(x) + 1 and Sk = 1, we
obtain 1 ≥ ck ·(f(x) + 1)+ck−1 and, therefore, f(x) ≤ 2

ck
−2 < 2

ck
.

452 Bampas et al. cc 26 (2017)

We now prove the lower bound. For i ≥ 1, we denote Ti =
‖[zi, zi−1]A‖. Observe that Si + Ti = Si−1 + 1. Moreover, by defini-
tion of the relaxed median, we have:

Ti ≥ �c · ‖[b(x), zi−1]A‖� = �c · Si−1 + c� ≥ c · Si−1 + c .

It follows, then, that

Si = Si−1 − Ti + 1 ≤ (1 − c) · Si−1 + 1 − c .

From this recurrence, we obtain for i ≥ 1:

(5.8) Si ≤ (1 − c)i · S0 +
1 − c

c
·
(
1 − (1 − c)i

)
.

Equation (5.8) also clearly holds for i = 0. It follows that we can
always set i = k (even if k = 0) and we obtain, after rearranging,
f(x) ≥ 1

(1−c)k
− 1

c
. �

If the algorithm accepts, then we have 1
(1−c)k

− 1
c

> 2q(|x|). In

view of Claim 5.6, this implies f(x) > 2q(|x|) and, therefore, x ∈ L
by Definition 5.2.

On the other hand, if the algorithm rejects, then it must be the
case that 1

(1−c)k
− 1

c
≤ 2q(|x|), which gives k ≤ log 1

1−c

(
1
c

+ 2q(|x|)).

By the first part of (5.5), we have 1
c

+ 2q(|x|) ≤ 2q(|x|)+1 ≤ 22q(|x|).
Therefore,

(5.9) k ≤ q(|x|) · log 1
1−c

4 .

Additionally, by the second part of (5.5), we have log 1
1−c

4 ≤ γ(|x|)·
log 1

c

√
2. Combining this with (5.9), we obtain k ≤ q(|x|) · γ(|x|) ·

log 1
c

√
2 = q(|x|)·γ(|x|)

2
· log 1

c
2. From (5.5), we can easily derive that

q(|x|) · γ(|x|) > 2 for all c ∈
(
0, 1

2

]
. Therefore, q(|x|)·γ(|x|)

2
≤ q(|x|) ·

γ(|x|)−1, and we finally have that k ≤ (q(|x|) · γ(|x|) − 1) · log 1
c
2.

By rearranging, we obtain 2
ck

≤ 2q(|x|)·γ(|x|). In view of Claim 5.6,

this implies f(x) < 2q(|x|)·γ(|x|) and, therefore, x /∈ L by Defini-
tion 5.2.

It remains to show that the algorithm runs in polynomial time.
It suffices to show that k is bounded by a polynomial. By the lower

cc 26 (2017) Interval size functions and path counting 453

bound of Claim 5.6 for f(x), we have k ≤ log 1
1−c

(
f(x) + 1

c

)
. Since

A is a p-order with bounding polynomial p, from Remark 2.2 we
have f(x) ≤ 2p(|t(x)|)+1 − 1 and therefore k = O (p(|t(x)|)), which
is polynomial because t ∈ FP. �

Lemmas 5.3 and 5.4 directly imply the following.

Theorem 5.10. If IFrmed
t = TotP, then P = NP.

We now proceed to separate IFrmed
t from FP. Consider the fol-

lowing problem:

Problem 5.11 (#SAT+2n). Given a Boolean formula ϕ with n
variables, count the number of satisfying assignments of the for-
mula ϕ ∨ xn+1, where xn+1 is a fresh variable not appearing in ϕ.

It is immediate that #SAT+2n ∈ #P and #SAT+2n(ϕ) =
#SAT(ϕ) + 2n, where n is the number of variables in ϕ and
#SAT(ϕ) is the #P-complete function giving the number of sat-
isfying assignments of ϕ.2 Therefore, #SAT+2n is #P-complete
under the Cook-1 reduction. We show that #SAT+2n is actu-
ally in IFrmed

t . Consequently, IFrmed
t �= FP, unless #P also collapses

to FP.

Theorem 5.12. #SAT+2n ∈ IFrmed
t .

Proof. We assume a reasonable encoding scheme of boolean for-
mulas as binary strings. Without loss of generality, we also assume
that, under this scheme, there is no pair of distinct formulas ϕ, ϕ′

such that the encoding of ϕ is a prefix of the encoding of ϕ′. This
can be ensured, for example, by simultaneously replacing, in the
encoding of a formula, all occurrences of ‘0’ by ‘01,’ all occurrences
of ‘1’ by ‘10,’ and terminating with ‘00.’ In particular, this implies
that, for any given string w, there is at most one prefix of w that
encodes a boolean formula, and it can be found in polynomial time.

2The appearance of n in the right-hand side of #SAT+2n(ϕ) = #SAT(ϕ)+
2n is not to be confused with the appearance of n in the left-hand side, where
it is simply part of the name of the function #SAT+2n .

454 Bampas et al. cc 26 (2017)

If x encodes a boolean formula ϕ(x) with n(x) ≥ 0 variables
denoted by v1, . . . , vn(x), then a truth assignment for ϕ(x) is repre-
sented by a binary string ξ with |ξ| = n(x), such that the ith bit
of ξ corresponds to the truth value of vi. Let Sat(x) denote the set
of strings ξ that represent satisfying truth assignments for ϕ(x).

We will show that the function f(x) = ‖Sat(x)‖ + 2n(x) is
in IFrmed

t . We can assume that f(x) = 0 if x is not a valid encoding
of a boolean formula. We construct an order A that coincides with
the lexicographic order of Σ�, except that for every x ∈ Σ� that is a
valid encoding of a boolean formula ϕ(x), the interval of size 4·2n(x)

which we will henceforth denote by I(x) = [x0n(x)+2, x1n(x)+2]lex is
ordered differently as follows:

◦ First come the elements of the set

{xξ00 : |ξ| = n(x)}
∪{xξ10 : |ξ| = n(x) ∧ ξ ∈ Sat(x)} ,

in lexicographic order,

◦ and last come the elements of the set

{xξ01 : |ξ| = n(x)}
∪{xξ10 : |ξ| = n(x) ∧ ξ /∈ Sat(x)}
∪{xξ11 : |ξ| = n(x)} ,

in lexicographic order.

Note that the properties of our encoding ensure that, for any pair of
distinct boolean formula encodings x, x′, we have I(x)∩I(x′) = ∅.
Moreover, for any given string w, we can find in polynomial time
an x such that w ∈ I(x), or decide that no such x exists.

Remark 5.13. It may be helpful to spend a moment to visual-
ize the ordering of the strings of an interval I(x). Note that the
first part of I(x) contains, in lexicographic order, for each truth
assignment ξ of length n(x), either the two strings {xξ00, xξ10}
(if ξ ∈ Sat(x)) or the single string {xξ00} (if ξ /∈ Sat(x)). The
total number of strings in the first part of I(x) is, therefore, ex-
actly equal to f(x) = ‖Sat(x)‖ + 2n(x). Similarly, the second part

cc 26 (2017) Interval size functions and path counting 455

of I(x) contains, in lexicographic order, for each truth assignment ξ
of length n(x), either the two strings {xξ01, xξ11} (if ξ ∈ Sat(x))
or the three strings {xξ01, xξ10, xξ11} (if ξ /∈ Sat(x)). Therefore,
the second part of I(x) contains the remaining 3 · 2n(x) − ‖Sat(x)‖
strings. It is easy to decide in which part of the interval lies a
given string xξab, where a, b ∈ Σ: it is in the first part if and only
if ab = 00, or ab = 10 and ξ satisfies ϕ(x).

In view of the definition of the order A and Remark 5.13, it is
not hard to verify that A is a P-decidable p-order with succA ∈ FP
(therefore, it also has efficient adjacency checks). Indeed, to decide
whether w1 <A w2, we first identify the intervals to which the two
strings belong: If it is not the case that both are in the same
interval, then w1 <A w2 if and only if w1 <lex w2, whereas if both
are in the same interval, then it suffices to identify which part of
the interval each string lies in and, if they are in the same part,
to compare them lexicographically. In order to compute succA in
polynomial time, we first check whether the input string belongs
to some interval I(x): If this is not the case, then the successor is
simply the lexicographic successor. On the other hand, if the input
string is in some interval I(x), then the successor is computed in
polynomial time according to Table 5.1.

By choosing the boundary functions b(x) = predlex(x0n(x)+2) =
predA(x0n(x)+2), i.e., the string immediately before the first element
of I(x) under A, and t(x) = x0n(x)+11, i.e., the string immediately
after the ‖Sat(x)‖+2n(x) elements contained in the first part of the
interval, we have ‖(b(x), t(x))A‖ = ‖Sat(x)‖ + 2n(x) = f(x) (if x
does not encode a boolean formula, we can choose b(x) = t(x) = ε).
In the following, we will show that, for some fixed constant c, a
c-relaxed median between any two given elements w1 <A w2 of A
can be computed in polynomial time.

We start with the observation that, for any fixed constant s,
we can check in polynomial time whether ‖[w1, w2]A‖ ≤ s: We
apply s times the function succA ∈ FP starting from w1, and check
whether we reached w2. If ‖[w1, w2]A‖ ≤ s, then we can clearly also
compute a 1

2
-relaxed median for w1 and w2 in polynomial time, by

applying succA at most s
2

times. Therefore, in the rest of the proof,

456 Bampas et al. cc 26 (2017)

Table 5.1: Computation of the successor function for the order A
defined in the proof of Theorem 5.12. Let w = xξab ∈ I(x),
where a, b ∈ Σ, and let ξ′ = succlex(ξ). Each row of the table
contains one of the different cases for computing w′ = succA(w),
based on the values of a and b, whether ξ = 1n(x), and whether ξ ∈
Sat(x).

Condition Successor

ab = 00 ∧ ξ ∈ Sat(x) w′ = xξ10
ab = 00 ∧ ξ /∈ Sat(x) ∧ ξ �= 1n(x) w′ = xξ′00
ab = 00 ∧ ξ /∈ Sat(x) ∧ ξ = 1n(x) w′ = x0n(x)+11

ab = 01 ∧ ξ ∈ Sat(x) w′ = xξ11
ab = 01 ∧ ξ /∈ Sat(x) w′ = xξ10

ab = 10 ∧ ξ ∈ Sat(x) ∧ ξ �= 1n(x) w′ = xξ′00
ab = 10 ∧ ξ ∈ Sat(x) ∧ ξ = 1n(x) w′ = x0n(x)+11
ab = 10 ∧ ξ /∈ Sat(x) w′ = xξ11

ab = 11 ∧ ξ �= 1n(x) w′ = xξ′01
ab = 11 ∧ ξ = 1n(x) w′ = succlex(w)

we will assume that ‖[w1, w2]A‖ > s, where s is a constant whose
value is to be determined.

Case 1: We first handle the case where both w1, w2 ∈ I(x),
for some x. That is, for i ∈ {1, 2}, we have wi = xξiaibi, where
ai, bi ∈ Σ and |ξi| = n(x). We distinguish the following subcases:

Subcase 1.(i): If w1 <A w2 <A t(x), then, by demanding s ≥
2, we can assume that ξ1 <lex ξ2. We return w = xξ00 as a
relaxed median of w1 and w2, where ξ = medlex(ξ1, ξ2). Indeed,
we know by construction of the order A and the definition of the
median function that ‖[w1, w)A‖ ≥ ‖[ξ1, ξ)lex‖ ≥

⌊
1
2
‖[ξ1, ξ2]lex‖

⌋

and ‖[w,w2]A‖ ≥ ‖[ξ, ξ2]lex‖ ≥
⌈
1
2
‖[ξ1, ξ2]lex‖

⌉
. On the other hand,

‖[w1, w2]A‖ ≤ 2‖[ξ1, ξ2]lex‖. Therefore, we obtain ‖[w1, w)A‖ ≥⌊
1
4
‖[w1, w2]A‖

⌋
and ‖[w,w2]A‖ ≥

⌈
1
4
‖[w1, w2]A‖

⌉
.

Subcase 1.(ii): If t(x) ≤A w1 <A w2, then, by demanding s ≥
3, we can assume that ξ1 <lex ξ2. We return w = xξ01, where
ξ = medlex(ξ1, ξ2). We have, as in Subcase 1.(i), that ‖[w1, w)A‖ ≥

cc 26 (2017) Interval size functions and path counting 457

⌊
1
2
‖[ξ1, ξ2]lex‖

⌋
and ‖[w,w2]A‖ ≥

⌈
1
2
‖[ξ1, ξ2]lex‖

⌉
, whereas we have

‖[w1, w2]A‖≤3‖[ξ1, ξ2]lex‖. Therefore, ‖[w1, w)A‖ ≥
⌊
1
6
‖[w1, w2]A‖

⌋

and ‖[w,w2]A‖ ≥
⌈
1
6
‖[w1, w2]A‖

⌉
.

Subcase 1.(iii): If w1 <A t(x) ≤A w2, let δ1 = ‖[ξ1, 1
n(x)]lex‖

and δ2 = ‖[0n(x), ξ2]lex‖. We claim that the relaxed median of w1

and w2 can be computed as follows: If δ1 > δ2, then the relaxed
median is w = x0ξ00, where ξ is a string with ‖[ξ1, ξ)lex‖ =

⌊
δ1+δ2

2

⌋
,

otherwise the relaxed median is w = x0ξ01, where ξ is a string with
‖[ξ, ξ2]lex‖ =

⌈
δ1+δ2

2

⌉
.

Indeed, if δ1 > δ2, then we have ‖[w1, w)A‖ ≥ ‖[ξ1, ξ)lex‖ =⌊
δ1+δ2

2

⌋
and ‖[w,w2]A‖ ≥ ‖[ξ, 1n(x)]lex‖ + ‖[0n(x), ξ2]lex‖ = δ1 −⌊

δ1+δ2
2

⌋
+ δ2 =

⌈
δ1+δ2

2

⌉
. At the same time, ‖[w1, w2]A‖ ≤ 3(δ1 +

δ2), from which we obtain ‖[w1, w)A‖ ≥
⌊
1
6
‖[w1, w2]A‖

⌋
and also

‖[w,w2]A‖ ≥
⌈
1
6
‖[w1, w2]A‖

⌉
. The case δ1 ≤ δ2 is handled by a

completely symmetric argument.
Case 2: We now assume that there is no x, such that both

w1, w2 ∈ I(x). Let w = medlex(w1, w2). We will call a string free
if its rank under A is equal to its rank under lex. This is the case
for strings that do not belong in I(x), for any x ∈ Σ�, and for the
first and last elements of each interval I(x). Note that if z1, z2 are
free, then [z1, z2]A = [z1, z2]lex. We have the following subcases:

Subcase 2.(i): If w1 and w2 are free, then we have two further
subcases for w. If w is also free, then we can safely return w as the
relaxed median. On the other hand, if w ∈ I(x) for some x, then
we return w′ = t(x) as the relaxed median. Let u = x1n(x)+2, i.e.,
u is the last element of I(x) both lexicographically and under A,
and define δ1 and δ2 as:

δ1 = ‖[w1, b(x)]A‖ = ‖[w1, b(x)]lex‖ ,

δ2 = ‖(u,w2]A‖ = ‖(u,w2]lex‖ .

Now, it is easy to verify that we must have |δ1 − δ2| ≤ ‖I(x)‖,
otherwise the lexicographic median w would not fall in I(x). We
rewrite this as max{δ1, δ2} − min{δ1, δ2} ≤ ‖I(x)‖. Furthermore,
it holds by construction of the interval I(x) that ‖(b(x), t(x))A‖ ≥
1
4
‖I(x)‖ and ‖[t(x), u]A‖ ≥ 1

2
‖I(x)‖. From these observations, we

obtain:

458 Bampas et al. cc 26 (2017)

‖[w1, w2]A‖ = δ1 + ‖I(x)‖ + δ2

= max{δ1, δ2} + min{δ1, δ2} + ‖I(x)‖
≤ 2 min{δ1, δ2} + 2‖I(x)‖(5.14)

On the other hand, for the candidate relaxed median w′ = t(x) we
have:

‖[w1, w
′)A‖ = ‖[w1, b(x)]A‖ + ‖(b(x), t(x))A‖

≥ min{δ1, δ2} +
1

4
‖I(x)‖(5.15)

and

‖[w′, w2]A‖ = ‖[t(x), u]A‖ + ‖(u,w2]A‖

≥ min{δ1, δ2} +
1

2
‖I(x)‖(5.16)

From (5.14), (5.15), and (5.16), we deduce that ‖[w1, w
′)A‖ ≥

1
8
‖[w1, w2]A‖ ≥

⌊
1
8
‖[w1, w2]A‖

⌋
and ‖[w′, w2]A‖ ≥ 1

4
‖[w1, w2]A‖,

thus ‖[w′, w2]A‖ ≥
⌈
1
4
‖[w1, w2]A‖

⌉
, since ‖[w′, w2]A‖ is an integer.

Subcase 2.(ii): If w1 ∈ I(x) and w2 is free, then we have
four further subcases, which we present below as Claims 5.17–
5.20. Let u = x1n(x)+2 and u′ = succlex(u) = succA(u). We
have ‖[u′, w2]A‖ = ‖[u′, w2]lex‖, and by construction of the in-
terval I(x), if w1 ≥A t(x), then 1

2
‖[w1, u]lex‖ ≤ ‖[w1, u]A‖ ≤

‖[w1, u]lex‖. Let δ = ‖[u′, w2]A‖.

Claim 5.17. If δ < 4 · 2n(x) and w1 <A t(x), then w′ = x10n(x)1 is
a relaxed median for w1 and w2.

Proof. From the assumption about δ, we have ‖[w1, w2]A‖ ≤
8 · 2n(x). On the other hand, ‖[w1, w

′)A‖ ≥ ‖[t(x), w′)A‖ ≥ 2n(x)

and ‖[w′, w2]A‖ ≥ ‖[w′, u]A‖ ≥ 2n(x). The claim follows. �

Claim 5.18. If w1 ≥A t(x) and w ∈ I(x), then a relaxed median
for w1 and w2 is given by w if w ≥A t(x), or by w′ = succlex(w) if
w <A t(x).

cc 26 (2017) Interval size functions and path counting 459

Proof. We first assume that w ≥A t(x). By demanding that
s ≥ 3, we can also assume that ‖[w1, w2]A‖ ≥ 4, which implies
‖[w1, w)lex‖ ≥ 2. Therefore, we have ‖[w1, w)A‖ = ‖[w1, w]A‖ −
1 ≥ 1

2
‖[w1, w]lex‖ − 1 = 1

2
(‖[w1, w)lex‖ − 1) ≥ 1

4
‖[w1, w)lex‖ and

‖[w,w2]A‖ = ‖[w, u]A‖ + ‖[u′, w2]A‖ ≥ 1
2
‖[w, u]lex‖ + ‖[u′, w2]lex‖ ≥

1
2
‖[w,w2]lex‖. On the other hand, it holds that ‖[w1, w2]A‖ =

‖[w1, u]A‖+ ‖[u′, w2]A‖ ≤ ‖[w1, u]lex‖+ ‖[u′, w2]lex‖ ≤ ‖[w1, w2]lex‖.
We may, then, conclude that ‖[w1, w)A‖ ≥ 1

4

⌊
1
2
‖[w1, w2]lex‖

⌋
≥

1
4

⌊
1
2
‖[w1, w2]A‖

⌋
≥ 1

10
‖[w1, w2]A‖ (taking also into account that

‖[w1, w2]A‖ ≥ 4) and ‖[w,w2]A‖ ≥ 1
4
‖[w1, w2]lex‖ ≥ 1

4
‖[w1, w2]A‖.

If w <A t(x), note that, by construction of I(x), we have
succlex(w) ∈ I(x) and, in fact, succlex(w) ≥A w1 ≥A t(x). As be-
fore, we have ‖[w′, w2]A‖ = ‖[w′, u]A‖+‖[u′, w2]A‖ ≥ 1

2
‖[w′, u]lex‖+

‖[u′, w2]lex‖ = 1
2
(‖[w, u]lex‖ − 1) + ‖[u′, w2]lex‖ ≥ 1

4
‖[w,w2]lex‖ (in

view of the fact that w <A t(x), which implies ‖[w, u]lex‖ ≥ 2 and
therefore ‖[w, u]lex‖ − 1 ≥ 1

2
‖[w, u]lex‖), and the other bounds re-

main ‖[w1, w
′)A‖ ≥ 1

4
‖[w1, w)lex‖ and ‖[w1, w2]A‖ ≤ ‖[w1, w2]lex‖.

We conclude that ‖[w1, w
′)A‖ ≥ 1

10
‖[w1, w2]A‖ and ‖[w′, w2]A‖ ≥

1
8
‖[w1, w2]A‖. �

Claim 5.19. If δ ≥ 4·2n(x), then w′ = rmedA(u′, w2), as computed
according to Subcase 2.(i), is a relaxed median for w1 and w2.

Proof. Note that u′ and w2 are both free, therefore w′ can be
computed according to Subcase 2.(i) and we have ‖[u′, w′)A‖ ≥
1
8
‖[u′, w2]A‖ = 1

8
δ and ‖[w′, w2]A‖ ≥ 1

8
‖[u′, w2]A‖ = 1

8
δ. Moreover,

‖[w1, w2]A‖ = ‖[w1, u]A‖ + ‖[u′, w2]A‖ ≤ 4 · 2n(x) + δ ≤ 2δ and
‖[w1, w

′)A‖ ≥ ‖[u′, w′)A‖ ≥ 1
8
δ. The claim follows. �

Claim 5.20. If δ < 4 · 2n(x), w1 ≥A t(x), and w �∈ I(x), then
w′ = rmedA(u′, w2), as computed according to Subcase 2.(i), is a
relaxed median for w1 and w2.

Proof. The strings u′ and w2 are both free, thus Case 2.(i) ap-
plies. The string w′ is such that ‖[u′, w′)A‖ ≥ 1

8
‖[u′, w2]A‖ = 1

8
δ and

‖[w′, w2]A‖ ≥ 1
8
‖[u′, w2]A‖ = 1

8
δ. Moreover, since the lexicographic

median w falls outside of I(x), it follows that δ ≥ ‖[w1, u]lex‖ ≥

460 Bampas et al. cc 26 (2017)

‖[w1, u]A‖. We have, then, that ‖[w1, w2]A‖ = ‖[w1, u]A‖ + δ,
‖[w1, w

′)A‖ = ‖[w1, u]A‖ + ‖[u′, w′)A‖ ≥ ‖[w1, u]A‖ + 1
8
δ, and, fi-

nally, ‖[w′, w2]A‖ ≥ 1
8
δ = 1

16
δ+ 1

16
δ ≥ 1

16
δ+ 1

16
‖[w1, u]A‖. The claim

follows. �

Subcase 2.(iii): If w1 is free and w2 is not free, then the re-
laxed median is obtained by operations and arguments that are
completely symmetric to those of Subcase 2.(ii).

Subcase 2.(iv): Finally, we handle the case where w1 ∈ I(x)
and w2 ∈ I(y) with x �= y. Let u = x1n(x)+2 and v = y0n(y)+2.
Also, let w1 = xξ1a1b1 and w2 = yξ2a2b2, where |ξ1| = n(x), |ξ2| =
n(y), and ai, bi ∈ Σ. We define the following quantities:

R̃ =

{
2‖(ξ1, 1

n(x)]lex‖ + 1 + 2 · 2n(x), if w1 <A t(x)

2‖(ξ1, 1
n(x)]lex‖ + 1, if w1 ≥A t(x)

and

L̃ =

{
‖[0n(y), ξ2]lex‖, if w2 <A t(y)

3‖[0n(y), ξ2]lex‖ + 1 + 2n(y), if w2 ≥A t(y)
,

which are computable in polynomial time, given w1 and w2, respec-
tively. We use R̃ and L̃ to approximate ‖[w1, u]A‖ and ‖[v, w2]A‖,
respectively (Claims 5.21 and 5.22). We only prove Claim 5.21, as
Claim 5.22 can be proved by similar arguments, the difference in
the constant being due to the lopsided distribution of strings on
the left and on the right of t(x), for any given interval I(x).

Claim 5.21. R̃ ≤ ‖[w1, u]A‖ ≤ 3R̃.

Proof. For the first inequality: If w1 ≥A t(x), then, by con-
struction of the order A, on the right of w1 in I(x), there are at least
the two strings xξ01 and xξ11 for each assignment ξ >lex ξ1, plus w1

itself. If w1 <A t(x), then on the right of w there are four strings
for each assignment ξ >lex ξ1, at least two strings for each assign-
ment ξ <lex ξ1, and at least three strings for the assignment ξ = ξ1.
Therefore, there are at least 4‖(ξ1, 1

n(x)]lex‖+2‖[0n(x), ξ1)lex‖+3 =
2 · 2n(x) + 1 + 2‖(ξ1, 1

n(x)]lex‖ strings.
For the second inequality: If w1 ≥A t(x), then there are at most

three strings on the right of w1 for each ξ ≥lex ξ1. If w1 <A t(x),
then there are at most three strings for each ξ <lex ξ1 and at

cc 26 (2017) Interval size functions and path counting 461

most four for each ξ ≥lex ξ1, for a total of at most 3 · 2n(x) + 1 +
‖(ξ1, 1

n(x)]lex‖ strings. �

Claim 5.22. L̃ ≤ ‖[v, w2]A‖ ≤ 2L̃.

We now distinguish four further subcases for Subcase 2.(iv),
which we present below as Claims 5.23–5.25 and 5.27. Let u′ =
succlex(u) = succA(u), and δ = ‖[u′, b(y)]lex‖ = ‖[u′, b(y)]A‖.

Claim 5.23. If δ ≥ max{R̃, L̃}, then w′ = rmedA(u′, b(y)), as
computed according to Subcase 2.(i), is a relaxed median for w1

and w2.

Proof. Subcase 2.(i) is applicable, since u′ and b(y) are both
free. By assumption and by Claims 5.21 and 5.22, we have that
‖[w1, w2]A‖ = ‖[w1, u]A‖+δ+‖[v, w2]A‖ ≤ 3R̃+δ+2L̃ ≤ 6δ. More-
over, by the properties of the relaxed median w′, for some positive
c ≤ 1

2
, we have ‖[w1, w

′)A‖ ≥ ‖[u′, w′)A‖ ≥ cδ and ‖[w′, w2]A‖ ≥
‖[w′, b(y)]A‖ ≥ cδ. �

Claim 5.24. If L̃ ≤ δ < R̃, then w′ = rmedA(w1, b(y)), as com-
puted according to Subcase 2.(ii), is a relaxed median for w1 and
w2.

Proof. Case 2.(ii) is applicable, since b(y) is free. By assump-
tion and by Claims 5.21 and 5.22, ‖[w1, w2]A‖ ≤ 3R̃+3δ. Further-
more, for some positive c ≤ 1

2
, ‖[w1, w

′)A‖ ≥ c‖[w1, b(y)]A‖ =

c‖[w1, u]A‖ + cδ ≥ cR̃ + cδ and ‖[w′, w2]A‖ ≥ ‖[w′, b(y)]A‖ ≥
c‖[w1, b(y)]A‖ ≥ cR̃ + cδ. �

Similarly to Claim 5.24, we can prove the following:

Claim 5.25. If R̃ ≤ δ < L̃, then w′ = rmedA(u′, w2), as computed
according to Subcase 2.(iii), is a relaxed median for w1 and w2.

For the remaining subcase δ < min{R̃, L̃}, we assume that
δ < R̃ ≤ L̃. The case δ < L̃ < R̃ can be handled symmetrically.
First, we choose w′ ∈ I(y) as follows:

462 Bampas et al. cc 26 (2017)

◦ If w2 <A t(y), then w′ = yξ′00, where ξ′ satisfies ‖[ξ′, ξ2]lex‖ =⌈
R̃+L̃
6

⌉
.

◦ If w2 ≥A t(y) and
⌈

R̃+L̃
6

⌉
< ‖[0n(y), ξ2]lex‖, then w′ = yξ′01,

where ξ′ is such that ‖[ξ′, ξ2]lex‖ =
⌈

R̃+L̃
6

⌉
.

◦ If w2 ≥A t(y) and
⌈

R̃+L̃
6

⌉
≥ ‖[0n(y), ξ2]lex‖, then w′ = yξ′00,

where ξ′ is such that ‖[ξ′, 1n(y)]lex‖ =
⌈

R̃+L̃
6

⌉
− ‖[0n(y), ξ2]lex‖.

In the two first cases, it is easy to verify that we can always

choose a suitable ξ′. For the last case, it suffices to have
⌈

R̃+L̃
6

⌉
−

‖[0n(y), ξ2]lex‖ ≤ 2n(y); therefore, since R̃ ≤ L̃, it suffices to have⌈
L̃
3

⌉
≤ ‖[0n(y), ξ2]lex‖+2n(y). By the definition of L̃ for w2 ≥A t(y),

it can be seen that this holds whenever n(y) ≥ 1. On the other
hand, if n(y) = 0, then we have ‖[v, w2]A‖ ≤ ‖I(y)‖ = 4, δ <
L̃ ≤ ‖[v, w2]A‖ ≤ 4, and ‖[w1, u]A‖ ≤ 3R̃ ≤ 3L̃ ≤ 12, which imply
‖[w1, w2]A‖ ≤ 20. Therefore, in order to cover the case n(y) = 0, it
suffices to demand that s ≥ 20 (recall that s is the constant thresh-
old for ‖[w1, w2]A‖, up to which we compute the relaxed median
by repeatedly applying the successor function for A).

Claim 5.26.

⌈
R̃+L̃
6

⌉
≤ ‖[w′, w2]A‖ ≤ 3

⌈
R̃+L̃
6

⌉
.

Proof. It suffices to observe that, for every ξ in [ξ′, ξ2]lex or
in [ξ′, 1n(y)]lex ∪ [0n(y), ξ2]lex (depending on the case according to
which w′ was computed), there exist at least one and at most three
strings starting with yξ in [w′, w2]A. �

Claim 5.27. If δ < R̃ ≤ L̃, then w′, as defined above, is a relaxed
median for w1 and w2.

Proof. By assumption and by Claims 5.21 and 5.22, we have
‖[w1, w2]A‖ ≤ 3R̃ + 3L̃. Moreover, by Claim 5.26, ‖[w′, w2]A‖ ≥
R̃+L̃
6

. Finally, ‖[w1, w
′)A‖ ≥ ‖[w1, u]A‖ + ‖[v, w′)A‖ = ‖[w1, u]A‖ +

‖[v, w2]A‖ − ‖[w′, w2]A‖, which, by Claims 5.21, 5.22, and 5.26,

cc 26 (2017) Interval size functions and path counting 463

yields ‖[w1, w
′)A‖ ≥ R̃+ L̃−3

⌈
R̃+L̃
6

⌉
. It can be easily verified that

the latter inequality yields ‖[w1, w
′)A‖ ≥ R̃+L̃

7
whenever R̃+ L̃ ≥ 4,

which concludes the proof for this case.
On the other hand, in order to handle the case R̃ + L̃ ≤ 3, we

observe that this gives ‖[w1, w2]A‖ ≤ 3R̃ + 3L̃ ≤ 9; therefore, it
suffices to demand s ≥ 9. �

This concludes Subcase 2.(iv) and the proof of Theorem 5.12.
�

Corollary 5.28. If IFrmed
t = FP, then #P = FP.

Proof. In view of Theorem 5.12, IFrmed
t = FP implies that

#SAT+2n ∈ FP; therefore, #P ⊆ FP#SAT+2n ⊆ FP. �

6. Concluding remarks

In Figure 6.1, we present some known inclusions (IF≺
t ⊆ IF≺

p ⊆ #P),
as well as the ones proven here.

The following question was posed in Hemaspaandra et al.
(2007): ‘What can one say about the downward closure, under
various reductions, of #MonSat, of IF≺

t , and of IF≺
p ?’ Regarding

Karp reductions, we get the following partial answer by combining
the fact that #MonSat is in IFLN

t (Remark 4.11) with Proposi-
tion 2.12:

Rp
m(#MonSat) ⊆ Rp

m(IFLN
t) � Rp

m(IF≺
t) � Rp

m(IF≺
p) .

Strict inclusions hold under the assumptions P �= UP ∩ coUP and
UP �= PP, respectively. Actually the above inclusions also hold
for any reductions under which IFLN

t , IF≺
t , and IF≺

p are downward
closed. Of course, it is still open how Rp

m(IFrmed
t) is related to

Rp
m(#MonSat) and whether the first of the above inclusions is

proper (under assumptions) or not.
On the other hand, since #MonSat is #P-complete under

Cook reductions and classes IFrmed
t , IFLN

t , IF≺
t , IF≺

p , #P are Cook-
interreducible (by inclusions in Figure 6.1 and Corollary 5.28), we
get that:

Rp
T (IFrmed

t) = Rp
T (#MonSat) = Rp

T (IFLN
t) = Rp

T (IF≺
t) = Rp

T (IF≺
p) .

464 Bampas et al. cc 26 (2017)

?

?

#P

P = NP

IF≺
p = #PE

UP = PH

IF≺
t

P = UP ∩ coUP

IFsucc
t = IFpred

t

IFsucc,pred
t

TotP = IFLN
t

P = NP

IFrmed
t

FP = #P

FP = IFmed
t

Figure 6.1: Inclusions among interval size function classes. Next to
each arrow appears the assumption under which the corresponding
inclusion is proper. It is open whether TotP = IFsucc

t , TotP =
IFsucc,pred

t , or IFsucc,pred
t = IFsucc

t implies unlikely class collapses.

cc 26 (2017) Interval size functions and path counting 465

Further important questions remain open such as determining,
for classes studied in the present work, complete problems with
respect to Karp reductions or other reductions under which these
classes are closed downwards.

Another noteworthy aspect of our work concerns the appar-
ent emergence of a hierarchy of interval size function classes be-
tween FP and #P. Indeed, by strengthening the feasibility con-
straint imposed on the underlying order as well as the nature of
the order itself, ranging from a partial order having efficient adja-
cency checks (IF≺

p) to a total order having an efficiently computable
median function (IFmed

t = FP), we obtain a hierarchy as depicted in
Figure 6.1. It would be a challenging task to quantify the relative
strength of the various feasibility constraints (possibly in terms of
the amount of information that one can obtain about the order in
polynomial time) and then to show that an increase in the amount
of available information (which would correspond to a strength-
ening of the feasibility constraint) results in a more restricted
class.

Acknowledgements

We are indebted to the anonymous referees for their careful re-
view of the manuscript. Their pertinent remarks and suggestions
induced a considerable improvement on the presentation of some
of the technical parts of the paper. A preliminary version of this
work appears in Bampas et al. (2009).

References

Carme Àlvarez & Birgit Jenner (1993). A very hard log-space
counting class. Theoretical Computer Science 107(1), 3–30.

Evangelos Bampas, Andreas-Nikolas Göbel, Aris Pagourtzis

& Aris Tentes (2009). On the connection between interval size func-
tions and path counting. In Proceedings of the 6th Annual Conference
on Theory and Applications of Models of Computation, volume 5532 of
Lecture Notes in Computer Science, 108–117.

466 Bampas et al. cc 26 (2017)

Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Green-

hill & Mark Jerrum (2003). The relative complexity of approximate
counting problems. Algorithmica 38(3), 471–500.

Lane A. Hemaspaandra, Christopher M. Homan, Sven Kosub

& Klaus W. Wagner (2007). The complexity of computing the size
of an interval. SIAM Journal on Computing 36(5), 1264–1300.

Lane A. Hemaspaandra & Mitsunori Ogihara (2002). The Com-
plexity Theory Companion. Springer-Verlag Berlin Heidelberg.

Harald Hempel & Gerd Wechsung (2000). The operators min and
max on the polynomial hierarchy. International Journal of Foundations
of Computer Science 11(2), 315–342.

Mark Jerrum, Alistair Sinclair & Eric Vigoda (2004). A
polynomial-time approximation algorithm for the permanent of a ma-
trix with nonnegative entries. Journal of the ACM 51(4), 671–697.

Richard M. Karp, Michael Luby & Neal Madras (1989). Monte-
Carlo approximation algorithms for enumeration problems. Journal of
Algorithms 10(3), 429–448.

Aggelos Kiayias, Aris Pagourtzis, Kiron Sharma & Stathis

Zachos (2001). Acceptor-definable counting classes. In Proceedings of
the 8th Panhellenic Conference on Informatics, Revised Selected Papers,
volume 2563 of Lecture Notes in Computer Science, 453–463.

Jingcheng Liu, Pinyan Lu & Chihao Zhang (2014). FPTAS for
counting weighted edge covers. In Proceedings of the 22nd Annual Euro-
pean Symposium on Algorithms, volume 8737 of Lecture Notes in Com-
puter Science, 654–665.

Aris Pagourtzis (2001). On the complexity of hard counting problems
with easy decision version. In Proceedings of the 3rd Panhellenic Logic
Symposium.

Aris Pagourtzis & Stathis Zachos (2006). The complexity of count-
ing functions with easy decision version. In Proceedings of the 31st
International Symposium on Mathematical Foundations of Computer
Science, volume 4162 of Lecture Notes in Computer Science, 741–752.

cc 26 (2017) Interval size functions and path counting 467

Sanjeev Saluja, K. V. Subrahmanyam & Madhukar N. Thakur

(1995). Descriptive complexity of #P functions. Journal of Computer
and System Sciences 50(3), 493–505.

Seinosuke Toda (1991). PP is as hard as the polynomial-time hier-
archy. SIAM Journal on Computing 20(5), 865–877.

Seinosuke Toda & Osamu Watanabe (1992). Polynomial time 1-
Turing reductions from #PH to #P. Theoretical Computer Science
100(1), 205–221.

Leslie G. Valiant (1979a). The complexity of computing the perma-
nent. Theoretical Computer Science 8, 189–201.

Leslie G. Valiant (1979b). The complexity of enumeration and reli-
ability problems. SIAM Journal on Computing 8(3), 410–421.

Dror Weitz (2006). Counting independent sets up to the tree thresh-
old. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, 140–149.

Manuscript received 22 January 2015

Evangelos Bampas

LIF, CNRS and Aix-Marseille
University, Marseille, France
evangelos.bampas@lif.
univ-mrs.fr

Andreas-Nikolas Göbel

University of Oxford, Oxford, UK

Aris Pagourtzis

School of Electrical and Computer
Enginering, National
Technical University of Athens,
Athens, Greece

Aris Tentes

New York University, New York,
NY, USA

http://orcid.org/0000-0002-0047-5415

	On the connection between interval size functions and path counting
	Introduction
	Definitions and preliminaries
	Interval size functions
	Counting with Turing Machines

	The status quo between TotP and IFtprec
	TotP as an interval size function class
	Inside TotP
	Concluding remarks
	Acknowledgements
	References

