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Abstract

A homomorphism from a graph G to a graph H is a function from V (G) to V (H)
that preserves edges. Many combinatorial structures that arise in mathematics and
in computer science can be represented naturally as graph homomorphisms and as
weighted sums of graph homomorphisms. In this thesis we study the complexity of
various problems related to graph homomorphisms.

We first study the problem #kHomsToH of counting the homomorphisms from an
input graph to a fixed undirected graphH modulo an integer k. A characteristic feature
of counting modulo k is that the objects to be counted can be grouped in sets of size k
and, thus, cancel out. These cancellations make wider classes of instances tractable
than exact (non-modular) counting and, furthermore, the value of the modulus can
affect the tractability of a problem. Modular counting provides a rich setting for
studying the structure of homomorphism problems. In this case, the structure of the
graph H has a large influence on the complexity of the problem. We show the following
results.

• When p is a prime and H is an asymmetric three, then #pHomsToH is either
polynomial-time computable or #p P-complete.

• When H is a graph that has no cycles that share edges, then #2HomsToH is
either polynomial-time computable or #2 P-complete.

• When H is a graph that contains no 4-cycles, then #2HomsToH is either
polynomial-time computable or #2 P-complete.



These types of results in computational complexity are known as dichotomy the-
orems. Dichotomy theorems give a complete characterisation of the complexity of a
problem, depending on the values of its parameter, by showing that a problem is ei-
ther tractable or hard, and that there are no values of the parameter for which the
problem has intermediate complexity. Our results on #2HomsToH partially confirm
a conjecture of Faben and Jerrum that was previously known to hold for trees.

We also study a counting problem related to matrix partitions of a graph, a generali-
sation of graph homomorphisms. Given a symmetric D ×D matrix M over {0, 1, ∗},
an M -partition of a graph G is a partition of the vertices of G into D parts which are
associated with the rows of M . The vertices of G are mapped in such a way that no
edge of G is mapped to a 0 inM and no non-edge of G is mapped to a 1 inM . In a list
M -partition of a graph G, for every vertex v of G we are also given a list of allowable
parts. A list M -partition of a graph G is an M -partition of G that respects the given
lists.

There has been quite a bit of work on determining for which matrices M computa-
tions involving listM -partitions are tractable. We focus on the problem of counting list
M -partitions, given a graph G and given a list for each vertex of G. We identify a cer-
tain set of “tractable” matrices M . We give an algorithm that counts list M -partitions
in polynomial time for every (fixed) matrix M in this set. Furthermore, we give an
explicit characterisation of the dichotomy theorem — counting list M -partitions is
tractable (in FP) if the matrix M has a structure called a derectangularising sequence.
If M has no derectangularising sequence, we show that counting list M -partitions is
# P-hard. Finally, we show that the meta-problem of determining whether a given
matrix has a derectangularising sequence is NP-complete.

Finally we study the Moran process on directed graphs. The Moran process, as
studied by Lieberman, Hauert and Nowak, is a stochastic process modelling the spread
of genetic mutations in populations. The process has an underlying graph in which ver-
tices correspond to individuals. Initially, one individual (chosen uniformly at random)
possesses a mutation, with fitness r > 1. All other individuals have fitness 1. At each
step of the discrete-time process, an individual is chosen with probability proportional
to its fitness, and its state (mutant or non-mutant) is passed on to an out-neighbour
which is chosen uniformly at random. If the underlying graph is strongly connected
then the process will eventually reach fixation, in which all individuals are mutants, or
extinction, in which no individuals are mutants. An infinite family of directed graphs is
said to be strongly amplifying if, for every r > 1, the extinction probability tends to 0
as the number of vertices increases. Strong amplification is a rather surprising property
— it means that in such graphs, the fixation probability of a uniformly-placed initial
mutant tends to 1 even though the initial mutant only has a fixed selective advantage
of r > 1 (independent of n). Strong amplifiers have received quite a bit of attention,
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and Lieberman et al. proposed two potentially strongly-amplifying families —one of
them called superstars. Heuristic arguments have been published, arguing that there
are infinite families of superstars that are strongly amplifying. In this thesis we explore
the amplification limits of superstars by proving a rigorous upper bound for the fixation
probability of the Moran process on superstars.
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Chapter 1

Introduction

1.1 Graph homomorphisms

A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that
preserves edges, in the sense of mapping every edge of G to an edge of H; non-edges
of G may be mapped to either edges or non-edges of H. Many structures arising in
graph theory can be represented naturally as homomorphisms. For example, the proper
q-colourings of a graph G correspond to the homomorphisms from G to a q-clique. For
this reason, homomorphisms from G to a graph H are often called “H-colourings” of G.
Independent sets of G correspond to the homomorphisms from G to the connected
graph with two vertices and one self-loop (vertices of G which are mapped to the
vertex with a self-loop are out of the corresponding independent set; vertices which
are mapped to the other vertex are in it). Homomorphism problems can also be seen
as constraint satisfaction problems (CSPs) in which the constraint language consists
of a single symmetric binary relation. Partition functions in statistical physics such as
the Ising model, the Potts model, and the hard-core model arise naturally as weighted
sums of homomorphisms [27, 45].

1.1.1 Dichotomy theorems for graph homomorphism prob-
lems

Perhaps the most basic problem related to graph homomorphisms is the decision prob-
lem HomsToH: does a graph G have a homomorphism to a target graph H? When H
is a 3-clique, deciding whether there exists a homomorphism from G to H is equivalent
to deciding whether G has a proper 3-colouring, which is known to be NP-complete.
Thus, in general, the decision problem is NP-complete. When H is a 2-clique the
problem of deciding whether a graph G has a homomorphism to H is equivalent to
deciding whether G is bipartite. This can be decided in polynomial time. Thus, to
understand when HomsToH is hard and when it is tractable, we will treat the target
graph H as a parameter of the problem and not as part of the input.
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Hell and Nešetřil were able to obtain the following result [52, Theorem 1].

Theorem 1.1 (Hell and Nešetřil). Let H be a graph. If H has a self-loop or is bipartite,
then HomsToH is in P, otherwise HomsToH is NP-complete.

Theorem 1.1 gives a complete characterisation of the complexity of HomsToH
for all the values of the parameter target graph H. More importantly, it shows that
HomsToH is either in P or NP-complete and that there are no target graphs H
for which the problem has intermediate complexity. Such a result in computational
complexity is known as a dichotomy theorem. Dichotomy theorems give a clean way of
distinguishing the borders of tractability and intractability for large classes of problems.
Such a dichotomy cannot exist for the whole NP. Ladner [57, Corollary 1.1] has shown
that if P 6= NP, then there exist problems in NP that are neither in P nor NP-complete.

Theorem 1.2 (Lander). If P 6= NP then there exist problems in NP \ P that are not
NP-complete under polynomial-time Turing reductions.

Counting problems

There are other interesting questions related to graph homomorphisms. We next dis-
cuss the problem of counting graph homomorphisms #HomsToH: given an input
graph G and a fixed target graph H, how many homomorphisms are there from G

to H? The complexity of counting problems has been an object of research for more
than thirty years, due to their number of applications in a variety of fields. For exam-
ple, the problem of our interest, #HomsToH, finds applications in statistical physics
and quantum mechanics, as partition functions can be expressed as weighted sums of
homomorphisms (see [8, 27]).

The class characterising the complexity of most natural counting problems is # P
—the analogue of NP for counting problems. It is the class of function problems of
the form “compute f(x)”, where f(x) is the number of accepting paths of an non-
deterministic polynomial-time Turing machine on input x. # P-completeness via Tur-
ing reductions provides strong evidence of intractability. If a # P-complete problem
has a polynomial-time algorithm, then # P = FP, where FP indicates the class of func-
tions computable in polynomial time. # P = FP is considered to be highly unlikely, as
this would also imply P = NP. In fact, Toda has shown [70] that for every problem in
the polynomial hierarchy there is a polynomial-time Turing reduction to a problem in
# P.

It is expected for a decision problem that is NP-complete to also have a # P-hard
counting version. It is open until today whether this is always true, but for all natural
problems that have been studied so far, that is the case. Surprisingly though, there
are problems with decision version in P that have # P-hard counting version. Valiant,
in his seminal paper [71], shows that counting perfect matchings in a bipartite graph
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is # P-complete. Finding a perfect matching in a bipartite graph can be done in
polynomial time by the augmenting path method.

The proof of Theorem 1.2 (see [57]) can be extended to the counting world, and
show that if FP 6= # P then there exist problems in # P \ FP that are not # P-
complete (under polynomial-time Turing reductions). Hence there is great incentive
for obtaining dichotomy theorems for counting problems. In fact, as we will see later,
dichotomy theorems have been more successful for counting problems than for decision
problems.

For the problem of counting graph homomorphisms #HomsToH, Dyer and Green-
hill [27] have shown a dichotomy theorem, completely characterising the complexity of
#HomsToH.

Theorem 1.3 (Dyer and Greenhill). Let H be a graph. If every component of H is
a complete bipartite graph with no self-loops or a complete graph with all self-loops
present, then #HomsToH can be solved in polynomial time. Otherwise #HomsToH
is # P-complete.

The polynomial-time algorithms for the tractable cases of #HomsToH are trivial.
When H is a complete graph with all self-loops present the number of homomorphisms
from G to H is |V (H)||V (G)|, as every vertex of G can be mapped to any vertex of H by
a homomorphism. Similarly, when H is a complete bipartite graph with vertex biparti-
tion U1, U2 the number of homomorphisms from a connected graph G can be computed
as follows. If G is not a bipartite graph, then there are zero homomorphisms from G to
H. Otherwise G has a bipartition V1, V2 and the number of homomorphisms from G to
H is |U1||V1||U2||V2| + |U1||V2||U2||V1|. The latter holds because every homomorphism σ

can map the vertices in Vj, j ∈ {1, 2}, to either vertices in U1 or to vertices in U2, but
not to vertices in both U1 and U2. All edges between U1 and U2 exist in H, so there
are no further restrictions on σ. If G is not connected we can compute the number of
homomorphisms from G to H by taking the product of the number of homomorphisms
from each component of G to H.

As we already mentioned, partition functions in statistical physics can be repre-
sented as weighted graph homomorphisms. In weighted #HomsToH, the parameter
is a weighted graph H, that has edge and vertex weights. Let W be the adjacency
matrix of H, whereWu,v is the weight of the edge (u, v) ∈ E(H), and let {λv}v∈V (H) be
the vertex weights. Let G be an input graph. Weighted #HomsToH is the problem
of computing the following sum

∑
σ:V (G)→V (H)

 ∏
(u,v)∈E(G)

Wσ(u),σ(v)
∏

v∈V (G)
λσ(v)

 .
Bulatov and Grohe [13] have given the first dichotomy for weighted #HomsToH

and shown that when H has non-negative real weights, #HomsToH is either in FP or
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# P-complete. Goldberg et al. [45] have shown a dichotomy theorem for #HomsToH
when the weights of the target graph H are real numbers. Finally Cai, Chen and
Lu [16] have shown that when H has complex weights, #HomsToH is either in FP
or # P-complete.

1.1.2 Constraint satisfaction problems

Constraint satisfaction problems find applications in a wide range of fields such as
theory of databases [40] and artificial inteligence [67]. In the decision version of the
constraint satisfaction problem we are given a set of constraints over variables and the
objective is to decide whether there exists an assignment of values to the variables that
satisfies the set of constraints.

Problem 1.4. Name. CSP(Γ).

Parameter. A domain set D and a set of relations Γ = {R1 . . . Rm}, where for each
j ∈ [m], Rj : Drj → {0, 1} and rj ∈ N>0.

Input. A finite set of constraints over variables x1 . . . xn of the form
Rj(xij,1 , xij,2 , . . . , xij,rj ).

Output. “Yes” if there exists an assignment of x1 . . . xn that satisfies all the constraints,
“No” otherwise.

Constraint satisfaction problems generalise graph homomorphism problems. To
see that CSP is a generalisation of HomsToH, let G be an input for HomsToH.
We describe an equivalent CSP instance. The domain of the constraint satisfaction
problem is D = V (H) and Γ contains a single binary relation RH , with RH(u, v) = 1
when (u, v) ∈ E(H) and RH(u, v) = 0 otherwise. Thus HomsToH is an instance of
CSP({RH}). The input of the CSP({RH}) contains a variable xv for every vertex
v ∈ V (G) and a constraint RH(xu, xv) for every edge (u, v) ∈ E(G). As we can see
from the construction, every valid homomorphism σ : V (G) → V (H) corresponds to
an assignment of the variables {xv}v∈V (G) that satisfies every constraint in the CSP.

The first dichotomy result for the constraint satisfaction problem was given by
Schaefer [68], where they showed that, when the domain of the functions in Γ is re-
stricted to the Boolean domain (i.e. {0, 1}), CSP(Γ) is either in P or NP-complete.
For the complexity of CSP(Γ) when the functions of Γ have arbitrary domain, there is a
famous conjecture of Feder and Vardi [38], that CSP(Γ) is either in P or NP-complete.
Although the complexity of CSP has been intensively studied, the conjecture of Feder
and Vardi remains open.

There has been more success in finding dichotomies for the counting version of the
constraint satisfaction problem. In the counting constraint satisfaction problems, the
constraints take the form of functions from the domain set D to range over any set A.
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Problem 1.5. Name. #CSP(F).

Parameter. A domain set D, a range set A and a set of functions F = {f1 . . . fm},
where for each j ∈ [m] fj : Drj → A and rj ∈ N>0.

Input. A finite set of constraints over variables x1 . . . xn of the form
fj(xij,1 , xij,2 , . . . , xij,rj ).

Output. ∑x1,...,xn∈D
∏
j fj(xij,1 , xij,2 , . . . , xij,rj ).

Bulatov [10] has shown that when the functions in F have arbitrary domain size
and range A = {0, 1}, #CSP(F) is either in FP or # P-complete (see also [25]). This
was the first dichotomy for a constraint satisfaction problem of arbitrary domain size.
Since then, there has been a series of results [12, 15, 14] giving dichotomy theorems for
#CSP(F) of arbitrary domain size, where in each of the results the range of the func-
tions in F becomes more general. In the final result of this series, Cai and Chen [14] give
a dichotomy for #CSP(F) with arbitrary domain size and complex valued functions,
resolving the complexity of the counting constraint satisfaction problem.

1.2 Modular counting and graph homomorphisms

In the first part of this thesis we will focus on the problem of counting graph homo-
morphisms from a graph G to a target graph H modulo an integer. Let Hom(G→ H)
denote the set of homomorphisms from G to H.

Problem 1.6. Name. #kHomsToH.

Parameter. A graph H and an integer k.

Input. A graph G.

Output. |Hom(G→ H)| (mod k).

The complexity of modular counting is an interesting topic with some surprising
results. Modular counting was originally studied from the point of view of decision
problems, where the objective is to determine if the number of solutions is non-zero
modulo k. The complexity class ⊕P was first studied by Papadimitriou and Zachos [65]
and by Goldschlager and Parberry [47]. ⊕P consists of the all problems of the form
“is f(x) odd or even?”, where computing f(x) is a function in # P. Toda [70] has
shown that there is a randomised polynomial-time reduction from every problem in
the polynomial hierarchy to some problem in ⊕P. As such, ⊕P is a large complexity
class and ⊕P-completeness seems to represent a high degree of intractability.

Early work in modular counting [17, 54, 3] includes results on the classes Modk P,
consisting of all the problems of the form “is f(x) 6≡ 0 (mod k)?”, where computing
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f(x) is a function in # P. In our study of #kHomsToH it is more natural to consider
modular counting from the perspective of computing functions. For an integer k the
complexity class #k P consists of all the problems of the form “compute f(x) modulo k”,
where f(x) is a function in # P. In the special case of k = 2, #2 P = ⊕P, as the
problems of #2 P require a one bit answer. Throughout this thesis though, instead
of the more traditional notation ⊕P, we will use #2 P to emphasise our interest in
computing functions.

Faben [31] compares the complexity of the function classes #k P and the decision
classes Modk P. It is trivial to see that any problem in Modk P reduces to a problem
in #k P via Turing reductions. The inverse also holds ([31, Theorem 3.1.20]) as every
problem in #k P reduces to ModkSat, the problem of deciding whether the number of
satisfying assignments to a CNF Boolean formula is not divisible by k. ModkSat is
complete for Modk P, as the reduction in Cook’s theorem showing the NP-completeness
of Sat preserves the number of solutions. Finally, Faben [31, Theorem 3.1.24] also
shows the existence of a #3 P-complete problem for which the value is always non-zero,
making its modular decision version trivial.

Although counting modulo k resembles ordinary, non-modular counting, it is still
very different. Clearly, if a counting problem can be solved in polynomial time, the
corresponding decision and modular counting problems can also be solved in polynomial
time. The converse, though, does not necessarily hold. For example consider the
problem of counting perfect matchings in a bipartite graph, which we mentioned earlier.
This counting problem is # P-complete, its decision version is in P and so is its modulo 2
counting version. To see that counting (modulo 2) perfect matchings in a bipartite
graph is equivalent to computing the permanent of a matrix, consider the following.
Let G = (V1, V2, E) be a bipartite graph and let A be the adjacency matrix of G
defined as follows. The rows of A correspond to the vertices of V1 and the columns of
A correspond to the vertices of V2. For v1 ∈ V1 and v2 ∈ V2, set Av1,v2 = 1 if there is
an edge between v1 and v2, otherwise Av1,v2 = 0. Counting the perfect matchings of
G is equivalent to computing the permanent of A (see [71]). As −1 ≡ 1 mod 2, the
permanent of A is equivalent (modulo 2) to the determinant of A. The determinant of
a matrix can be computed in polynomial time using Gaussian elimination.

The characteristic feature that makes the modular version of a hard counting prob-
lem tractable is cancellations. An example that illustrates how cancellations work in
modular counting is NotAllEqualSAT: the problem of assigning values to Boolean
variables such that each of a given set of clauses contains both true and false literals.
The number of solutions is always even, since solutions can be paired up by negating
every variable in one solution to obtain a second solution. This makes counting mod-
ulo 2 trivial, while determining the exact number of solutions is # P-complete [46] and
even deciding whether a solution exists is NP-complete [68].

Examples of problems with hard counting and decision version, but easy modular
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counting version are not only limited to counting modulo 2. Consider the problem of
counting proper 3-colourings of a graph G modulo 3, or even modulo 6. The number of
3-colourings of a graph that use all of the three colours is always a multiple of 6, since
there are 3! = 6 permutations of the colours. To count the number of 3 colourings of G
that use exactly 2 colours we have the following two cases. If G is not bipartite, then
there are no such colourings. Otherwise, G is bipartite and the number of 3-colourings
of G that use exactly 2 colours is 3(2c), where c is the number of components of G. The
factor of 3 comes from the fact that there are 3 ways to choose 2-colours. Now assume
that we chose the colours in {1, 2} to colour G. Let G1 . . . Gc be the components of G.
Every component Gi of G is also bipartite. For i ∈ [c], let Vi,L, Vi,R be the bipartition
of Gi —since Gi is connected there is only one bipartition of its vertices. If colour 1 is
assigned to a vertex v ∈ Vi,L, then colour 1 must be assigned to every vertex in Vi,L,
while colour 2 must be assigned to every vertex in Vi,R. Otherwise colour 2 is assigned
to every vertex in Vi,L (including v) and colour 1 is assigned to every vertex in Vi,R.
Hence every component of G can be coloured in two ways, and this gives the factor of
2c in the number of the proper 3-colourings of G that use exactly two colours. It is
also trivial to count the proper 3-colourings of G that use exactly one colour: If G has
an edge, then there are no such colourings, otherwise G has no edges and there are 3
such colourings of G, one for each of the three colours. Thus, it is easy to count all
proper 3-colourings modulo 3 or even modulo 6.

Perhaps the most surprising feature of modular counting problems is that the value
of the modulus can affect the tractability of the problem. This can be seen in Valiant’s
famous restricted version of 3-SAT for which counting solutions is # P-complete [73],
counting solutions modulo 7 is in FP but counting solutions modulo 2 is #2 P-complete
[72]. The seemingly mysterious number 7 was subsequently explained by Cai and
Lu [18], who showed that the k-SAT version of Valiant’s problem is tractable modulo
any prime factor of 2k − 1.

When studying the complexity of #kHomsToH we will use cancellations exten-
sively. For example, if we wish to compute the size of a set S modulo k, then, for any
k-cardinality subset X ⊆ S, we have |S| ≡ |S \X| (mod k). This means that we can
ignore the elements of X. When computing modulo 2, it is also helpful to partition the
set S into disjoint subsets S1, . . . , S` exploiting the fact that |S| is congruent modulo 2
to the number of odd-cardinality Si.

1.2.1 Counting graph homomorphisms modulo a prime

Determining the complexity of #kHomsToH is an interesting topic. Even for the
simplest case of #kHomsToH where k = 2, the complexity of #2HomsToH is stronly
influenced by the structure of the target graph H. For example, consider the graphs H1

and H2 in Figure 1.1. Our results show that #2HomsToH1 is #2 P-complete, whereas
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H1: H2:

∗

Figure 1.1: #2HomsToH1 is #2 P-complete, whereas #2HomsToH2 is in P. This,
and the role of the starred vertex are explained later in the introduction.

#2HomsToH2 is in P.
The first to study the complexity of #kHomsToH were Faben and Jerrum [32].

To describe their work we first need to state a few definitions. An automorphism
of a graph G is a bijective function ρ : V (G) → V (G), such that (u, v) ∈ E(G) if
and only if (ρ(u), ρ(v)) ∈ E(G). Let k be a positive integer. For a function ρ let
ρ(k) = ρ ◦ ρ ◦ · · · ◦ ρ, where the composition is applied k times. An automorphism ρ of
order k is an automorphism of a graph H, such that for ` < k, ρ(`) is not the identity,
but ρ(k) is the identity. An automorphism of order 2 is called an involution. Given a
graph H and an automorphism ρ of H, Hρ denotes the subgraph of H induced by the
fixpoints of ρ. If ρ has no fixpoints, then Hρ is the empty graph, which we also consider
it to be a graph. We write H ⇒k H

′ if there is an automorphism ρ of order k of H
such that Hρ = H ′ and we write H ⇒∗k H ′ if either H is isomorphic to H ′ (written
H ∼= H ′) or, for some positive integer t, there are graphs H1, . . . , Ht such that H ∼= H1,
H1 ⇒k · · · ⇒k Ht, and Ht

∼= H ′.
Let H be a graph and let ρ be an involution of H. Faben and Jerrum showed [32,

Lemma 3.3] that for any graph G, |Hom(G→ H)| ≡ |Hom(G→ Hρ)| (mod 2). They
also showed [32, Theorem 3.7] that for every graph H there is (up to isomorphism)
exactly one involution-free graphH∗ such thatH ⇒∗2 H∗. We callH∗ the involution-free
reduction ofH. These results show that a polynomial-time algorithm for #2HomsToH
exists for some graphsH. If the involution-free reductionH∗ ofH is the empty graph or
the graph with one vertex, then #2HomsToH is (trivially) computable in polynomial
time. More importantly Faben and Jerrum made the following conjecture.

Conjecture 1.7 (Faben and Jerrum). Let H be a graph. If its involution-free reduc-
tion H∗ has at most one vertex, then #2HomsToH is in P; otherwise, #2HomsToH
is #2 P-complete.

Note that our claim in Figure 1.1 is consistent with Conjecture 1.7. H1 is involution-
free, so its involution-free reduction is itself. On the other hand H2 has an involution
that exchanges the distinct vertices in the two cycles in the graph, hence H2 ⇒2 H

′
2,

where H ′2 is the graph containing an edge and an isolated vertex (the isolated vertex
corresponds to the vertex marked with ∗ in the figure). H ′2 has an involution exchanging
the endpoints of its edge, so H ′2 ⇒2 H

∗
2 , where H∗2 is the graph containing the single
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vertex marked with ∗ in the figure.
Faben and Jerrum [32, Theorem 3.8] proved Conjecture 1.7 for the case in which H

is a tree.

Theorem 1.8 (Faben and Jerrum). Let H be a tree. If the involution-free reduc-
tion H∗ of H has more than one vertex, then #2HomsToH is #2 P-complete, other-
wise #2HomsToH is solvable in polynomial time.

1.2.2 Our results

We say that a graph H is asymmetric if its automorphism group contains only the
identity. In Part I of this thesis we partially prove Conjecture 1.7 of Faben and Jerrum
by extending their results for #2HomsToH on trees, to further include graphs that
have no cycles sharing edges and all graphs that have no 4-cycles. We also show a
dichotomy for #pHomsToH when p is a prime and H is an asymmetric tree.

We have already discussed the results of Faben and Jerrum [32] showing that for
some graphs H, #2HomsToH can be computed in polynomial time: if the involution-
free reduction H∗ of H has at most one vertex, then #2HomsToH is easy to compute.
These results can be extended to #pHomsToH when p is any prime number and not
just 2. In order to identify target graphs H for which #pHomsToH is polynomially
computable, we reduce the original graph in a series of reductions. In each reduction
we find an automorphism τ of order p and delete every vertex that is not a fixpoint
of τ . As Faben and Jerrum show, this procedure will converge to a unique graph H∗p

with no automorphisms of order p. We call this graph H∗p the order p reduced form
of H. Since this technique gives all known polynomial-time cases of #pHomsToH,
the majority of our technical results in Part I are hardness results. In more detail, we
obtain the following.

Pinning

In Chapter 2 of this thesis we establish pinning for #pHomsToH when the target
graph H and the prime p are, what we later define, “orbit compatible”. A partial
function from a set X to a set Y is a function f : X ′ → Y for some X ′ ⊆ X. For any
graph H, a partially H-labelled graph J = (G, τ) consists of an underlying graph G and
a pinning function τ , which is a partial function from V (G) to V (H). A homomorphism
from a partially labelled graph J = (G, τ) to H is a homomorphism σ : G → H such
that, for all vertices v ∈ dom(τ), σ(v) = τ(v). The problem that we study then is
#pPartLabHomsToH, the problem of computing |Hom(J → H)| (mod p), given a
graph H as the parameter of the problem and a partially H-labelled graph J as input.
Our main result is the following.
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Theorem 1.9. Let p be a prime and let H be a graph. If H and p are orbit com-
patible, then #pPartLabHomsToH reduces to #pHomsToH via polynomial-time
Turing reduction.

This result will be used in later chapters to establish hardness for #pHomsToH,
as showing that #pPartLabHomsToH is hard implies that #pHomsToH is hard.

Counting homomorphisms (modulo a prime) to asymmetric trees

In Chapter 3 we extend Theorem 1.8 for all primes p. Recall that the order p reduced
form of H is H∗p. Our main theorem is the following.

Theorem 1.10. Let p be a prime and let H be a graph where H∗p is an asymmetric
tree. If H∗p has more than one vertex, then #pHomsToH is #p P-hard, otherwise
#pHomsToH is computable in polynomial time.

In the theorem above we require H∗p to be asymmetric, while in the theorem of
Faben and Jerrum (Theorem 1.8) H∗ is only required to be a tree. If p > 2, H∗p

could potentially have involutions. Faben and Jerrum show [32, Lemma 5.4] that
every involution-free tree is asymmetric. So if H is a tree, then H∗ is an asymmetric
tree. Therefore, our theorem is an extension of Theorem 1.8. We require H∗p to
be asymmetric so that H∗p and p are orbit compatible. We need H∗p and p to be
orbit compatible in order to use our “pinning” theorem (Theorem 1.9) and establish
hardness.

Additionally, in Section 3.6 we discuss the issues arrising when characterising the
complexity of #kHomsToH when k is a composite. More specifically we identify a
graph P4 for which #2HomsToP4 is in P, while #4HomsToP4 is #2 P-hard. This
shows that, unlike other results in modular counting, for an integer r and a prime p
the complexity of #prHomsToH, in general, is not the same as the complexity of
#pHomsToH.

Counting homomorphisms (modulo 2) to cactus graphs

Chapter 4 is based on the paper “The Complexity of Counting Homomorphisms to
Cactus Graphs Modulo 2” co-authored with Leslie Goldberg and David Richerby [43].
In Chapter 4 we extend Theorem 1.8 to all cactus graphs. A cactus graph is a connected
graph in which every edge belongs to at most one cycle. Cactus graphs were first
defined by Harary and Uhlenbeck [50] who attributed them to the physicist Husimi
and therefore called them Husimi Trees. Cactus graphs arise, for example, in the
modelling of wireless sensor networks [5] and in the comparison of genomes [66]. Some
NP-hard graph problems can be solved in polynomial time on cactus graphs [4].

The main result of Chapter 4 is the following.
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Theorem 1.11. Let H be a graph whose involution-free reduction H∗ is a cactus
graph. If H∗ has at most one vertex, then #2HomsToH is solvable in polynomial
time; otherwise, #2HomsToH is #2 P-complete.

Counting homomorphisms (modulo 2) to square-free graphs

Chapter 5 is based on the paper “Counting Homomorphisms to Square-Free Graphs
Modulo 2” co-authored with Leslie Goldberg and David Richerby [44]. In Chapter 5 we
show that Theorem 1.8 can be extended to a much richer class of graphs. In particular
we prove that Conjecture 1.7 holds for every graph H whose involution-free reduction
has no 4-cycle (whether induced or not). Graphs without 4-cycles are called “square-
free” graphs. These graphs arise frequently in combinatorics, for example in connection
with the strong perfect graph theorem [21] and certain graph algorithms [1].

The main theorem of Chapter 5 is the following.

Theorem 1.12. Let H be a graph whose involution-free reduction H∗ is square-free.
If H∗ has at most one vertex, then #2HomsToH is in P; otherwise, #2HomsToH
is #2 P-complete.

Since there can be cactus graphs that contain 4-cycles, the results of this chapter
do not subsume the results of Chapter 4. To fully prove Conjecture 1.7 it remains to
show that the conjecture is true for all graphs H that contain at least one 4-cycle and
at least two cycles that share at least one edge.

Computing the partition function (modulo a prime) of a two-spin system
with an external field

In Chapter 6 we study the complexity of the problem of computing the partition
function of a two spin system on multigraphs modulo a prime (#pZγ,λ). #pZγ,λ has
three parameters: a prime p and γ, λ ∈ {0, 1, . . . p − 1}. The input for #pZγ,λ is a
multigraph G. A configuration σ : V (G) → {0, 1} is an assignment of the two spins
“0” and “1” to the vertices of G. Let c(σ) denote the number of edges (u, v) of the
input multigraph G with σ(u) = σ(v) = 1 and let `(σ) denote the number of vertices
u ∈ V (G) with σ(u) = 0. The partition function of the model is given by:

Zγ,λ(G) =
∑

σ:V (G)→{0,1}
γc(σ)λ`(σ).

So the objective of the #pZγ,λ is to compute Zγ,λ(G) (mod p). From the definition
of Zγ,λ(G), we can see that the problem is equivalent to counting weighted homomor-
phisms modulo p from the multigraph G to the following weighted graph H. H has
two vertices v0, v1 connected with an edge of weight 1. v0 has a self-loop of weight 1
and v1 has a self-loop of weight γ. v0 has vertex weight λ and v1 has vertex weight 1.
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For a prime p, let ip ∈ {0, 1, . . . p− 1}, such that i2p ≡ −1 (mod k). For p ≥ 3 there
can be either zero or two elements satisfying this definition. If there are no elements
satisfying the definition, then consider the conditions involving ip vacuous. If there are
two elements satisfying the definition, then it does not matter which one we choose.
The main result of Chapter 6 is the following.

Theorem 1.13. Let p be a prime and let γ, λ ∈ {0, 1, . . . , p−1}. #pZγ,λ is computable
in polynomial time when one of the following holds.

1. λ = 0.

2. γ = 1.

3. γ = −1 and λ ∈ {0,±1,±ip}.

Furthermore, #pZγ,λ is #p P-complete when one of the following holds.

4. λ 6≡ 0 (mod p) and γ ≡ 0 (mod p).

5. λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p) and there exists an integer k with γk ≡ λ

(mod p).

6. λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p) and p < 100, where p 6= 41.

1.3 Matrix Partitions

A matrix partition of an undirected graph is a partition of its vertices according to
a matrix which specifies adjacency and non-adjacency conditions on the vertices, de-
pending on the parts to which they are assigned. For finite sets D and D′, the set
{0, 1, ∗}D×D′ is the set of |D| × |D′| matrices M with rows indexed by D and columns
indexed byD′ where eachMi,j ∈ {0, 1, ∗}. For any symmetric matrixM ∈ {0, 1, ∗}D×D,
an M-partition of an undirected graph G = (V,E) is a function σ : V → D such that,
for distinct vertices u and v,

1. Mσ(u),σ(v) 6= 0 if (u, v) ∈ E and

2. Mσ(u),σ(v) 6= 1 if (u, v) 6∈ E.

Thus, Mi,j = 0 means that no edges are allowed between vertices in parts i and j,
Mi,j = 1 means that there must be an edge between every pair of vertices in the two
parts and Mi,j = ∗ means that any set of edges is allowed between the parts i and j.
For entries Mi,i on the diagonal of M , the conditions only apply to distinct vertices in
part i. Thus, Mi,i = 1 requires that the vertices of G that are mapped in part i form a
clique in G, Mi,i = 0 requires that they form an independent set and Mi,i = ∗ imposes
no restrictions.
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For example if D = {1, 2, 3} and M =
[ 0 ∗ ∗
∗ 0 ∗
∗ ∗ 0

]
, then an M -partition of a graph G

is a proper 3-colouring of G. In the special case M ∈ {0, ∗}D×D, an M -partition of
G is a homomorphism from G to the graph HM , with vertex set V (HM) = D and
edge set E(HM) = {(u, v) | u, v ∈ D and Mu,v = ∗}. When M ∈ {1, ∗}D×D, then an
M -partition of G is a homomorphism from the complement G of G to the graph HM

with vertex set V (HM) = D and edge set E(HM) = {(u, v) | u, v ∈ D and Mu,v = ∗}.
In the general case where M has entries including both 0 and 1 M -partitions can

represent other important graph-theoretic structures besides graph homomorphisms.
For example, if D = {i, c}, Mi,i = 0, Mc,c = 1 and Mc,i = Mi,c = ∗, i.e., M = [ 0 ∗

∗ 1 ],
then an M -partition of a graph is a partition of its vertices into an independent set
(whose vertices are mapped to i) and a clique (whose vertices are mapped to c). The
independent set and the clique may have arbitrary edges between them. Graphs that
have such M -partitions are called split graphs [48]. Other examples of graph-theoretic
structures that can be represented asM -partitions include (a, b)-graphs [7], clique-cross
partitions [29], and their generalisations. “Type partitions” (see [6]) in extremal graph
theory can also be represented as M -partitions.

Feder et al. [37] further generalise M -partitions by introducing lists. A list M-
partition is an M -partition σ that is also required to satisfy constraints on the values
of each σ(v). Let P(D) denote the powerset of D. We say that σ respects a function
L : V (G)→ P(D) if σ(v) ∈ L(v) for all v ∈ V (G). Thus, for each vertex v, L(v) serves
as a list of allowable parts for v and a list M-partition of G is an M -partition that
respects the given list function. For technical convenience we may allow empty lists,
although there are no M -partitions that respect any list function L where L(v) = ∅
for some vertex v. List M -partitions represent even more complicated graph-theoretic
structures. Examples of such list M -partitions arise in the proofs of the weak and
strong perfect graph conjecture [62, 19] in the form of homogeneous sets. Details of
such applications are given by Feder et al. [37].

Feder et al. [37] study the computational complexity of the following decision prob-
lem, which is parametrised by a symmetric matrix M ∈ {0, 1, ∗}D×D.

Problem 1.14. Name. List-M-partitions.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D.

Input. A pair (G,L) in which G is a graph and L is a function V (G)→ P(D).

Output. “Yes”, if G has an M -partition that respects L; “no”, otherwise.

Note that M is a parameter of the problem rather than an input of the problem.
Thus, its size is a constant which does not vary with the input.

A series of papers [33, 35, 36] described in [37] presents a complete dichotomy
for List-M-partitions problems in which M is a {0, ∗}-matrix —thus, giving a di-
chotomy for the “decision list graph homomorphism problem”. More specifically, Feder,
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Hell and Huang [36] show that, for every {0, ∗}-matrixM (and symmetrically, for every
{1, ∗}-matrixM), the problem List-M-partitions is either polynomial-time solvable
or NP-complete.

There has also been progress in classifying the complexity of the general List-M-
partitions, where M contains entries from {0, 1, ∗} instead of just {0, ∗} or {1, ∗}.
Feder et al. [37, Theorem 6.1] give a complete dichotomy for the special case in which
M is at most 3 × 3, by showing that List-M-partitions is either polynomial-time
solvable or NP-complete for each such matrix. Later, Feder and Hell studied the
List-M-partitions problem under the name CSP∗1,2(H) and showed [34, Corollary
3.4] that, for every M , List-M-partitions is either NP-complete, or is solvable in
nO(logn) time.

Any instance of List-M-partitions is equivalent to a restricted input instance
of CSP (Problem 1.4). To see this, let M be a symmetric matrix in {0, 1, ∗}D×D

and let M0 be the relation on D × D containing all pairs (i, j) ∈ D × D for which
Mi,j 6= 1. Let M1 be the relation on D × D containing all pairs (i, j) ∈ D × D for
which Mi,j 6= 0. Then a List-M-partitions problem with input G,L can be encoded
as a CSP whose constraint language includes the binary relations M0 and M1 and also
the unary relations corresponding to the sets in the image of L. Each vertex v of G
is a variable in the CSP instance with the unary constraint L(v). If (u, v) is an edge
of G then it is constrained by M1. If it is a non-edge of G, it is constrained by M0.
Note that the CSP instance satisfies the restriction that every pair of distinct variables
has exactly one constraint, which is either M0 or M1. In a general CSP instance, a
pair of variables could be constrained by M0 and M1 or one of them, or neither. It
is not clear how to code such a general CSP instance as a general1 list partitions
problem, thus even if a dichotomy for CSP was proved, it would not necessarily apply
to List-M-partitions.

As we have seen in Section 1.1.2, there has been more success in proving computa-
tional dichotomies for the counting constraint satisfaction problems, than its decision
counterpart. As in this thesis we are more interested in counting problems, we will fo-
cus on computational dichotomies for counting M -partition problems. Hell, Hermann
and Nevisi [51] have considered the non-listed counting problem #M-partitions.

Problem 1.15. Name. #M-partitions.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D.

Input. A graph G.

Output. The number of M -partitions of G.

1When M has entries in {0, ∗} or {1, ∗} List-M-partitions can be encoded as a CSP with no
input restrictions.
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Hell et al. prove a dichotomy for small matrices M (of size at most 3 × 3). In
particular, [51, Theorem 10] together with the graph-homomorphism dichotomy of Dyer
and Greenhill [27] (Theorem 1.3) shows that, for every such M , #M-partitions is
either polynomial-time solvable or # P-complete. An interesting feature of countingM -
partitions identified by Hell et al. [51] is that, unlike the situation for homomorphism-
counting problems, there are tractable M -partition problems with non-trivial counting
algorithms. This also applies to our results, which are described bellow (Section 1.3.1).
More recently, Dyer, Goldberg and Richerby [26] have extended the dichotomy of Hell
et al. of #M-partitions to all matrices of size at most 4× 4.

1.3.1 Our results

The results of Chapter 7 are based on the results of the paper “Counting List Matrix
Partitions of Graphs” co-authored with Leslie Goldberg, Colin McQuillan, Tomoyuki
Yamakami and David Richerby [42]. We consider the list version of the counting M -
partition problem. More formally, we study the following computational problem.

Problem 1.16. Name. #List-M-partitions.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D.

Input. A pair (G,L) in which G is a graph and L is a function V (G)→ P(D).

Output. The number of M -partitions of G that respect L.

The main result presented in Chapter 7 gives a dichotomy theorem for #List-
M-partitions. As noted above, since there is no known coding of list M -partition
problems as a constraint satisfaction problem without input restrictions, our theorem
is not known to be implied by the dichotomy for #CSP.

Theorem 1.17. For any symmetric matrix M ∈ {0, 1, ∗}D×D, the problem #List-M-
partitions is either in FP or # P-complete.

We will explicitly state the dichotomy criterion of Theorem 1.17 in Chapter 7. We
will also show that the dichotomy criterion is decidable and, in fact, in NP. That is,
the problem of deciding whether, for a given matrix M , the problem of #List-M-
partitions is in FP is in NP. The dichotomy criterion of Theorem 1.17 is the same
dichotomy criterion that was shown for #M-partitions, where M is a matrix of size
at most 4×4 [51, 26]. Dyer, Goldberg and Richerby [26] conjecture that this dichotomy
criterion holds for #M-partitions for all matrices M of arbitrary size.

Finally, we show that listM -partitions can be used to encode cardinality restrictions
in M -partitions problems and we use this to give a polynomial-time algorithm for
counting homogeneous pairs in graphs.

15



1.4 Evolutionary dynamics

In the last chapter of this thesis we study the Moran process, an algorithm introduced in
biology to model the spread of genetic mutations in populations. In the original Moran
process, as introduced in [64], we are given a population of n individuals that can be
of two types, mutants and non-mutants. The process has a parameter r which is the
fitness of mutants. All non-mutants have fitness 1. At each time step an individual x
is chosen for reproduction with probability proportional to its fitness. The chosen
individual then replaces another individual y of the population chosen uniformly at
random, with a new individual of the same type as x. Thus if x is a mutant, then it
will replace y with a mutant and if x is a non-mutant it will replace y with a non-mutant.
When running this process indefinitely with n− 1 non-mutants and a single mutant as
a starting state, it will either reach a state where the population will consist exclusively
of mutants, which we call fixation, or reach a state where the population will consist
exclusively of non-mutants, which we call extinction. One of the core purposes of the
Moran process is to compute the fixation probability (or equivalently the extinction
probability) of a population.

Lieberman, Hauert and Nowak [59] extended the original Moran process by intro-
ducing structured populations in the form of directed graphs. In their model, which
from now on we will refer to as the Moran process, the population is represented by a
directed graph G where the vertices correspond to the individuals of the population.
In the initial state a vertex v is chosen to become a mutant uniformly at random. As
with the original model, at each time step, an individual x is chosen for reproduction
with a probability proportional to its fitness. Next, an out-neighbour w of x is selected
uniformly at random. Finally, the state of vertex x (mutant or non-mutant) is copied
to vertex w. When run on the undirected clique with n vertices, the Moran process
is equivalent to the original model introduced by Moran. Undirected graphs can be
viewed as directed graphs with edges in both directions.

When the Moran process is run on a finite strongly connected digraph, it will either
reach fixation or extinction. When r < 1 then mutation is overwhelmingly likely to go
extinct as the single initial mutant has lower fitness than the non-mutants that occupy
every other vertex in the graph. If r = 1, using the argument in the proof of [23,
Lemma 1], we can show that the fixation probability is 1

n
in any strongly connected

graph on n vertices. Thus, in this thesis we will be interested in the probability that
the Moran process reaches fixation when r > 1, given the topology of the underlying
graph.

For example when the Moran process is run on Kn, the clique with n vertices, the
fixation probability is given by

ρK(r, n) =
1− 1

r

1− 1
rn
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and the extinction probability is given by

ζK(r, n) = 1− ρK(r, n) =
1
r
− 1

rn

1− 1
rn

.

Note that ρK(r, n) is also the fixation probability of the original Moran process, on
unstructured populations. To see that the equations involving ρK(r, n) and ζK(r, n)
hold, suppose that the number of mutants is m. Any mutant is chosen for reproduction
with probability r

rm+n−m and with probability n−m
n

it will reproduce on a non-mutant.
Any non-mutant is chosen for reproduction with probability 1

rm+n−m and with proba-
bility m

n
it will reproduce on a mutant. So the probability of the number of mutants

increasing at the next time step is rm(n−m)
n(rm+n−m) and the probability of the number of the

mutants decreasing at the next time step is m(n−m)
n(rm+n−m) . So, in any given state, the

number of mutants is r times as likely to increase at the next step of the process as
it is to decrease. Thus, the number of mutants on Kn at every time step can be seen
as a random walk on the integers, that starts at 1, absorbs at 0 and n, increases with
probability r

r+1 and decreases with probability 1
r+1 . It is well known that this walk

absorbs at n with probability ρK(r, n) and at 0 with probability ζK(r, n) (see e.g. [39,
Chapter XIV]). Thus, as n goes to infinity, the extinction probability tends to 1/r.

When the Moran process is run on non-regular graphs, we can get lower extinction
probability than ζK(r, n). For example consider the undirected star with n+1 vertices,
a graph consisting of a central vertex v∗ and n leaves that are adjacent to v∗. As
n → ∞, the extinction probability of the n-leaf star tends to 1

r2 (see [59, 9]). The
intuition behind this extinction probability is that the initial mutant is placed on a leaf
with probability n

n+1 (which tends to 1 as n → ∞) and, at each step, the probability
that a leaf mutant gets overwritten is 1

n+1 ·
m
n
(which tends to 0 as n→∞), where m

is the number of mutants at this step.
The structure of a graph G strongly influences the extinction (resp. fixation) prob-

ability of the Moran process, when run on G. Lieberman et al. [59] raise the question
of how good of an amplifier a graph G can be. To discuss this question we introduce
the following definition.

Definition 1.18. Consider a function ζ(r, n) : R>1×Z≥1 → R≥0. An infinite family Υ
of directed graphs is said to be up-to-ζ fixating if, for every r > 1, there is an n0

(depending on r) so that, for every graph G ∈ Υ with n ≥ n0 vertices, the following is
true: When the Moran process is run on G, starting from a uniformly-random initial
mutant, the extinction probability is at most ζ(r, n).

So, for example, the infinite family of graphs containing all cliques is up-to-ζK(r, n)
fixating and, since ζK(r, n) < 1/r, it is also up-to-1/r fixating. Similarly, the infinite
family containing all stars is up-to-1/r2 fixating. Lieberman et al. [59] refer to graphs
which have smaller extinction probability than ρK(r, n) (and therefore have larger
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v∗

v∗

R2
v2,1

v2,2

v2,3

v2,4

R1
v1,1

v1,2

v1,3

v1,4

R3
v3,1

v3,2

v3,3

v3,4

Figure 1.2: The superstar S4,3,5, with ` = 3 reservoirs R1, R2 and R3, each of size
m = 5, connected by a path with k = 4 vertices to v∗. The centre vertex v∗ is shown
twice, at both the top and bottom of the diagram.

fixation probability than ζK(r, n)) as amplifiers.

Definition 1.19. An infinite family of directed graphs is amplifying if it is up-to-ζ
fixating for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) < 1/r.

Thus from the two families of graphs we have discussed so far (cliques and stars)
the infinite family of graphs containing all stars is up-to-ζ(r, n) fixating for a function
ζ(r, n) satisfying limn→∞ ζ(r, n) = 1/r2, so this family of graphs is amplifying.

Lieberman et al. [59] were interested in infinite families of digraphs for which the
extinction probability tends to 0, prompting the following definition.

Definition 1.20. An infinite family of directed graphs is strongly amplifying if it is up-
to-ζ fixating for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) = 0.

Note that the infinite family of stars is not strongly amplifying since the extinction
probability of stars tends to 1/r2 rather than to 0.

In [59], Lieberman et al. define the following infinite family of graphs.

Definition 1.21. Let k, ` and m be positive integers. The (k, `,m)-superstar is the
directed graph Sk,`,m defined as follows. (See Figure 1.2.) The vertex set V (Sk,`,m)
of Sk,`,m is the disjoint union of ` size-m sets R1, . . . , R` (called reservoirs) together
with k` vertices v1,1, v1,2, . . . , v`,k and a single centre vertex v∗. The edge set of Sk,`,m
is given by

E(Sk,`,m) =
⋃̀
i=1

({v∗}×Ri)∪ (Ri×{vi,1})∪{(vi,j, vi,j+1) | j ∈ [k−1]}∪{(vi,k, v∗)}}
.

Lieberman et al. in [59] claimed that the fixation probability of a superstar with
parameter k tends to 1 − r−(k+2), providing a heuristic proof sketch for their claimed
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results. Díaz et al. [22] showed that, for the case k = 3, the fixation probability of
the superstars is at most 1 − r+1

2r5+r+1 , which is less than the originally claimed value
of 1 − r−5 for all r ≥ 1.42. Subsequently, Jamieson-Lane and Hauert [55, Equation
(5)] with a more detailed, but still heuristic, analysis claim that for superstars with
parameter k and with ` = m, the fixation probability ρk has the following bounds for
fixed r > 1,

1− 1
r4(k − 1)(1− 1

r
)2 − o(1) ≤ ρk ≤ 1− 1

r4(k − 1) + o(1), (1.1)

where the o(1) terms tend to 0 as `→∞.

1.4.1 Our results

The results of Chapter 8 are based on results of the paper “Amplifiers for the Moran
Process” co-authored with Andreas Galanis, Leslie Goldberg, John Lapinskas and
David Richerby [41]. We prove the following theorem about superstars.

Theorem 1.22. Let ζ(r, n) be any function such that, for any r > 1,

lim
n→∞

ζ(r, n)(n log n)1/3 = 0.

Then there is no infinite family of superstars that is up-to-ζ fixating.

Our theorem gives an upper bound for the fixation probability of the Moran process
run on superstars for all the values of the parameters of a superstar. In Corollary 8.18
(page 162), we identify a wide class of parameters for which the extinction probability
is provably at least 1/(1470r4k). Comparing our results with the results of Jameson-
Lane and Hauert (1.1), our bound is weaker by a factor of 1470. This is because
in our rigorous proof we need to show concentration of all random variables, using
Chernoff bounds and other bounds on probabilities. We have written the proof in
order to optimise readability instead of optimising the constants, so our constants can
presumably be improved.
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Part I

Modular counting
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Introduction

In Part I of this thesis we study the complexity of two modular counting problems. Re-
call that the relevant complexity classes we will use for modular counting problems are
the classes #k P, consisting of all the problems of the form “compute f(x) modulo k”,
where f(x) is a function in # P and k is a non-negative integer. In Chapters 2–5, which
are the main part of this thesis, we study the complexity of counting homomorphisms
to a graph modulo an integer. Let Hom(G → H) be the set of homomorphisms from
G to H. We are interested in the the following problem.

Problem 1.6. Name. #kHomsToH.

Parameter. A graph H and an integer k.

Input. A graph G.

Output. |Hom(G→ H)| (mod k).

In Chapter 2, and more specifically in Corollary 2.9, we identify some classes of
target graphs H for which #pHomsToH is computable in polynomial time, where p
is a prime. We also prove Theorem 1.9, which establishes pinning for #pHomsToH,
i.e. reduces #pHomsToH to #pPartLabHomsToH, when H is what we call “orbit
compatible with p”. We will then use pinning to identify target graphs H for which
the problem is hard to compute.

The main result of Chapter 3 is Theorem 1.10, which gives a dichotomy theorem
for #pHomsToH for all primes p and all asymmetric trees H. For every asymmetric
tree H that has at least two vertices and for every prime p, #pHomsToH is #p P-hard.
Trivially, for every prime p and the graph H that is the empty graph or the graph with
one vertex, #pHomsToH is computable in polynomial time. In Section 3.6 we give
an example of a graph H for which #2HomsToH is computable in polynomial time
while #4HomsToH is hard. This shows that, unlike other results in modular counting
(e.g. Guo et al. results on #kCSP, see [49, Lemma 16 and Lemma 18]), for an integer
r and a prime p, the complexity of #prHomsToH is not the same as the complexity
of #pHomsToH.

In Chapters 4 and 5 we focus in counting homomorphisms to a graph modulo 2.
The main result of Chapter 4 (Theorem 1.11) gives a dichotomy for #2HomsToH
when H is graph that has no cycles that share edges. That is, when the target graph
H reduces by an involution-free reduction to a non-trivial graph, then #2HomsToH
is #2 P-hard. Otherwise H reduces by an involution-free reduction to a graph with at
most one vertex and #2HomsToH is, trivially, computable in polynomial time. In
Chapter 5, Theorem 1.12 we show that, when the target graph H is any graph that
has no 4-cycles, then the computational dichotomy still holds for #2HomsToH with
the same dichotomy criterion.
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In Chapter 6 we study the complexity of computing the partition function of a
two-spin system with an external field modulo a prime (#pZγ,λ). #pZγ,λ can be either
polynomial-time computable or #p P-hard, depending on the values of its parameters
(γ, λ, p). We present values of (γ, λ, p) for which #pZγ,λ is computable in polynomial
time and we also show values of (γ, λ, p) for which #pZγ,λ is hard.
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Chapter 2

Counting graph homomorphisms
(modulo a prime): polynomial cases
and pinning

2.1 Introduction

This chapter sets up the tools we will use to study the complexity of #pHomsToH
when p is a prime. This is done in two sections.

In Section 2.3 we present the polynomial-time algorithm of Faben and Jerrum [32]
which applies to some values of the parameter space (target graphs H and primes p)
of #pHomsToH.

Section 2.4 establishes “pinning”, a technique used in all known hardness results for
counting homomorphisms modulo an integer. For any graph H, a partially H-labelled
graph J = (G, τ) consists of an underlying graph G and a pinning function τ , which
in this thesis is a partial function from V (G) to V (H). Thus, every vertex v in the
domain of τ is pinned to a particular vertex of H. A homomorphism from a partially
labelled graph J = (G, τ) toH is a homomorphism σ : G→ H such that, for all vertices
v ∈ dom(τ), σ(v) = τ(v). The problem that we study is #pPartLabHomsToH, the
problem of computing |Hom(J → H)| (mod p), given a partially H-labelled graph J .

The main result of Section 2.4 is the following.

Theorem 1.9. Let p be a prime and let H be a graph. If H and p are orbit com-
patible, then #pPartLabHomsToH reduces to #pHomsToH via polynomial-time
Turing reduction.

Ignoring the “orbit compatibility” property we give the following intuition for the
proof of Theorem 1.9. Suppose that we wanted to count the number of homomor-
phisms σ from a partially labelled graph J = (G, τ) to a graph H, with v ∈ V (G),
dom(τ) = {v} and τ(v) = a. Let Hom((G, v) → (H, a)) = Hom(J → H) be the
set of homomorphisms that respect τ . We could prove Theorem 1.9 by constructing
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a graph G′, such that |Hom(G′ → H)| ≡ c|Hom((G, v) → (H, a))| (mod p), where
c ∈ Zp. This could be achieved as follows. Assume that there was a gadget graph
Gx with a distinguished vertex x, such that |Hom((Gx, x) → (H, a))| ≡ c (mod p).
Further assume that for any vertex u ∈ V (H) − a, |Hom((Gx, x) → (H, u))| ≡ 0
(mod p). Now let G′ be the graph obtained from the union of a copy of G and a
copy Gx, by identifying x with v. From the structure of G′ we have that |Hom(G′ →
H)| ≡ c|Hom((G, v) → (H, a))| (mod p) and that would give us Theorem 1.9 when
the pinning function τ only maps a single vertex of G to H.

Unfortunately we can not prove that such a graph always exists. Instead we develop
an algebra on gadgets and show that there is always a set of gadgets G1, G2, . . . Gt such
that ∑t

i=1 |Hom(Gi → H)| ≡ |Hom((G, v) → (H, a))| (mod p). Let (G, x̄) denote
the graph G with k distinguished vertices x1, . . . , xk, where k is an integer and x̄ =
x1, . . . , xk. Essential to proving the existence of such a set of gadgets is a version
of a result originally due to Lovász. This (Lemma 2.16) states that, if graphs with
distinguished vertices (H, ȳ) and (H ′, ȳ′) are non-isomorphic, there is a graph (G, x̄)
with a different number of homomorphisms (modulo p) to (H, ȳ) than to (H ′, ȳ′). This
lemma gives us enough power to guarantee the existence of such gadgets and allows us
to pin not only one, but any number of vertices of G at the same time.

2.1.1 Organisation

In Section 2.3 we survey the results that will give us a polynomial-time algorithm for
identifying and solving the polynomial-time cases of #pHomsToH.

In the subsections of Section 2.4 we prove Theorem 1.9. In Section 2.4.1 we intro-
duce some results from group theory we will need. In Section 2.4.2 we prove a version
of the Lovász result we discussed earlier. In Section 2.4.3 we develop the algebra of
gadgets that will allow us to establish pinning. In Section 2.4.4 we introduce “orbit
compatibility”, the property we require for pinning, and we prove Theorem 1.9. In
Section 2.4.4, we also explain how the results we have presented are subtly different
from those in the literature so existing results could not be reused directly.

2.2 Preliminaries

We write [n] for the set {1, . . . , n}. For a set S and an element x, we often write S− x
for S \{x}. For a function f we write f (k) = f ◦f ◦· · ·◦f , where composition is applied
k times.

Graphs Unless otherwise specified, graphs are undirected and have no parallel edges
and no self-loops. The one exception to this is that we briefly allow self-loops in the
proof of Lemma 2.16 (this is clearly stated in the proof).
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Definition 2.2 (Graph homomorphism). A homomorphism from a graph G to a
graph H is a function σ : V (G) → V (H), such that (u, v) ∈ E(G) implies that
(σ(u), σ(v)) ∈ E(H).

An isomorphism between two graphs G1, G2 is a bijective function f : V (G1) →
V (G2), such that (u, v) ∈ E(G1) if and only if (f(u), f(v)) ∈ E(G2). We say that
G1 is isomorphic to G2 and denote it with G1 ∼= G2 if there exists an isomorphism
f : V (G1) → V (G2). An automorphism of a graph G is an isomorphism from G to
itself. Aut(H) denotes the automorphism group of a graph H. A graph is asymmetric
if its automorphism group contains only the identity. An automorphism of order k is
an automorphism ρ that is not the identity and k is the smallest integer such that ρ(k)

is the identity. An involution is an automorphism of order 2. Hom(G → H) denotes
the set of homomorphisms from a graph G to a graph H.

Partially labelled graphs For any graph H, a partially H-labelled graph J = (G, τ)
consists of an underlying graph G and a pinning function τ from V (G) to V (H). A
vertex v in the domain of the pinning function is said to be pinned or pinned to τ(v).
We will refer to these graphs as partially labelled graphs if the graph H is clear from
the context. We sometimes write G(J) and τ(J) for the underlying graph and pinning
function of a partially labelled graph, respectively. We write partial functions as sets
of pairs, for example, writing τ = {a 7→ s, b 7→ t} for the partial function τ with
dom(τ) = {a, b} such that τ(a) = s and τ(b) = t. A homomorphism from a partially
labelled graph J = (G, τ) to H is a homomorphism σ : G → H such that, for all
vertices v ∈ dom(τ), σ(v) = τ(v). We say that such a homomorphism respects τ . By
Hom(J → H) we denote the set of homomorphisms from V (G) to V (H) that respect
τ .

Distinguished vertices It is often convenient to regard a graph as having some num-
ber of distinguished vertices x1, . . . , xr and we denote such a graph by (G, x1, . . . , xr).
Note that the distinguished vertices need not be distinct. We sometimes abbreviate
the sequence x1, . . . , xr as x̄ and we use G[x̄] to denote the subgraph of G induced
by the set of vertices {x1, . . . , xr}. A homomorphism from a graph (G, x1, . . . , xr) to
(H, y1, . . . , yr) is a homomorphism σ from G to H with the property that σ(xi) = yi

for each i ∈ [r]. This is the same thing as a homomorphism from the partially H-
labelled graph (G, {x1 7→ y1, . . . , xr 7→ yr}) to H. Given a partially labelled graph J =
(G, τ) and vertices x1, . . . , xr /∈ dom(τ), a homomorphism from (G, x1, . . . , xr) to
(H, y1, . . . , yr) is formally identical to a homomorphism from J = (G, τ ∪ {x1 7→
y1, . . . , xr 7→ yr}) to H.

Similarly, we say that two graphs (G, x1, . . . , xr) and (H, y1, . . . , ys) are isomorphic
if r = s and there is an isomorphism ρ : V (G) → V (H) such that ρ(xi) = yi for each
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i ∈ [r] (note that we may have G = H). An automorphism of (G, x1, . . . , xr) is just an
automorphism ρ of G with the property that ρ(xi) = xi for each i ∈ [r].

2.3 Polynomial-time computable classes of target
graphs

We begin by identifying classes of graphs H for which #pHomsToH can be solved
in polynomial time. As in most counting problems, cancellations play a key role to
tractability. When counting graph homomorphisms modulo a prime p, the automor-
phisms of order p of the target graph H help us identify groups of homomorphisms that
cancel out. More specifically assume that the target graph H has an automorphism ρ

of order p. For any homomorphism σ from the input graph G to H, σ ◦ ρ is also a
homomorphism from G to H. In this way we have a set of cardinality p which contains
the homomorphisms σ ◦ ρ(j), where j ∈ [p]. The theorem of Faben and Jerrum [32,
Theorem 3.4] captures this intuition. In order to state Theorem 3.4 of Faben and
Jerrum we need the following definition.

Definition 2.3. Let H be a graph and ρ an automorphism of H. Hρ is the subgraph
of H induced by the fixed points of ρ.

Theorem 2.4 (Faben and Jerrum). For any prime p, if H is a graph, and ρ an
automorphism of H of order p, |Hom(G→ H)| ≡ |Hom(G→ Hρ)| (mod p).

We can now apply the theorem to Hρ recursively and end up with an even smaller
graph.

Definition 2.5. H ⇒p H
′ if there is an automorphism ρ of H of order p such that

Hρ = H ′. We will also write H ⇒∗p H ′ if either H ∼= H ′ or, for some positive integer k,
there are graphs H1, . . . , Hk such that H ∼= H1, H1 ⇒p · · · ⇒p Hk, and Hk

∼= H ′.

Faben and Jerrum have also shown the following [32, Theorem 3.7]

Theorem 2.6 (Faben and Jerrum). Given a graph H and a prime p, there is (up to
isomorphism) exactly one graph H∗p that has no automorphism of order p and H ⇒∗p
H∗p.

Definition 2.7. We call the unique (up to isomorphism) graph H∗p, with H ⇒∗p H∗p,
the order p reduced form of H.

Figure 2.1 illustrates Theorem 2.6, giving an example of an order 3 reduced form
of a graph. To compute the number of homomorphisms from G to H modulo p

(#pHomsToH), it suffices to compute the number of homomorphisms from G to H∗p

modulo p.
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Figure 2.1: An example of the order 3 reduced form H∗3 of the graph H. Here we
indicate two different ways of H ⇒∗3 H∗3. The automorphism ρ has order 3, is indicated
with red colour and Hρ = H∗3. σ, τ and υ are all automorphisms of order 3, and are
indicated with blue colour and ((Hσ)τ )υ = H∗3.

Recall that #HomsToH is the problem of computing the number of homomor-
phisms from G to H (|Hom(G → H)|). As we have seen in Section 1.1.1, the di-
chotomy theorem of Dyer and Greenhil [27, Theorem 1.1] completely characterizes the
complexity of #HomsToH.

Theorem 1.3 (Dyer and Greenhil). Let H be a graph that can have self-loops. If
every component of H is a complete bipartite graph with no self-loops or a complete
graph with all self-loops present, then #HomsToH can be solved in polynomial time.
Otherwise #HomsToH is # P-complete.

A polynomial time algorithm for #HomsToH would immediately give us a poly-
nomial time algorithm for #pHomsToH. In this thesis we study the problem of
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#pHomsToH when H is a simple graph, with no parallel edges and no self-loops. If
H has no self-loops, then H∗p is also a simple graph. By repeatedly applying the “⇒p”
operation we do not introduce parallel edges or self-loops in the graph, as we are only
removing vertices from H. Combining the above with Theorems 2.4, 2.6 and 1.3 we
have the following.

Corollary 2.9. Let H be a graph. If every component of H∗p is a complete bipartite
graph with no self-loops, then #pHomsToH is computable in polynomial time.

2.4 Partially labelled graphs and pinning

In this section we study the problem #pPartLabHomsToH which we briefly de-
scribed in Section 1.2.2 and Section 2.1 and we formally introduce here.

Problem 2.10. Name. #pPartLabHomsToH.

Parameter. A graph H and a prime p.

Input. A partially H-labelled graph J = (G, τ).

Output. |Hom(J → H)| (mod p).

To show that #pHomsToH is at least as hard as #pPartLabHomsToH we need
to develop some machinery. This generalizes the theorems and lemmas of the current
author, Goldberg and Richerby [44] so they can be applied for any prime p, and not just
when p = 2. As in [44] this follows the presentation of similar material by Faben and
Jerrum [32] and the earlier paper of the current author, Goldberg and Richerby [43]
which, in turn, draw on the work of Lovász [60] and Hell and Nešetřil [53].

2.4.1 Group-theoretic background

We will require some results from group theory. All of them can be found in the
handbook of Armstrong [2].

For the first, see, e.g., [2, Theorem 13.1].

Theorem 2.11 (Cauchy’s group theorem). If G is a finite group and a prime p di-
vides |G|, then G contains an element of order p.

For a permutation group G acting on a set X, the orbit of an element x ∈ X is
the set OrbG(x) = {π(x) | π ∈ G}. For a graph H, we will abuse notation mildly by
writing OrbH(·) instead of OrbAutH(·).

The following is a corollary of the orbit–stabiliser theorem [2, Corollary 17.3].

Theorem 2.12. Let G be a finite permutation group acting on a set X. For every
x ∈ X, |OrbG(x)| divides |G|.
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These two theorems have the following corollary about the size of orbits under the
automorphism group of graphs that have no automorphisms of order p.

Corollary 2.13. Let H be a graph that has no automorphism of order p, where p is a
prime. Every orbit of a tuple ȳ ∈ (V (H))r under the action of Aut(H) has non-zero
cardinality modulo p.

Proof. By Theorem 2.11, |Aut(H)| 6≡ 0 (mod p), since the group contains no element
of order p. Consider the natural action of Aut(H) on (V (H))r. By Theorem 2.12, the
size of the orbit of ȳ in H divides |Aut(H)| so |OrbH(ȳ)| is also non-zero modulo p.

Finally, we will use Fermat’s little theorem (see [2, Theorem 11.6]).

Theorem 2.14 (Fermat’s little theorem). If p is a prime and a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

2.4.2 A Lovász-style lemma

Lovász proved that two graphs H and H ′ are isomorphic if and only if |Hom(G →
H)| = |Hom(G → H ′)| for every graph G (in fact, in [61], he proved the analogous
result for general relational structures but we do not need this here). We show that
this result remains true even if we replace equality of the number of homomorphisms
with equivalence modulo a prime p. The current author, Goldberg and Richerby [44]
have also shown this result for modulo 2. Faben and Jerrum also showed this [32,
Lemma 3.10], but in a less general setting than the one that we need. As in [44] our
proof is based on the presentation of Hell and Nešetřil [53, Section 2.3].

For the proof we need some definitions, which are used only in this section. We say
that two r-tuples x̄ and ȳ have the same equality type if, for all i, j ∈ [r], xi = xj if and
only if yi = yj. Let InjHom((G, x̄) → (H, ȳ)) be the set of injective homomorphisms
from (G, x̄) to (H, ȳ).

Before proving the main lemma, we prove a simple fact about injective homomor-
phisms and equality types of distinguished variables.

Lemma 2.15. Let (G, x̄) and (H, ȳ) be graphs, each with r distinguished vertices. If
x̄ and ȳ do not have the same equality type, then |InjHom((G, x̄)→ (H, ȳ))| = 0.

Proof. If there are i, j ∈ [r] such that xi = xj but yi 6= yj, then there are no homo-
morphisms (injective or otherwise) from (G, x̄) to (H, ȳ), since xi cannot be mapped
simultaneously to both yi and yj. Otherwise, there must be i, j ∈ [r] such that
xi 6= xj but yi = yj. Then no homomorphism η can be injective because we must
have η(xi) = η(xj) = yi.

Lemma 2.16. Let p be a prime and let (H, ȳ) and (H ′, ȳ′) be graphs that have no
automorphism of order p, each with r distinguished vertices. Then (H, ȳ) ∼= (H ′, ȳ′)
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if and only if, for all (not necessarily connected) graphs (G, x̄) with r distinguished
vertices,

|Hom((G, x̄)→ (H, ȳ))| ≡ |Hom((G, x̄)→ (H ′, ȳ′))| (mod p) . (2.1)

Proof. If (H, ȳ) and (H ′, ȳ′) are isomorphic, it follows trivially that (2.1) holds for all
graphs (G, x̄). For the other direction, suppose that (2.1) holds for all (G, x̄).

First, we claim that this implies that ȳ and ȳ′ have the same equality type. If they
have different equality types then, without loss of generality, we may assume that there
are distinct indices i and j such that yi = yj but y′i 6= y′j. Let G be the graph on vertices
{y1, . . . , yr} with no edges: we see that |Hom((G, ȳ)→ (H, ȳ))| = 1 6= |Hom((G, ȳ)→
(H ′, ȳ′))| = 0, contradicting the assumption that (2.1) holds for all G.

Second, we show by induction on the number of vertices in G that, if (2.1) holds
for all (G, x̄) then, for all (G, x̄),

|InjHom((G, x̄)→ (H, ȳ))| ≡ |InjHom((G, x̄)→ (H ′, ȳ′))| (mod p) . (2.2)

Specifically, under the assumption that (2.1) holds for all (G, x̄), we show that (2.2)
holds for all (G, x̄) with |V (G)| ≤ n0 for a suitable value n0 and that, if (2.2) holds for
all (G, x̄) with |V (G)| < n, it also holds for any (G, x̄) with |V (G)| = n.

Let n0 = |{y1, . . . , yr}| = |{y′1, . . . , y′r}| be the number of distinct elements in ȳ. For
the base case of the induction, consider any graph (G, x̄) with |V (G)| ≤ n0. If x̄ does
not have the same equality type as ȳ and ȳ′ (which is guaranteed if |V (G)| < n0) then,
by Lemma 2.15,

|InjHom((G, x̄)→ (H, ȳ))| = |InjHom((G, x̄)→ (H ′, ȳ′))| = 0 .

If x̄ has the same equality type as ȳ and ȳ′ then, in particular, every vertex of G is
distinguished. Any homomorphism from (G, x̄) to (H, ȳ) or (H ′, ȳ′) is injective, so

|InjHom((G, x̄)→ (H, ȳ))| = |Hom((G, x̄)→ (H, ȳ))|

= |Hom((G, x̄)→ (H ′, ȳ′))|

= |InjHom((G, x̄)→ (H ′, ȳ′))| ,

where the second equality is by the assumption that (2.1) holds for (G, x̄).
For the inductive step, let n > n0 and assume that (2.2) holds for all (G, x̄) with

|V (G)| < n. Now, consider some (G, x̄) with |V (G)| = n.
Given any homomorphism σ from (G, x̄) to (H, ȳ), we can define an equivalence

relation θ on V (G) by (u, v) ∈ θ if and only if σ(u) = σ(v). (Note that, if σ is injective,
then θ is just the equality relation on V (G).) Write [[u]] for the θ-equivalence class of
a vertex u ∈ V (G). Let G/θ be the graph whose vertex set is {[[u]] | u ∈ V (G)} and
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whose edge set is {([[u]], [[v]]) | (u, v) ∈ E(G)}. For graphs with distinguished vertices,
we write (G, x1, . . . , xr)/θ = (G/θ, [[x1]], . . . , [[xr]]). The homomorphism σ from (G, x̄)
to (H, ȳ) corresponds to an injective homomorphism from (G, x̄)/θ to (H, ȳ).

Note that, if there are adjacent vertices u and v in G such that (u, v) ∈ θ for some
equivalence relation θ, the graph G/θ has a self-loop on the vertex [[u]]. This is not a
problem. Because H is self-loop-free, there are no homomorphisms (injective or other-
wise) from such a graph G/θ to H. For the same reason, there are no homomorphisms
from G to H that map adjacent vertices u and v to the same place. Therefore, this
particular θ does not correspond to any homomorphism from G to H and contributes
zero to the sums below, as required.

We have

|Hom((G, x̄)→ (H, ȳ))|= |InjHom((G, x̄)→ (H, ȳ))|+
∑
θ

|InjHom((G, x̄)/θ → (H, ȳ))|

|Hom((G, x̄)→(H ′, ȳ′))|= |InjHom((G, x̄)→(H ′, ȳ′))|+
∑
θ

|InjHom((G, x̄)/θ→(H ′, ȳ′))|,

where the sums are over all equivalence relations θ, except for the equality relation.
The left-hand sides of these equations are equivalent modulo p by assumption. The

sums over θ on the right are equivalent modulo p by the inductive hypothesis since θ is
not the equality relation, so G/θ has fewer vertices than G. Therefore, (2.2) holds for
the graph under consideration.

Finally, it remains to prove that (2.2) holding for all (G, x̄) implies that (H, ȳ) ∼=
(H ′, ȳ′). To see this, take (G, x̄) = (H, ȳ). An injective homomorphism from a graph to
itself is an automorphism and, since (H, ȳ) has no automorphism of order p, Aut(H, ȳ)
has no element of order p, so |Aut(H, ȳ)| 6≡ 0 (mod p) by Cauchy’s group theorem
(Theorem 2.11). By (2.2), the number of injective homomorphisms from (H, ȳ) to
(H ′, ȳ′) is not equivalent to 0 (mod p), which means that there is at least one such
homomorphism. Similarly, taking (G, x̄) = (H ′, ȳ′) shows that there is an injective
homomorphism from (H ′, ȳ′) to (H, ȳ) and, therefore, the two graphs are isomorphic.

2.4.3 Implementing vectors

The presentation in this section follows very closely that of the current author, Goldberg
and Richerby [44], and consequently that of Faben and Jerrum [32], extended to r-
tuples of distinguished vertices and modulo any prime p.

Definition 2.17. Let r ∈ N>0. Fix a graph H, that has no automorphism of order p,
and an enumeration ȳ1, . . . , ȳµ of (V (H))r such that, for every ȳ ∈ (V (H))r, there is
exactly one i ∈ [µ] such that (H, ȳ) ∼= (H, ȳi). We refer to such an enumeration as an
enumeration of (V (H))r up to isomorphism.
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Note that the number µ of tuples in the enumeration depends on H and not only
in |V (H)|.

Definition 2.18. Fix a graph H, that has no automorphism of order p. Let r ∈ N>0

and let ȳ1, . . . , ȳµ be an enumeration of (V (H))r up to isomorphism. Let (G, x̄) be a
graph with r distinguished vertices. We define the vector vH(G, x̄) ∈ {0, 1, . . . , p− 1}µ

where, for each i ∈ [µ], the ith component of vH(G, x̄) is given by

(
vH(G, x̄)

)
i
≡ |Hom((G, x̄)→ (H, ȳi))| (mod p) .

We say that (G, x̄) implements this vector.

Define ⊕p and ⊗p to be, respectively, component-wise addition and multiplication
modulo p, of vectors in (Zp)µ.

Lemma 2.19. Let x̄ = x1 . . . xr, where r ∈ N>0, and let (G1, x̄) and (G2, x̄) be graphs
such that V (G1) ∩ V (G2) = {x1, . . . , xr}. Then,

vH(G1 ∪G2, x̄) = vH(G1, x̄)⊗p vH(G1, x̄) .

Proof. A function σ : V (G1) ∪ V (G2) → V (H) is a homomorphism from (G1 ∪ G2, x̄)
to (H, ȳ) if and only if, for each i ∈ {1, 2}, the restriction of σ to V (Gi) is a homomor-
phism from (Gi, x̄) to (H, ȳ).

In contrast to the component-wise multiplication of vH(G, x̄), given (G1, x̄1) and
(G2, x̄2), it is not obvious that there is a graph (G, x̄), with vH(G, x̄) = vH(G1, x̄1)⊕p

vH(G2, x̄2). Given graphs with distinguished vertices (G1, x̄1), . . . , (Gt, x̄t), we define

vH
(
(G1, x̄1) + · · ·+ (Gt, x̄t)

)
= vH(G1, x̄1)⊕p · · · ⊕p vH(Gt, x̄t)

and we say that a vector v ∈ (Zp)µ is H-implementable if it can be expressed as such
a sum.

Lemma 2.20. Let S ⊆ (Zp)µ be closed under ⊕p and ⊗p. If 1µ ∈ S and, for every
distinct i, j ∈ [µ], there is a tuple s = s1 . . . sµ ∈ S with si 6= sj, then S = (Zp)µ.

Proof. It suffices to show that all of the basis vectors of the standard basis1 in (Zp)µ

are in S. Since S is closed under ⊕p and ⊗p it follows that all of (Zp)µ is in S.
We show that all the basis vectors are in S by induction on µ. If µ = 1 the induction

hypothesis clearly holds as the all-ones vector is the only vector in the standard basis.
Assume that the induction hypothesis holds for µ− 1. Then we can construct vectors
that agree with the standard basis in the first µ−1 places without being able to control

1The standard basis is the set {100 . . . 00, 010 . . . 00, . . . , 000 . . . 01}
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what happens in the µ-th place. From the latter and the statement of the lemma, that
1µ ∈ S, we obtain the following vectors.

v0 = (1 1 1 . . . 1 1)
v1 = (1 0 0 . . . 0 x1)
v2 = (0 1 0 . . . 0 x2)
... ...

vµ = (0 0 0 . . . 1 xµ)

where the xi can take any value in Zp.
Let r be an integer and let v ∈ (Zp)µ. Since p is fixed for the rest of this proof,

let vr = v ⊗p · · · ⊗p v, where v appears r-times and let rv = v ⊕p · · · ⊕p v, where v
appears r-times. Consider the values of each xi. If xi 6= 0, by Theorem 2.14 we have
xp−1
i ≡ 1 (mod p). Hence vp−1

i = (00 . . . 010 . . . 01). So from now on we can assume
that for each i ∈ [µ], xi ∈ {0, 1}. We have the following three cases.

Case 1. For all i ∈ [µ], xi = 0. Then the vector v = v0⊕p
⊕p

i∈[µ](p−1)vi = 0 . . . 01
is the remaining vector that completes the standard basis.

Case 2. There are at least two i, j such that xi, xj = 1. Then v = vi⊗pvj = 0 . . . 01.
To obtain the remaining vectors of the standard basis, for each i ∈ [µ] with xi 6= 0, we
take the vector vi ⊕p (p− 1)v.

Case 3. There is exactly one i ∈ [µ] with xi = 1. From the statement of the lemma
there is a vector u ∈ S, with (u)i = a, (u)µ = b, where a 6= b. First assume that a > b.
Let ui = u⊗p vi = 0 . . . 0a0 . . . 0b and let va = (p− a)vi = 0 . . . 0(p− a)0 . . . 0(p− a).
Then ui ⊕p va = 0 . . . 0(p − a + b). Since a > b, (p − a + b) is not a multiple of p so,
by Theorem 2.14, (p− a+ b)p−1 ≡ 1 (mod p). Thus, v = (ui ⊕p va)p−1 = 0 . . . 01 and
v′i = (p− 1)v⊕p vi = 0 . . . 010 . . . 0 complete the standard basis.

Now assume that a < b. Let vb = (p − b)vi = 0 . . . 0(p − b)0 . . . 0(p − b) and so
ui ⊕p vb = 0 . . . 0(p + a − b)0 . . . 0. Since a < b, (p + a − b) is not a multiple of p so,
by Theorem 2.14, (p+ a− b)p−1 ≡ 1 (mod p). Thus v′ = (ui⊕p vb)p−1 = 0 . . . 010 . . . 0
and v′′i = (p− 1)v′ ⊕p vi = 0 . . . 01 complete the standard basis.

Corollary 2.21. Let H be a graph with no automorphism of order p. Every v ∈
{0, 1, . . . , p− 1}µ is H-implementable.

Proof. Let S be the set of H-implementable vectors. S is clearly closed under ⊕p, and
is closed under ⊗p by Lemma 2.19. Let G be the graph on vertices {x1, . . . , xr}, with
no edges. 1µ is implemented by (G, x1, . . . , xr), which has exactly one homomorphism
to every (H, ȳi). Finally, for every distinct pair i, j ∈ [µ], (H, ȳi) and (H, ȳj) are not
isomorphic, by definition of the enumeration of r-tuples. Therefore, by Lemma 2.16,
there is a graph (G, x̄) such that

|Hom((G, x̄)→ (H, ȳi))| 6≡ |Hom((G, x̄)→ (H, ȳj))| (mod p) .
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(G, x̄) implements a vector v whose ith and jth components are different. The corollary
follows from Lemma 2.20.

2.4.4 Pinning

Recall the definition of an enumeration ȳ1, . . . , ȳµ of (V (H))r up to isomorphism (Defi-
nition 2.17). What will allow us to pin, i.e. show that #pPartLabHomsToH reduces
to #pHomsToH is the following property of H and p.

Definition 2.22. Let H be a graph and let p be a prime. We say that H and p are
orbit compatible if H has no automorphism of order p and for every positive integer r
and every tuple ȳ in (V (H))r, |OrbH(ȳ)| ≡ 1 (mod p).

To see why we need H and p to be orbit compatible in order to reduce the problem
#pPartLabHomsToH to #pHomsToH consider the following example. Let p be
a prime, let G be a graph with x ∈ V (G) and let H be a graph with y ∈ V (H).
Let J = (G, τ) be the partially labelled graph with τ = {x 7→ y}. Suppose that we
want to compute |Hom(J → H)| (mod p) using an oracle for #pHomsToH. Using
the equivalent view of graphs with distinguished vertices, computing |Hom(J → H)|
(mod p) is equivalent to computing |Hom((G, x) → (H, y))| (mod p). Let (G′, x′) be
a graph with a distinguished vertex, such that |Hom((G′, x′) → (H, y))| ≡ 1 (mod p)
and |Hom((G′, x′) → (H, z))| ≡ 0 (mod p), whenever z /∈ OrbH(y). For every y′ ∈
OrbH(y), (H, y′) ∼= (H, y), so, by Lemma 2.16, |Hom((G′, x′)→ (H, y′))| ≡ 1 (mod p).
Let G′′ be the graph obtained from the union of a copy of G together with a copy of G′,
by identifying x with x′. From the structure ofG′′, |OrbH(y)|·|Hom((G, x)→ (H, y))| ≡
|Hom(G′′ → H)| (mod p). This example shows that if |OrbH(y)| is a constant number
we can compute |Hom(J → H)| (mod p) by using the oracle for #pHomsToH. It
turns out that for all the cases we need to show that |OrbH(y)| is a constant number,
we can show that it is in fact 1. Therefore, we will use the current definition of orbit
compatibility which also simplifies some of our proofs.

In the reduction from a general instance of #pPartLabHomsToH to an instance
of #pHomsToH we will find (non-constructively) a set of graphs G1 . . . Gt, such that∑t
i=1 |Hom(Gi → H)| ≡ |Hom(J → H)| (mod p). To show that this is the case we

need the following lemma that relies on the fact that H and p are orbit compatible.

Lemma 2.23. Let p be a prime and let H be a graph such that H and p are orbit
compatible. Let ȳ1, . . . , ȳµ be an enumeration of V (H)r up to isomorphism. For any
graph G, x̄ with r distinguished vertices,

|Hom(G→ H)| ≡
∑
i∈[µ]

(vH(G, x̄))i (mod p) .
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Proof. By definition,

∑
i∈[µ]

(vH(G, x̄))i ≡
∑
i∈[µ]
|Hom((G, x̄)→ (H, ȳi))| (mod p).

As H and p are orbit compatible for each i ∈ µ , |OrbH(ȳi)| ≡ 1 (mod p). We have

∑
i∈[µ]

(vH(G, x̄))i ≡
∑
i∈[µ]
|OrbH(ȳi)| |Hom((G, x̄)→ (H, ȳi))| (mod p).

For any ȳ ∈ OrbH(ȳi), |Hom((G, x̄) → (H, ȳ))| = |Hom((G, x̄) → (H, ȳi))|. This is
because composing a homomorphism from (G, x̄) to (H, ȳ) with an isomorphism from
(H, ȳ) to (H, ȳi) gives a homomorphism from (G, x̄) to (H, ȳi). So,

∑
i∈[µ]

(vH(G, x̄))i ≡
∑
i∈[µ]

∑
ȳ∈OrbH(ȳi)

|Hom((G, x̄)→ (H, ȳ))|. (2.3)

Every homomorphism from G to H must map x̄ to some tuple ȳ. All such tuples
are included exactly once in the double sum of the right hand side of the display
equation 2.3. So ∑i∈[µ](vH(G, x̄))i ≡ |Hom(G→ H)| and the lemma follows.

Now we can show the main theorem of this chapter.

Theorem 1.9. Let p be a prime and let H be a graph. If H and p are orbit com-
patible, then #pPartLabHomsToH reduces to #pHomsToH via polynomial-time
Turing reduction.

Proof. Let J = (G, τ) be an instance of #pPartLabHomsToH. Let x̄ = x1, . . . , xr be
an enumeration of dom(τ) and let ȳ = y1, . . . , yr = τ(xi), . . . , τ(xr). Moving from the
world of partially H-labelled graphs to the equivalent view of graphs with distinguished
vertices, we wish to compute |Hom((G, x̄)→ (H, ȳ))|, modulo p.

By definition of the enumeration (up to isomorphism) ȳ1, . . . , ȳµ, there is some k ∈
[µ] such that (H, ȳ) ∼= (H, ȳk). Let v be the vector that has a 1 in position k and
has 0 in every other position. By Corollary 2.21, v is implemented by some sequence
(Θ1, x̄1), . . . , (Θt, x̄t) of graphs with r-tuples of distinguished vertices.

For each i ∈ [t], let (Gi, x̄) be the graph that results from taking the union of
disjoint copies of G and Θi and identifying the jth element of x̄ with the jth element
of x̄i for each j ∈ [t]. We have

vH(G, x̄)⊗p v = vH(G, x̄)⊗p vH
(
(Θ1, x̄1) + · · ·+ (Θt, x̄t)

)
=
⊕p

i∈[t]

(
vH(G, x̄)⊗p vH(Θi, x̄i)

)
=
⊕p

i∈[t] vH(Gi, x̄) .

Now, sum the components of the vectors on the two sides of the equation. On the
right, since H and p are orbit compatible, by Lemma 2.23, we have a value congruent
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Figure 2.2: An involution-free graph H illustrating the difference between pinning
vertices to orbits of vertices and pinning a tuple of vertices to an orbit of a tuple.

modulo p to ∑i∈[t] |Hom(Gi → H)|. This can be computed by making t calls to an
oracle for #pHomsToH, and t is bounded above by a constant, since H is fixed.
On the left, we have, |Hom((G, x̄) → (H, ȳ))|, modulo p, which is what we wish to
compute.

The result we have proved here extends the result of the current author, Goldberg
and Richerby [44, Theorem 3.1] to hold for all primes, under the condition that H
and p are orbit compatible. It appears to be similar to the result of Faben and Jer-
rum [32, Corollary 4.18] and to an earlier paper of the current author, Goldberg and
Richerby [43, Theorem 3.2] but there is an important difference. In [43], we wished
to pin r vertices of G, each to the orbit of a vertex of H. In this thesis, we focus on
the problem #pPartLabHomsToH, where we pin vertices of G to individual vertices
of H. In order to achieve this, we essentially pin an r-tuple of vertices of G to the
orbit of an r-tuple of vertices in H. To see the difference, consider the graph H in
Figure 2.2. The orbits of single vertices are {a1, a2, a3}, . . . , {d1, d2, d3}. There are six
homomorphisms from the single edge (x, y) to H that map x to the orbit of a1 and y to
the orbit of d1 but only three that map the pair (x, y) to the orbit of the pair (a1, d1),
which is {(a1, d1), (a2, d2), (a3, d3)}.
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Chapter 3

Counting homomorphisms (modulo
a prime) to asymmetric trees

3.1 Introduction

In this chapter we study the complexity of #pHomsToH when p is a prime and H is
an asymmetric tree. Asymmetric trees are connected graphs that have no cycles and
their automorphism group only contains the trivial automorphism. To state the main
theorem of this chapter recall Definition 2.7 (Page 28) of the order p reduced form H∗p

of a graph H.

Theorem 1.10. Let p be a prime and let H be a graph where H∗p is an asymmetric
tree. If H∗p has more than one vertex then #pHomsToH is #p P-hard, otherwise
#pHomsToH is computable in polynomial time.

As we have already explained in Section 1.2.2, Theorem 1.10 actually extends The-
orem 1.8 of Faben and Jerrum [32, Theorem 3.8] to all prime moduli. If H is an
asymmetric tree, then H∗p = H, as H has no non-trivial automorphisms. We have the
following corollary.

Corollary 3.2. Let p be a prime and H be an asymmetric tree. If H has more than one
vertex then #pHomsToH is #p P-complete, otherwise #pHomsToH is computable in
polynomial time.

To prove Theorem 1.10 we will use the pinning technique developed in Chapter 2.
When H is asymmetric its automorphism group only contains the trivial automor-
phism, so for any prime p, H and p are orbit compatible. Thus we can use Theorem 1.9
and reduce #pPartLabHomsToH to #pHomsToH. In order to show hardness for
#pHomsToH it suffices to show hardness for #pPartLabHomsToH. The start-
ing point of our reduction is #pZγ: the problem of computing the partition function
of a two-spin system on a multigraph modulo a prime. The partition function of a
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multigraph G is given by
Zγ(G) =

∑
σ:V (G)→{0,1}

γc(σ),

where c(σ) denotes the number of edges (u, v) (including self-loops) with σ(u) =
σ(v) = 1. An immediate corollary of a result of Guo et al. [49] shows that #pZγ

is #p P-hard. We then show that for all non-trivial graphs H, #pZγ reduces to
#pPartLabHomsToH.

The reduction from #pZγ to #pPartLabHomsToH (Theorem 3.10) works as
follows. Given a multigraph G as input of #pZγ we construct a partially labelled
simple graph J , input for #pPartLabHomsToH. To construct J we replace the
vertices and edges of G with partially labelled graphs, which we call “gadgets”. In J ,
the gadget corresponding to the vertex v of G has a vertex yv. We also choose an
appropriate vertex i in H. Any homomorphism σ from J to the target graph H defines
a set I(σ) = {v ∈ V (G) | σ(yv) = i}. The configuration of the gadgets ensures that a
set I ⊆ V (G) has an appropriate number of homomorphisms σ with I(σ) = I. Each
two-spin configuration τ of G has weight γc(τ), where c(τ) can be determined by the
set I ′(τ) of vertices that are mapped to “1” by τ . That weight is equivalent to the
number of homomorphisms σ with I(σ) = I ′(τ). Thus, the two-spin partition function
of G is equivalent to |Hom(J → H)|, modulo p.

We call the gadgets that we use (γ, p)-gadgets (Definition 3.9). A (γ, p)-gadget is
chosen according to the structure and properties of H. If for an asymmetric graph H
we can find a (γ, p)-gadget, then we can reduce #pZγ to #pHomsToH. The reduction
from #pZγ to #pHomsToH can be seen as assigning colours to both the vertices and
the edges of G, where each “colour” is a vertex of H. Each (γ, p)-gadget has three main
parts. One part of the gadget controls which colours can be assigned to each vertex,
where each colour corresponds to a spin. The second part controls which colours can
be assigned to each edge, where the edge–colours determine the interractions among
the vertex–colours. Finally, a third part determines how many homomorphisms there
are from G to H, given the choice of colours for the vertices and edges.

Since we are working with trees, we are able to use gadgets with very simple struc-
ture: our gadgets are essentially paths and we exploit the limited structure of asymmet-
ric trees. We show that every non-trivial asymmetric tree H contains three consecutive
vertices of appropriate degrees (Lemma 3.13). These three consecutive vertices can then
be used to obtain a (3, p)-gadget for H (Lemmas 3.14 and 3.15).

Finally, in this chapter, we discuss the complexity of #kHomsToH when k is a com-
posite. The polynomial-time algorithm of Faben and Jerrum works for #kHomsToH
only when k is a prime. By the Chinese remainder theorem (Theorem 3.20), if
pr1

1 p
r2
2 . . . prmm = k is the prime factorisation of k, then for each j ∈ [m], the com-

plexity of #kHomsToH is equivalent to the complexity of #
p
rj
j

HomsToH. For a
prime p and an integer r, if #pHomsToH is hard, then #prHomsToH is also hard.
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The inverse is not always true. In modular counting problems there have been cases
in the literature (Guo et al. [49]) where the complexity of a modular counting problem
#pA is equivalent to the complexity of #prA. We will illustrate that this is not the case
with counting graph homomorphisms, as we identify a graph P4 where #2HomsToP4

is easy while #4HomsToP4 is hard.

3.1.1 Organisation

In Section 3.3 we formally define #pZγ and show that #pZγ is hard for some value of
its parameters. In Section 3.4 we define (γ, p)-gadgets and show that when H has a
(γ, p)-gadget then #pHomsToH is #p P-complete. In Section 3.5 we show that every
asymmetric tree H has a (3, p)-gadget and we also prove Theorem 1.10. Finally in
Section 3.6 we show that #4HomsToP4 is #2 P-hard but #2HomsToP4 is computable
in polynomial time.

3.2 Preliminaries

As in the previous chapter, graphs are undirected and have no parallel edges or self-
loops. Multigraphs are also undirected but they may have parallel edges and may
have (multiple) self-loops. We will also use partially labelled graphs and graphs with
distinguished vertices which we introduced in Section 2.2. We use ΓH(v) to denote
the set of neighbours of vertex v in H and degH(v) to denote the degree of v in H. A
path P is a graph with vertex set V (P ) and edge set E(P ). However, where convenient,
we specify P by simply listing the vertices of the path, in order. We use dH(u, v) to
denote the length of a shortest path from u to v in H.

3.3 Two-spin systems

We consider the following two-spin model which applies to spin systems on multigraphs.
The model has two parameters, a prime number p and an integer γ ∈ Zp. A configura-
tion σ : V (G)→ {0, 1} is an assignment of the two spins “0” and “1” to the vertices of
G. Let c(σ) denote the number of edges (u, v) of G with σ(u) = σ(v) = 1. note that it
may be u = v, so c(σ) also includes the number of self-loops (v, v) of G with σ(v) = 1.
The partition function of the model is given by:

Zγ(G) =
∑

σ:V (G)→{0,1}
γc(σ).

Formally, we are interested in the following modular counting problem.

Problem 3.3. Name. #kZγ.
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Parameter. k ∈ N>0 and γ ∈ Zk.

Input. A multigraph G.

Output. Zγ(G) (mod k).

We will identify values of the parameters k and γ, for which #kZγ is #k P-hard, to
use it as a starting point for the reductions in Section 3.4. To do so, we need to define
the Boolean constraint satisfaction problem.

Problem 3.4. Name. #kCSP(F).

Parameter. k ∈ N>0 and a set of Boolean functions F = {f1 . . . fm}, where for each
j ∈ [m], fj : {0, 1}rj → Zp and rj ∈ N>0.

Input. A finite set of constraints over Boolean variables x1 . . . xn of the form
fj(xij,1 , xij,2 , . . . , xij,rj ).

Output. ∑x1,...,xn∈{0,1}
∏
j fj(xij,1 , xij,2 , . . . , xij,rj ) (mod k).

The complexity of #kCSP has been studied by Guo et al. [49]. We are interested
in two of their hardness results [49, Corollary 2 and Lemma 11], which will give us the
cases for which #pZγ is hard. Before we state their results we define the following.

Definition 3.5. We say that a Boolean binary function F : {0, 1}2 → N is expressed
by the matrix A = [ a bc d ] if for i, j ∈ {0, 1}, F (i, j) = Ai,j.

The first result of Guo et al. we will use [49, Corollary 2] is a corollary of a result
of Faben [30, Theorem 4.11].

Lemma 3.6 (Guo et al.). Let F1 : {0, 1}2 → {0, 1} be the Boolean binary function
expressed by the matrix A1 = [ 1 1

1 0 ] and let F2 : {0, 1}2 → {0, 1} be the Boolean binary
function expressed by the matrix A2 = [ 0 1

1 1 ]. For all integers k, #kCSP({F1}) and
#kCSP({F2}) are #k P-hard.

The other result of Guo et al. we will use is the following [49, Lemma 11].

Lemma 3.7 (Guo et al.). Let p be a prime and let F : {0, 1}2 → Zp be the Boolean
binary function expressed by the matrix [ a bc d ], where abcd 6≡ 0 (mod p) and a2d2 6≡ b2c2

(mod p). #pCSP({F}) is #p P-hard.

From the definitions of #pZγ and #pCSP, we can see that #pZγ is equivalent to
#pCSP({F}), where F is the Boolean binary function expressed by the matrix

[
1 1
1 γ

]
.

We have the following.

Corollary 3.8. For every prime p and γ ∈ Zp with γ2 6≡ 1 (mod p), #pZγ is #p P-
hard.

Proof. If γ ≡ 0 (mod p) then, by Lemma 3.6 #pZγ is #p P-hard. Otherwise, γ 6≡ 0
(mod p) and #pZγ is #p P-hard by Lemma 3.7.
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3.4 Gadgets

Let H be a target graph for #pHomsToH. To define the gadgets that we use, we
need choose a set Ωy ⊆ V (H) and a vertex i ∈ Ωy. Given a multigraph G whose
two-spin partition function we wish to compute modulo p, we will construct a partially
H-labelled graph J and consider homomorphisms from J to H. J will contain a copy of
V (G) and we will be interested in homomorphisms that map every vertex in this copy
to Ωy. Vertices mapped to i will be vertices mapped to “1” in the two-spin configuration
under consideration; vertices mapped to Ωy − i will be the vertices mapped to “0”.

Definition 3.9. A (γ, p)-gadget (i, s, (J1, y), (J2, z), (J3, y, z)) consists of vertices i and
s of H together with three partially labelled graphs with distinguished vertices (J1, y),
(J2, z) and (J3, y, z), where y and z are distinct, satisfying the properties explained
bellow. Let

N1(v) = |Hom((J1, y)→ (H, v))|

N2(v) = |Hom((J2, z)→ (H, v))|

N3(u, v) = |Hom((J3, y, z)→ (H, u, v))|

Ωy = {u ∈ V (H) | N1(v) ≡ 1 (mod p)}

Ωz = {u ∈ V (H) | N2(v) 6≡ 0 (mod p)} .

The properties that we require are:

1. i ∈ Ωy, |Ωy| ≡ 2 (mod p) and, for each u /∈ Ωy, N1(u) ≡ 0 (mod p).

2. ∑b∈Ωz N2(b) ≡ γκ and N2(s) ≡ κ (mod p), where κ 6≡ 0 (mod p).

3. For each o ∈ Ωy − i and each x ∈ Ωz − s, N3(o, x) ≡ 0 (mod p).

4. And for each o ∈ Ωy − i and each x ∈ Ωz − s the following hold:

(a) N3(i, s) ≡ 1 (mod p)

(b) N3(o, s) ≡ 1 (mod p)

(c) N3(i, x) ≡ 1 (mod p).

Now we can show that for every graph H and every prime p, such that H and p

are orbit compatible and H has a (γ, p)-gadget, the problem of counting (modulo p)
graph homomorphisms to H is #p P-hard. We will use the following notation to build
partially labelled graphs containing many copies of some subgraph. For any “tag” T
(which we will treat just as an arbitrary string) and any partially labelled graph J ,
denote by JT a copy of J with every vertex v ∈ V (G(J)) renamed vT.
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Figure 3.1: The construction of the partially labelled graphs K and J from an example
graph G, as in the proof of Theorem 3.10. Here graph G consists of two vertices u, v
connected with the parallel edges f, g and the self-loop e on vertex u.

Theorem 3.10. Let p be a prime and let H be a graph such that H and p are orbit com-
patible. If H has a (γ, p)-gadget, with γ ∈ Zp and γ2 6≡ 1 (mod p), then #pHomsToH
is #p P-hard.

Proof. Let (i, s, (J1, y), (J2, z), (J3, y, z)) be the (γ, p)-gadget for H and recall the sets
Ωy and Ωz from Definition 3.9. We will reduce #pZγ to #pPartLabHomsToH.
The rest of the proof follows from Corollary 3.8 and Theorem 1.9. Given an input
multigraph G to #pZγ, we construct an appropriate partially H-labelled graph J and
show that |Hom(J → H)| ≡ κ|E(G)|Zγ(G) (mod p), where κ comes from property 2 of
Definition 3.9.

We construct J in two stages (see Figure 3.1). Take the union of disjoint copies Je,v3

of J3 for every edge e ∈ G and each endpoint v of e. If e is a self-loop of G, then J
will contain a single copy of Je,v3 . For each edge e = (u, v) ∈ G, identify the vertices
ze,u and ze,v — if e = (v, v) ignore this step. For each vertex v ∈ G, identify all the
vertices ye,v such that e has v as an endpoint. For every edge e ∈ G add a disjoint
copy Je2 of J2 and identify ze with the already-identified vertices ze,v. Call this graph K.

We show that K is a simple graph and not a multigraph. By construction, every
edge e with distinct endpoints in G corresponds to the graphs Je,v3 , Je,u3 and Je2 in
K, where ze,v, ze,u and ze are identified. Every pair of parallel edges e and f forms
a 2-cycle in G. In K, this corresponds to a cycle of length 4dJ3(y, z). Since J3 is a
simple graph with no parallel edges and dJ3(y, z) > 0, there are no 1-cycles or 2-cycles
in K that correspond to e and f in G. So there are no self-loops or parallel edges in K
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that correspond to e and f . Let e = (v, v) be a self-loop in G. By construction, this
will correspond to the graphs Je,v3 and Je2 as subgraphs of K, where ze,v is identified
with ze. As both J2 and J3 are simple graphs, they do not introduce any self-loops or
parallel edges in K. Hence K is a simple graph with no self-loops or parallel edges.

To make J , take K and add a disjoint copy Jv1 of J1 for every vertex v ∈ G and
identify yv with the already-identified vertices ye,v. Since K and J1 are simple graphs,
by construction J is also a simple graph.

We now proceed to show that |Hom(J → H)| ≡ κ|E(G)|Zγ(G) (mod p).

For a homomorphism σ ∈ Hom(K → H), let [[σ]] be the set of extensions of σ to
homomorphisms from J to H, i.e.,

[[σ]] = {σ′ ∈ Hom(J → H) | σ(v) = σ′(v) for all v ∈ V (G(K))} .

Every homomorphism from J to H is the extension of a unique homomorphism
from K to H, so we have

|Hom(J → H)| =
∑

σ∈Hom(K→H)
|[[σ]]| . (3.1)

From the structure of J , we have

|[[σ]]| =
∏

v∈V (G)

∣∣∣Hom((J1, y)→ (H, σ(yv))
∣∣∣.

By Definition 3.9 (property 1), |Hom((J1, y)→ (H, a))| ≡ 1 (mod p) if a ∈ Ωy, oth-
erwise |Hom((J1, y) → (H, a))| ≡ 0 (mod p). Therefore, |[[σ]]| is non-zero (modulo p)
if and only if σ maps every vertex yv into Ωy; call such a homomorphism “legitimate”
with respect to J1. We can rewrite (3.1) as

|Hom(J → H)| ≡ |{σ ∈ Hom(K → H) | σ is legitimate}| (mod p) , (3.2)

and, from this point, we restrict our attention to legitimate homomorphisms.

Given a legitimate homomorphism σ ∈ Hom(K → H), let σ|Y be the restriction
of σ to the domain {yv | v ∈ V (G)}. Write σ ∼Y σ′ if σ|Y = σ′|Y and write [[σ]]Y
for the ∼Y -equivalence class of σ. The classes [[σ]]Y partition the set of legitimate
homomorphisms from K to H.

Recall from Definition 3.9 that N2(v) = |Hom((J2, z) → (H, v))| and recall that
N3(u, v) = |Hom((J3, y, z)→ (H, u, v))|. Let

n(u, u′) =
∑
b∈Ωz

N3(u, b)N3(u′, b)N2(b)
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and let
n′(u) =

∑
b∈Ωz

N3(u, b)N2(b).

From the structure of K we have,

∣∣∣[[σ]]Y
∣∣∣ =

 ∏
(u,v)∈E(G),

u6=v

n(σ(u), σ(v))


 ∏

(u,u)∈E(G)
n′(σ(u))

 .

We will claim that for u ∈ Ωy and for o ∈ Ωy \ {i} the following hold:

• n(i, i) ≡ γκ (mod p),

• n′(i) ≡ γκ (mod p),

• n(o, u) ≡ n(u, o) ≡ κ (mod p) and

• n′(o) ≡ κ (mod p).

To prove the claim, recall from Definition 3.9 that ∑b∈Ωz N2(b) = γκ (property 2)
and that for b ∈ Ωz, N3(i, b) ≡ 1 (mod p) (property 4). Therefore, both n(i, i) ≡∑
b∈Ωz N2(b) ≡ γκ (mod p) and n′(i) ≡ ∑

b∈Ωz N2(b) ≡ γκ (mod p). For o ∈ Ωy \
{i}, N3(o, s) ≡ 1 (mod p) and for x ∈ Ωz \ {s}, N3(o, x) ≡ 0 (mod p) —this comes
from properties 3 and 4 of Definition 3.9. So, when at least one of u or u′ is not
i, the only non-zero term in the sum defining n(u, u′) is N3(u, s)N3(u′, s)N2(s). As
N3(u, s) ≡ N3(u′, s) ≡ 1 (mod p), from property 2 we have n(u, u′) ≡ N2(s) ≡ κ

(mod p). Similarly, n′(o) ≡ κ (mod p). This concludes the proof of the claim.
For a homomorphism σ : V (K)→ V (H), let c′(σ) be the number of edges (v, v′) ∈

E(G), where v and v′ are not necessarily distinct, with σ(v) = σ(v′) = i. From the
above claim, we have,

|[[σ]]Y | ≡ κ|E(G)|γc
′(σ) . (3.3)

Choose representatives σ1, . . . , σk, one from each ∼Y -equivalence class. From (3.2)
and the fact that the classes [[σ]]Y partition the legitimate homomorphisms from K

to H, we have,

|Hom(J → H)| ≡
k∑
j=1

∣∣∣[[σj]]Y ∣∣∣ (mod p).

From (3.3), the definition of ∼Y -equivalence and the definition of a legitimate homo-
morphism we have,

|Hom(J → H)| ≡ κ|E(G)| ∑
σ:V (G)→Ωy

γc
′(σ) (mod p). (3.4)

Given σ, σ′ : V (G)→ Ωy, we write σ ∼i σ′ if, for all v ∈ V (G), σ(v) = i⇔ σ′(v) = i.
Let [[σ]]i denote the ∼i equivalence-class of σ. The classes [[σ]]i partition the set of
functions from V (G) to Ωy and, by definition, for σ ∼i σ′, c′(σ) = c′(σ′).
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Choose representatives σ1, . . . σm, one from each ∼i equivalence class. From (3.4)
we have

|Hom(J → H)| ≡ κ|E(G)|
m∑
j=1
|[[σ]]i|γc

′(σj) (mod p). (3.5)

For σ : V (G) → Ωy, let `(σ) denote the number of vertices v ∈ V (G) with σ(v) ∈
Ωy \ {i}. |[[σ]]i| ≡ (|Ωy| − 1)`(σ) (mod p). Recall from property 1 of Definition 3.9 that
|Ωy| ≡ 2 (mod p), so |[[σ]]i| ≡ 1 (mod p). For each σ : V (G)→ Ωy, there is exactly one
configuration σ′ : V (G)→ {0, 1}, such that for each v ∈ V (G), σ(v) = i⇔ σ′(v) = 1.
Therefore there is a bijection between the equivalence classes [[σ]]i and distinct mappings
σ′ : V (G)→ {0, 1}. Using this bijection and (3.5) we have,

|Hom(J → H)| ≡ κ|E(G)| ∑
σ:V (G)→{0,1}

γc(σ) (mod p).

Recall the definition of the partition function Zγ(G) = ∑
σ:V (G)→{0,1} γ

c(σ). We have

|Hom(J → H)| ≡ κ|E(G)|Zγ(G) (mod p).

In this chapter we are interested in asymmetric trees. Recall from Section 2.2,
that if a graph H is asymmetric, its automorphism group contains only the trivial
automorphism. Hence, for any prime p, H has no automorphism of order p and for
every r ∈ N>0 and for every r-tuple ȳ ∈ (V (H))r, |OrbH(ȳ)| ≡ 1 (mod p). Recall
Definition 2.22 of orbit compatibility. We have the following observation.

Observation 3.11. Let p be a prime and let H be an asymmetric graph. H and p are
orbit compatible.

To show hardness for #pHomsToH, when H is an asymmetric tree we can now
use the following.

Corollary 3.12. Let p be a prime and let H be an asymmetric graph. If H has a
(γ, p)-gadget, with γ ∈ Zp and γ2 6≡ 1 (mod p), then #pHomsToH is #p P-hard.

Proof. This is immediate from Theorem 3.10 and Observation 3.11.

3.5 A dichotomy for asymmetric trees

In this section we will show that every asymmetric tree has a (γ, p)-gadget, whith γ2 6≡ 1
(mod p) for all primes p. Our first lemma shows that every asymmetric tree has three
adjacent vertices of appropriate degree. We will use this to construct (γ, p)-gadgets.

The following lemma extends [32, Lemma 5.3] of Faben and Jerrum by following a
similar proof approach.
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Figure 3.2: An illustration of the proof of Lemma 3.13. The vertices that appear with
grey are the vertices that their existence is contradicted in the proof. The rest of the
longest path of the graph P is indicated with a wavy line.

Lemma 3.13. Every asymmetric tree H with more than one vertex has a vertex s
of degree 2 that is adjacent to a leaf. Furtherore, s is adjacent to a vertex i, where
degH(i) ∈ {2, 3}.

Proof. Let P = v0 . . . vk be a longest path in H. Since stars have non-trivial automor-
phisms, H cannot be a star and k ≥ 3. Let v1 = s and v2 = i. For an illustration of
the proof that follows see Figure 3.2.

From the maximality of the length of P , v0 must be a leaf vertex. Now assume for
contradiction that u1 ∈ ΓH(v1)\{v0, v2}. If u1 is not a leaf, then the maximality of the
length of P is contradicted. If u1 is a leaf, then H has a non-trivial automorphism τ ,
with τ(u1) = v0 and τ(v0) = u1. Hence u1 cannot exist and v1 has degree 2.

We claim that every neighbour of v2 that is not in P must be a leaf. Let u2 ∈
ΓH(v2) \ {v1, v3}. Assume for contradiction that u2 is not a leaf. By the maximality of
the length of P , any vertex u′2 ∈ ΓH(u2) \ {v2} must be a leaf. First assume that there
are at least two vertices u′2, u′′2 ∈ ΓH(u2) \ {v2}. Since both of them can only be leaves,
H has a non-trivial automorphism τ with τ(u′2) = u′′2 and τ(u′′2) = u′2. Hence u2 can
only have one neighbour u′2 that is a leaf. But now H has a non-trivial automorphism τ

with τ(v0) = u′2, τ(v1) = u2, τ(u′2) = v0 and τ(u2) = v1, so the claim follows.
Finally we show that v2 can only have one neighbour u2 ∈ ΓH(v2) \ {v1, v3}. If

there was u3 6= u2 with u2 ∈ ΓH(v2) \ {v1, v3} then H would have a non-trivial auto-
morphism τ with τ(u2) = u3 and τ(u3) = u2.

Now we will show that if H has a degree 2 vertex adjacent to a vertex of degree γ,
then H has a (γ, p)-gadget.

Lemma 3.14. Let p be a prime and let H be a tree. If H has a vertex s of degree 2
that is adjacent to a vertex i of degree γ, then H has a (γ, p)-gadget.

Proof. We define the (γ, p)-gadget of H to be (i, s, (J1, y), (J2, z), (J3, y, z)), where
J1, J2, J3 are defined as follows (See Figure 3.3):

48



o s i

H

J1: s

u
y

J2: i

w
z

J3:
y z

Figure 3.3: A (γ, p)-gadget for the asymmetric tree H as in the proof of Lemma 3.14,
where γ = 3. In the figure we assumed that o is a leaf, but it is not needed for the
proof of Lemma 3.14. Normal vertices appear as black dots, distinguished vertices as
small white circles. Pinned vertices appear as large white circles where the label inside
the vertex indicates what the vertex is pinned to. The ellipse denotes the rest of the
graph H.

Figure 3.4: An example of an asymmetric tree that does not have a degree 2 vertex
adjacent to a degree 3 vertex.

• J1 is the edge (u, y), with τ(J1) = {u 7→ s}.

• J2 is the edge (w, z), with τ(J2) = {w 7→ i}.

• J3 is the edge (y, z).

It remains to show that properties 1-4 of Definition 3.9 hold.
G(J1) is just an edge so, for each v ∈ ΓH(s), N1(v) = 1 and, for every v′ /∈ ΓH(v1), it

holds that N1(u) = 0. Therefore Ωy = ΓH(s). Clearly i ∈ Ωy and |Ωy| = degH(s) = 2.
Hence property 1 of Definition 3.9 holds.

Similarly, as J2 is a simple edge, Ωz = ΓH(i) and for any b ∈ Ωz, N2(b) = 1 6≡ 0
(mod p). Therefore ∑b∈Ωz N2(b) = degH(i) = γ and N2(s) = 1, hence property 2 of
Definition 3.9 holds, with κ = 1.

G(J3) is a simple edge, so for a, b ∈ V (G), N3(a, b) = 1 if and only if a is adjacent
to b, otherwise N3(a, b) = 0. Let o ∈ Ωy − i and let x ∈ Ωz − s. Since there is a path
P = osix in H, o is not adjacent to x, otherwise there would be a cycle in H. Thus
N3(o, x) = 0 and property 3 of Definition 3.9 holds. Since Ωy = ΓH(s), both i and o
are adjacent to s. Therefore, N3(i, s) = N3(o, s) = 1 and properties 4(a) and 4(b) of
Definition 3.9 hold. Every x ∈ Ωz−s is adjacent to i, so N3(i, x) = 1 and property 4(c)
Definition 3.9 holds.

When p = 3 there exists assymetric trees, for which applying Lemma 3.14 would
give us a (2, 3)-gadget. Such an example is shown in Figure 3.4. This is not sufficient
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Figure 3.5: A (3, 3)-gadget for the asymmetric tree H as in the proof of Lemma 3.15.
Normal vertices appear as black dots, distinguished vertices as small white circles.
Pinned vertices appear as large white circles where the label inside the vertex indicates
what the vertex is pinned to. The ellipse denotes the rest of the graph H.

to give us hardness for #3HomsToH, as 22 ≡ 1 (mod 3), so Theorem 3.10 doesn’t
apply. By Lemma 3.13, if H is an asymmetric tree that does not have a degree 2 vertex
adjacent to a degree 3 vertex, then it must have two adjacent vertices of degree 2 and
one of them is adjacent to a leaf. It turns out that this structure is sufficient to give
us a (3, 3)-gadget for H.

Lemma 3.15. Let p be a prime and let H be a tree. If H has a vertex s of degree 2
that is adjacent to a leaf o and a vertex i of degree 2, then H has a (3, 3)-gadget.

Proof. We define the (3, p)-gadget of H to be (i, s, (J1, y), (J2, z), (J3, y, z)), where
J1, J2, J3 are defined as follows (see Figure 3.5):

• J1 is the edge (u, y), with τ(J1) = {u 7→ s}.

• J2 is the path w1w2z, with τ(J2) = {w1 7→ s}.

• J3 is the edge (y, z).

It remains to show that properties 1-4 of Definition 3.9 hold.
G(J1) is just an edge so, for each v ∈ ΓH(s), N1(v) = 1 and, for every v′ /∈ ΓH(v1), it

holds that N1(u) = 0. Therefore Ωy = ΓH(s). Clearly i ∈ Ωy and |Ωy| = degH(s) = 2.
Hence, property 1 of Definition 3.9 holds.

Let x 6= s be the other neighbour of i and consider G(J2). Any homomorphism
σ : V (G(J2))→ H that respects τ(J2) must have σ(w2) ∈ ΓH(s) = {o, i}. If σ(w2) = o,
then σ(z) = s, otherwise σ(w2) = i and σ(z) ∈ ΓH(i) = {s, x}. This shows that
Ωz = {s, x}, N2(s) = 2 and N2(x) = 1. So ∑

b∈Ωz N2(b) = 3 ≡ 6 (mod 3) and
property 2 of Definition 3.9 holds for κ = 2.

G(J3) is a simple edge, so for a, b ∈ V (G), N3(a, b) = 1 if and only if a is adjacent
to b, otherwise N3(a, b) = 0. Since o is a leaf that is only adjacent to s, N3(o, x) = 0
and property 3 of Definition 3.9 holds.
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Since Ωy = ΓH(s), both i and o are adjacent to s. Therefore N3(i, s) = N3(o, s) = 1
and properties 4(a) and 4(b) of Definition 3.9 hold. Every x ∈ Ωz − s is adjacent to i,
so N3(i, x) = 1 and property 4(c) Definition 3.9 holds.

Recall that we have shown that when an asymmetric graph H contains a (γ, p)-
gadget, where γ2 6≡ 1 (mod p) then #pHomsToH is #p P-hard (Theorem 3.10). The
latter combined with Lemmas 3.13, 3.14 and 3.15 suffices to show that, for every
asymmetric tree H with more than one vertex #pHomsToH is #p P-hard.

Lemma 3.16. Let H be an asymmetric tree with more than one vertex. For any prime
p ≥ 3, #pHomsToH is #p P-hard.

Proof. Since H is an asymmetric tree and has more than one vertex we can apply
Lemma 3.13 to find a vertex s, with degH(s) = 2, that is adjacent to a leaf o and a
vertex i with degH(i) ∈ {2, 3}. Let γ = degH(i).

If p > 3, then, by Lemma 3.14, H has a (γ, p)-gadget. Since γ ∈ {2, 3} and p > 3,
we have that γ2 6≡ 1 (mod p) and the lemma follows from Theorem 3.10.

If p = 3 and γ = 3, then, by Lemma 3.14, H has a (3, 3)-gadget; otherwise γ = 2
and, by Lemma 3.15, H has a (3, 3)-gadget. The lemma follows from Theorem 3.10.

When p = 2, hardness for #2HomsToH comes from the results of Faben and
Jerrum [32, Lemma 5.4] and [32, Theorem 5.6].

Lemma 3.17 (Faben and Jerrum, Lemma 5.4). An involution-free tree has trivial
automorphism group.

Theorem 3.18 (Faben and Jerrum, Theorem 5.6). Given an involution-free tree H
with more than one vertex, #2HomsToH is #2 P-complete.

We have shown that for all primes p and all asymmetric graphs H with more than
one vertex #pHomsToH is #p P-hard. Recall Definition 2.7 of an order p reduced form
of a graph H. By Theorem 2.6, H∗p is unique (up to isomorphism). By Theorem 2.4,
#pHomsToH has the same complexity as #pHomsToH∗p.

We can now prove the main theorem of this chapter.

Theorem 1.10. Let p be a prime and let H be a graph whose order p reduced form H∗p

is an asymmetric tree. If H∗p has more than one vertex then #pHomsToH is #p P-
hard, otherwise #pHomsToH is computable in polynomial time.

Proof. By Theorem 2.4, #pHomsToH and #pHomsToH∗p have the same computa-
tional complexity. If H∗p has at most one vertex, then, by Corollary 2.9, #pHomsToH
is computable in polynomial-time. Otherwise, H∗p has more than one vertex. If p = 2
#pHomsToH is #2 P-complete by Theorem 3.18. Otherwise, p > 2 and #pHomsToH
is #p P-complete by Lemma 3.16.
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3.6 Composite Numbers

In this section we will consider the complexity of #kHomsToH, when k is a composite
number and H is a graph. We will use the Chinese remainder theorem. For a proof,
see, e.g., [69, Theorem 2.6].

Theorem 3.20 (Chinese remainder theorem). Let {kj}mj=1 be a pairwise relatively
prime family of positive integers, and let a1, . . . , am be arbitrary integers. Then there
exists a solution a ∈ N to the system of congruences

a ≡ aj (mod kj) (j = 1, . . . ,m).

Moreover, any a′ ∈ N is a solution to this system of congruences if and only if a ≡ a′

(mod k), where k = ∏m
j=1 kj.

Let H be a graph and consider #kHomsToH, where k ∈ N>0 is a composite. Let∏m
j=1 p

rj
j be the prime factorisation of k. If #kHomsToH can be solved in polynomial

time, then for each j ∈ [m], #
p
rj
j

HomsToH can also be solved in polynomial time:
since prjj is a factor of k we take the solution of #kHomsToH modulo prjj and obtain
a solution for #

p
rj
j

HomsToH. From the Chinese remainder theorem, (Theorem 3.20)
the inverse is also true: if for each j ∈ [m] we can solve #

p
rj
j

HomsToH in polynomial
time, then we can also solve #kHomsToH in polynomial time.

Now let H be a graph and let k = pr, where p is a prime and r is a positive
integer. If #kHomsToH is computable in polynomial time then so is #pHomsToH,
by simply taking the solution of #kHomsToH modulo p. The inverse does not always
hold. Surprisingly, Guo et al. [49] were able to obtain such a result for the constraint
satisfaction problem. Recall the definition of #kCSP (Problem 3.4). They were able to
show [49, Lemma 4.1 and Lemma 4.3] that, when p is a prime, #prCSP is computable
in polynomial time if #pCSP is computable in polynomial time.

Naturally, one would ask if a result similar to the result of Guo et al. can be
obtained for #kHomsToH. We give a negative answer to this question: we show that
there is a graph (P4) such that #2HomsToP4 is computable in polynomial time, while
#4HomsToP4 is #2 P-hard.

Definition 3.21. We write P4 for the path v1v2v3v4.

That #2HomsToP4 is computable in polynomial time comes trivially from Corol-
lary 2.9 and the fact that P4 has an involution.

Corollary 3.22. #2HomsToP4 is computable in polynomial time.

Proof. τ = {v1 7→ v4, v4 7→ v1, v2 7→ v3, v3 7→ v2} is an involution for P4 that has no
fixed points, so P ∗24 is the empty graph. Trivially, for any non-empty input graph G,
#2HomsToP ∗24 is always zero.
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In the rest of this section we will show that #4HomsToP4 is hard via a series of
polynomial time Turing reductions. Let I(G) be the set of independent sets of G. The
starting point for our reductions is the following problem.

Problem 3.23. Name. #kBIS.

Input. A bipartite graph G.

Output. |I(G)| (mod k).

Faben [30, Theorem 3.7] shows the following:

Theorem 3.24 (Faben). For all integers k, #kBIS is #k P-complete.

For our hardness proof to work, we will we need the input graph of #kBIS to be
connected. So an intermediate stop in our chain of reductions is the connected version
of #kBIS.

Problem 3.25. Name. #kconBIS.

Input. A bipartite, connected graph G.

Output. |I(G)| (mod k)

The next lemma shows that #kconBIS is also hard for all integers.

Lemma 3.26. For all integers k, #kconBIS is #k P-complete.

Proof. We give a Turing reduction from #kBIS and the lemma follows from Theo-
rem 3.24. Let G be an input for #kBIS and, since G is bipartite, let V1, V2 be a
bipartition of G, such that for each isolated vertex v ∈ V (G), v ∈ V1. We construct
an instance G′ for #kconBIS by adding an extra vertex v to a copy of G and con-
necting v with an edge to all the vertices in V1. That is, V (G′) = V (G) ∪ {v} and
E(G′) = E(G) ∪ {(u, v) | u ∈ V1}. This construction can be done in polynomial-time.

We claim that |I(G)| + 2|V2| = |I(G′)|. Let I0(G′) = {J ∈ I(G′) | v ∈ J}
and I1(G′) = {J ∈ I(G′) | v /∈ J}. I0(G′) and I1(G′) partition I(G′). For every
J ∈ I0(G′), it must be the case that J ∩ V1 = ∅, as every vertex in V1 is adjacent to
v in G′. Any subset of V2 can be an independent set in I0(G′), hence |I0(G)| = 2|V2|.
To conclude the proof of the claim we will show that |I1(G′)| = |I(G)|. Since v is not
in any independent set in |I1(G′)|, every independent set of G is an independent set in
|I1(G′)| and vice versa. The lemma follows.

We are now ready to prove the main result of this section.

Lemma 3.27. Let P4 be the path v1v2v3v4. #4HomsToP4 is #2 P-hard.
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Proof. We will show that #2conBIS reduces to #4HomsToP4. Let G be an instance
of #2conBIS and let I(G) be the set of independent sets of G. We will show that
2|I(G)| = |Hom(G→ P4)|.

Let σ ∈ Hom(G → P4). We first show that the set J = {u ∈ V (G) | σ(u) ∈
{v1, v4}} is an independent set of G. Let u1, u2 ∈ J . From the definition of J , we have
(σ(u1), σ(u2)) /∈ E(G). As σ is a homomorphism, there can be no edge (u1, u2) ∈ J , so
J is an independent set of G.

Let J ∈ I(G) and let V1, V2 be a bipartition of V (G). We define σJ : V (G)→ V (H)
to be the following mapping:

σJ(u) =



v1, if v ∈ V1 ∩ J

v2, if v ∈ V2 \ J

v3, if v ∈ V1 \ J

v4, if v ∈ V2 ∩ J.

Let (u1, u2) ∈ E(G). We will show that (σJ(u1), σJ(u2)) ∈ E(P4). Since G is
bipartite and (u1, u2) ∈ E(G), assume, without loss of generality, that u1 ∈ V1 and
u2 ∈ V2. By the definition of σJ we have that σJ(u1) ∈ {v1, v3} and σJ(u2) ∈ {v2, v4}.
Assume for contradiction that σJ(u1) = v1 and σJ(u2) = v4. For the latter to hold, it
must be that both u1, u2 ∈ J , but this is a contradiction since J is an independent set
and (u1, u2) ∈ E(G). That is, (σJ(u1), σJ(u2)) ∈ E(P4), and therefore σJ ∈ Hom(G→
P4).

Let τ = {v1 7→ v4, v4 7→ v1, v2 7→ v3, v3v2} be the involution of P4 and consider the
homomorphism σ′J = σJ ◦ τ . By definition:

σ′J(u) =



v1, if v ∈ V2 ∩ J

v2, if v ∈ V1 \ J

v3, if v ∈ V2 \ J

v4, if v ∈ V1 ∩ J.

Since G is connected, there is no subset S ⊆ V (G), such that the mapping

ρ(u) =

σJ(u), if v ∈ S

σ′J(u), otherwise

is a valid homomorphism. Therefore, σJ and σ′J and are uniquely determined by J and
every homomorphism of G is of the form σJ or σ′J for some J ∈ I(G). This proves the
claim, that 2|I(G)| = |Hom(G→ P4)|, and establishes the lemma.
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Chapter 4

Counting homomorphisms
(modulo 2) to cactus graphs

The results of this chapter are published in the paper “The Complexity of Counting
Homomorphisms to Cactus Graphs Modulo 2” co-authored with Leslie Goldberg and
David Richerby [43].

4.1 Introduction

In this chapter we study the complexity of #2HomsToH when H is a cactus graph.
A cactus graph is a connected graph in which every edge belongs to at most one cycle.
The main result of this chapter is the following.

Theorem 1.11. Let H be a graph whose involution-free reduction H∗ is a cactus
graph. If H∗ has at most one vertex then #2HomsToH is solvable in polynomial time;
otherwise, #2HomsToH is #2 P-complete.

If H is a cactus graph, then so is every induced subgraph, including its involution-
free reduction H∗. Thus, we have the following corollary, which proves the conjecture
of Faben and Jerrum (Conjecture 1.7) for cactus graphs.

Corollary 4.2. Let H be a simple graph in which every edge belongs to at most one
cycle. If the involution-free reduction of H has at most one vertex then #2HomsToH
is solvable in polynomial time. Otherwise, #2HomsToH is complete for #2 P with
respect to polynomial-time Turing reductions.

In order to prove the hardness result in Theorem 1.11, we introduce three graph-
theoretic notions: cactus gadgets, partial cactus gadgets, and mosaics. Cactus gadgets
and partial cactus gadgets are structures for proving #2 P-hardness. Mosaics are graphs
built on unions of 4-cycles. They are what is left in inductive cases where cactus gadgets
don’t exist and we use them inductively to prove overall hardness. Our approach is
therefore recursive: we show how to decompose involution-free cactus graphs at cut
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vertices in such a way that every component contains at least one of these three induced
structures. We then show how to combine these structures to obtain cactus gadgets in
the original graph.

Unlike in our paper, where we directly proved that if an involution-free cactus graph
H contains a cactus gadget, then the #2HomsToH is #2 P-complete, in this thesis we
take advantage of Theorem 3.10 of Section 3.4 to establish hardness. We show that, if
a graph H contains a cactus gadget, then H contains a (0, 2)-gadget.

The most technical part of this chapter is showing that every non-trivial involution-
free cactus graph does actually contain a cactus gadget. The presence of cycles in the
graph greatly complicates the structure of the argument, hence the need to define
cactus gadgets, partial cactus gadgets and mosaics and to decompose cactus graphs
into components with these three different structures, which can then be combined to
form cactus gadgets.

Theorem 1.11 gives a dichotomy for cactus graphs. If the involution-free reduction
of H has at most one vertex then #2HomsToH is in FP. Otherwise, it is #2 P-
complete. Furthermore, the meta-problem of determining which is the case, given
input H, is computationally easy. Finding an involution of H reduces in polynomial
time to computing the size of H’s automorphism group modulo 2 (see Faben [31,
Chapter 7]). The latter problem is in FP for cactus graphs because, for example,
cactus graphs are planar and have tree-width at most 2.

4.1.1 Organisation

We define cactus gadgets in Section 4.3 and also show that ifH has a cactus gadget then
H has a (0, 2)-gadget. In section 4.4 we define partial cactus gadgets. In Section 4.5
we define mosaics and show some of their key properties. In Section 4.6 we show how
to combine partial cactus gadgets and mosaics in order to obtain cactus gadgets. We
show that every involution-free cactus graph contains a cactus gadget in Section 4.7 and
we combine everything together in Section 4.8 in order to obtain the main dichotomy
theorem for cactus graphs.

4.2 Preliminaries

As in the previous chapter, graphs are undirected and have no parallel edges or self-
loops. We will also use the partially labelled graphs and graphs with distinguished
vertices that we introduced in Section 2.2.

For a graph G and a vertex set U ⊆ V (G), let G[U ] denote the subgraph of G
induced by U . Our analysis is based primarily on decomposing graphs, particularly by
splitting them at cut vertices, as follows.

Definition 4.3. Given a graph H with a cut vertex v, let H ′1, . . . , H ′κ be the connected
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components of H − {v}. The split of H at v is the set of graphs {H1, . . . , Hκ}, where
Hj = H[V (H ′j) ∪ {v}].

Given two graphs G and H (not necessarily vertex-disjoint), let G ∪H denote the
graph (V (G)∪ V (H), E(G)∪E(H)). If F is a set of edges, let V (F ) denote the set of
endpoints of edges in F and let G∪F denote the graph G∪(V (F ), F ). Given sets V ′ ⊆
V (G) and E ′ ⊆ E(G), let G− V ′ = G[V (G) \ V ′] and let G−E ′ = (V (G), E(G) \E ′).
We use the phrase “j-walk” in a graph to refer to a walk of length j. Walks may repeat
both vertices and edges.

We use ΓH(v) to denote the set of neighbours of vertex v in H and degH(v) to
denote the degree of v in H. We use dH(u, v) to denote the length of a shortest path
from u to v in H. If S ⊆ V (H) then dH(u, S) denotes min{dH(u, v) | v ∈ S}.

A path P is a graph with vertex set V (P ) and edge set E(P ). However, where
convenient, we specify P by simply listing the vertices of the path, in order. As such,
if P = x1 . . . x` and P ′ = y1 . . . y`′ , we write Pz for the path P ∪ {(x`, z)}, PP ′ for the
path P ∪ {(x`, y1)} ∪ P ′ and so on. We also use `(P ) to denote |E(P )|, the length of
the path P . Similarly, we view a cycle C as a graph, but we sometimes specify C by
listing its vertices in order. Paths and cycles do not repeat vertices; The length of a
path P is `(P ) = |E(P )|. The length of a cycle C is `(C) = |E(C)|.

Recall that an involution is an automorphism of order 2. Also recall Definition 2.7
of an order p reduced form H∗p of a graph H. In the special case of p = 2 we will call
this graph the involution-free reduction of H and simply denote it with H∗.

4.3 Hardness modulo 2 and cactus gadgets

Following the presentation of Chapter 3 we first show that if H is orbit compatible
with 2 and has the appropriate structure then #2HomsToH is #2 P-hard. Recall
the definition of a (γ, p)-gadget (Definition 3.9). In this chapter we are interested in
p = 2 so, according to Theorem 3.10, for #2HomsToH to be hard, H must be orbit
compatible with 2 and contain a (0, 2)-gadget. It turns out that any involution free
graph H is orbit compatible with 2.

Lemma 4.4. If H is an involution-free graph, then H and 2 are orbit compatible.

Proof. Since H is involution-free, by Corollary 2.13 every orbit of a tuple ȳ ∈ (V (H))r

under the action of Aut(H) has nonzero cardinality modulo 2. That is |OrbH(ȳ)| ≡ 1
(mod 2) and the lemma follows.

Corollary 4.5. Let H be an involution-free graph. If H contains a (0, 2)-gadget, then
#2HomsToH is #2 P-complete.

Proof. By Lemma 4.4, H and 2 are orbit compatible. Since H contains (0, 2)-gadget
and 02 6≡ 1 (mod 2), by Theorem 3.10 we have that #2HomsToH is #2 P-complete.
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To obtain hardness for #2HomsToH when H is a cactus graph we will use what
we call a cactus gadget.

Definition 4.6. A cactus gadget in a graph H is a tuple (β, s, t, O, i,K, k, w) where β
is a positive integer, s, t and i are vertices of H, (O, {i}, K) is a partition of ΓH(s),
and k : K → N>0 and w : K → V (H) are functions. The following conditions must be
satisfied.

1. |O| is odd.

2. For any o ∈ O and y′ ∈ O∪{i}, s is the unique vertex that is adjacent to o and y
and has an odd number of β-walks to t.

3. There are an even number of (1 + β)-walks from i to t.

4. For all u ∈ K, w(u) has an even number of k(u)-walks to u and an odd number
of k(u)-walks to every vertex in O ∪ {i}.

In our paper [43] cactus gadgets are called “hardness gadgets”. In this thesis we
have renamed them to cactus gadgets to distinguish between the other gadgets we use
for proving that a problem is hard to compute.

To show that when an involution-free graphH contains a cactus gadget, the problem
of #2HomsToH is hard we would have to show an analogue of Corollary 4.5. In [43,
Theorem 8.7] we proved that if an involution-free graph H has a cactus gadget, then
#2HomsToH is #2 P-hard directly. We don’t need to do this here as it turns out that
when a graph H has a cactus gadget, then H also has a (0, 2)-gadget, so the hardness
of #2HomsToH follows immediately.

The Properties 2-4 of a cactus gadget are stated in terms of number of walks
of appropriate length between two vertices of H. The properties of a (γ, p)-gadget
(Definition 3.9) are stated in terms of number of homomorphisms from a partially
labelled graph J with distinguished vertices to the target graph H. The following
lemma will be helpful for converting the number of paths between two vertices in H to
the number of homomorphisms from J to H.

Lemma 4.7. Let H be a graph, and let v, w ∈ V (H). If P is the path x1 . . . xkx

together with τ(P ) = {x1 7→ w}, then |Hom((P, x) → (H, v))| is equal to the number
of k-walks from w to v in H.

Proof. Let W (a, b, k) denote the number of k-walks between the vertices a and b. We
prove the lemma by induction on k. For the base case k = 1, P is the edge (x1, x). If
w is adjacent to v in H, then W (w, v, 1) = 1 = |Hom((P, x) → (H, v))|, otherwise w
and v are not adjacent, so W (w, v, 1) = 0 = |Hom((P, x)→ (H, v))|.

Assuming that the lemma holds for k we will show that the lemma holds for k+ 1.
Every walk from w to v must go through a neighbour of w, so W (w, v, k + 1) =
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Figure 4.1: Using a cactus gadget (β, s, t, O, i,K, k, w) in H to find a (0, 2)-gadget in
H, as in the proof of Lemma 4.8. Paths are shown with wavy lines, and their length is
indicated with braces. Here we have assumed that K = ⋃κ

j=1{uk}.

∑
u∈ΓH(w) W (u, v, k). Let P = x1 . . . xk+1x, with τ(P ) = {x1 7→ w} and let P ′ =

x2 . . . xk+1x. Every homomorphism from P to H that respects τ(P ) must map x2 to a
neighbour of w, so |Hom((P, x) → (H, v))| = ∑

u∈ΓH(w) |Hom((P ′, x2, x) → (H, u, v))|.
Recall that, given a partially labelled graph J = (G, τ) and vertices x1, . . . , xr /∈
dom(τ), a homomorphism from (G, x1, . . . , xr) to (H, y1, . . . , yr) is formally identical
to a homomorphism from J = (G, τ ∪ {x1 7→ y1, . . . , xr 7→ yr}) to H. By the latter
and the induction hypothesis we have that for any u ∈ ΓH(w), |Hom((P ′, x2, x) →
(H, u, v))| = W (u, v, k). So |Hom((P, x) → (H, v))| = W (w, v, k + 1) and the lemma
follows.

Lemma 4.8. Let H be a cactus graph. If H has a cactus gadget then H has a (0, 2)-
gadget.

Proof. Let (β, s, t, O, i,K, k, w) be the cactus gadget for H. Recall Definition 3.9 of
a (γ, p)-gadget. We define the (0, 2)-gadget of H to be (i, s, (J1, y), (J2, z), (J3, y, z)),
where J1, J2, J3 are defined as follows (see Figure 4.1):

• J1 is the edge (w, y) together with the set of paths {Pu = xu1 . . . x
u
k(u)y | u ∈ K}.

τ(J1) = {w 7→ s} ∪ ⋃u∈K{xu1 7→ w(u)}.

• J2 is the edge (w′, z) together with the path P = x1 . . . xβz. τ(J2) = {w′ 7→
i, x1 7→ t}.
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• J3 is the edge (y, z).

Recall the definition of N1(v) from Definition 3.9. We claim that Ωy = O∪{i} and
that for every other vertex v ∈ V (H), N1(v) ≡ 0 (mod 2). From the structure of J1,
for v ∈ V (H),

N1(v) = |Hom(((w, y), y)→ (H, v))|
∏
u∈K
|Hom((Pu, y)→ (H, v))|.

For any v /∈ ΓH(s), |Hom(((w, y), y)→ (H, v))| = 0, hence Ωy ⊆ ΓH(s). By property 4
of Definition 4.6, for y′ ∈ O ∪ {i} and for all u ∈ K, w(u) has an odd number of
k(u)-walks to y′. By Lemma 4.7 we have that for y′ ∈ O ∪ {i} and for all u ∈ K,
|Hom((Pu, y) → (H, y′))| ≡ 1 (mod 2), which implies that for every y′ ∈ O ∪ {i},
N1(y′) ≡ 1 (mod 2). Again, by property 4 of Definition 4.6, for all u ∈ K, w(u)
has an even number of k(u)-walks to u. Hence by Lemma 4.7 for every u ∈ K,
|Hom((Pu, y) → (H, u))| ≡ 0 (mod 2) and, consequentially, N1(u) ≡ 0 (mod 2). The
claim that Ωy = O ∪ {i} follows and, trivially, for every v /∈ Ωy, N1(v) ≡ 0 (mod 2).
By property 1 of Definition 4.6 we have that |O| is odd, so |Ωy| ≡ 2 (mod 2). This
establishes Property 1 of Definition 3.9.

Recall the definitions of N2(v) and Ωz from Definition 3.9. From the structure of
J2, for v ∈ V (H),

N2(v) = |Hom(((w′, z), z)→ (H, v))| · |Hom((P, z)→ (H, v))|.

For any v /∈ ΓH(i), |Hom(((w′, z), z)→ (H, v))| = 0, hence Ωz ⊆ ΓH(i). Let W (a, b, `)
denote the number of ` walks from a to b. By property 3 of Definition 4.6 we have that
W (i, t, β + 1) ≡ 0 (mod 2). But W (i, t, β + 1) = ∑

v∈ΓH(i) W (v, t, β). By Lemma 4.7
we have W (i, t, β+1) = ∑

v∈ΓH(i) |Hom((P, z)→ (H, v))|, and since for each v ∈ ΓH(i),
|Hom(((w′, z), z)→ (H, v))| ≡ 1 (mod 2), we have thatW (i, t, β+1) ≡ ∑v∈ΓH(i) N2(v)
(mod 2). By the definition of Ωz and by Ωz ⊆ ΓH(i) we have that ∑v∈Ωz N2(v) ≡
W (i, t, β + 1) ≡ 0 (mod 2). By property 2 we have that s has an odd number of β-
walks to t, which implies that N2(s) ≡ 1 (mod 2). Hence property 2 of Definition 3.9
holds with κ ≡ 1 (mod 2).

Recall the definition of N3(a, b) from Definition 3.9. By property 2 of Definition 4.6,
s is the unique common neighbour of any o ∈ O and i that has an odd number of β-
walks to t. By Lemma 4.7, s is the unique vertex in ΓH(o)∩ΓH(i) with |Hom((P, z)→
(H, s))| ≡ 1. Thus, for any vertex x ∈ Ωz ⊆ ΓH(i) with x 6= s, since N2(x) ≡
|Hom((P, z)→ (H, x))| ≡ 1 (mod 2), x is not adjacent to o inH. Therefore, N3(o, x) ≡
0 (mod 2) and property 3 of Definition 3.9 holds.

To establish property 4 of Definition 3.9 recall that J3 is an edge and i, o ∈ ΓH(s),
so N3(i, s) = N3(o, s) = 1. Also Ωz ⊆ ΓH(i), so for any x ∈ Ωz − s, N3(i, x) = 1.
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Corollary 4.9. Let H be an involution-free cactus graph. If H has a cactus gadget,
then #2HomsToH is #2 P-complete.

Proof. By Lemma 4.8 H has a (0, 2)-gadget. The corollary follows from Corollary 4.5.

4.4 Cactus gadgets and partial cactus gadgets

Our key technical result is that every non-trivial, involution-free cactus graph contains
a cactus gadget (Theorem 4.28). The conditions of a cactus gadget simplify if β = 1,
since having an odd number of 1-walks to a vertex is the same as being adjacent to it.
In cases where β = 1, we will use this simplified condition without comment.

Our analysis is based primarily on decompositions of graphs into their subgraphs,
so we need conditions under which a cactus gadget in an induced subgraph of H is
a cactus gadget in H. The idea here is that, if a cactus gadget satisfies the distance
requirements for a vertex v, the structure of the graph “beyond” v cannot interfere
with the gadget’s paths.

Definition 4.10. Consider a cactus gadget (β, s, t, O, i,K, k, w) in H and a vertex
v ∈ V (H). The primary distance requirement of the gadget with respect to v is

dH(v,O ∪ {i}) + dH(v, t) > β − 1.

The secondary distance requirement of the gadget with respect to v is that, for each
u ∈ K,

dH(v, w(u)) + dH(v,O ∪ {i, u}) > k(u)− 2.

Suppose that H1, . . . , Hκ is a split of the graph H at some cut vertex v. If there is
a cactus gadget Γ in H1 that satisfies the distance restrictions for v, it is easy to see
that it also satisfies the distance restrictions for all x ∈ V ′ = V (H2) ∪ · · · ∪ V (Hκ),
since any path from H1 to V ′ must go through v. This ensures that Γ is also a cactus
gadget in H, since the number of walks of various lengths required by the definition of
the cactus gadget cannot be affected by vertices beyond v.

In some cases, our decomposition might yield subgraphs that do not contain cactus
gadgets. We are still able to make progress using structures that can be combined
with other parts of the graph to produce a cactus gadget. A partial cactus gadget is,
essentially, a simplified cactus gadget that has K = ∅ and that doesn’t yet have a “t”
vertex: at a later point, we will find a vertex t with the properties necessary to produce
a full cactus gadget.

Definition 4.11. A partial cactus gadget in a graph with distinguished vertices (H, x)
is a tuple (s, i, O, P ) where s is a vertex of H, ({i}, O) is a partition of ΓH(s), and P
is a path in H satisfying the following conditions.
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• |O| is odd.

• P is the unique shortest path from x to i in H.

• Ps is the unique shortest path from x to s in H.

• For each o ∈ O, Pso is the unique shortest path from x to o in H.

4.5 Mosaics

The final structure that can arise from our decompositions is a subgraph made entirely
from 4-cycles and from edges between vertices of those cycles and additional vertices of
degree 1. Some mosaics (the “shortcut mosaics” defined below) already contain cactus
gadgets. In the other cases, we identify structures called “2,3-paths” in mosaics and
these will provide a “t” vertex for a partial cactus gadget elsewhere in the decomposed
graph.

Definition 4.12. A mosaic is a graph with distinguished vertices defined as follows.

• An unbristled mosaic is the one-vertex graph with distinguished vertices or a
cactus graph with a distinguished vertex that is a union of 4-cycles.

• A mosaic is a graph with distinguished vertices (H, x) for which there is a par-
tition (V ′, V ′′) of V (H) such that x is in V ′, (H[V ′], x) is an unbristled mosaic,
and E(H)−E(H[V ′]) is a perfect matching between V ′′ and a subset of V ′. The
edges of the matching are called bristles.

• A proper mosaic is a mosaic that contains at least one cycle.

Note that every vertex of a mosaic is adjacent to at most one bristle. Note also
that the one-vertex graph with distinguished vertices and an edge with a distinguished
vertex are both mosaics (but not proper mosaics).

Definition 4.13. A 2,3-path in a graph with distinguished vertices (H, x) is a tuple
(P, v2, v3) such that v2 and v3 are in the same cycle of H and that, for j ∈ {2, 3},
degH(vj) = j and Pvj is the unique shortest x–vj path in H.

Lemma 4.14. Every involution-free proper mosaic (H, x) contains a 2,3-path.

Proof. See Figure 4.2. Write x1 = x and let P = x1 . . . x` be a longest path from x1

in H that uses only edges from cycles and uses at most one edge from each cycle. P
contains at least one edge because x is on a cycle. Let C = x`−1x`yzx`−1 be the cycle
containing x`−1 and x`.

x` is on a cycle, so deg(x`) ≥ 2. Also, deg(x`) ≤ 3 since, otherwise, x` would have a
neighbour x`+1 on a cycle other than C and the path Px`+1 would contradict the choice
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x1 = x

z = v2 y

x2 x3 x4 x5 x6 x7 = v3

C

Figure 4.2: A mosaic with the 2,3-path (P, v2, v3) that can be found using Lemma 4.14.
P is drawn with a double line.

xa xbx1 x`+1

r

Figure 4.3: An example of a walk in T1(P ), shown with double lines.

of P . By the same argument, 2 ≤ deg(z) ≤ 3. Furthermore, deg(x`) 6= deg(z) or H
would have an involution exchanging these two vertices. Note that P ′ = x1 . . . x`−1z is
the unique shortest x–z path in H, since any other x–z path must include edges from
exactly the same cycles as P ′ and must include at least two edges from one of them.
Thus, either (x1 . . . x`−1, x`, z) or (x1 . . . x`−1, z, x`) is a 2,3-path.

In several cases, we have a unique shortest path of length ` between two vertices
in a graph and we are interested in the number of (` + 2) walks between those two
vertices. The following definition helps us count such walks.

Definition 4.15. Let P = x1 . . . x`+1 be a path in a graph H. We define the following
three sets of (`+ 2)-walks from x1 to x`+1.

1. T1(P ) is the set of walks that differ from P by going the long way around a
(2r + 2)-cycle from which P uses r consecutive edges, as shown in Figure 4.3.
Formally, these are the walks x1 . . . xaP

′xb . . . x`+1, where 1 ≤ a < b ≤ `+ 1 and
xaP

′xb is a (b− a+ 2)-path in H − {xa+1, . . . , xb−1}.

2. T2(P ) is the set of walks that differ from P by going the long way around cycles
of length 2r + 1 and 2r′ + 1, from which P uses r and r′ consecutive edges,
respectively, as shown in Figure 4.4. Formally, these are the walks of the form
x1 . . . xaP

′xb . . . xa′P
′′xb′ . . . x`+1 where 1 ≤ a < b ≤ a′ < b′ ≤ ` + 1, xaP ′xb is a

(b − a + 1)-path in H − {xa+1, . . . , xb−1} and xa′P ′′xb′ is a (b′ − a′ + 1)-path in
H − {xa′+1, . . . , xb′−1}.
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x1 xa xb xa′ xb′ x`+1

r r′

Figure 4.4: An example of a walk in T2(P ), shown with double lines. The wavy lines
represent an ommited portion of the graph whose structure is unimportant, except that
it contains a unique shortest path between the endpoints of each wavy line.

o2
s = v2 i

o1 x w(t) = v1

t

o3

C

Figure 4.5: A mosaic containing containing a cactus gadget as in Lemma 4.16. The
path P is shown with a double line and O = {o1, o2, o3}.

3. T3(P ) is the set of walks x1 . . . xazxa . . . x`+1, where 1 ≤ a ≤ {` + 1} and z ∈
ΓH(xa) (we allow the case z = xa±1).

We refer to the cycles appearing in the definition of T1 and T2 as detour cycles.

It is easy to see that, when P is the unique shortest x1–x`+1 path in a cactus graph,
T1(P ), T2(P ) and T3(P ) is a partition of the set of all (`(P ) + 2)-walks from x1 to x`+1.

Lemma 4.16. Let H be a cactus graph containing distinct odd-degree vertices v1 and
v2, with a unique shortest path P between them. Suppose that every edge of P is on a
4-cycle of H and no 4-cycle of H contains two edges of P . Then H contains a cactus
gadget that satisfies the distance requirements for every v ∈ (V (H) \ V (P )) ∪ {v2}.

Note that the premise of the lemma is symmetric about v1 and v2, while the conclu-
sion is not. By symmetry, we could, of course, find a different cactus gadget satisfying
the distance requirements for v1 instead of v2.

Proof. See Figure 4.5. Choose v1, v2 and P satisfying the given conditions so that `(P )
is as small as possible. Note that v1 and v2 have degree at least 3, since they have odd
degree and are on cycles.
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Let β = 1. Let s = v2, let i be the neighbour of s in P and let t be the neighbour of s
that is in the same 4-cycle as i; call this cycle C. LetK = {t}, andO = ΓH(s)\({i}∪K).
Let w(t) = v1 and k(t) = `(P ) + 1.

To see that Γ = (β, s, t, O, i,K, k, w) is a cactus gadget, note first that |O| is odd,
since degH(s) is odd. Consider any o ∈ O and y′ ∈ O ∪ {i}. Since H is a cactus
graph, s is the unique vertex adjacent to o, y′ and t. However, there are two vertices
that are adjacent to i and t: s and the fourth vertex on cycle C. Therefore, there are
two (β + 1)-walks from i to t. Finally, consider vertex w(t) = v1. Vertex v1 has two
(`(P ) + 1)-walks to t (going around the cycle C in either direction). For every vertex
o ∈ O, Po is the unique (`(P ) + 1)-walk from v1 to o.

We will finish the proof that Γ is a cactus gadget by showing that w(t) = v1 has an
odd number of (`(P ) + 1)-walks to i. Let Pi be the length-(`(P )− 1) prefix of P . Pi is
the unique shortest path from v1 to i. Consider Definition 4.15, with x1 = v1, ` = `(Pi)
and x`+1 = i. Since Pi only uses one edge from each cycle it meets and each such
cycle is a 4-cycle, T2(Pi) = ∅. There are `(Pi) walks in T1(Pi), since every edge of P
(hence, every edge of Pi) is on a distinct 4-cycle of H. The number of walks in T3(Pi)
is ∑v∈Pi degH(v)− `(Pi) since every edge adjacent to Pi may be repeated, but edges in
Pi should not be counted twice. The total number of walks is therefore ∑v∈Pi degH(v).
This is odd since degH(v1) is odd, and every vertex in Pi other than v1 has even degree
(otherwise the minimality of `(P ) would be contradicted).

The cactus gadget Γ satisfies the primary distance requirement dH(v,O ∪ {i}) +
dH(v, t) > 0 for any v ∈ V (H) since t 6∈ O ∪{i}, so at least one of the terms dH(v,O ∪
{i}) and dH(v, t) is positive. Now consider any v ∈ V (H) \ V (Pi). We wish to show
that the secondary distance requirement dH(v, v1) + dH(v,O ∪ {i, t}) > `(P ) − 1 is
satisfied. We do this by establishing the following inequalities:

dH(v, v1) + dH(v, i) > `(P )− 1 (4.1)

dH(v, v1) + dH(v,O ∪ {t}) > `(P )− 1. (4.2)

Establishing (4.1) is easy. Since v 6∈ Pi and Pi is the unique shortest path from v1

to i, dH(v, v1) + dH(v, i) > `(Pi) = `(P ) − 1. Establishing (4.2) is similar. For each
y′ ∈ O ∪ {t}, dH(v1, y

′) = `(P ) + 1. Therefore, for any v ∈ V (H) \ V (Pi), dH(v, v1) +
dH(v, y′) ≥ `(P ) + 1.

Definition 4.17. A shortcut in a mosaic (H, x) is a pair of odd-degree vertices v1, v2,
with degree at least 3, that have a unique shortest path P between them, and this path
does not contain x. A shortcut mosaic is a mosaic that contains a shortcut.

If v1, v2 is a shortcut in a mosaic (H, x) then v1 and v2 are on cycles (since their
degrees are at least 3), so every edge of the unique shortest path P between them is on
a 4-cycle. Since P is unique, these edges are on distinct 4-cycles. Thus, Lemma 4.16
has the following corollary.
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Corollary 4.18. If (H, x) is a shortcut mosaic then H contains a cactus gadget that
satisfies the distance requirements for x.

4.6 Combination lemmas

We mostly proceed by splitting graphs at cut vertices and investigating the resulting
components. In this section, we present a number of technical lemmas that show how
to combine structures in the various parts of a graph split to obtain cactus gadgets.

Observation 4.19. If {H1, . . . , Hκ} is the split of an involution-free graph H at a
cut vertex v then, for each j ∈ [κ], the graph with distinguished vertex (Hj, v) is
involution-free even though Hj itself might not be involution-free. To see that (Hj, v)
is involution-free, note that an involution of Hj that fixes v induces an involution of
H.

Lemma 4.20. Let x be a cut vertex of an involution-free cactus graph H. If there
exists a split of H at x into {H1, . . . , Hκ} such that (H1, x) and (H2, x) are both proper
mosaics then H has a cactus gadget which satisfies the distance requirements for every
vertex v ∈ V (H) \ (V (H1) ∪ V (H2)).

Proof. If, for j = 1 or j = 2, (Hj, x) is a shortcut mosaic then, by Corollary 4.18, Hj

contains a cactus gadget Γ that satisfies the distance requirements for x. Since x is a
cut vertex, Γ is a cactus gadget in H and satisfies the distance restrictions for every
vertex outside H1 and H2.

Suppose that neither of (H1, x) and (H2, x) is a shortcut mosaic. For j ∈ {1, 2},
apply Lemma 4.14 to (Hj, x) to obtain a 2,3-path (Pj, yj, zj). Since zj 6= x and x is a
cut vertex, degH(zj) = degHj(zj) = 3. z1P1P2z2 is the unique shortest z1–z2 path in H
and each edge of this path is in a different 4-cycle. By Lemma 4.16, H contains a cactus
gadget which satisfies the distance requirements for every v ∈ (V (H)\V (P ))∪{z2}.

Lemma 4.21. Let H be a cactus graph with a cut vertex x of odd degree. If there
exists a split of H at x into {H1, . . . , Hκ} such that (H1, x) is an involution-free proper
mosaic, then H has a cactus gadget that satisfies the distance requirements for every
v ∈ V (H) \ V (H1).

Proof. If (H1, x) is a shortcut mosaic then Corollary 4.18 gives a cactus gadget in
H1. As in the previous lemma, this is a cactus gadget in H and satisfies the distance
requirements. If (H1, x) is not a shortcut mosaic, apply Lemma 4.14 to (H1, x) to obtain
a 2,3-path (P, v2, v3). Since v3 6= x and x is a cut vertex, degH(v3) = degH1(v3) = 3 and
P is the unique shortest path in H between v3 and x. Since (H1, x) is a proper mosaic,
every edge of P is on a distinct 4-cycle of H. By Lemma 4.16, H contains a cactus
gadget that satisfies the distance requirements for every v ∈ (V (H) \ V (P )) ∪ {x},
which proves the lemma.
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s i x
z

v2

v3

O ...
P2

P3

P ′ P

Figure 4.6: The paths appearing in the proof of Lemma 4.22.The wavy lines repre-
sent an ommited portion of the graph whose structure is unimportant, except that it
contains a unique shortest path between the endpoints of each wavy line.

Lemma 4.22. Let H be a cactus graph. Suppose that {H1, . . . , Hκ} is the split of H
at x, that (H1, x) contains a 2,3-path (P, v2, v3) and that (H2, x) contains a partial
cactus gadget (s, i, O, P ′). Then H has a cactus gadget that satisfies the distance re-
quirements for very vertex v ∈ V (H) \ (V (PP ′) ∪ {v2, v3}).

Proof. See Figure 4.6. Let z be the endpoint of the path P that is not x, or let z = x

if `(P ) = 0. Since H is a cactus graph and v2 and v3 are on a cycle together, the cycle
must contain the edges (z, v2) and (z, v3). Since v2 6= x and v3 6= x and x is a cut
vertex, degH(v2) = 2 and degH(v3) = 3. It is easy to see that (P ′P, v2, v3) is a 2,3-path
in H. For j ∈ {2, 3}, let Pj = P ′Pvj.

We next show that the number of (`(P2) + 2)-walks from i to v2 differs in parity
from the number of (`(P2) + 2)-walks from i to v3. There are two kinds of walks to
consider — those that detour around cycles, and those that repeat an edge. Using
the notation from Definition 4.15, walks that detour around cycles are in T1 or T2

and those that repeat an edge are in T3. Since (z, v2) and (z, v3) are not on any
cycles other than the one that contains them both, all of these walks pass through z,
progressing on to v2 or to v3. Furthermore, the number of (`(P2)+2)-walks that detour
around cycles is the same for both endpoints, v2 and v3. Now note that the number
of (`(P2) + 2)-walks in T3(P3) is exactly one more than the number in T3(P2), because
degH(v3) = degH(v2) + 1.

We can now define the cactus gadget. Let β = `(P2) + 1. s, O and i are already
defined by the partial cactus gadget; let K = ∅. Choose t ∈ {v2, v3} so that the number
of (1 + β)-walks from i to t is even.

To see that this is a cactus gadget, consider o ∈ O and y′ ∈ O ∪ {i}. s is the only
vertex that is both adjacent to o and y′ and has an odd number of (`(P2)+1)-walks to t
(otherwise, there would be more than one shortest path from o to t). By construction,
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s1

i1 x

s2

i2O1

O2... ...
P1 P2

v /∈ V (H1) ∪ V (H2)

` = `(P )

`′ = `(Ps2)

Figure 4.7: The two partial cactus gadgets of Lemma 4.24.The wavy lines represent an
ommited portion of the graph whose structure is unimportant, except that it contains
a unique shortest path between the endpoints of each wavy line.

there are an even number of (1+β)-walks from i to t. K = ∅ so the requirements on K
are vacuous.

Now consider the primary distance requirement dH(v,O∪{i}) +dH(v, t) > β− 1 =
`(P2). The unique shortest path in H from t to O∪{i} is either P2 or P3 and this path
has length `(P2) so the requirement is satisfied for any vertex v that is not on P2 or
P3, which is to say, any vertex of V (H) \ (V (P )∪V (P ′)∪{v2, v3}), as required. There
are no secondary distance requirements, since K = ∅, so the lemma is proved.

Corollary 4.23. Let H be an involution-free cactus graph and let x be a cut vertex
of H. If there exists a split of H at x into {H1, . . . , Hκ} such that (H1, x) is a proper
mosaic and (H2, x) contains a partial cactus gadget (s, i, O, P ), then H has a cactus
gadget that satisfies the distance requirements for very vertex v ∈ V (H) \ V (H1 ∪ P ).

Proof. By Lemma 4.14, (H1, x) contains a 2,3-path; Lemma 4.22 gives the cactus
gadget.

Lemma 4.24. Let x be a cut vertex of an involution-free cactus graph H. If there
is a split of H at x into {H1, . . . , Hκ}, such that (H1, x) contains a partial cactus
gadget (s1, i1, O1, P1) and (H2, x) contains a partial cactus gadget (s2, i2, O2, P2), then
H contains a cactus gadget that satisfies the distance requirements for every vertex
v ∈ V (H) \ V (P1P2s2).

Proof. See Figure 4.7. The two partial cactus gadgets ensure that P = P1P2 is the
unique shortest path in H from i1 to i2 and P1P2s2 is the unique shortest path from i1

to s2. Let ` = `(P ) and `′ = `(Ps2) = `+ 1.
We first show that the number of (`+ 2)-walks from i1 to i2 (walks which use two

more edges than P ) differs in parity from the number of (`′ + 2)-walks from i1 to s2.
To do this, we use the sets of walks T1, T2 and T3 from Definition 4.15.
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xa′ x`+1 = i2 s2

y = o1

o3

o2

x

C

r

Figure 4.8: An example of an impossible detour cycle C in T1(Ps2), using neighbours
of s2. Here O2 = {o1, o2, o3}. The wavy lines represent an ommited portion of the
graph whose structure is unimportant, except that it contains a unique shortest path
between the endpoints of each wavy line.

First, we show that T1(P ) = T1(Ps2), by arguing that every detour cycle C that is
available from Ps2 is also available from P . Consider a walk x1 . . . xaP

′xb . . . x`′s2 as in
the definition of T1(Ps2), where x1 = i1 and x`′ = i2. The claim is obvious if xb ∈ P so
suppose for contradiction that xb = s2 and the detour cycle is xa . . . x`′s2P

′xa. Then,
by the definition of partial cactus gadgets, the neighbour y of s2 in P ′ is in O2 (see
Figure 4.8). However, the definition also requires that every vertex in O2 has a unique
shortest path to x but the detour cycle gives two paths of length `(P2) + 2 from y to x.

A similar argument shows that T2(P ) = T2(Ps2). This is obvious when xb′ ∈ P . If
xb′ = s2, the same construction gives a contradiction: the path from y to x via P ′′ is
shorter than the one via s2, which the definition requires to be the unique shortest y–x
path.

Finally, we show that T3(P ) 6≡ T3(Ps2) mod 2. This is because s2 offers an addi-
tional set of edges that may be repeated, {(s2, o) | o ∈ O2}, and there are odd number
of edges in this set since |O2| is odd.

We now construct the cactus gadget. If the number of (` + 2)-walks from i1 to i2
is even, then let t = i2 and β = ` + 1. Otherwise, let t = s2 and β = `′ + 1. In either
case, the number of (1 + β)-walks from i1 to t is even. Then let s = s1, O = O1, i = i1

and K = ∅.
To see that this is a cactus gadget, consider o ∈ O and y′ ∈ O∪{i}. s is the unique

vertex adjacent to o and to y which has an odd number of β-walks to t. (The odd
number is one.) The construction guarantees an even number of (1 + β)-walks from i1

to t.
Now consider the primary distance requirement dH(v,O ∪ {i}) + dH(v, t) > β − 1.

The unique shortest path in H from t to O∪{i} has length β−1 so the requirement is
satisfied for any vertex v that is not on this path. This is guaranteed by the restriction
on v in the statement of the lemma. There are no secondary distance requirements,
since K = ∅.

Lemma 4.25. Let (H, x) be a cactus graph with a distinguished vertex containing a
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Figure 4.9: The cactus gadget of Case 1.1 of Lemma 4.25. In this case, K = {u}.The
wavy lines represent an ommited portion of the graph whose structure is unimportant,
except that it contains a unique shortest path between the endpoints of each wavy line.

cycle C = x1x2 . . . x`x1 where ` 6= 4. For j ∈ [`], let Hj be the component containing xj
in the graph H −E(C). Suppose that the graph with distinguished vertices (H[(V (H) \
V (H1))∪{x1}], x1) is involution-free. If ` is even, let J = [`]\{1, `/2+1}. Otherwise,
let J = [`] \ {1}. If, for each j ∈ J , (Hj, xj) is a mosaic, then H contains a cactus
gadget that satisfies the distance requirements for each v ∈ V (H1).

Proof. Note that for each j ∈ J , (Hj, xj) is involution-free. We start by dispensing with
some easy cases. First, if there is a j ∈ J such that (Hj, xj) is a shortcut mosaic then,
by Corollary 4.18, Hj contains a cactus gadget which satisfies the distance requirements
for xj and this is also a cactus gadget in H that satisfies the distance requirements for
all v ∈ V (H) \ V (Hj), in particular for all v ∈ V (H1). Second, suppose that there is
a j ∈ J such that (Hj, xj) is a proper mosaic and degH(xj) is odd. xj is a cut vertex
of H since H is a cactus graph. Therefore, Lemma 4.21 guarantees that H has a cactus
gadget which satisfies the distance requirements for every v ∈ V (H) \ V (Hj).

Thus, we can assume with loss of generality that for every j ∈ J , (Hj, xj) is a
shortcut-free mosaic. The two possibilities are:

• (Hj, xj) is a (possibly trivial) shortcut-free mosaic and degH(xj) is even, or

• (Hj, xj) consists of a single bristle.

Since (H[(V (H) \ V (H1)) ∪ {x1}], x1) is involution-free, there is some j ∈ J such
that degH(xj) is even. Otherwise, for each j ∈ J , (Hj, xj) is a bristle. Hence H has an
involution which fixes H1 but exchanges H1+d with H`+1−d for each d ∈ {1, . . . , b`/2c}.
We will consider two cases, depending on `.

Case 1. ` is odd. We split the analysis into two cases.
Case 1.1. There is a j ∈ {d`/2e, d`/2e+1} such that degH(xj) is even. See Figure 4.9.
Without loss of generality, suppose that j = d`/2e (otherwise this could be achieved by
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Figure 4.10: The cactus gadget of Case 1.2 of Lemma 4.25. Here, ` = 13, β = 4, and
K = {u}.

relabelling the vertices of C, going the other way around the cycle). We will construct
a cactus gadget. Let β = 1, s = xj+1, t = xj, and i = t. Let o be the neighbour of s
in C that is not t. (That is, o = x1 if ` = 3 and o = xj+1, otherwise.) Let O = {o} and
let K = ΓH(s) \ {o, i}. For every u ∈ K let w(u) = s and k(u) = `− 1.

To see that this is a cactus gadget, consider o and y′ ∈ {o, i}. s is the only vertex
that is adjacent to o, y′ and t. However, there are an even number of vertices that are
adjacent to t since degH(t) is even.

Consider the (`− 1)-walks from w(u) = s to each u ∈ K, noting that every vertex
in K is a neighbour of s. Since s = xd`/2e+1, no (` − 1)-walk from s to one of its
neighbours can use any edge that is not in H ′ = C ∪ H3 ∪ . . . H`. Since each of
(H3, x3), . . . , (H`, x`) is a mosaic, C is the only odd cycle in H ′. Since `− 1 is even and
the distance from s to u is one, which is odd, there is exactly one (`− 1)-walk from s

to each of its two neighbours i and o in C (going the long way around the cycle) and
there are no (`− 1)-walks from s to K, the set of its neighbours outside C.

Now consider the primary distance requirement dH(v, {o, i}) + dH(v, t) > 0. This
is satisfied for any v ∈ V (H) \ {t}, including each v ∈ V (H1). Finally, consider the
secondary distance requirement dH(v, s) + dH(v, {o, i, u}) > `− 3. This is true for any
v ∈ V (H1) since dH(x1, s) + dH(x1, {o, i, u}) = dH(x1, s) + dH(x1, o) = b`/2c+ b`/2c −
1 = `− 2.
Case 1.2. We are not in Case 1.1 but there is still a j ∈ J such that degH(xj) is even.
Without loss of generality, we may assume that j < d`/2e, numbering the vertices of
the cycle the other way around, if necessary.

Again we will construct a cactus gadget. See Figure 4.10. This time, let s =
xd`/2e and i = xd`/2e−1. Since we are not in Case 1.1, degH(s) = 3. Choose t ∈
{x2, . . . , xd`/2e−1} such that degH(t) is even and dH(t, i) is as small as possible. Let
β = dH(t, s). Let o = xd`/2e+1, which also has degree 3, since we are not in Case 1.1; let
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Figure 4.11: An example of a cactus gadget for Case 2.1 of Lemma 4.25. Here O =
{o1, o2, o3}; the dotted line indicates omitted portions of the cycle C.

O = {o}. Let u be the neighbour of s that is not in C and let K = {u}. Let w(u) = s

and k(u) = `− 1.
To see that this is a cactus gadget, consider o and y′ ∈ {o, i}. dH(o, t) = β + 1 and

s is the only neighbour of o that has any β-walks to t, and it has one such walk. Also, s
is adjacent to y′. On the other hand, there are an even number of (β+ 1)-walks from i

to t. All of these walks repeat an edge, and there are an even number of edges that can
be repeated because, by the choice of t, every vertex between i and t has odd degree.
The proof that w(u) = s has an even number of k(u)-walks to u and odd number of
k(u)-walks to each of o and i is exactly the same as in the proof of Case 1.1.

Now consider the primary distance requirement dH(v, {o, i}) + dH(v, t) > β − 1.
This follows for any v which is not on the unique shortest path in H from t to i,
which includes every v ∈ V (H1). Finally, consider the secondary distance requirement
dH(v, s) + dH(v, {o, i, u}) > `− 3. As in Case 1.1, this is true for any v ∈ V (H1) since
dH(x1, s) + dH(x1, {o, i, u}) = `− 2.

Case 2. ` is even. Recall that ` 6= 4 by the hypothesis of the lemma. Choose j ∈ J
such that degH(xj) is even; again, we may assume that j ≤ ` − 2, and 1 /∈ J by
definition. Let s = xj+1. We will construct a cactus gadget for H in each of two cases.
Case 2.1. degH(s) is even. See Figure 4.11. Let β = 1, i = t = xj and O = ΓH(s)\{i}.
Note that |O| is odd. Let K = ∅.

To see that this is a cactus gadget, consider any o ∈ O and y′ ∈ O ∪ {i}. s is the
unique vertex adjacent to o, y′ and t. Since degH(xj) is even, there are an even number
of 2-walks from i to t = i. Consider the primary distance requirement dH(v,O∪{i}) +
dH(v, t) > 0. This is satisfied for every v 6= t, including every v ∈ V (H1). There are
no secondary distance requirements since K = ∅.
Case 2.2. degH(s) is odd so, in fact, degH(s) = 3. See Figure 4.12.
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Figure 4.12: An example of a cactus gadget for Case 2.2 of Lemma 4.25. In this case,
` = 8, β = 3 and j = 2.

Let β = `/2 − 1. Let i = xj+2, K = {xj} and O = ΓH(s) \ {xj, xj+2}, which is a
single vertex: call this o. Let t be the unique vertex in C at distance `/2 from i. Let
w(xj) = xj and k(xj) = 2.

To see that this is a cactus gadget, consider o and any y′ ∈ {o, i}. There is a unique
(β + 1)-walk from o to t, and this goes via s. Thus, s is the unique vertex adjacent
to o and y′ that has an odd number (one) of β-walks to t. By construction, there are
exactly two (β + 1)-walks from i to t, one going each way around the cycle C. Since
degH(xj) is even, there are an even number of 2-walks from xj to itself, but there is
exactly one 2-walk from xj to each of o and i. The primary distance requirement is
dH(v, {o, i})+dH(v, t) > β−1. Since dH(t, {o, i}) = β+1, this holds for any v. Finally,
the secondary distance requirement is dH(v, xj) + dH(v, {o, i}∪K) > 0. This holds for
any v 6= xj, including all v ∈ V (H1).

4.7 Cactus gadgets in cactus graphs

In this section, we show that every non-trivial involution-free cactus graph contains
a cactus gadget. We first show that every involution-free cactus graph with a dis-
tinguished vertex that is not a mosaic contains a cactus gadget or a partial cactus
gadget.

For graphs with distinguished vertices, Observation 4.19 allows an inductive proof.
Given an involution-free graph with distinguished vertices (H, x) in which x is a cut
vertex, we can take the split {H1, . . . , Hκ} and recurse on the graphs with distinguished
vertices {(H1, x), . . . , (Hκ, x)}, since these are also involution-free. If x is not a cut
vertex or splitting at x does not give helpful subgraphs with distinguished vertex, we
instead cut H up by deleting the edges of an appropriate cycle C to give components
which can have the vertices in C as distinguished vertices. One of these contains x, so
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needs special attention; the others are dealt with inductively.
Finally, we need to show that every non-trivial, involution-free cactus graph contains

a cactus gadget. To do this, we temporarily distinguish a suitable vertex.

Lemma 4.26. An involution-free tree with a distinguished vertex (H, x) with at least
three vertices contains a partial cactus gadget.

Proof. Let o be a leaf of H at maximal distance from x. Let s be the neighbour of o.
Since (H, x) is involution-free and H contains at least three vertices dH(x, o) > 1 so
s 6= x. Let i be the neighbour of s on the path to x. Any neighbour of s that is not on
the path to x must be a leaf as, otherwise, there would be a leaf farther from x than
o is. But no vertex in an involution-free tree can be adjacent to more than one leaf, so
degH(s) = 2. Let P be the (unique) path in the tree H from i to x. The partial cactus
gadget is (s, i, {o}, P ).

We say that a cut vertex x ∈ V (H) is cycle-separating if at least two of the com-
ponents of the split of H at x contain cycles.

Lemma 4.27. Let (H, x) be a connected, involution-free cactus graph with a distin-
guished vertex. Then at least one of the following is true:

• H contains a cactus gadget satisfying the distance requirements for x, or

• (H, x) contains a partial cactus gadget, or

• (H, x) is a shortcut-free mosaic.

Proof. The proof is by induction on the number of cycles in H. If H is acyclic and is
a single vertex or a single edge, (H, x) is a shortcut-free mosaic; if it is acyclic and has
more than one edge, it contains a partial cactus gadget by Lemma 4.26.

Otherwise, H contains at least one cycle. If x is a cycle-separating cut vertex, let
{H1, . . . , Hκ} be the split of H at x. Every (Hj, x) is an involution-free cactus graph
and has fewer cycles than H. If some Hj contains a hardness gadget that satisfies
the distance requirements for x, this is also a cactus gadget in H and still satisfies the
distance requirements. Likewise, a partial cactus gadget in some (Hj, x) is also a partial
cactus gadget in (H, x). If there is no hardness or partial cactus gadget in any (Hj, xj)
then, by the inductive hypothesis, every (Hj, x) is a shortcut-free mosaic. It follows
that (H, x) is, itself, a shortcut-free mosaic. It is a mosaic because involution-freedom
of (H, x) guarantees that the (Hj, x) are pairwise non-isomorphic so, in particular,
x has at most one bristle in H. It is shortcut-free because any shortcut in (H, x) must
be inside some (Hj, x), but all of them are shortcut-free.

For the remainder of the proof, we assume that x is not a cycle-separating cut
vertex (indeed, it is not necessarily even a cut vertex). Let C = x1 . . . x`x1 be a cycle
such that there is a path from x to x1 in which only x1 is on a cycle. (If x is on a
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Figure 4.13: An example for Case 1 of Lemma 4.27. The wavy lines represent an
ommited portion of the graph whose structure is unimportant, except that it contains
a unique shortest path between the endpoints of each wavy line.

cycle, then C is this cycle, x1 = x and the path is trivial.) For j ∈ [`], let Hj be the
component of H − E(C) that contains xj. Thus, x ∈ V (H1). We will use the fact
below that x = x1 if x is on a cycle. Otherwise, there is a unique path in H from x

to x1.
Each of the graphs with distinguished vertices (Hj, xj) is a cactus graph with fewer

cycles than H so, by the inductive hypothesis, each contains a cactus gadget satisfying
the distance restrictions for xj, contains a partial cactus gadget, or is a shortcut-free
mosaic. If any of H2, . . . , H` contains a cactus gadget, this is a cactus gadget in H so
we are done.

If ` is odd, let J = {2, . . . , `}; otherwise, let J = {2, . . . , `} \ {`/2 + 1}. Thus, J
is the set of indices j > 1 such that H contains a unique shortest path from x to xj.

Suppose that, for some j ∈ J , (Hj, xj) contains a partial cactus gadget (s, i, O, P ).
In H, x has a unique shortest path P ′ to xj and (s, i, O, P ′P ) is a partial cactus gadget
in (H, x).

Otherwise, for every j ∈ J , (Hj, xj) is a shortcut-free mosaic. If ` 6= 4 then, by
Lemma 4.25, H contains a cactus gadget that satisfies the distance requirements for
every vertex in H1, which includes x.

We are left with the case ` = 4. (H2, x2) and (H4, x4) are mosaics and (H3, x3)
contains a partial cactus gadget or is a shortcut-free mosaic.

Case 1. (H3, x3) contains a partial cactus gadget.
If (H2, x2) is a proper mosaic then by Lemma 4.14, it contains a 2,3-path. Then,

by Lemma 4.22, H contains a cactus gadget that satisfies the distance requirements
for every vertex v ∈ V (H) \ (V (H2)∪ V (H3)) and this includes v = x. Similarly, there
is a cactus gadget if (H4, x4) is a proper mosaic.

So suppose that neither of (H2, x2) and (H4, x4) is a proper mosaic. Since (H, x1)
is involution-free, one of (H2, x2) and (H4, x4) is a single edge and the other is a single
vertex. Suppose without loss of generality that x2 is a single vertex. See Figure 4.13.
Now let H ′1 = C ∪H1 ∪H2 ∪H4 and let P ′ be the empty path. Then (P ′, x2, x4) is a
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2-3 path in (H ′1, x3). By Lemma 4.22, H has a cactus gadget that satisfies the distance
requirements for every v ∈ V (H) \ (V (H3) ∪ {x2, x4}) including v = x.

Case 2. (H3, x3) is a shortcut-free mosaic, which means that H ′ = C ∪H2 ∪H3 ∪H4

is an involution-free proper mosaic when either x1 or x3 is distinguished.
First, suppose that x 6= x1. If degH(x1) is odd then, by Lemma 4.21, H has a

cactus gadget that satisfies the distance requirements for x1 and this also satisfies the
distance requirements for x. If degH(x1) is even, let s = x1, let i be s’s neighbour
on the shortest path to x and let P be the unique shortest path from x to i in H.
(s, i,ΓH(s) \ {i}, P ) is a partial cactus gadget in H.

Finally, suppose that x = x1. Since x is not a cycle-separating cut vertex, every
component of the split of H at x apart from (H ′, x) is a tree. If any of these contains
more than one edge, it contains a partial cactus gadget by Lemma 4.26. Otherwise,
either (H ′, x) is the unique component of the split, or there is exactly one other compo-
nent, which is the one-edge tree with x as distinguished vertex. In either case, (H, x) is
a mosaic. If (H, x) is shortcut-free, we are done; if not, it contains a cactus gadget
satisfying the distance requirements for x, by Corollary 4.18.

We now show how to find cactus gadgets in cactus graphs without distinguished
vertices by choosing an appropriate vertex to act temporarily as distinguished.

Theorem 4.28. Every involution-free cactus graph H with more than one vertex con-
tains a cactus gadget.

Proof. Let H be an involution-free cactus graph with more than one vertex. Split
H at a cut vertex x into components with distinguished vertices (H ′1, x), . . . (H ′k, x)
with |V (H ′1)| ≥ · · · ≥ |V (H ′k)|, choosing x to maximize |V (H ′2)|. Each (H ′j, x) is an
involution-free, cactus graph with a distinguished vertex and, if any of them contains
a cactus gadget satisfying the distance requirements for x, then this is also a cactus
gadget in H and we are done. Otherwise, by Lemma 4.27 each (H ′j, x) contains a
partial cactus gadget or is a shortcut-free mosaic.

If |V (H ′2)| > 2, then each of (H ′1, x) and (H ′2, x) is either a proper mosaic or contains
a partial cactus gadget. Therefore, H contains a cactus gadget, by Lemma 4.24 (two
partial cactus gadgets), Lemma 4.20 (two proper mosaics) or Corollary 4.23 (one of
each).
|V (H ′2)| cannot be 1 since H is involution free. So suppose that |V (H ′2)| = 2. H is

not a tree because then there would be a vertex y with degH(y) ≥ 3, and choosing
x = y would give |V (H ′2)| > 2. H does not have two cycles because every involution-
free cactus graph with two cycles contains a vertex y with deg(y) ≥ 3 and choosing
x = y would give |V (H ′2)| > 2. Further, x must be on H’s single cycle as, otherwise,
we could have chosen a vertex on the path from x to the cycle as our cut vertex and,
again, obtained |V (H ′2)| > 2.
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Let the single cycle C of H be x1x2 · · ·x`x1. For j ∈ [`], let Hj be the component
containing xj in H − E(C). Clearly, |V (Hj)| ≤ 2 — otherwise we could have chosen
x = xj to achieve |V (H ′2)| > 2.

For H to be involution-free, we must have ` ≥ 6. Since H is involution-free, the
graph with distinguished vertices (H[V (H) \ V (H1) ∪ {x1}], x1) is involution free, and
for each j ∈ [`(C)] \ {1}, Hj is an isolated vertex or a bristle, so (Hj, xj) is a mosaic.
Lemma 4.25 guarantees the existence of a cactus gadget in H.

4.8 A dichotomy theorem for cactus graphs

We have shown that all connected, involution-free cactus graphs contain a cactus gadget
and that #2HomsToH is #2 P-complete for any involution-free cactus graph that
has a cactus gadget. To deal with graphs that have involutions, we use reduction
by involutions. By Theorem 2.6, every graph H has a unique (up to isomorphism)
involution-free reduction H∗. By Theorem 2.4, #2HomsToH has the same complexity
as #2HomsToH∗.

If H is a tree (as it was for Faben and Jerrum), then its involution-free reduction
H∗ is connected. However, for graphs that contain cycles, the fact that H is connected
does not imply that H∗ is connected.1 Another result that we need from Faben and
Jerrum is [32, Theorem 6.1], which allows us to deal with disconnected graphs:

Lemma 4.29. Let H be an involution-free graph. If H has a component H∗ for which
#2HomsToH∗ is #2 P-complete, then #2HomsToH is #2 P-complete.

We can now prove the main theorem of this chapter.

Theorem 1.11. Let H be a graph whose involution-free reduction H∗ is a cactus
graph. If H∗ has at most one vertex then #2HomsToH is solvable in polynomial time;
otherwise, #2HomsToH is #2 P-complete.

Proof. Let H∗ be the involution-free reduction of H. By Theorem 2.4, #2HomsToH
has the same complexity as #2HomsToH∗. If H∗ has at most one vertex, then, by
Corollary 2.9, #2HomsToH∗ is in P. Otherwise, let H∗∗ be any component of H∗ with
more than one vertex. Such a component must exist since, otherwise, H∗ would be a
graph with at least two vertices and no edges, and any such graph has an involution.

If H∗∗ has two or more vertices, then it has a cactus gadget by Theorem 4.28.
We have established that either H∗ has at most one vertex, in which case both

#2HomsToH∗ and #2HomsToH are in P, or that some component H∗∗ of H∗ has a
cactus gadget. In the latter case, #2HomsToH∗∗ is #2 P-complete by Corollary 4.9.

1For example, consider non-isomorphic, disjoint, connected, involution-free graphs H1 and H2 and
let H be a graph made by adding two disjoint paths of the same length from some vertex x1 ∈ H1
to some vertex x2 ∈ H2. The only involution of this graph exchanges the interior vertices of the two
paths, so H∗ = H1 ∪H2, which is disconnected.
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#2HomsToH∗ is #2 P-complete by Lemma 4.29, so #2HomsToH is #2 P-complete.
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Chapter 5

Counting homomorphisms
(modulo 2) to square-free graphs

The results of this chapter are published in the paper “Counting Homomorphisms
to Square-Free Graphs Modulo 2” co-authored with Leslie Goldberg and David
Richerby [44].

5.1 Introduction

In this chapter we study the complexity of #2HomsToH when H is a graph that has
no 4-cycle (whether induced or not). In particular, we prove the conjecture of Faben
and Jerrum for every graph H whose involution-free reduction has no 4-cycle. Since
there can be cactus graphs that contain 4-cycles, the results of this chapter do not
subsume the results of Chapter 4. Graphs without 4-cycles are called “square-free”
graphs. Our main theorem is the following.

Theorem 1.12. Let H be a graph whose involution-free reduction H∗ is square-free.
If H∗ has at most one vertex, then #2HomsToH is in P; otherwise, #2HomsToH
is #2 P-complete.

If H is square-free, then so is every induced subgraph, including its involution-free
reduction H∗. Thus, we have the following corollary.

Corollary 5.2. Let H be a square-free graph. If its involution-free reduction H∗ has
at most one vertex, then #2HomsToH is in P; otherwise, #2HomsToH is #2 P-
complete.

In order to prove that #2HomsToH is #2 P-hard it is necessary to take a much
more abstract approach than we did in Chapters 3 and 4. Since it is not possible to
decomposeH using a tree-like decomposition as we did in Theorem 4.28 we will identify
the (γ, p)-gadgets we defined in Section 3.4 in all involution-free square-free graphs
directly. Then, the hardness part of Theorem 1.12 follows directly from Corollary 4.5.
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When counting modulo 2, the only (γ, p)-gadgets that give hardness are (0, 2)-
gadgets. The much more general nature of (0, 2)-gadgets, compared to the cactus
gadgets, makes them much easier to find and, in some cases, allows us to prove the
existence of parts of them non-constructively. (Recall that gadgets depend only on the
fixed graph H and not on the input G so they can be hard-coded into the reduction —
there is no need to find one constructively.) We no longer need to find unique shortest
paths in H or, indeed, any paths at all. In fact, all the gadgets that we construct in this
chapter use a “caterpillar gadget” (Definition 5.4) which allows us to use any specified
path in the graph H instead of relying on a unique shortest path, as in Chapter 4.
Thus we no longer need to decompose H in order to find gadgets but, instead, we find
(0, 2)-gadgets in H “in situ”. Note that caterpillar gadgets work only in square-free
graphs.

When a graph has two even-degree vertices, we can directly use those vertices and a
caterpillar gadget to produce a (0, 2)-gadget (see Lemma 5.9). This already provides a
self-contained proof of Faben and Jerrum’s dichotomy for trees. Next, for graphs with
only one even-degree vertex, we show (Corollary 5.11) that deleting an appropriate set
of vertices leaves a component with two even-degree vertices and show (Lemma 5.13)
how to simulate that vertex deletion with gadgets. This leaves only graphs in which
every vertex has odd degree. In such a graph, we are able to use any shortest odd-
length cycle to construct a gadget (Lemma 5.19). If there are no odd cycles, the graph
is bipartite. In this interesting case (Lemma 5.22) we use our version of Lovász’s result
to find a gadget non-constructively.

5.1.1 Organisation

The gadgets that we use are a special case of (γ, p)-gadgets (Definition 3.9) which we
formally define in Section 5.3. Section 5.3.1 introduces a gadget that we use extensively,
but which requires H to be square-free, as discussed in Section 5.3.2. In Section 5.4,
we show how to find hardness gadgets for all square-free graphs and, in Section 5.5, we
tie everything together to prove the dichotomy theorem.

5.2 Preliminaries

As in the previous chapters, graphs are undirected and have no parallel edges or self-
loops. We will also use the partially labelled graphs and graphs with distinguished
vertices that we introduced in Section 2.2. We use ΓH(v) to denote the set of neighbours
of vertex v in H and degH(v) to denote the degree of v in H. A path P is a graph
with vertex set V (P ) and edge set E(P ). However, where convenient, we specify P by
simply listing the vertices of the path, in order.

Recall that an involution is an automorphism of order 2. Further recall Defini-
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tion 2.7 of an order p reduced form H∗p of a graph H. In the special case of p = 2 we
will call this graph the involution-free reduction of H and simply denote it with H∗.

5.3 Gadgets for counting modulo 2

Recall that, by Corollary 4.5, if an involution-free graph H has a (0, 2)-gadget, then
#2HomsToH is #2 P-complete. So, the technical work in this chapter is about finding
(0, 2)-gadgets in square-free graphs H. Recall Definition 3.9 of a (γ, p)-gadget. A (0, 2)-
gadget is a (γ, p)-gadget for γ = 0 and p = 2, so we can simplify the definition of a
(0, 2)-gadget to the following:

Definition 5.3. A (0, 2)-gadget (i, s, (J1, y), (J2, z), (J3, y, z)) for a graph H consists of
vertices i and s of H together with three connected, partially H-labelled graphs with
distinguished vertices (J1, y), (J2, z) and (J3, y, z), where y and z are distinct, that
satisfy certain properties as explained below. Let

Ωy = {a ∈ V (H) | |Hom((J1, y)→ (H, a))| is odd},

Ωz = {b ∈ V (H) | |Hom((J2, z)→ (H, b))| is odd}, and

N3(u, v) = |Hom((J3, y, z)→ (H, u, v))|.

The properties that we require are the following.

1. |Ωy| is even and i ∈ Ωy.

2. |Ωz| is even and s ∈ Ωz.

3. For each o ∈ Ωy − i and each x ∈ Ωz − s, N3(o, x) is even.

4. N3(i, s) is odd and, for each o ∈ Ωy− i and each x ∈ Ωz− s, N3(o, s) and N3(i, x)
are odd.

The main simplification is that of property 2. Recall Definition 3.9 to see, that for
each b ∈ Ωz, N2(b) ≡ 1 (mod 2), so ∑b∈Ωz N2(b) = |Ωz| and κ ≡ 1 (mod 2).

5.3.1 Caterpillar gadgets

All our (0, 2)-gadgets use the following “caterpillar gadgets” as J3. We will also use two
further kinds of gadget, “neighbourhood gadgets” and “`-cycle gadgets”, but we defer
their definitions to the sections where they are used. As we will see in the following
section, caterpillar gadgets rely on H being square-free.

Definition 5.4. For a path P = v0 . . . vk in H, with k ≥ 1, define the caterpillar gadget
JP = (G, τ) as follows (see Figure 5.1). V (G) = {u1, . . . , uk−1, w1, . . . , wk−1, y, z} and
G is the path yu1 . . . uk−1z together with edges (uj, wj) for 1 ≤ j ≤ k − 1. τ = {w1 7→
v1, . . . , wk−1 7→ vk−1}.
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y u1 u2 uk−2 uk−1 z

v1

w1

v2

w2

vk−2

wk−2

vk−1

wk−1

Figure 5.1: The caterpillar gadget corresponding to a path v0 . . . vk. The vertices
w1, . . . , wk−1 in the gadget are pinned to vertices v1, . . . , vk−1 inH, respectively. Normal
vertices appear as black dots, distinguished vertices as small white circles. Pinned
vertices appear as large white circles where the label inside the vertex indicates what
the vertex is pinned to.

Note that, if P is a single edge, G(JP ) is also the single edge (y, z) and τ(JP ) = ∅.
In the following, we will repeatedly make use of the following fact about square-free

graphs: if two distinct vertices have a common neighbour, they must have a unique
common neighbour, since a pair of vertices with two common neighbours would form
a 4-cycle.

Lemma 5.5. Let H be a square-free graph, let k > 0 and let P = v0 . . . vk be a path in
H.

1. For any a ∈ ΓH(v0) − v1 and σ ∈ Hom((JP , y) → (H, a)), σ(uj) = vj−1 for all
j ∈ [k − 1].

2. For any b ∈ ΓH(vk)− vk−1 and σ ∈ Hom((JP , z) → (H, b)), σ(uj) = vj+1 for all
j ∈ [k − 1].

Proof. The result is trivial for k = 1 so we assume k > 1. We prove the first part, by
induction on j. The second part follows by symmetry (call the vertices on the path
vk . . . v0 instead of v0 . . . vk).

First, take j = 1. From the structure of JP , σ(u1) must be a neighbour of σ(y) = a

and of v1, which are distinct vertices. v0 is a common neighbour of a and v1, so it must
be their unique common neighbour, so σ(u1) = v0. Now, suppose that σ(uj−1) = vj−2.
As in the base case, σ(uj) must be some neighbour of vj−2 and vj, which are distinct.
vj−1 is such a vertex, so it is the unique such vertex.

Lemma 5.6. Let H be a square-free graph. Let k > 0 and let P = v0 . . . vk be a path
in H with degH(vj) odd for all j ∈ {1, . . . , k − 1}. Let Ωy ⊆ ΓH(v0) and Ωz ⊆ ΓH(vk),
with i = v1 ∈ Ωy and s = vk−1 ∈ Ωz. For each o ∈ Ωy − i and each x ∈ Ωz − s:

1. |Hom((JP , y, z)→ (H, o, x))| = 0,

2. |Hom((JP , y, z)→ (H, o, s))| = 1,

3. |Hom((JP , y, z)→ (H, i, x))| = 1 and
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4. |Hom((JP , y, z)→ (H, i, s))| is odd.

Proof. If k = 1, i = v1, s = v0, G(JP ) is the single edge (y, z) and τ(JP ) = ∅. For any
o ∈ Ωy− i and x ∈ Ωy− s, we have (o, s), (i, s), (i, x) ∈ E(H) so (o, x) /∈ E(H) because
H is square-free. Parts 1–4 are immediate. For the remainder of the proof, we may
assume that k ≥ 2. Note that when k = 2, i = s = v1 and this is the unique common
neighbour of v0 and v2 in H.

For part 1, suppose, towards a contradiction, that σ ∈ Hom((JP , y, z)→ (H, o, x)).
In particular, σ ∈ Hom((JP , y) → (H, o)) so, by Lemma 5.5(1), σ(u1) = v0. We also
have σ ∈ Hom((JP , z) → (H, x)) so, by Lemma 5.5(2), σ(u1) = v2. But P is a simple
path so v0 6= v2.

For part 2, let σ ∈ Hom((JP , y, z) → (H, o, s)). Since σ ∈ Hom((JP , y) → (H, o)),
σ(uj) = vj−1 for all i ∈ [k−1] by Lemma 5.5(1). But now, σ is completely determined,
so it is the unique element of Hom((JP , y, z)→ (H, o, s)). Part 3 follows similarly from
Lemma 5.5(2).

For part 4, first note that there is a homomorphism σ+ ∈ Hom((JP , y, z)→ (H, i, s))
with σ+(uj) = vj+1 for all j ∈ [k − 1]. Now, for m ∈ [k − 1], let

Sm = {σ ∈ Hom((JP , y, z)→ (H, i, s)) | m is minimal such that σ(um) 6= vm+1} .

The sets {σ+} and S1, . . . , Sk−1 partition Hom((JP , y, z)→ (H, i, s)).
We claim that, for any σ ∈ Sm, σ(uj) = vj−1 for all j > m. This is trivial for Sk−1

so let σ ∈ Sm with m < k − 1. σ(um+1) must be a neighbour of both σ(wm+1) = vm+1

and σ(um) ∈ ΓH(vm). By definition of Sm, these are distinct vertices so vm is their
unique common neighbour and so σ(um+1) = vm. Now, if σ(uj) = vj−1 for some
j ∈ {m+ 1, . . . , k − 2}, then σ(uj+1) must be a neighbour of both σ(wj+1) = vj+1 and
vj−1: vj is the unique such vertex, so σ(uj+1) = vj. This establishes the claim.

But, now, for any σ ∈ Sm, we have σ(uj) = vj+1 for j < m and σ(uj) = vj−1 for
j > m. σ(y) = i, σ(z) = s and σ(wj) = vj for each j ∈ [k−1]. Finally, σ(um) may take
any value in ΓH(vm)− vm+1. It follows that, for all m, |Sm| = degH(vm)− 1, which is
even. |Hom((JP , y, z)→ (H, i, s))| = 1 +∑

m |Sm|, which is odd, as required.

5.3.2 Caterpillar gadgets and 4-cycles

Before proceeding to find (0, 2)-gadgets for square-free graphs in the next section, we
pause to show why 4-cycles cause problems for caterpillar gadgets and, in particular,
why Lemma 5.6 does not apply to graphs containing 4-cycles.

Consider first the one-edge caterpillar gadget J1 associated with the path v0v1 in
the graph H1 in Figure 5.2. This corresponds to k = 1 in Lemma 5.6 and we have
i = v1 and s = v0. Taking Ωy = ΓH1(v0) = {v′0, v1} and Ωz = ΓH1(v1) = {v0, v

′
1} satisfies

the conditions of the lemma. However, taking o = v′0 ∈ Ωy − i and x = v′1 ∈ Ωz − s, we
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H1:
o

s

v0

i

v1

xv′0 v′1

J1:
y z

Hk:

v0 v1

i

vk−1

s

vk

v′0

o

v′1 v′k−1

x v′k

JP :
y u1 uk−1 z

v1 vk−1

Figure 5.2: Examples of graphs containing 4-cycles for which caterpillar gadgets (Def-
inition 5.4 and Lemma 5.6) fail. The graphs H1 and Hk (k ≥ 2) are shown, along
with the caterpillar gadgets J1 and JP , corresponding to the paths v0v1 and v0 . . . vk,
respectively. The labels o, s, i and x are referenced in the text. Normal vertices appear
as black dots, distinguished vertices as small white circles. Pinned vertices appear as
large white circles where the label inside the vertex indicates what the vertex is pinned
to.

have |Hom((J1, y, z)→ (H, o, x))| = 1 so part 1 of the lemma does not hold. However,
the other three parts hold, as

|Hom((J1, y, z)→ (H, o, s))| = |Hom((J1, y, z)→ (H, i, x))|

= |Hom((J1, y, z)→ (H, i, s))| = 1 .

Now, consider longer paths such as the path P = v0 . . . vk in Hk in Figure 5.2, for
some k ≥ 2. The associated caterpillar gadget JP is also shown in the figure. For each
j ∈ {1, . . . , k − 1}, degHk(vi) is odd. We have i = v1 and s = vk−1 (with i = s in the
case k = 2). Again, take Ωy = ΓHk(v0) = {v′0, v1}, take Ωz = ΓHk(vk) = {vk−1, v

′
k} and

take o = v′0 ∈ Ωy − i and x = v′k ∈ Ωz − s.
Once again part 1 of the lemma fails. We have |Hom((JP , y, z)→ (Hk, o, x))| = 1,

since there is a homomorphism that maps uj to v′j for each j ∈ {1, . . . , k − 1}. This
is the only possible homomorphism from (JP , y, z) to (Hk, o, x) since there is only one
k-path from o to x that the k-path in JP can be mapped to. For a (0, 2)-gadget, it
would suffice for |Hom((JP , y, z)→ (Hk, o, x))| to be even (not necessarily zero) but it
is odd for every k.

For Hk, the other parts of the lemma fail, too. We have

|Hom((JP , y, z)→ (H, o, s))| = |Hom((JP , y, z)→ (H, i, x))| = k.

When the target is (H, o, s), the k-path in JP can be mapped to any of the k k-
paths in Hk from o to s (following along v′0v′1 . . . and then dropping down along an
edge v′jvj and then following vjvj+1 . . . vk−1). The case with target (H, i, x) is similar.
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Hk:

v0
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s
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v′0 v′1
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v′2

x v′k

J1: v′0
y

v1

J2: v′1
z

v2
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Figure 5.3: A (0, 2)-gadget for the graph Hk (see also Figure 5.2). Normal vertices
appear as black dots, distinguished vertices as small white circles. Pinned vertices
appear as large white circles where the label inside the vertex indicates what the vertex
is pinned to.

So in both cases, the number of homomorphisms is k. When k is odd, this is not
a real problem. The purpose of Lemma 5.6 is to show that caterpillar gadgets can
be used as J3 in a (0, 2)-gadget, and the definition of hardness gadgets only requires
that N3(o, s) and N3(i, x) (i.e., |Hom((JP , y, z) → (H, o, s))| and |Hom((JP , y, z) →
(H, i, x))|, respectively) be odd and not necessarily 1. However, this relaxation doesn’t
help when k is even.

Finally, for part 4, consider a homomorphism from (JP , y, z) to (H, i, s). The image
of the path yu1 . . . uk−1z in H must be a k-walk v1x1 . . . xk−1vk−1 with the property that
xj is adjacent to vj for each j ∈ {1, . . . , k − 1}. This means that xj ∈ {vj−1, v

′
j, vj+1}.

There are two kinds of k-walk satisfying these criteria. The first kind uses only the ver-
tices {v0, . . . , vk}. Such a walk must be either v1v0v1v2 . . . vk−1 or v1 . . . vαvα+1vα . . . vk−1

for some α ∈ {1, . . . , k − 1}. The second kind uses some of the vertices {v′1, . . . , v′k−1}.
Such a walk must be of the form v1 . . . vαv

′
α . . . v

′
βvβ . . . vk−1 for some 1 ≤ α ≤ β ≤ k−1.

There are k walks of the first kind and 1
2k(k − 1) of the second. Thus,

|Hom((J1, y, z)→ (H, i, s))| = k + 1
2k(k − 1) = 1

2k(k + 1) ,

which is odd if and only if k is congruent to 1 or 2, mod 4 but is required to be odd
for all k.

We note that #2HomsToH1 is #2 P-complete, as is #2HomsToHk, for every
k ≥ 2. H1 is an involution-free cactus graph with more than one vertex so it is hard
by the main theorem of Chapter 4. We claim that X = (i, s, (J1, y), (J2, z), (J3, y, z)),
as shown in Figure 5.3, is a (0, 2)-gadget for Hk. We have Ωy = {v0, v

′
1} = {o, i}

and Ωz = {v1, v
′
2} = {s, x}: both are even and i ∈ Ωy and s ∈ Ωz. There is no

edge ox in Hk so N3(o, x) = 0, which is even. There are edges os, ix and is in Hk, so
N3(o, s) = N3(i, x) = N3(i, s) = 1, which is odd. This establishes that X is a (0, 2)-
gadget so, sinceHk is involution-free, #2HomsToHk is #2 P-complete by Corollary 4.5.
Ironically, the part J3 of X is the one-edge caterpillar gadget associated with the
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path v1v
′
1 in Hk. The failure of Lemma 5.6 in the presence of 4-cycles only means that

caterpillar gadgets are not guaranteed to work, not that they never work.

5.4 Finding (0, 2)-gadgets

In this section, we show how to find (0, 2)-gadgets for all connected, involution-free,
square-free graphs. The simplest case is when the graph contains at least two vertices of
even degree. Faben and Jerrum [32] used the fact that all involution-free trees have at
least two even-degree vertices, though we use different gadgets because we are dealing
with graphs containing cycles as well as trees. For graphs with only one even-degree
vertex, we show that an appropriate vertex deletion produces a component with more
than one even-degree vertex and show how to simulate such a vertex deletion using
gadgets.

This leaves graphs where every vertex has odd degree. In Section 5.4.2, we show
how to use odd-length cycles to find a (0, 2)-gadget. The remaining case, bipartite
graphs in which every vertex has odd degree, is covered in Section 5.4.3, where we use
Corollary 5.21, our version of Lovász’s result, to non-constructively demonstrate that
a (0, 2)-gadget always exists.

We will use the following fact.

Lemma 5.7. An involution-free graph with at least two vertices but at most one even-
degree vertex contains a cycle.

Proof. We prove the contrapositive. Let G be an involution-free acyclic graph. At most
one component of G is an isolated vertex so, if G has two or more vertices, it has at
least one component with two or more vertices. This component is an involution-free
tree which, by [32, Lemma 5.3], contains at least two vertices of even degree.

5.4.1 Even-degree vertices

We prove that involution-free graphs containing at least one vertex of positive, even
degree have a (0, 2)-gadget. In this section, we will use one extra kind of gadget.

Definition 5.8. For a vertex v ∈ V (H), define the neighbourhood gadget JΓ(v),x =
(G, {w 7→ v}), where G is the single edge (x,w).

It is immediate from the definition that, for any v ∈ V (H),

|Hom((JΓ(v),x, x)→ (H, u))| =

 1 if u ∈ ΓH(v)

0 otherwise.

We first show how to find hardness gadgets for connected graphs containing at least
two even-degree vertices (their degree must be positive, since the graph is connected)
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and then deal with the harder case of graphs containing exactly one vertex of posi-
tive, even degree. The following lemma constructs a caterpillar gadget, so the lemma
depends on H being square-free. The extended conclusion about pinned vertices is
needed for technical reasons in the proof of Lemma 5.13.

Lemma 5.9. Let H be a connected, square-free graph with at least two even-degree
vertices. Then H has a (0, 2)-gadget (i, s, (J1, y), (J2, z), (J3, y, z)). Furthermore, we
can choose J1, J2 and J3 so that each contains at least one pinned vertex.

Proof. Let v0 . . . vm be a path in H between distinct even-degree vertices v0 and vm

and let P = v0 . . . vk, where k ∈ {1, . . . ,m} is minimal such that degH(vk) is even. We
claim that (v1, vk−1, (JΓ(v0),y, y), (JΓ(vk),z, z), (JP , y, z)) is a (0, 2)-gadget. |Ωy| and |Ωz|
are even because v0 and vk have even degree; and they contain v1 and vk−1, respec-
tively. The remaining properties required by Definition 5.3 hold by Lemma 5.6, since
v1, . . . , vk−1 have odd degree.

Each of JΓ(v0),y and JΓ(vk),z contains a pinned vertex and, if k > 1, JP also con-
tains at least one pinned vertex. If k = 1, then G(JP ) is the single edge (y, z) and
τ(JP ) = ∅. However, we may add to G(JP ) a new vertex w0 and an edge (w0, y) and
set τ(JP ) = {w0 7→ v0}: this requires y to be mapped to a neighbour of v0. This
has no effect on the (0, 2)-gadget since Definition 5.3 only imposes requirements on
|Hom((J3, y, z) → (H, a, b))| when a ∈ Ωy. Since Ωy = ΓH(v0), we are already only
considering homomorphisms that map y to a neighbour of v0 and the change to J3 is
merely restating this condition.

It is worth noting that, since all involution-free trees have at least two even-degree
vertices, Lemma 5.9 implies Faben and Jerrum’s dichotomy for #2HomsToH where
H is a tree [32]. They also use two even-degree vertices but their gadgets rely on the
fact that there is a unique path between two vertices of a tree, which doesn’t hold in
general graphs. However, from Lemma 5.9, we conclude that uniqueness of the path is
not required and we can prove hardness even when there are multiple paths between
even-degree vertices.

To handle graphs with fewer than two vertices of even degree, we first investigate
the results of deleting vertices from such graphs. If we delete the unique even-degree
vertex from a connected graph, then each component of the resulting graph contains
at least one vertex of even degree. If we are lucky, one of the resulting components
will contain two or more vertices of even degree, raising the hope that we can use
Lemma 5.9 to prove #2 P-completeness. If all of the resulting components have exactly
one even-degree vertex, then we can iterate, deleting those vertices to obtain yet more
fragments. As long as the graph contains at least one cycle, it is not hard to see that we
can eventually obtain a component with two or more even-degree vertices. However,
to apply Lemma 5.9, we must ensure that the resulting component has no involution.
We prove this in the following two lemmas.
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Lemma 5.10. Let H be an involution-free graph with exactly one vertex v of positive,
even degree. Then H ′ = H − v is also involution-free.

Proof. Each vertex u ∈ ΓH(v) has odd degree in H and has exactly one neighbour
removed, so degH′(u) is even. Suppose, towards a contradiction, that ρ is an involution
of H ′. No automorphism can map an odd-degree vertex to an even-degree vertex or
vice-versa and ΓH(v) is exactly the set of even-degree vertices in H ′. Therefore, the
restriction of ρ to the neighbours of v is a permutation. Define ρ̂ : V (H) → V (H) by
ρ̂(v) = v and ρ̂(w) = ρ(w) for w 6= v. ρ̂ preserves all edges in H ′ and all edges incident
on v in H, so it is an involution of H, contradicting the supposition that H has no
involution.

So far, we have described our goal as being to iteratively delete vertices until we find
a component with more than one even-degree vertex. This is a useful intuition but we
do not know how to simulate such a sequence of vertex deletions using gadgets. Instead,
we show how to achieve the goal of a component with more than one even-degree vertex
by deleting a set of vertices, which we do know how to do with a gadget.

For a vertex v ∈ V (H) and an integer r ≥ 0, let Br(v) = {u ∈ V (H) | d(u, v) = r}.

Corollary 5.11. Let H be an involution-free graph that has exactly one vertex v of
positive, even degree. For some r, H−Br(v) has an involution-free component H∗ that
does not contain v but does contain at least two even-degree vertices. Furthermore, we
can take r = min {d(v, w) | w is on a cycle}.

Proof. H contains a cycle by Lemma 5.7 so we can take r as in the statement of the
lemma and this is well-defined. If r = 0, then v is in some cycle C in H. H − v has
no involution by Lemma 5.10, so no component of H − v has an involution. The
component H∗ of H − v that contains C − v contains at least two vertices of ΓH(v)
(v’s two neighbours in C) and these vertices have even degree in H∗. H∗ does not, of
course, contain v.

Suppose that r > 0. By the choice of r, there must be a component H ′ of H −
Br−1(v) that contains a vertex vr ∈ Br(v) that is in a cycle C ′ of H ′. Since no vertex
at distance less than r from v is in a cycle in H, there is a unique path from v to vr.
Let this be v0 . . . vr, where v = v0. A simple induction on j = 0, . . . , r − 1, using
Lemma 5.10, shows that the component of H−vj containing vr has no involution, does
not contain v and has exactly one even-degree vertex: namely, vj+1. In particular, the
component of H−vr−1 that contains vr is H ′. But, now, the component of H ′−vr that
contains C ′−vr has no involution (because no component of H ′−vr has an involution)
and contains at least two vertices of even degree (because vr has at least two neighbours
in C ′). Further, this component is the component H∗ of H −Br(v) that we seek.

Thus, starting with an involution-free graph H containing only one vertex of posi-
tive, even degree, we have shown how to make a set of vertex deletions (some set Br(v))
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to obtain an involution-free component H∗ with at least two even-degree vertices. We
now show that we can achieve these vertex deletions using gadgetry. The following
technical lemma allows us to construct a gadget that, in a sense, “selects” the vertices
of H∗ within H.

Lemma 5.12. Let H be a graph, let P = x0 . . . xr+1 with r ≥ 0 be a path in H and
let w ∈ V (H). If every vertex in H within distance r − 1 of w has odd degree, then
|Hom((P, x0) → (H,w))| has opposite parity to the number of distinct r-paths in H

from w to vertices of even degree.

Proof. We prove the lemma by induction on r. For r = 0, the result is trivial. The
condition on vertices within distance r − 1 is vacuous. The number of 0-paths from
w to vertices of even degree is zero if deg(w) is odd; it is one if deg(w) is even; and
|Hom((P, x0)→ (H,w))| = deg(w).

Suppose the result holds for the path P = x0 . . . xr+1 and consider the path Pxr+2

and a graph H in which every vertex within distance r of w has odd degree.
Every homomorphism σ from (Pxr+2, x0) to (H,w) induces a homomorphism σ̂

from (P, x0) to (H,w). Write σ ∼ σ′ if σ̂ = σ̂′. ∼ is an equivalence relation and its
equivalence classes partition Hom((Pxr+2, x0)→ (H,w)). Let [[σ]] be the ∼-equivalence
class of σ.

If every vertex within distance r of w in H has odd degree, there are no r-paths from
w to vertices of even degree so, by the inductive hypothesis, there are an odd number
of homomorphisms from (P, x0) to (H,w), so there are an odd number of equivalence
classes. Further, |[[σ]]| = deg(σ(xr+1)) (this is well-defined since σ(xr+1) = σ̂(xr+1), so
all homomorphisms σ′ ∈ [[σ]] agree on the value of σ′(xr+1)). Any vertex of even degree
is at distance at least r+1 from w = σ(x0) so, if degH(σ(xr+1)) is even, then the r-walk
σ(x0)σ(x1) . . . σ(xr+1) is, in fact, a simple (r + 1)-path. Therefore, the number N of
even-cardinality equivalence classes is equal to the number of (r+1)-paths in H from w

to a vertex of even degree, and subtracting these from the total number of equivalence
classes gives |Hom((Pxr+2, x0)→ (H,w))| ≡ 1−N mod 2, as required.

Now, we can obtain a (0, 2)-gadget for H by combining the “selection gadget” with
the (0, 2)-gadget for the subgraph H∗ given to us by Corollary 5.11.

Lemma 5.13. Any involution-free, square-free graph H that has exactly one vertex v
of positive, even degree has a (0, 2)-gadget.

Proof. Let r = min {d(v, w) | w is on a cycle}. By Corollary 5.11, there exists an
involution-free component H∗ of H − Br(v) that does not contain v but contains at
least two vertices of even degree. H∗ is square-free because it is an induced subgraph
of a square-free graph. Therefore, by Lemma 5.9, there is a (0, 2)-gadget in H∗, X ∗ =
(i, s, (J∗1 , y), (J∗2 , z), (J∗3 , y, z)), in which each of J∗1 , J∗2 and J∗3 contains a pinned vertex.
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We construct a (0, 2)-gadget X for H from X ∗. Let P be a path of length r+1 ≥ 1,
with vertices x0 . . . xr+1. Let J1 = (G, τ) be the partially H-labelled graph such that
τ = τ(J∗1 ) and G is defined from G(J∗1 ) as follows: start with G(J∗1 ) and, for every
vertex u ∈ G(J∗1 ), add a new copy of P and identify that copy’s vertex x0 with u.
Define J2 and J3 similarly, from J∗2 and J∗3 . We claim that the tuple

X =
(
i, s, (J1, y), (J2, z), (J3, y, z)

)
is the desired (0, 2)-gadget for H.

To find out what X does, we first consider homomorphisms from one copy of the
path P toH. For a vertex w ∈ V (H), letNw = |Hom((P, x0)→ (H,w))|. If d(v, w) = r

(i.e., w ∈ Br(v)), then there is a unique r-path from w to a vertex of even degree. This
is because v is the unique vertex of even degree and, if there were distinct r-paths Q1

and Q2 from w to v then Q1 ∪Q2 would contain a cycle, which would contain vertices
at distance strictly less than r from v, contradicting the definition of r. If d(v, w) > r,
then there are no r-paths from w to even-degree vertices. Therefore, by Lemma 5.12,
Nw is even if d(v, w) = r and Nw is odd if d(v, w) > r (we will see that the parity of Nw

does not matter if d(v, w) < r).
Now, let a ∈ V (H) and consider homomorphisms σ, σ′ ∈ Hom((J1, y) → (H, a)).

Write σ ∼ σ′ if σ(u) = σ′(u) for all u ∈ V (G(J∗1 )) and write [[σ]] for the ∼-equivalence
class containing σ. |Hom((J1, y)→ (H, a))| is the sum of the sizes of the ∼-equivalence
classes. For any σ, we have

|[[σ]]| =
∏

x∈V (G(J∗1 ))
|Hom((P, x0)→ (H, σ(x)))| .

Therefore, |[[σ]]| is even if σ maps any vertex of G(J∗1 ) into Br(v). In this case, |[[σ]]|
contributes nothing to the sum, modulo 2.

Thus, we may restrict our attention to homomorphisms from J∗1 to H that have
no vertex in Br(v) in their image. J∗1 is connected and contains a vertex pinned to a
vertex in H∗. Therefore, restricting to homomorphisms that have no vertex in Br(v)
in their image means restricting to homomorphisms whose image is wholly within H∗.
For any vertex w ∈ H∗, dH(v, w) > r, so this gives

|Hom((J1, y)→ (H, a))| ≡ |Hom((J∗1 , y)→ (H∗, a))| (mod 2) ,

for any a ∈ V (H∗) and |Hom((J1, y) → (H, a))| ≡ 0 mod 2, for a /∈ V (H∗); and
similarly for J2 and J3. Thus, since X ∗ is a (0, 2)-gadget for H∗, X is a (0, 2)-gadget
for H.

The proof of Lemma 5.13 does not explicitly use caterpillar gadgets. However, the
(0, 2)-gadget X is constructed from X ∗, which was produced by Lemma 5.9. It follows
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Figure 5.4: The `-cycle gadget J`,P,x corresponding to a path P = v1 . . . vk in an `-
cycle in H. Normal vertices appear as black dots, distinguished vertices as small white
circles. Pinned vertices appear as large white circles where the label inside the vertex
indicates what the vertex is pinned to.

that J∗3 is a caterpillar gadget, so Lemma 5.13 requires H to be square-free, as stated.

5.4.2 Odd cycles

In the previous section, we showed how to find a (0, 2)-gadget for any involution-free,
square-free graph containing at least one vertex of even degree. In this section, we show
that any square-free graph in which all vertices have odd degree has a (0, 2)-gadget if
it has an odd cycle. We first introduce a gadget for selecting certain vertices in cycles.

Definition 5.14. (See Figure 5.4). Let P = v1 . . . vk be a path in H. For any ` >
max {2, k}, define the `-cycle gadget J`,P,x = (G, τ) where G is the cycle xu1 . . . u`−1x

and τ = {u1 7→ v1, . . . , uk 7→ vk}.

We say that the odd-girth of a graph is the length of its shortest odd-length cycle.
By convention, the odd-girth of a graph without odd cycles is infinite; in the following,
we write “a graph whose odd-girth is `” as a short-hand for “a graph whose odd-girth
is finite and equal to `.”

Lemma 5.15. Let H be a graph whose odd-girth is ` and let G be an `-cycle. The
image of G under any homomorphism from G to H is an `-cycle in H.

Proof. Let G = u0 . . . u`−1u0. Since G is an `-cycle and H contains an `-cycle,
Hom(G → H) is non-empty so let σ ∈ Hom(G → H). Let C be the image of G
under σ, i.e., subgraph of H consisting of vertices {σ(u0), . . . , σ(u`−1)} and edges
{(σ(uj), σ(uj+1)) | 0 ≤ j < `}, with addition on indices carried out modulo `. Suppose
towards a contradiction that C is not an `-cycle. Since C has at most ` vertices and at
most ` edges, it cannot have an `-cycle as a proper subgraph. Since H has no odd cycles
shorter than `, C must be bipartite. But then the walk σ(u0)σ(u1) . . . σ(u`−1)σ(u0) is
an odd-length walk from a vertex to itself and no such walk can exist in a bipartite
graph.
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Corollary 5.16. Let H be a graph whose odd-girth is `. For any path P on fewer than
` vertices, |Hom((J`,P,x, x) → (H, v))| is the number of `-cycles in H that contain the
path vP .

Proof. By Lemma 5.15, the image of G(J`,P,x) under any homomorphism to H is an
`-cycle in H and, because of the pinning and distinguished vertex, this cycle must
contain the path vP .

Let #C`(vw) be the number of `-cycles in H containing the edge (v, w).

Lemma 5.17. Let H be a graph whose odd-girth is `. Every vertex v ∈ V (H) has an
even number of neighbours w such that #C`(vw) is odd.

Proof. If v is not in any `-cycle, the claim is vacuous: the even number is zero. Other-
wise, let C = vw1 . . . w`−1v be an `-cycle in H. If wj ∈ ΓH(v) for some even j 6= `− 1,
the odd cycle vw1 . . . wjv contradicts the stated odd-girth of H. If wj ∈ ΓH(v) for
some odd j 6= 1, the odd cycle vwj . . . w`−1v contradicts the odd-girth. Therefore, w1

and w`−1 are the only vertices in C that are adjacent to v and every `-cycle through v
contributes exactly 2 to ∑w∈ΓH(v) #C`(vw). Therefore, the sum is even, so it has an
even number of odd terms.

Lemma 5.18. Let H be a square-free graph whose odd-girth is `. If H contains an
edge that is in an odd number of `-cycles, then H has a (0, 2)-gadget.

Note that, for the case ` = 3, any edge in a 3-cycle in H must be in exactly one
3-cycle since, if an edge (x, y) is in distinct 3-cycles xyzx and xyz′x, then xzyz′x is
a 4-cycle in H, which is forbidden by the hypothesis of the lemma. The absence of
4-cycles is also required for the caterpillar gadget produced in the proof.

Proof. Let (i, s) be an edge in an odd number of `-cycles in H. Let J1 be the `-cycle
gadget J`,s,y (so τ(J1) = {u1 7→ s}) and let J2 be the `-cycle gadget J`,i,z. Let G(J3) be
the single edge (y, z) and let τ(J3) = ∅ (J3 is, technically, a caterpillar gadget but it is
easier to analyse it directly).

We claim that (i, s, (J1, y), (J2, z), (J3, y, z)) is a hardness gadget for H. By Corol-
lary 5.16, |Hom((J`,s,y, y) → (H, v))| is the number of `-cycles in H that contain the
edge (v, s), so

Ωy = {v ∈ V (H) | (v, s) is in an odd number of `-cycles} .

Thus, |Ωy| is even by Lemma 5.17. Ωy contains i by the choice of the edge (i, s)
in an odd number of `-cycles. Similarly, Ωz is even and contains s. To verify the
remaining properties required by Definition 5.3, note that J3 is a single edge so, for
any a, b ∈ V (H), |Hom((J3, y, z)→ (H, a, b))| is 1 if (a, b) ∈ E(H) and 0, otherwise. We
have Ωy ⊆ ΓH(s) and Ωz ⊆ ΓH(i) so, for any o ∈ Ωy− i and any x ∈ Ωz− s, H contains
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Figure 5.5: The parts J1, J2 and J3 of the (0, 2)-gadget constructed in the proof of
Lemma 5.19. The corresponding cycle in H is indicated in grey within each gadget.
The path P = vk . . . v`−1v0 is undirected but the arrow indicates the order in which
the vertices are listed. Normal vertices appear as black dots, distinguished vertices as
small white circles. Pinned vertices appear as large white circles where the label inside
the vertex indicates what the vertex is pinned to.

the edges (o, s), (s, i) and (i, x) but it cannot contain the edge (o, x) because H is
square-free.

Lemma 5.19. Let H be a square-free graph in which every vertex has odd degree. If
H contains an odd cycle, then it has a (0, 2)-gadget.

Proof. Let ` be the odd-girth of H. If H contains an edge in an odd number of `-cycles
(which is guaranteed for ` = 3, since H is square-free), then H has a (0, 2)-gadget by
Lemma 5.18. So, for the remainder of the proof, we may assume that the shortest odd
cycle in H has length ` > 4 and that every edge is in a (not necessarily positive) even
number of `-cycles.

Let P = vkvk+1 . . . v`−1v0 be a longest path that is in a positive, even number of
`-cycles (see Figure 5.5; it turns out to be most convenient to label the vertices in this
order; the path has length `− k). Such a path certainly exists because any edge in an
`-cycle is in a positive, even number of them. So, in particular, P contains at least one
edge. Further P has fewer than ` − 1 edges, because any path on ` − 1 edges is in at
most one `-cycle, since H has no parallel edges. Let C = v0v1 . . . v`−1v0 be an `-cycle
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containing P . Let rev(P ) = v0v`−1 . . . vk be the path P with the vertices listed in the
reverse order.

Let i = v1 and s = vk−1. Let J1 be the `-cycle gadget J`,rev(P ),y, let J2 be the `-cycle
gadget J`,P,z, and let J3 be the caterpillar gadget Jv0...vk .

We claim that (i, s, (J1, y), (J2, z), (J3, y, z)) is a (0, 2)-gadget for H. Since P was
chosen to be a longest path in a positive, even number of `-cycles, any path uP in H
must be in an odd number of `-cycles or in none at all. Since P itself is in an even
number of `-cycles, the number of extensions uP in an odd number of cycles must be
even. By Corollary 5.16, |Hom((J`,P,z, z) → (H, u))| is the number of `-cycles in H

that contain the path uP . Therefore, Ωz is precisely the set of vertices u such that uP
is in an odd number of `-cycles, so we have established that |Ωz| is even. Since sP is
an extension of P , it is not in a positive, even number of `-cycles; it is in at least one
`-cycle (namely, C) so it is in an odd number of them. Therefore, s ∈ Ωz. Similarly,
|Ωy| is even and i ∈ Ωy.

It remains to verify that the conditions of Lemma 5.6 hold for J3, so that lemma
gives us the remaining properties we need from Definition 5.3. All vertices in H have
odd degree by assumption, including in particular the interior vertices of P . We have
already established that i = v1 ∈ Ωy and s = vk−1 ∈ Ωz. Finally, Ωy ⊆ ΓH(v0) because,
in G(J1), y is adjacent to a vertex that is pinned to v0. Similarly, Ωz ⊆ ΓH(vk).

5.4.3 Bipartite graphs

The only remaining case is bipartite graphs H in which every vertex has odd degree.
We show that, if H has an “even gadget”, it has a (0, 2)-gadget. And it turns out that
every connected bipartite graph with more than one edge has an even gadget.

Definition 5.20. An even gadget for a bipartite graph H with at least one edge is an
edge (a, b) of H together with a connected bipartite graph G with a distinguished edge
(w, x) such that |Hom((G,w, x)→ (H, a, b))| is even.

Note that, for bipartite G and H, with edges (w, x) and (a, b), respectively, there
is always at least one homomorphism from (G,w, x) to (H, a, b), since the whole
of G can be mapped to the edge (a, b). So, although Definition 5.20 only requires
|Hom((G,w, x)→ (H, a, b))| to be even, the number of homomorphisms is always non-
zero.

We give a nonconstructive proof that every connected bipartite graph with more
than one edge has an even gadget. We will use the following corollary of the proof of
Lemma 2.16, which restricts to a certain class of connected graphs.

Corollary 5.21. Let (H, ȳ) and (H ′, ȳ′) be connected involution-free graphs, each with
r distinguished vertices, such that H[ȳ] and H ′[ȳ′] are also connected. Then (H, ȳ) ∼=
(H ′, ȳ′) if and only if, for all connected graphs (G, x̄) with r distinguished vertices, such
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that G[x̄] is connected,

|Hom((G, x̄)→ (H, ȳ))| ≡ |Hom((G, x̄)→ (H ′, ȳ′))| (mod 2) . (5.1)

Proof. For brevity, we refer to (G, x̄) as appropriate if it is connected, it has r distin-
guished vertices and G[x̄] is connected.

As in the proof of Lemma 2.16, the “only if” direction is trivial, so we suppose that
(5.1) holds for all appropriate (G, x̄). Also, ȳ and ȳ′ must have the same equality type.
If they do not, we may assume there are distinct i and j with yi = yj but y′i 6= y′j,
and take G = H[ȳ]. (G, ȳ) is appropriate but we have |Hom((G, ȳ) → (H, ȳ))| = 1 6=
|Hom((G, ȳ)→ (H ′, ȳ′))| = 0, which contradicts the assumption that (5.1) holds for all
appropriate (G, x̄).

The proof that (5.1) holding for every appropriate G implies that (2.2) holds for
p = 2 and for every appropriate G proceeds by induction on |V (G)|, as in the proof of
Lemma 2.16. The base cases are unchanged. To see that the inductive step remains
valid, let (G, x̄) be appropriate and let θ be any equivalence relation on V (G). We
claim that (G, x̄)/θ is also appropriate. By construction, (G, x̄)/θ has r distinguished
vertices. It is connected because it is the result of identifying vertices in a connected
graph; (G/θ)[[[x1]], . . . , [[xr]]] is connected for the same reason.

This establishes that (2.2) holds for p = 2 and all appropriate (G, x̄). Since (H, ȳ)
and (H ′, ȳ′) are both appropriate, we can complete the proof in the same way as in the
proof of Lemma 2.16, substituting each of these graphs in turn for (G, x̄) in (2.2).

Suppose that H is any connected bipartite graph with more than one edge such
that, for some edge (a, b) of H, (H, a, b) is involution-free. We will show that H has an
even gadget. If, furthermore, H is square-free, this even gadget gives a (0, 2)-gadget. If
H is also involution-free, the (0, 2)-gadget implies #2 P-completeness of #2HomsToH,
by Corollary 4.5.

Lemma 5.22. Suppose that H is a connected bipartite graph with more than one edge
such that, for some edge (a, b) of H, (H, a, b) is involution-free. Then H has an even
gadget.

Proof. Let H be a graph satisfying the conditions in the statement of the lemma. Let
K2 be the graph consisting of the single edge (a, b). Clearly, (K2, a, b) is involution-free
(since there are no non-trivial automorphisms of K2 that fix a and b) and H 6∼= K2

since H has more than one edge, so (H, a, b) 6∼= (K2, a, b). By Corollary 5.21 (taking
H ′ = K2 and ȳ = ȳ′ = (a, b)), there is a connected graph (G,w, x) with distinguished
vertices w and x such that (w, x) is an edge and

|Hom((G,w, x)→ (H, a, b))| 6≡ |Hom((G,w, x)→ (K2, a, b))| (mod 2) . (5.2)
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G must be bipartite — otherwise

|Hom((G,w, x)→ (H, a, b))| = |Hom((G,w, x)→ (K2, a, b))| = 0 ,

contradicting (5.2). Thus, |Hom((G,w, x) → (K2, a, b))| = 1, so the edge (a, b) of H
together with (G,w, x) is an even gadget.

Lemma 5.23. Suppose that H is a connected, bipartite, square-free graph with more
than one edge such that, for some edge (a, b) of H, (H, a, b) is involution-free. Suppose
that every vertex of H has odd degree. Then H has a (0, 2)-gadget.

Proof. By Lemma 5.22, H has an even gadget. Choose an even gadget consisting of
an edge (i, s) of H and a connected bipartite graph G with distinguished edge (w, x)
so that N = |Hom((G,w, x) → (H, i, s))| is even. Choose the even gadget so that the
number of vertices of G is as small as possible. There is a homomorphism from G to
the edge (i, s) so N > 0. N is even, so G cannot be a single edge.

First, we show that degG(w) ≥ 2. Suppose, towards a contradiction, that x is the
only neighbour of w in G, i.e. degG(w) = 1. If this is the case, then x must have some
neighbour w′ 6= w, since G is not a single edge. We have

0 ≡ |Hom((G,w, x)→ (H, i, s))| (mod 2)

≡ |Hom((G− w, x)→ (H, s))| (mod 2)

=
∑

c∈ΓH(s)
|Hom((G− w, x, w′)→ (H, s, c))| .

Since every vertex in H has odd degree, the sum has an odd number of terms. Since
the total is even, there must be some c such that |Hom((G− w, x, w′) → (H, s, c))| is
even, contradicting the choice of G. By the same argument, also, degG(x) ≥ 2.

For any vertex v ∈ V (G), let

C(v) = {c ∈ V (H) | |Hom((G,w, x, v)→ (H, i, s, c))| is odd} .

Note that, for any v ∈ V (G), |C(v)| is even since, otherwise, N would be odd.
We now show that C(y) 6= ∅ for every y ∈ ΓG(x)\{w}. If C(y) = ∅, then, in particu-

lar, i /∈ C(y), so |Hom((G,w, x, y)→ (H, i, s, i))| is even. But then |Hom((G′, w, x)→
(H, i, s))| is even, where G′ is the graph made from G by identifying the (distinct)
vertices w and y and calling the resulting vertex w. This contradicts minimality in
the choice of G. Similarly, C(z) 6= ∅ for every z ∈ ΓG(w) \ {x}. Choose vertices
y ∈ ΓG(x) \ {w} and z ∈ ΓG(w) \ {x}.

Finally, let J be the partiallyH-labelled graph (G, {w 7→ i, x 7→ s}) and letG(J3) be
the single edge (y, z) and τ(J3) = ∅. We show that (i, s, (J, y), (J, z), (J3, y, z)) is a
(0, 2)-gadget for H. Ωy = C(y) is even and i ∈ C(y); likewise, Ωz = C(z) is even and
s ∈ C(z).
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By the choice of J , Ωy ⊆ ΓH(s) and Ωz ⊆ ΓH(i). For any o ∈ Ωy− i and x ∈ Ωz− s,
H contains edges (o, s), (s, i) and (i, x) so it does not contain the edge (o, x) as it is
square-free. Therefore, N3(o, s) = N3(i, s) = N3(i, x) = 1 and N3(o, x) = 0 and we
have established all the conditions of Definition 5.3.

5.5 Main theorem

We have shown that all connected, square-free, involution-free graphs (and some dis-
connected graphs, too) have (0, 2)-gadgets and that #2HomsToH is #2 P-complete for
any involution-free graph that has a (0, 2)-gadget. As in Chapter 4 to deal with graphs
that have involutions, we use reduction by involutions. By Theorem 2.6, H reduces by
involutions to a unique up to isomorphism graph H∗. By Theorem 2.4 #2HomsToH
has the same complexity as #2HomsToH∗.

We can now prove our main result.

Theorem 1.12. Let H be a graph whose involution-free reduction H∗ is square-free.
If H∗ has at most one vertex, then #2HomsToH is in P; otherwise, #2HomsToH
is #2 P-complete.

Proof. As we noted above, #2HomsToH has the same complexity as #2HomsToH∗.
IfH∗ has at most one vertex, then, by Corollary 2.9, #2HomsToH∗ is in P. Otherwise,
let H∗∗ be any component of H∗ with more than one vertex. Such a component must
exist since, otherwise, H∗ would be a graph with at least two vertices and no edges,
and any such graph has an involution.

If H∗∗ has two or more vertices of even degree, then it has a (0, 2)-gadget by
Lemma 5.9. If H∗∗ has exactly one vertex of even degree, it has a (0, 2)-gadget by
Lemma 5.13. If the previous cases do not apply, then every vertex of H∗∗ must have
odd degree. By Lemma 5.7, H∗∗ contains a cycle. If it contains an odd cycle, it
has a (0, 2)-gadget by Lemma 5.19. Otherwise, H∗∗ is bipartite. By construction,
H∗∗ is connected and square-free. Since H∗∗ contains a cycle, it has more than one
edge. Since it is involution-free, it certainly contains an edge (a, b) so that (H∗∗, a, b)
is involution-free. Every vertex of H∗∗ has odd degree, so it has a (0, 2)-gadget by
Lemma 5.23.

We have established that either H∗ has at most one vertex, in which case both
#2HomsToH∗ and #2HomsToH are in P, or that some component H∗∗ of H∗ has
a (0, 2)-gadget. In the latter case, #2HomsToH∗∗ is #2 P-complete by Corollary 4.5.
#2HomsToH∗ is #2 P-complete by Lemma 4.29, so #2HomsToH is #2 P-complete.
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Chapter 6

Computing the partition function
(modulo a prime) of a two-spin
system with an external field

6.1 Introduction

In this chapter we study the complexity of #pZγ,λ, the problem of computing (modulo
a prime p) the partition function of a two spin system on multigraphs with an external
field. The two-spin model with external field has three parameters, a prime p and
γ, λ ∈ {0, 1, . . . p− 1}. A configuration σ : V (G)→ {0, 1} is an assignment of the two
spins “0” and “1” to the vertices of G. Let c(σ) denote the number of edges (u, v) of G
with σ(u) = σ(v) = 1 and let `(σ) denote the number of vertices u of G with σ(u) = 0.
The partition function of the model is given by:

Zγ,λ(G) =
∑

σ:V (G)→{0,1}
γc(σ)λ`(σ).

Formally, #pZγ,λ is the following modular counting problem.

Problem 6.1. Name: #pZγ,λ.

Parameter: A prime p and γ, λ ∈ {0, 1, . . . p− 1}.

Input: A multigraph G.

Output: Zγ,λ(G) (mod p).

In the definition above we could have γ, λ ∈ Z, instead of restricting γ, λ ∈
{0, 1, . . . p−1}. This does not weaken our results. To see this let γ, λ ∈ {0, 1, . . . p−1}
and let γ′, λ′ ∈ Z with γ′ ≡ γ (mod p) and λ′ ≡ λ (mod p). From the definition of
Zγ,λ, for any graph G, Zγ,λ(G) ≡ Zγ′,λ′(G) (mod p).

Recall that for a prime p, we let ip ∈ {0, 1, . . . p − 1}, such that i2p ≡ −1 (mod k).
For p ≥ 3 there can be either zero or two elements satisfying this definition. If there are
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no elements satisfying the definition, then consider the conditions involving ip vacuous.
If there are two elements satisfying the definition, then it does not matter which one
we choose. The main theorem of this chapter is the following.

Theorem 1.13. Let p be a prime and let γ, λ ∈ {0, 1, . . . p− 1}. #pZγ,λ is computable
in polynomial time when one of the following holds.

1. λ = 0.

2. γ = 1.

3. γ = −1 and λ ∈ {0,±1,±ip}.

Furthermore, #pZγ,λ is #p P-complete when one of the following holds.

4. λ 6≡ 0 (mod p) and γ ≡ 0 (mod p).

5. λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p) and there exists an integer k with γk ≡ λ

(mod p).

6. λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p) and p < 100, where p 6= 41.

Theorem 1.13 extends the results we have presented in Section 3.3, for the complex-
ity of #pZγ (Problem 3.3), the problem of computing the partition function of a two
spin system on multigraphs without an external field. As we saw in Section 3.3 any
instance multigraph G of #pZγ can be seen as an instance of #pCSP({E}), where E
is the binary function expressing the edge interactions for G. Hence Corollary 3.8 that
describes the complexity of #pZγ is an immediate corollary of the dichotomy theorem
on the complexity of #kCSP by Guo et al. [49].

It is obvious from the definitions of Problem 3.3 and Problem 6.1 that #pZγ is the
special case of #pZγ,λ with λ = 1. Like #pZγ, #pZγ,λ can also be seen as a special
case of #pCSP. More precisely any instance multigraph G of #pZγ,λ can be seen as
a restricted input of #pCSP({E,U}), where E is the binary function expressing the
edge interactions of G and U is the unary function expressing the vertex weights for G.
It is a restricted instance, since the unary function U is applied exactly once to each
variable of the input.

Tractability results for #pCSP({E,U}) carry over to #pZγ,λ. If #pCSP({E,U})
is tractable, so is every restricted input #pZγ,λ. So the polynomial cases of #pZγ,λ

in Theorem 1.13 come directly from the dichotomy theorem of Guo et al. [49] for the
complexity of #kCSP. For the hardness results though that is not true in general, as
hardness for #pCSP({E,U}), does not imply hardness for #pZγ,λ.

To prove our hardness results we reduce #pZγ to #pZγ,λ for various values of the
parameter space. Our reductions, informally, work as follows: Let G be the input
multigraph for #pZγ. We construct an input multigraph G′ for #pZγ,λ in the following
way. Let (J, x) be an “appropriate” gadget-multigraph with a distinguished vertex.
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Take the union of |V (G)| disjoint copies of (J, x) and a copy of G. For every vertex v
of G, identify x with v. By appropriate we mean that the gadget (J, x) cancells out
the vertex weights in Zγ,λ in the following way. The total “weight” contribution of J
to Zγ,λ(J) when x is mapped to “0” is equivalent to the total “weight” contribution of
J to Zγ,λ(J) when x is mapped to “1”. Therefore Zγ,λ(G′) = k (Zγ,λ(J))|V (G)| Zγ(G),
where k is a constant. Since J is a fixed graph, if we where able to compute Zγ(G) we
would be able to compute Zγ,λ(G′). Therefore, in order to prove hardness for #pZγ,λ

it suffices to find appropriate gadgets (J, x) for the values of the parameters γ, λ and
p.

To find appropriate gadgets, we also establish pinning for #pZγ,λ. The pinning we
use for #pZγ,λ is similar to the pinning we used for #pHomsToH: #pPinnedZγ,λ has
as an input a multigraph G and a pinning function τ : V (G) → {0, 1} and as output
the value of partition function Zγ,λ(G) (modulo p) over all configuration that respect
τ . We show that #pPinnedZγ,λ reduces to #pZγ,λ. This allows us to use multigraphs
J that have vertices pinned to either “0” or “1” as gadgets, in order to show hardness
for #pZγ,λ.

By using cliques as gadgets we can prove that #pZγ,λ is hard when λ 6≡ 0 (mod p)
and γ = 0. By using two vertices connected with k parallel edges where one of them
is pinned to “1” as a gadget, we can show hardness for #pZγ,λwhen λ 6≡ 0 (mod p),
γ 6≡ ±1 (mod p) and γk ≡ λ (mod p). Finally, using a combination of cliques, paths
and the “two vertices with k parallel edges” gadget we show that #pZγ,λ is hard for
small primes when λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p).

6.1.1 Organisation

In Section 6.3 we explain our choice of vertex weights. In Section 6.4 we give values of
the parameters for which #pZγ,λ is computable in polynomial time.

In Section 6.5 we show that for other values of the parameters, #pZγ,λ is #p P-
complete. More specifically in Section 6.5.1 we establish pinning for #pZγ,λ. In Sec-
tion 6.5.2 we identify a property for the gadgets we will use, in order to obtain hardness
results. In Section 6.5.3 we find appropriate gadgets for values of the parameter space.

Finally, in Section 6.6 we tie all our results together in the main theorem of this
section.

6.2 Preliminaries

In this chapter we only use multigraphs. For a multigraph G and a subset of its edges
U ⊆ V we denote with G[U ] the sub-multigraph of G induced by U . For a multigraph
G and v ∈ V (G) we denote with G − v the sub-multigraph of G induced by V \ {v}.
As with graphs we specify simple paths P by simply listing the vertices of the path, in
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order.

Let Zp be the additive group of integers modulo p. For a prime p and an integer k ∈ Zp,
when working in Zp we will, sometimes, denote p− k with −k.

6.3 Vertex weights

We defined #pZγ,λ so that vertices contribute a factor of λ when they are mapped to
“0”. We can also consider the version of the problem when the unary weight comes
from the vertices mapped to “1”. Let G be a multigraph, let σ : V (G) → {0, 1} and
let `′(σ) = |V (G)| − `(σ), i.e. the number of vertices mapped to “1” by σ. Define

Z ′γ,λ(G) =
∑

σ:V (G)→{0,1}
γc(σ)λ`

′(σ).

Let p be a prime and let λ−1 be the inverse of λ in Zp. From the definitions of Zγ,λ,
Z ′γ,λ and `′ we have,

(λ−1)nZγ,λ(G) ≡ (λ−1)n
∑

σ:V (G)→{0,1}
γc(σ)λ`(σ) (mod p)

≡
∑

σ:V (G)→{0,1}
γc(σ)(λ−1)|V (G)|−`(σ) (mod p)

≡
∑

σ:V (G)→{0,1}
γc(σ)(λ−1)`′(σ) (mod p)

≡ Z ′γ,λ−1(G). (mod p)

That is for any multigraph G, if we can compute Zγ,λ(G) modulo a prime p, then
we can compute Z ′γ,λ−1(G) modulo a prime p. So classifying the complexity of #pZγ,λ,
for every prime p and every λ ∈ Zp, is equivalent to determining the complexity of
computing Z ′γ,λ modulo p.

6.4 Polynomial solvable cases

As we have already mentioned in Section 3.3, Guo et al. [49] study the complexity of
#kCSP and give a dichotomy theorem completely characterising its complexity. We
will review the results of [49] and explain how they are relevant to identifying values
of the parameters γ, λ and p, for which #pZγ,λ is computable in polynomial time.

Recall definition 3.5 of a Boolean binary function that is expressed by a matrix. To
show the dichotomy for #kCSP Guo et al. define the classes of functions Pk and Ak.

Definition 6.3. Let U be the set of Boolean unary functions f : {0, 1} → N, let
F1 : {0, 1}2 → {0, 1} be the Boolean binary function expressed by the matrix [ 1 0

0 1 ] and
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x y L1(X) L2(X) L3(X) L4(X) L1(X) + 3L2(X) + 3L3(X) + L4(X)
0 0 1 1 1 1 8
1 0 0 0 1 1 4
0 1 0 1 0 1 4
1 1 1 0 0 1 2

Table 6.1: The table for the values of the indicator functions L1, . . . , L4 as they appear
in the proof of Lemma 6.6.

let F2 : {0, 1}2 → {0, 1} be the Boolean binary function expressed by the matrix [ 0 1
1 0 ].

Let P contain functions of the form ∏
i fi(xi1 , . . . , xiri ), where fi ∈ U ∪ {F1, F2}.

The functions of P are also called product functions. For an integer k, let Pk = {f :
{0, 1}r → Zp | f ≡ g (mod k), where g ∈ P}.

Definition 6.4. LetX be an r+1 dimensional column vector (x1, . . . , xr, 1) of {0, 1}r+1.

For an integer r′, let A be a r′ × (r + 1) Boolean matrix and let

χAX =

 1 if AX = 0
0 otherwise.

Ak contains the affine functions. That is, Ak is the class of functions of the form
χAX · (ik)L1(X)+···+Lm(X), where for j ∈ [m], Lj(X) is an indicator function χ〈αj ,X〉, αj
is an (r + 1)-dimensional vector and the inner product 〈αj, X〉 is taken over Z2.

We are now ready to state the dichotomy result of Guo et al. [49, Lemma 3.10] for
#pCSP.

Lemma 6.5 (Guo et al.). Let p be an odd prime and let F be a class of functions
mapping Boolean inputs to Zp. If F ⊆ Pp or F ⊆ Ap, then #pCSP(F) is computable
in polynomial time. Otherwise #pCSP(F) is #p P-hard.

Let Eγ be the function expressed by the matrix
[

1 1
1 γ

]
. Additionally let Uλ to

be the unary function with Uλ(0) = λ and Uλ(1) = 1. When λ = 1, #pZγ,1 is
equivalent to #pCSP({Eγ}). In any other case #pZγ,λ is essentialy a restricted input
of #pCSP({Eγ, Uλ}), where the unary function Uλ is applied to every variable of the
input exactly once. When #pCSP({Eγ, Uλ}) is computable in polynomial time then
#pZγ,λ is computable in polynomial time, as it is a special case of #pCSP({Eγ, Uλ}).
So by Lemma 6.5 when Eγ, Uλ ∈ Pp or when Eγ, Uλ ∈ Ap, we have that #pZγ,λ is
computable in polynomial time.

Lemma 6.6. Let p be a prime. The following hold.

1. For all γ ∈ Zp, #pZγ,0 is computable in polynomial time.

2. For all λ ∈ Zp, #pZ1,λ is computable in polynomial time.
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3. For λ ∈ {0,±1,±ip}, #pZ−1,λ is computable in polynomial time.

Proof. Let G be a multigraph. When λ ≡ 0 (mod p), Zγ,0(G) = γ|E(G)|, so (1) follows.
To show (2) notice that E1 ∈ Pp as E1 is a product of two unary functions:

E1(x, y) = g(x)g(y) with g(x) = 1. For any λ ∈ Zp, Uλ is a unary function, therefore a
member of Pp. From Lemma 6.5, #pCSP({E1, Uλ}) is computable in polynomial time
and so is #pZ1,λ.

Now we will show (3). Recall Definition 6.4 of Ap. Let A = [0, 0, 0] and let
X = (x, y, 1), so AX = (0) and, therefore, χAX(x, y) = 1. Now let α1 = (1, 1, 1),
α2 = (1, 0, 1), α3 = (0, 1, 1) and α4 = (0, 0, 1). So L1(x) ≡ x + y + 1 (mod 2),
L2(X) ≡ x+ 1 (mod 2), L3(X) ≡ y + 1 (mod 2) and L4(X) = 1. As we can see from
Table 6.1 E−1 = χAX · iL1(X)+3L2(X)+3L3(X)+L4(X)

p , so E−1 ∈ Ap.
We claim that when λ ∈ {0, 1, ip,−1,−ip}, Uλ ∈ Ap. Let X ′ = (x, 1). Let A0 =

[0, 0] and let α5 = (1, 1). So χA0X′(x) = 1 and L5(X) ≡ x + 1 (mod 2). Therefore,
Uip = χA0X′ ·iL5(X′)

p , U−1 = χA0X′ ·i2L5(X′)
p , U−ip = χA0X′ ·i3L5(X′)

p and U1 = χA0X′ ·i4L1(X′)
p .

From the above and Lemma 6.5, when λ ∈ {0, 1, ip,−1,−ip}, #pCSP({E−1, Uλ}) is
computable in polynomial time and so is #pZ−1,λ.

6.5 Hardness results

In this section we will show values of the parameter space (γ, λ, p) for which #pZγ,λ

is hard to compute. Lemma 6.13 below shows that #pZγ,λ is #p P-hard for all primes
p when λ 6≡ 0 (mod p) and γ ≡ 0 (mod p). Lemma 6.14 shows that when λ 6≡ 1
(mod p) and λ = γk (mod p), #pZγ,λ is #p P-hard. Lemma 6.18 shows that, for all
primes p < 100, where p 6= 41, when γ2 6≡ 1 (mod p) #pZγ,λ is #p P-complete.

When λ 6∈ {0,±1,±ip} the complexity of #pZ−1,λ remains unknown. We have,
by Lemma 6.5, that #pCSP({E−1, Uλ}) is hard.1 Since #pZ−1,λ is a restricted input
for #pCSP({E−1, Uλ}), hardness for #pCSP({E−1, Uλ}) does not imply hardness for
#pZ−1,λ. #pZ−1,1 is computable in polynomial time and a reduction similar to the
reductions we present in this chapter would not give us hardness for #pZ−1,λ.

6.5.1 Pinning in two-spin systems

The gadgets we will use for our reductions from #pZγ to #pZγ,λ will be multigraphs
with vertices pinned to either “0” or “1”. In the setting of #pZγ,λ, a pinning function τ
of a multigraph G is a partial function from V (G) to {0, 1}. A vertex v in the domain
of the pinning function is said to be pinned or pinned to τ(v). A partially pinned
multigraph J = (G, τ) consists of an underlying graph G and a pinning function τ from
V (G) to {0, 1}.

1E−1 /∈ Pp as it cannot be a multiple of F1 or F2 from Definition 6.3 and it cannot be a multiple
of only unary functions. Also Uλ /∈ Ap as the functions in Ap can only have values in {0,±1,±ip}.
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Definition 6.7. Let G be a multigraph and let τ : V (G) → {0, 1} be a pinning
function of G. R(G, τ) = {σ : V (G)→ {0, 1} | σ(v) = τ(v) for v ∈ dom(τ)} is the set
of mappings that respect τ .

Given a partially pinned multigraph (G, τ) we define Zτ
γ,λ(G) = ∑

σ∈R(G,τ) γ
c(σ)λ`(σ).

The pinned version of #pZγ,λ is the following.

Problem 6.8. Name. #pPinnedZγ,λ.

Parameter. A prime p and γ, λ ∈ Zp.

Input. A partially pinned multigraph J = (G, τ).

Output. Zτ
γ,λ(G) (mod p).

The following lemma shows that computing #pZγ,λ is at least as hard as computing
#pPinnedZγ,λ.

Lemma 6.9. For any prime p #pPinnedZγ,λ reduces to #pZγ,λ under polynomial-time
Turing reductions.

Proof. Let J = (G, τ) be an instance of #pPinnedZγ,λ. Let V0 = {v ∈ dom(τ) | τ(v) =
0} be the set of variables pinned to “0” and V1 = dom(τ)\V0 the set of variables pinned
to “1”. Zτ

γ,λ(G) = λ|V0|Zτ
γ,λ(G[V \ V0]) so it suffices to show that the lemma holds for

instances with V0 = ∅.
Let E1 = E(G[V1]) be the set of edges of G between the vertices of V1. Let G′

be the sub-multigraph of G where all the edges in E1 have been deleted. Zτ
γ,λ(G) =

γ|E1|Zτ
γ,λ(G′), so it suffices to show that the lemma holds for inputs J where E1 = ∅.

Let G′′ be the multigraph produced from G, by identifying all the vertices in V1.
Call this vertex v1. By construction, Zτ

γ,λ(G) = Zτ
γ,λ(G′′). Zγ,λ(G′′) = Zτ

γ,λ(G′′) +
λZγ,λ(G′′ − v1) and the lemma follows.

6.5.2 Gadgets for two-spin systems

In order to prove hardness for #pZγ,λ, we need to find gadgets which, by attaching to
every vertex of G, will cancel out the weights of λ that the vertices mapped to “0”
contribute to the partition function. Our gadgets (J, x) consist of a partially pinned
multigraph J = (G, τ) with a distinguished vertex x ∈ V (G(J)). Recall Definition 6.7
of R(G, τ). To express the properties of the gadgets we will need the following defini-
tions.

Definition 6.10. Let (J, x) be a partially pinned multigraph with a distinguished
vertex. Let G = G(J) and let τ = τ(J) : V (G(J))→ {0, 1} be the pinning function of
J , such that x /∈ dom(τ). We define

105



Zτ,0
γ,λ(G, x) =

∑
σ∈R(G,τ),
σ(x)=0

γc(σ)λ`(σ) and

Zτ,1
γ,λ(G, x) =

∑
σ∈R(G,τ),
σ(x)=1

γc(σ)λ`(σ).

As in Theorem 3.10 we will use the following notation to build partially pinned
multigraphs containing many copies of some subgraph. For any “tag” T (which we will
treat just as an arbitrary string) and any partially labelled multigraph J , denote by
JT a copy of J with every vertex v ∈ V (G(J)) renamed vT.

Definition 6.11. Given a multigraph G and a partially pinned multigraph with a
distinguished vertex (J, x) we define G � (J, x) to be the partially pinned multigraph
constructed in the following way. Take a copy of G together with the union of disjoint
copies Gv(J) of G(J) for each v ∈ V (G). For each vertex v ∈ V (G) identify v with xv.
Let τ(G� (J, x)) = ⋃

v∈V (G) τ(Gv(J)).

The following theorem shows that if we find an appropriate partially pinned multi-
graph with a distinguished vertex (J, x), we can obtain hardness for #pZγ,λ.

Lemma 6.12. Let p be a prime and let γ, λ ∈ Zp, with γ2 6≡ 1 (mod p) and λ 6≡ 0
(mod p). If there exists a partially pinned multigraph with a distinguished vertex (J, x)
and τ = τ(J), such that Zτ,0

γ,λ(G(J), x) ≡ Zτ,1
γ,λ(G(J), x) 6≡ 0 (mod p), then #pZγ,λ is

#p P-hard.

Proof. We first show that #pZγ,1 reduces to #pPinnedZγ,λ. Let G be the input of
#pZγ,1 and let (J, x) be a partially pinned multigraph with a distinguished vertex, such
that Zτ,0

γ,λ(G(J), x) ≡ Zτ,1
γ,λ(G(J), x) ≡ A (mod p). Let J ′ = G� (J, x) be the partially

pinned graph, as in Definition 6.11. J ′ will be the input for #pPinnedZγ,λ. We denote
G′ = G(J ′) and τ ′ = τ(J ′).

For σ, σ′ ∈ R(G′, τ ′) we write σ ∼G σ′ if σ|G = σ′|G. We also write [[σ]]G for
the ∼G-equivalence class of σ. The classes [[σ]]G partition the set of configurations
of J ′. For σ ∈ R(G′, τ ′) we define W ([[σ]]G) = ∑

σ∈[[σ]]G γ
c(σ)λ`(σ). Let σ ∈ R(G′, τ ′),

be a configuration of G′ that respects τ ′. σ maps `(σ|G) vertices of G to “0” and
V (G)− `(σ|G) vertices of G to “1”. Therefore,

W ([[σ]]G) = γc(σ|G)

 ∑
σ′∈R(G(J),τ(J)),

σ′(x)=0

γc(σ
′)λ`(σ

′)


`(σ|G) ∑

σ′∈R(G(J),τ(J)),
σ′(x)=1

γc(σ
′)λ`(σ

′)


V (G)−`(σ|G)

.

From Definition 6.10 we now have,
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W ([[σ]]G) = γc(σ|G)
(
Zτ,0
γ,λ(G(J), x)

)`(σ|G)(
Zτ,1
γ,λ(G(J), x)

)V (G)−`(σ|G)
.

By the choice of J , Zτ,0
γ,λ(G(J), x) ≡ Zτ,1

γ,λ(G(J), x) ≡ A (mod p), so

W ([[σ]]G) ≡ γc(σ|G)A|V (G)| (mod p). (6.1)

Now let σ1 . . . σk be representatives of the ∼G-equivalence classes.

Zτ
γ,λ(G′) =

∑
σ∈R(G′,τ ′)

γc(σ)λ`(σ)

=
k∑
i=1

∑
σ∈[[σi]]G

γc(σ)λ`(σ)

=
k∑
i=1

W ([[σi]]G)

≡ A|V (G)|
k∑
i=1

γc(σi|G) (mod p)

= A|V (G)|Zγ,1(G).

The equivalence above comes from Equation 6.1.
We have shown that #pZγ,1 reduces to #pPinnedZγ,λ. #pZγ,1 = #pZγ and by

Corollary 3.8 #pZγ is #p P-hard. By Lemma 6.9, #pPinnedZγ,λ reduces to #pZγ,λ.

6.5.3 Finding gadgets

In this section we show values of the parameter space (γ, λ, p) for which #pZγ,λ is #p P-
hard. All the proofs of lemmas in this section essentially identify a partially pinned
multigraph (J, x) with a distinguished vertex so that Lemma 6.12 applies. First we
show that when γ ≡ 0 and λ 6≡ 0 #pZγ,λ is hard. The gadget is a clique of appropriate
size.

Lemma 6.13. For every prime p and λ 6≡ 0 (mod p), #pZ0,λ is #p P-hard.

Proof. Let p prime and λ 6≡ 0 (mod p). Define (J, x) to be the following partially
pinned multigraph with a distinguished vertex. G(J) is the clique Kk with k > 0 and
k ≡ p+ 2− λ (mod p) vertices, where x ∈ V (G(J)) and τ = τ(J) = ∅.

Zτ,0
γ,λ(G(J), x) = λk−1(λ+k−1) and Zτ,1

γ,λ(G(J), x) = λk−1. If we chose k = p+2−λ,
then

Zτ,0
γ,λ(G(J), x) = λk−1(λ+ p+ 2− λ− 1)

≡ λk−1 (mod p)

≡ Zτ,1
γ,λ(G(J), x). (mod p)
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Since λ is non-zero and not a multiple of p, λk−1 is also non-zero and not a multiple
of p. Zτ,1

γ,λ(G(J), x) 6≡ 0 (mod p) and the proof follows from Lemma 6.12.

The next lemma shows that if γ is a generator in the multiplicative group Z∗p or
if γ is in the same orbit as λ in the multiplicative group Z∗p the #pZγ,λ is hard. The
gadget that we use in order to derive hardness is a pair of vertices connected with the
appropriate number of parallel edges, where one of the vertices is pinned to “1”.

Lemma 6.14. Let p be a prime and let γ, λ ∈ Zp, with γ2 6≡ 1 (mod p) and λ 6≡ 0
(mod p). If there exists k ∈ N such that γk ≡ λ (mod p), then #pZγ,λ is #p P-hard.

Proof. Let (J, x) be the partially pinned multigraph with two vertices x and y and k
parallel edges (x, y). Let τ = τ(J) = {y 7→ 1}. Zτ,0

γ,λ(J, x) = λ and Zτ,1
γ,λ(J, x) = γk.

Since γk ≡ λ 6≡ 0 (mod p), the proof follows from Lemma 6.12.

Observe that for any partially pinned multigraph with a distinguished vertex (J, x)
with a pinning function τ = τ(J), where x /∈ dom(τ), Zτ,0

γ,λ(G(J), x) is a multiple of λ.
That is because every term of ∑σ(x)=0

σ∈R(J,τ) γ
c(σ)λ`(σ) is a multiple of λ since x is always

mapped to “0”. We have the following observation.

Observation 6.15. Let (J1, x1) . . . (Jk, xk) be a set of partially pinned multigraphs
with distinguished vertices and let for i ∈ [k], τi = τ(Ji). Define (J, x) to be the graph
constructed by identifying all vertices xi and let τ = ⋃

i∈[k] τi. If Zτi,0
γ,λ (Ji, xi) = λAi and

Zτi,1
γ,λ (Ji, xi) = Bi then Zτ,0

γ,λ(J, x) = λ
∏
i∈[k] Ai and Zτ,1

γ,λ(J, x) = ∏
i∈[k] Bi.

Some of the graphs we consider as gadgets are cliques. For the cliqueKk, Zγ,λ(Kk) =∑k
i=0

(
k
i

)
λiγ(k−i2 ). This is true because there are

(
k
i

)
mappings σ with `(σ) = i. For

every such mapping σ, k− i vertices are mapped to “1”, hence c(σ) =
(
k−i

2

)
. Based on

the latter, we have the following observation.

Observation 6.16. Let (J, x) be a partially pinned graph, where G(J) = Kk+1 is the
clique with k + 1 vertices, one of which is x and let τ = τ(J) = ∅. Then,

Zτ,0
γ,λ(G(J), x) = λ

k∑
i=0

(
k

i

)
λiγ(k−i2 )

and
Zτ,1
γ,λ(G(J), x) =

k∑
i=0

(
k

i

)
λiγ(k−i2 )γk−i.

The other gadgets we will consider are paths.
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Observation 6.17. Let P2 = xx1x2 be the path of length 2 and let P3 = xx1x2x3 be
the path of length 3. We have,

Zτ,0
γ,λ(P2, x) = λ(λ2 + 2λ+ γ)

Zτ,1
γ,λ(P2, x) = λ2 + λγ + λ+ γ2

Zτ,0
γ,λ(P3, x) = λ(λ3 + 3λ2 + 2λγ + λ+ γ2)

Zτ,1
γ,λ(P3, x) = λ3 + 2λ2 + λ2γ + 2λγ + λγ2 + γ3.

Using the previous observations we can produce a computer assisted proof identi-
fying the values of the parameters γ, λ and p that make #pZγ,λ #p P-hard, when p is
small.

Lemma 6.18. For all primes p < 100, p 6= 41 and all γ, λ ∈ Zp with γ2 6≡ 1 (mod p)
and λ 6≡ 0 (mod p), #pZγ,λ is #p P-hard.

Proof. Let k = (k0, k1 . . . , km) be a vector of (Zp)m+1 for m ∈ N>0. Let (J(k), x) be
the partially pinned multigraph with a distinguished vertex x. G(J(k)) is constructed
by taking the union of disjoint copies of the following multigraphs and identifying their
distinguished vertices.

• The multigraph with vertex set {x, y} and k0 parallel edges (x, y), where x is the
distinguished vertex.

• For each j ∈ [m − 2], kj copies of the clique Kj+1, where xj ∈ V (Kj+1) is the
distinguished vertex.

• km−1 copies of the path P2 = xx1x2, where x is the distinguished vertex.

• km copies of the path P3 = xx1x2x3, where x is the distinguished vertex.

Let τ(J(k)) = τ = {y 7→ 1}.
From Observations 6.15, 6.16, 6.17 and the proof of Lemma 6.14 we have,

Zτ,0
γ,λ(G(J(k)), x)=λ

m−2∏
j=1

( j∑
i=0

(
j

i

)
λiγ(j−i2 ))kj(Zτ,0

γ,λ(P2, x)/λ
)km−1(

Zτ,0
γ,λ(P3, x)/λ

)km

and

Zτ,1
γ,λ(G(J(k)), x)=(γ)k0

m−2∏
j=1

( j∑
i=0

(
j

i

)
λiγ(j−i2 )γj−i

)kj(Zτ,1
γ,λ(P2, x)

)km−1(
Zτ,1
γ,λ(P3, x)

)km
.

Using the program presented in the Appendix, we can show that for all primes
p < 100, with p 6= 41 and for all γ, λ ∈ Zp, where γ2 6≡ 1 (mod p) and λ 6≡ 0 (mod p),
there exists k ∈ (Zp)m+1 for m ∈ N>0, such that Zτ,0

γ,λ(J(k), x) ≡ Zτ,1
γ,λ(J(k), x) 6≡ 0

(mod p). The lemma follows from Lemma 6.12.
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The program we used in the above proof, only failed to find a gadget for p = 41, γ =
18, λ = 6. We conjecture that there exists a gadget for these parameter values, so for
all γ, λ ∈ Z41 with γ2 6≡ 1 (mod p) and λ 6≡ 0 (mod p), #41Zγ,λ is #p P-hard.

6.6 Summary of results

Now we can summarise the results of this section. We will use the following.

Lemma 6.19. Let p be a prime and let γ ∈ Zp. γ2 ≡ 1 (mod p) if and only if γ = ±1
(mod p).

Proof. If γ ≡ ±1 (mod p) then, trivially γ2 ≡ 1 (mod p). Now assume that γ2 ≡ 1
(mod p) we have,

γ2 ≡ 1 (mod p)

(γ − 1)(γ + 1) ≡ 0 (mod p).

The latter equation is only true when γ ≡ ±1 (mod p), so the lemma follows.

The main theorem of this section summarises our results on the complexity of
#pZγ,λ.

Theorem 1.13. Let p be a prime and let γ, λ ∈ Zp. #pZγ,λ is computable in polynomial
time when one of the following holds.

1. λ = 0.

2. γ = 1.

3. γ = −1 and λ ∈ {0,±1,±ip}.

Furthermore, #pZγ,λ is #p P-complete when one of the following holds.

4. λ 6≡ 0 (mod p) and γ ≡ 0 (mod p).

5. λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p) and there exists an integer k with γk ≡ λ

(mod p).

6. λ 6≡ 0 (mod p), γ 6≡ ±1 (mod p) and p < 100, where p 6= 41.

Proof. By Lemma 6.6, #pZγ,λ is computable in polynomial time when (1)-(3) hold. By
Lemma 6.13 #pZγ,λ is #p P-hard when (4) holds. By Lemma 6.19 and Lemma 6.14
#pZγ,λ is hard when (5) holds. Finally, by Lemma 6.19 and Lemma 6.18 we have that
#pZγ,λis hard when (6) holds.
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Part II

Counting problems
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Chapter 7

Counting list matrix partitions of
graphs

This chapter are published in the paper “Counting List Matrix Partitions of Graphs”
co-authored with Leslie Goldberg, Colin McQuillan, Tomoyuki Yamakami and David
Richerby [42].

7.1 Introduction

Recall from Section 1.3 of the introduction, that a matrix partition of an undirected
graph is a partition of its vertices according to a matrix which specifies adjacency
and non-adjacency conditions on the vertices, depending on the parts to which they
are assigned. For finite sets D and D′, the set {0, 1, ∗}D×D′ is the set of |D| × |D′|
matrices M with rows indexed by D and columns indexed by D′ where each Mi,j ∈
{0, 1, ∗}. For any symmetric matrixM ∈ {0, 1, ∗}D×D, anM-partition of an undirected
graph G = (V,E) is a function σ : V → D such that, for distinct vertices u and v,

1. Mσ(u),σ(v) 6= 0 if (u, v) ∈ E and

2. Mσ(u),σ(v) 6= 1 if (u, v) 6∈ E.

Also recall that a list M -partition is an M -partition that respects a given list function.
In this chapter we study the complexity of the following problem.

Problem 1.16. Name. #List-M-partitions.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D.

Input. A pair (G,L) in which G is a graph and L is a function V (G)→ P(D).

Output. The number of M -partitions of G that respect L.

Our main result is a dichotomy theorem for the counting list M -partition problem,
where M a symmetric matrix of arbitrary size.
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Theorem 1.17. For any symmetric matrix M ∈ {0, 1, ∗}D×D, the problem #List-M-
partitions is either in FP or # P-complete.

To prove Theorem 1.17, we investigate the complexity of the more general counting
problem #L-M-partitions, which has two parameters — a matrix M ∈ {0, 1, ∗}D×D

and a (not necessarily proper) subset L of P(D). In this problem, we only allow sets
in L to be used as lists.

Problem 7.3. Name. #L-M-partitions.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D and a subset L of P(D).

Input. A pair (G,L) where G is a graph and L is a function V (G)→ L.

Output. The number of M -partitions of G that respect L.

Note that M and L are fixed parameters of #L-M-partitions — they are not
part of the input instance. The problem #List-M-partitions is just the special case
of #L-M-partitions where L = P(D).

We say that a set L ⊆ P(D) is subset-closed if A ∈ L implies that every subset of
A is in L. This closure property is referred to as the “inclusive” case in [34].

Definition 7.4. Given a set L ⊆ P(D), we write S(L) for its subset-closure, which is
the set S(L) = {X | for some Y ∈ L, X ⊆ Y }.

We prove the following theorem, which immediately implies Theorem 1.17.

Theorem 7.5. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D) be
subset-closed. The problem #L-M-partitions is either in FP or # P-complete.

Note that this does not imply a dichotomy for the counting M -partitions problem
without lists. The problem with no lists corresponds to the case where every vertex of
the input graph G is assigned the list D, allowing the vertex to be potentially placed
in any part. Thus, the problem without lists is equivalent to the problem #L-M-
partitions with L = {D}, but Theorem 7.5 applies only to the case where L is
subset-closed.

7.1.1 Polynomial-time algorithms and an explicit dichotomy

We now introduce the concepts needed to give an explicit criterion for the dichotomy
in Theorem 7.5 and to provide polynomial-time algorithms for all tractable cases. We
use standard definitions of relations and their arities, compositions and inverses.

Definition 7.6. For any symmetric M ∈ {0, 1, ∗}D×D and any sets X, Y ∈ P(D),
define the binary relation

HM
X,Y = {(i, j) ∈ X × Y |Mi,j = ∗} .
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The intractability condition for the problem #L-M-partitions begins with the
following notion of rectangularity, which was introduced by Bulatov and Dalmau [11].

Definition 7.7. A relation R ⊆ D×D′ is rectangular if, for all i, j ∈ D, and i′, j′ ∈ D′,

(i, i′), (i, j′), (j, i′) ∈ R =⇒ (j, j′) ∈ R .

Note that the intersection of two rectangular relations is itself rectangular. However,
the composition of two rectangular relations is not necessarily rectangular: for example,
{(1, 1), (1, 2), (3, 3)} ◦ {(1, 1), (2, 3), (3, 1)} = {(1, 1), (1, 3), (3, 1)}.

Our dichotomy criterion will be based on what we call L-M -derectangularising
sequences. In order to define these, we introduce the notions of pure matrices and
M -purifying sets.

Definition 7.8. Given index sets X and Y , a matrix M ∈ {0, 1, ∗}X×Y is pure if it
has no 0s or has no 1s.

Pure matrices correspond to ordinary graph homomorphism problems. As we noted
above,M -partitions ofG correspond to homomorphisms ofG whenG is a {0, ∗}-matrix.
The same is true (by complementation) when G is a {1, ∗}-matrix.

Definition 7.9. For any M ∈ {0, 1, ∗}D×D, a set L ⊆ P(D) is M-purifying if, for all
X, Y ∈ L, the X-by-Y submatrix M |X×Y is pure.

For example, consider the matrix

M =


1 ∗ 0
∗ 1 ∗
0 ∗ 1

 ,

with rows and columns indexed by {0, 1, 2} in the obvious way. The matrix M is not
pure but for L = {{0, 1}, {2}}, the set L is M -purifying and so is the closure S(L).

Definition 7.10. An L-M-derectangularising sequence of length k is a sequence
D1, . . . , Dk with each Di ∈ L such that:

1. {D1, . . . , Dk} is M -purifying and

2. the relation HM
D1,D2 ◦H

M
D2,D3 ◦ · · · ◦H

M
Dk−1,Dk

is not rectangular.

If there is an i ∈ {1, . . . , k} such that Di is the empty set then the relation H =
HM
D1,D2 ◦ H

M
D2,D3 ◦ · · · ◦ H

M
Dk−1,Dk

is the empty relation, which is trivially rectangular.
If there is an i such that |Di| = 1 then H is a Cartesian product, and is therefore
rectangular. It follows that |Di| ≥ 2 for each i in a derectangularising sequence.

We can now state our explicit dichotomy theorem, which implies Theorem 7.5 and,
hence, Theorem 1.17.

115



Theorem 7.11. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D) be
subset-closed. If there is an L-M-derectangularising sequence, then the problem #L-
M-partitions is # P-complete. Otherwise, it is in FP.

7.1.2 Organisation and outline of the proof

Sections 7.3, 7.4 and 7.5 develop a polynomial-time algorithm which solves the prob-
lem #L-M-partitions whenever there is no L-M -derectangularising sequence. The
algorithm involves several steps.

First, consider the case in which L is subset-closed and M -purifying. In this case,
Proposition 7.20 presents a polynomial-time transformation from an instance of the
problem #L-M-partitions to an instance of a related counting CSP. Algorithm 3
exploits special properties of the constructed CSP instance so that it can be solved
in polynomial time using a CSP technique called arc-consistency. (This is proved in
Lemma 7.23.) This provides a solution to the original #L-M-partitions problem for
the M -purifying case.

The case in which L is notM -purifying is tackled in Section 7.5. Section 7.5.1 gives
algorithms for constructing the relevant data structures, which include a special case
of sparse-dense partitions and also subcube decompositions. Algorithm 9 uses these
data structures (via Algorithms 4, 5, 6, 7 and 8) to reduce the #L-M-partitions
problem to a sequence of problems #Li-M-partitions where Li is M -purifying. Fi-
nally, the polynomial-time algorithm is presented in Algorithms 10 and 11. For every
L and M where there is no L-M -derectangularising sequence, either Algorithm 10 or
Algorithm 11 defines a polynomial-time function #L-M-partitions for solving the
#L-M-partitions problem, given an input (G,L). The function #L-M-partitions
is not recursive. However, its definition is recursive in the sense that the function #L-
M-partitions defined in Algorithm 11 calls a function #Li-M-partitions where
Li is a subset of P(D) whose cardinality is smaller than L. The function #Li-M-
partitions is, in turn, defined either in Algorithm 10 or in 11.

The proof of Theorem 7.11 shows that, when Algorithms 10 and 11 fail to solve the
problem #L-M-partitions, the problem is # P-complete.

7.1.3 Complexity of the dichotomy criterion

Theorem 7.11 gives a precise criterion under which the problem #L-M-partitions
is in FP or # P-complete, where L and M are considered to be fixed parameters.
In Section 7.6, we address the computational problem of determining which is the
case, now treating L and M as inputs to this “meta-problem”. Dyer and Richerby [25]
studied the corresponding problem for the #CSP dichotomy, showing that determining
whether a constraint language Γ satisfies the criterion for their #CSP(Γ) dichotomy is
reducible to the graph automorphism problem, which is in NP. We are interested in

116



the following computational problem, which we show to be NP-complete.

Problem 7.12. Name. ExistsDerectSeq.

Input. An index set D, a symmetric matrix M in {0, 1, ∗}D×D (represented as an
array) and a set L ⊆ P(D) (represented as a list of lists).

Output. “Yes”, if there is an S(L)-M -derectangularising sequence; “no”, otherwise.

Theorem 7.13. ExistsDerectSeq is NP-complete under polynomial-time many-
one reductions.

Note that, in the definition of the problem ExistsDerectSeq, the input L is not
necessarily subset-closed. Subset-closedness allows a concise representation of some
inputs: for example, P(D) has exponential size but it can be represented as S({D}),
so the corresponding input is just L = {D}. In fact, our proof of Theorem 7.13 uses
a set of lists L where |X| ≤ 3 for all X ∈ L. Since there are at most |D|3 + 1 such
sets, our NP-completeness proof would still hold if we insisted that the input L to
ExistsDerectSeq must be subset-closed.

Let us return to the original problem #List-M-partitions, which is the special
case of the problem #L-M-partitions where L = P(D). This leads our interest to
the following computational problem.

Problem 7.14. Name. MatrixHasDerectSeq.

Input. An index set D and a symmetric matrix M in {0, 1, ∗}D×D (represented as an
array).

Output. “Yes”, if there is a P(D)-M -derectangularising sequence; “no”, otherwise.

Theorem 7.13 does not quantify the complexity of MatrixHasDerectSeq be-
cause its proof relies on a specific choice of L which, as we have noted, is not P(D).
Nevertheless, the proof of Theorem 7.13 has the following corollary.

Corollary 7.15. MatrixHasDerectSeq is in NP.

7.1.4 Cardinality constraints

Many combinatorial structures can be represented as M -partitions with the addition
of cardinality constraints on the parts. For example, it might be required that certain
parts be non-empty or, more generally, that they contain at least k vertices for some
fixed k.

Feder et al. [37] showed that the problem of determining whether such a structure
exists in a given graph can be reduced to a List-M-partitions problem in which
the cardinality constraints are expressed using lists. In Section 7.7, we extend this
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to counting. We show that any #M-partitions problem with additional cardinality
constraints of the form, “part d must contain at least kd vertices” is polynomial-time
Turing reducible to #List-M-partitions. As a corollary, we show that the “homo-
geneous pairs” introduced by Chvátal and Sbihi [20] can be counted in polynomial
time. Homogeneous pairs can be expressed as an M -partitions problem for a certain
6× 6 matrix, with cardinality constraints on the parts.

7.2 Preliminaries

For a positive integer k, we write [k] for the set {1, . . . , k}. If S is a set of sets then
we use ⋂S to denote the intersection of all sets in S. The vertex set of a graph G is
denoted V (G) and its edge set is E(G). We write {0, 1, ∗}D for the set of all functions
σ : D → {0, 1, ∗} and {0, 1, ∗}D×D′ for the set of all matricesM = (Mi,j)i∈D,j∈D′ , where
each Mi,j ∈ {0, 1, ∗}.

We always use the term “M -partition” when talking about a partition of the vertices
of a graph according to a {0, 1, ∗}-matrixM . When we use the term “partition” without
referring to a matrix, we mean it in the conventional sense of partitioning a set X into
disjoint subsets X1, . . . , Xk with X1 ∪ · · · ∪Xk = X.

7.3 Counting list M-partition problems and count-
ing CSPs

Toward the development of our algorithms and the proof of our dichotomy, we study
a special case of the problem #L-M-partitions, in which L is M -purifying and
subset-closed. For such L and M , we show that the problem #L-M-partitions
is polynomial-time Turing-equivalent to a counting constraint satisfaction problem
(#CSP). To give the equivalence, we introduce the notation needed to specify #CSPs.

A constraint language is a finite set Γ of named relations over some set D. For such
a language, we define the counting problem #CSP(Γ) as follows.

Problem 7.16. Name. #CSP(Γ).

Parameter. A constraint language Γ.

Input. A set V of variables and a set C of constraints of the form 〈(v1, . . . , vk), R〉,
where (v1, . . . , vk) ∈ V k and R is an arity-k relation in Γ.

Output. The number of assignments σ : V → D such that

(σ(v1), . . . , σ(vk)) ∈ R for all 〈(v1, . . . , vk), R〉 ∈ C . (7.1)
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The tuple of variables v1, . . . , vk in a constraint is referred to as the constraint’s
scope. The assignments σ : V → D for which (7.1) holds are called the satisfying
assignments of the instance (V,C). Note that a unary constraint 〈v,R〉 has the same
effect as a list: it directly restricts the possible values of the variable v. As before, we
allow the possibility that ∅ ∈ Γ; any instance that includes a constraint 〈(v1, . . . , vk), ∅〉
has no satisfying assignments.

Definition 7.17. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L be a subset-
closed M -purifying set. Define the constraint language

Γ′L,M = {HM
X,Y | X, Y ∈ L}

and let ΓL,M = Γ′L,M ∪P(D), where P(D) represents the set of all unary relations on D.

The unary constraints in ΓL,M will be useful in our study of the complexity of
the dichotomy criterion, in Section 7.6. First, we define a convenient restriction on
instances of #CSP(ΓL,M).

Definition 7.18. An instance of #CSP(ΓL,M) is simple if:

1. there is exactly one unary constraint 〈v,Xv〉 for each variable v ∈ V,

2. there are no binary constraints 〈(v, v), R〉, and

3. each pair u, v of distinct variables appears in at most one constraint of the form
〈(u, v), R〉 or 〈(v, u), R〉.

Lemma 7.19. For every instance (V,C) of #CSP(ΓL,M), there is a simple instance
(V,C ′) such that an assignment σ : V → D satisfies (V,C) if and only if it satisfies
(V,C ′). Further, such an instance can be computed in polynomial time.

Proof. Observe that the set of binary relations in ΓL,M is closed under intersections:
HM
X,Y ∩HM

X′,Y ′ = HM
X∩X′,Y ∩Y ′ and this relation is in ΓL,M because L is subset-closed. The

binary part of ΓL,M is also closed under relational inverse because M is symmetric, so

(
HM
X,Y

)−1
= {(b, a) | (a, b) ∈ HM

X,Y } = HM
Y,X ∈ ΓL,M .

Since P(D) ⊆ ΓL,M , the set of unary relations is also closed under intersections.
We construct C ′ as follows, starting with C. Any binary constraint 〈(v, v), R〉 can

be replaced by the unary constraint 〈v, {d | (d, d) ∈ R}〉. All the binary constraints
between distinct variables u and v can be replaced by the single constraint

〈
(u, v),

⋂
{R | 〈(u, v), R〉 ∈ C or 〈(v, u), R−1〉 ∈ C}

〉
.

Let the set of constraints produced so far be C ′′. For each variable v in turn, if there are
no unary constraints applied to v in C ′′, add the constraint 〈v,D〉; otherwise, replace

119



all the unary constraints involving v in C ′′ with the single constraint

〈
v,
⋂
{R | 〈v,R〉 ∈ C ′′}

〉
.

C ′ is the resulting constraint set. The closure properties established above guarantee
that (V,C ′) is a #CSP(ΓL,M) instance. It is clear that it has the same satisfying
assignments as (V,C) and that it can be produced in polynomial time.

Our main result connecting the counting list M -partitions problem with counting
CSPs is the following.

Proposition 7.20. For any symmetric M ∈ {0, 1, ∗}D×D and any subset-closed, M-
purifying set L, the problem #L-M-partitions is polynomial-time Turing-equivalent
to #CSP(ΓL,M).

Because of its length, we split the proof of the proposition into two lemmas.

Lemma 7.21. For any symmetric matrix M ∈ {0, 1, ∗}D×D and any subset-closed,
M-purifying set L, the problem #CSP(ΓL,M) is polynomial-time Turing-reducible to
#L-M-partitions.

Proof. Consider an input (V,C) to #CSP(ΓL,M), which we may assume to be simple.
Each variable appears in exactly one unary constraint, 〈v,Xv〉 ∈ C. Any variable v
that is not used in a binary constraint can take any value in Xv so just introduces a
multiplicative factor of |Xv| to the output of the counting CSP. Thus, we will assume
without loss of generality that every variable is used in at least one constraint with a
relation from Γ′L,M and, by simplicity, there are no constraints of the form 〈(v, v), R〉.

We now define a corresponding instance (G,L) of #L-M-partitions. The vertices
of G are the variables V of the #CSP instance. For each variable v ∈ V, set

L(v) = Xv ∩
⋂{

X | for some u and Y , 〈(v, u), HM
X,Y 〉 ∈ C or 〈(u, v), HM

Y,X〉 ∈ C
}
.

The edges E(G) of our instance are the unordered pairs {u, v} that satisfy one of the
following conditions:

1. there is a constraint between u and v in C and M |L(u)×L(v) has a 0 entry, or

2. there is no constraint between u and v in C and M |L(u)×L(v) has a 1 entry.

Since every vertex v is used in at least one constraint with a relation HM
X,Y where,

by definition, X and Y are in L, every set L(v) is a subset of some set W ∈ L. L is
subset-closed so L(v) ∈ L for all v ∈ V , as required.

We claim that a function σ : V → D is a satisfying assignment of (V,C) if and only
if it is an M -partition of G that respects L. Note that, since L is M -purifying, no
submatrix M |X×Y (X, Y ∈ L) contains both 0s and 1s.
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First, suppose that σ is a satisfying assignment of (V,C). For each variable v, σ sat-
isfies all the constraints 〈v,Xv〉, 〈(v, u), HM

X,Y 〉 and 〈(u, v), HM
Y,X〉 containing v. There-

fore, σ(v) ∈ Xv and σ(v) ∈ X for each binary constraint 〈(v, u), HM
X,Y 〉 or 〈(u, v), HM

Y,X〉,
so σ satisfies all the list requirements.

To show that σ is anM -partition ofG, consider any pair of distinct vertices u, v ∈ V .
If there is a constraint 〈(u, v), HM

X,Y 〉 ∈ C, then σ satisfies this constraint soMσ(u),σ(v) =
∗ and u and v cannot stop σ being an M -partition. Conversely, suppose there is
no constraint between u and v in C. If M |L(u)×L(v) contains a 0, there is no edge
(u, v) ∈ E(G) by construction; otherwise, if M |L(u)×L(v) contains a 1, there is an edge
(u, v) ∈ E(G) by construction; otherwise, Mx,y = ∗ for all x ∈ L(u), y ∈ L(v). In all
three cases, the assignment to u and v is consistent with σ being an M -partition.

Conversely, suppose that σ is not a satisfying assignment of (V,C). If σ does not
satisfy some unary constraint 〈v,X〉 then σ(v) /∈ L(v) so σ does not respect L. If σ
does not satisfy some binary constraint 〈(u, v), HM

X,Y 〉 where u and v are distinct then,
by definition of the relation HM

X,Y , Mσ(u),σ(v) 6= ∗. If Mσ(u),σ(v) = 0, there is an edge
(u, v) ∈ E(G) by construction, which is forbidden in M -partitions; if Mσ(u),σ(v) = 1,
there is no edge (u, v) ∈ E(G) but this edge is required in M -partitions. Hence, σ is
not an M -partition.

Lemma 7.22. For any symmetric M ∈ {0, 1, ∗}D×D and any M-purifying set L that
is subset-closed, the problem #L-M-partitions is polynomial-time Turing-reducible
to #CSP(ΓL,M).

Proof. We now essentially reverse the construction of the previous lemma to give a
reduction from #L-M-partitions to #CSP(ΓL,M). For any instance (G,L) of #L-
M-partitions, we construct a corresponding instance (V,C) of #CSP(ΓL,M) as fol-
lows. The set of variables V is V (G). The set of constraints C consists of a constraint
〈v, L(v)〉 for each vertex v ∈ V (G) and a constraint 〈(u, v), HM

L(u),L(v)〉 for every pair of
distinct vertices u, v such that:

1. (u, v) ∈ E(G) and M |L(u)×L(v) has a 0 entry, or

2. (u, v) 6∈ E(G) and M |L(u)×L(v) has a 1 entry.

We show that a function σ : V → D is a satisfying assignment of (V,C) if and
only if it is an M -partition of G that respects L. It is clear that σ satisfies the unary
constraints if and only if it respects L.

If σ satisfies (V,C), then consider any pair of distinct vertices u, v ∈ V . If there is
a binary constraint involving u and v, then Mσ(u),σ(v) = Mσ(v),σ(u) = ∗ so the existence
or non-existence of the edge (u, v) of G does not affect whether σ is an M -partition.
If there is no binary constraint involving u and v, then either there is an edge (u, v) ∈
E(G) and Mσ(u),σ(v) 6= 0 or there is no edge (u, v) and Mσ(u),σ(v) 6= 1. In all three cases,
σ maps u and v consistently with it being an M -partition.
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Algorithm 1 The algorithm for computing arc-consistent domains for a simple
#CSP(ΓL,M) instance (V,C) where, for each v ∈ V , 〈v,Xv〉 ∈ C is the unary con-
straint involving v.
for v ∈ V do

Dv ← Xv

repeat
for v ∈ V do

D′v ← Dv

for 〈(u, v), R〉 ∈ C do
Du ← {d ∈ Du | for some d′ ∈ Dv, (d, d′) ∈ R}
Dv ← {d ∈ Dv | for some d′ ∈ Du, (d′, d) ∈ R}

until ∀v ∈ V , Dv = D′v
return (Dv)v∈V

Conversely, if σ does not satisfy (V,C), either it fails to satisfy a unary constraint, in
which case it does not respect L, or it satisfies all unary constraints (so it respects L),
but it fails to satisfy a binary constraint 〈(u, v), HM

L(u),L(v)〉. In the latter case, by
construction, Mσ(u),σ(v) 6= ∗ so either Mσ(u),σ(v) = 0 but there is an edge (u, v) ∈ E(G),
or Mσ(u),σ(v) = 1 and there is no edge (u, v) ∈ E(G). In either case, σ is not an
M -partition of G.

7.4 An arc-consistency based algorithm for the con-
straint satisfaction problem #CSP(ΓL,M)

In the previous section, we showed that a class of #L-M-partitions problems is
equivalent to a certain class of counting CSPs, where the constraint language consists
of binary relations and all unary relations over the domain D. We now investigate the
complexity of such #CSPs.

Arc-consistency is a standard solution technique for constraint satisfaction prob-
lems [58]. It is, essentially, a local search method which initially assumes that each
variable may take any value in the domain and iteratively reduces the range of values
that can be assigned to each variable, based on the constraints applied to it and the
values that can be taken by other variables in the scopes of those constraints.

For any simple #CSP(ΓL,M) instance (V,C), define the vector of arc-consistent
domains (Dv)v∈V by the procedure in Algorithm 1. At no point in the execution of the
algorithm can any domain Dv increase in size so, for fixed D, the running time of the
algorithm is at most a polynomial in |V |+ |C|.

It is clear that, if (Dv)v∈V is the vector of arc-consistent domains for a simple
#CSP(ΓL,M) instance (V,C), then every satisfying assignment σ for that instance must
have σ(v) ∈ Dv for each variable v. In particular, if some Dv = ∅, then the instance
is unsatisfiable. (Note, though, that the converse does not hold. If D = {0, 1} and
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Algorithm 2 The algorithm for factoring a simple #CSP(ΓL,M) instance (V,C) with
respect to a vector (Dv)v∈V of arc-consistent domains. F is the set of factored con-
straints.
F ← C
for 〈(u, v), R〉 ∈ C do

if R ∩ (Du ×Dv) is a Cartesian product D′u ×D′v then
Let 〈u,Xu〉 and 〈v,Xv〉 be the unary constraints involving u and v in F .
F ← (F ∪ {〈u,Xu ∩D′u〉, 〈v,Xu ∩D′v〉}) \ {〈(u, v), R〉, 〈u,Xu〉, 〈v,Xv〉}

return F

R = {(0, 1), (1, 0)}, the instance with constraints 〈x,D〉, 〈y,D〉, 〈z,D〉, 〈(x, y), R〉,
〈(y, z), R〉 and 〈(z, x), R〉 is unsatisfiable but arc-consistency assigns Dx = Dy = Dz =
{0, 1}.)

The arc-consistent domains computed for a simple instance (V,C) can yield further
simplification of the constraint structure, which we refer to as factoring. The factor-
ing applies when the arc-consistent domains restrict a binary relation to a Cartesian
product. In this case, the binary relation can be replaced with corresponding unary
relations. Algorithm 2 factors a simple instance with respect to a vector (Dv)v∈V of arc-
consistent domains, producing a set F of factored constraints. Recall that there is at
most one constraint in C between distinct variables and there are no binary constraints
〈(v, v), R〉 because the instance is simple. Note also that, if |Du| ≤ 1 or |Dv| ≤ 1, then
R ∩ (Du × Dv) is necessarily a Cartesian product. It is easy to see that the result of
factoring a simple instance is simple, that Algorithm 2 runs in polynomial time and
that the instance (V, F ) has the same satisfying assignments as (V,C).

The constraint graph of a CSP instance (V,C) (in any constraint language) is the
undirected graph with vertex set V that contains an edge between every pair of distinct
variables that appear together in the scope of some constraint.

Algorithm 3 uses arc-consistency to count the satisfying assignments of simple
#CSP(ΓL,M) instances. It is straightforward to see that the algorithm terminates,
since each recursive call is either on an instance with strictly fewer variables or on one
in which at least one variable has had its unary constraint reduced to a singleton and
no variable’s unary constraint has increased. For general inputs, the algorithm may
take exponential time to run but, in Lemma 7.23 we show that the running time is
polynomial for the inputs we are interested in.

We first argue that the algorithm is correct. By Lemma 7.19, we may assume
that the given instance (V,C) is simple. Every satisfying assignment σ : V → D sat-
isfies σ(v) ∈ Dv for all v ∈ V so restricting our attention to arc-consistent domains
does not alter the output. Factoring the constraints also does not change the number
of satisfying assignments: it merely replaces some binary constraints with equivalent
unary ones. The constraints are factored, so any variable v with |Dv| = 1 must, in
fact, be an isolated vertex in the constraint graph because, as noted above, any binary

123



Algorithm 3 The arc-consistency based algorithm for counting satisfying assign-
ments to simple instances of #CSP(ΓL,M). The input is a simple instance (V,C) of
#CSP(ΓL,M).
function AC(variable set V, constraint set C)

Use Algorithm 1 to compute the vector of arc-consistent domains (Dv)v∈V
Use Algorithm 2 to construct the set F of factored constraints
if Dv = ∅ for some v ∈ V then

return 0
Compute the constraint graph H of (V, F )
Let H1, . . . , Hκ be the components of H with Vi = V (Hi)
Let Fi be the set of constraints in F involving variables in Vi
for i ∈ [κ] do

if |Dw| = 1 for some w ∈ Vi then
Zi ← 1

else
Choose wi ∈ Vi
Let θi be the unary constraint involving wi in Fi
for d ∈ Dwi do

F ′i,d ← (Fi ∪ {〈wi, {d}〉}) \ {θi}
Zi ←

∑
d∈Dwi AC(Vi, F ′i,d)

return ∏κ
i=1 Zi

constraint involving it has been replaced by unary constraints. Therefore, if a compo-
nent Hi contains a variable v with |Dv| = 1, that component is the single vertex v,
which is constrained to take a single value, so the number of satisfying assignments
for this component, which we denote Zi, is equal to 1. (So we have now shown that
the if branch in the for loop is correct.) For components that contain more than one
variable, it is clear that we can choose one of those variables, wi, and group the set
of M -partitions σ according to the value of σ(wi). (So we have now shown that the
else branch is correct.) Because there are no constraints between variables in different
components of the constraint graph, the number of satisfying assignments factorises as∏κ
i=1 Zi.
For a binary relation R, we write

π1(R) = {a | (a, b) ∈ R for some b}

π2(R) = {b | (a, b) ∈ R for some a} .

For the following proof, we will also need the observation of Dyer and Richerby [25,
Lemma 1] that any rectangular relation R ⊆ π1(R) × π2(R) can be written as (A1 ×
B1)∪· · ·∪(Aλ×Bλ), where the Ai and Bi partition π1(R) and π2(R), respectively. The
subrelations Ai×Bi are referred to as blocks. A rectangular relation R 6= π1(R)×π2(R)
must have at least two blocks.

Lemma 7.23. Suppose that L is subset-closed and M-purifying. If there is no L-M-
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derectangularising sequence, then Algorithm 3 runs in polynomial time.

Proof. We will argue that the number of recursive calls made by the function AC in
Algorithm 3 is bounded above by a polynomial in |V |. This suffices, since every other
step of the procedure is obviously polynomial.

Consider a run of the algorithm on instance (V,C) which, by Lemma 7.19, we may
assume to be simple. Suppose the run makes a recursive call with input (Vi, F ′i,d). For
each v ∈ Vi, let D′v denote the arc-consistent domain for v that is computed during
the recursive call. We will show below that D′v ⊂ Dv for every variable v ∈ Vi. This
implies that the recursion depth is at most |D|. As a crude bound, it follows that the
number of recursive calls is at most (|V | · |D|)|D|, since each recursive call that is made
is nested below a sequence of at most |D| previous calls, each of which chose a vertex
v ∈ V and “pinned” it to a domain element d ∈ D (i.e., introduced the constraint
〈v, {d}〉).

Towards showing that the domains of all variables decrease at each recursive call,
suppose that we are computing AC(V,C) and the arc-consistent domains are (Dv)v∈V .
As observed above, for any component Hi of the constraint graph on which a recursive
call is made, we must have |Dv| > 1 for every v ∈ Vi. Fix such a component and, for
each v ∈ Vi, let D′v be the arc-consistent domain calculated for v in the recursive call
on Hi. It is clear that D′v ⊆ Dv; we will show that D′v ⊂ Dv.

Consider a path v1 . . . v` in Hi, where v1 = wi and v` = v. For each j ∈ [`−1], there
is exactly one binary constraint in Fi involving vj and vj+1. This is either 〈(vj, vj+1), Rj〉
or 〈(vj+1, vj), R−1

j 〉 and, without loss of generality, we may assume that it is the former.
For j ∈ [` − 1], let R′j = Rj ∩ (Dvj × Dvj+1) = HM

Dvj ,Dvj+1
. The relation R′j is pure

because Dvj and Dvj+1 are in the subset-closed set L and, since L is M -purifying,
so is {Dvj , Dvj+1}. These two domains do not form a derectangularising sequence
by the hypothesis of the lemma, so HM

Dvj ,Dvj+1
is rectangular. If some Rj = ∅ then

Dvj = Dvj+1 = ∅ by arc-consistency, contradicting the fact that |Dv| > 1 for all v ∈ Vi.
If some R′j has just one block, Rj ∩ (Dvj ×Dvj+1) is a Cartesian product, contradicting
the fact that F is a factored set of constraints. Thus, every R′j has at least two blocks.

For j ∈ [` − 1], let Φj = R′1 ◦ · · · ◦ R′j. As above, note that {Dv1 , . . . , Dvj+1}
is M -purifying and the sequence Dv1 , . . . , Dvj+1 is not derectangularising, so Φj is
rectangular. We will show by induction on j that π1(Φj) = Dv1 , π2(Φj) = Dvj+1 and
Φj has at least two blocks. Therefore, since the recursive call constrains σ(wi) to be d
and d ∈ A for some block A × B ⊂ Φ`, we have D′v ⊆ B ⊂ Dv, which is what we set
out to prove.

For the base case of the induction, take j = 1 so Φ1 = R′1. We showed above that
R′1 has at least two blocks and that R′1 = HM

Dv1 ,Dv2
. By arc-consistency, π1(R′1) = Dv1

and π2(R′1) = Dv2 .
For the inductive step, take j ∈ [`−2]. Suppose that π1(Φj) = Dv1 , π2(Φj) = Dvj+1

and Φj = ⋃λ
s=1(As × A′s) has at least two blocks. We have Φj+1 = Φj ◦ R′j+1 and
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R′j+1 = ⋃µ
t=1(Bt ×B′t) for some µ ≥ 2.

For every d ∈ Dv1 , there is a d′ ∈ Dvj+1 such that (d, d′) ∈ Φj by the inductive
hypothesis, and a d′′ ∈ Dvj+1 such that (d′, d′′) ∈ Dvj+2 , by arc-consistency. Therefore,
π1(Φj+1) = Dv1 ; a similar argument shows that π2(Φj+1) = Dvj+2 .

Suppose, towards a contradiction, that Φj+1 = Dv1 × Dvj+2 . For this to be the
case, we must have A′s ∩ Bt 6= ∅ for every s ∈ {1, 2} and t ∈ [µ]. Now, let D∗vj+1

=
Dvj+1 \ (A′2 ∩B2) and consider the relation

R = {(d1, d3) | for some d2 ∈ D∗vj+1
, (d1, d2) ∈ Φj and (d2, d3) ∈ R′j+1 } .

Since A′1 ⊆ D∗vj+1
the non-empty sets A′1 ∩ B1 and A′1 ∩ B2 are both subsets of D∗vj+1

so A1 × B′1 ⊆ R and A1 × B′2 ⊆ R. Similarly, B1 ⊆ D∗vj+1
, so A′2 ∩ B1 ⊆ D∗vj+1

so
A2×B′1 ⊆ R. However, (A2×B′2)∩R = ∅, so R is not rectangular. We will now derive
a contradiction by showing that R is rectangular. Note that

R = HM
Dv1 ,Dv2

◦ · · · ◦HM
Dvj−1 ,Dvj

◦HM
Dvj ,D

∗
vj+1
◦HM

D∗vj+1 ,Dvj+2

but this relation is rectangular because the hypothesis of the lemma guarantees that
the sequence

Dv1 , . . . , Dvj , D
∗
vj+1

, Dvj+2

is not an L-M -derectangularising sequence and all of the elements of this sequence are
in L, and {Dv1 , . . . , Dvj , D

∗
vj+1

, Dvj+2} is M -purifying.

7.5 Polynomial-time algorithms and the dichotomy
theorem

Bulatov [10] showed that every problem of the form #CSP(Γ) is either in FP or # P-
complete. Together with Proposition 7.20, his result immediately shows that a similar
dichotomy exists for the special case of the problem #L-M-partitions in which L is
M -purifying and is closed under subsets. Our algorithmic work in Section 7.4 can be
combined with Dyer and Richerby’s explicit dichotomy for #CSP to obtain an explicit
dichotomy for this special case of #L-M-partitions. In particular, Lemma 7.23 gives
a polynomial-time algorithm for the case in which there is no L-M -derectangularising
sequence. When there is such a sequence, ΓL,M is not “strongly rectangular” in the sense
of [25]. It follows immediately that #CSP(ΓL,M) is # P-complete [25, Lemma 24] so
#L-M-partitions is also # P-complete by Proposition 7.20. In fact, the dichotomy
for this special case does not require the full generality of Dyer and Richerby’s di-
chotomy. If there is an L-M -derectangularising sequence then it follows immediately
from work of Bulatov and Dalmau [11, Theorem 2 and Corollary 3] that #CSP(ΓL,M)
is # P-complete.
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In this section we will move beyond the case in which L isM -purifying to provide a
full dichotomy for the problem #L-M-partitions. We will use two data structures:
sparse-dense partitions and a representation of the set of splits of a bipartite graph.
Similar data structures were used by Hell et al. [51] in their dichotomy for the #M-
partitions problem for matrices of size at most 3-by-3.

7.5.1 Data Structures

We use two types of graph partition. The first is a special case of a sparse-dense
partition [37] which is also called an (a, b)-graph with a = b = 2.

Definition 7.24. A bipartite–cobipartite partition of a graph G is a partition (B,C)
of V (G) such that B induces a bipartite graph and C induces the complement of a
bipartite graph.

Lemma 7.25. [37, Theorem 3.1; see also the remarks on (a, b)-graphs.] There is a
polynomial-time algorithm for finding all bipartite–cobipartite partitions of a graph G.

The second decomposition is based on certain sub-hypercubes called subcubes. For
any finite set U, a subcube of {0, 1}U is a subset of {0, 1}U that is a Cartesian product of
the form ∏

u∈U Su where Su ∈ {{0}, {1}, {0, 1}} for each u ∈ U. We can also associate
a subcube ∏u∈U Su with the set of assignments σ : U → {0, 1} such that σ(u) ∈ Su for
all u ∈ U. Subcubes can be represented efficiently by listing the projections Su.

Definition 7.26. Let G = (U,U ′, E) be a bipartite graph, where U and U ′ are disjoint
vertex sets, and E ⊆ U × U ′. A subcube decomposition of G is a list U1, . . . , Uk of
subcubes of {0, 1}U and a list U ′1, . . . , U ′k of subcubes of {0, 1}U

′ such that the following
hold.

1. The union (U1×U ′1)∪· · ·∪ (Uk×U ′k) is the set of assignments σ : U ∪U ′ → {0, 1}
such that:

no edge (u, u′) ∈ E has σ(u) = σ(u′) = 0 and (7.2)

no pair (u, u′) ∈ (U × U ′) \ E has σ(u) = σ(u′) = 1. (7.3)

2. For distinct i, j ∈ [k], Ui × U ′i and Uj × U ′j are disjoint.

3. For each i ∈ [k], either |Ui| = 1 or |U ′i | = 1 (or both).

Note that, although we require Ui × U ′i and Uj × U ′j to be disjoint for distinct
i, j ∈ [k], we allow Ui ∩ Uj 6= ∅ as long as U ′i and U ′j are disjoint, and vice-versa. It is
even possible that Ui = Uj, and indeed this will happen in our constructions below.

Lemma 7.27. A subcube decomposition of a bipartite graph G = (U,U ′, E) can be
computed in polynomial time, with the subcubes represented by their projections.
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Proof. For a vertex x in a bipartite graph, let Γ(x) be its set of neighbours and let
Γ(x) be its set of non-neighbours on the other side of the graph. Thus, for x ∈ U,
Γ(x) = U ′ \ Γ(x) and, for x ∈ U ′, Γ(x) = U \ Γ(x).

Observe that we can write {0, 1}n \ {0}n as the disjoint union of n subcubes
{0, 1}k−1 × {1}1 × {0, 1}n−k with 1 ≤ k ≤ n, and similarly for any other cube mi-
nus a single point.

We first deal with two base cases. If G has no edges, then the set of assignments
σ : U ∪ U ′ → {0, 1} satisfying (7.2) and (7.3) is the disjoint union of

{0}U × {0}U ′ , ({0, 1}U \ {0}U)× {0}U ′ and {0}U × ({0, 1}U ′ \ {0}U ′).

The second and third terms can be decomposed into subcubes as described above to
produce the output. Similarly, if G is a complete bipartite graph, then the set of
assignments satisfying (7.2) and (7.3) is the disjoint union of

{1}U × {1}U ′ , ({0, 1}U \ {1}U)× {1}U ′ and {1}U × ({0, 1}U ′ \ {1}U ′).

If neither of these cases occurs then there is a vertex x such that neither Γ(x) nor
Γ(x) is empty. If possible, choose x ∈ U ; otherwise, choose x ∈ U ′. To simplify the
description of the algorithm, we assume that x ∈ U ; the other case is symmetric. We
consider separately the assignments where σ(x) = 0 and those where σ(x) = 1. Note
that, for any assignment, if σ(y) = 0 for some vertex y, then σ(z) = 1 for all z ∈ Γ(y)
and, if σ(y) = 1, then σ(z) = 0 for all z ∈ Γ(y). Applying this iteratively, setting
σ(x) = c for c ∈ {0, 1} also determines the value of σ on some set Sx=c ⊆ U ∪ U ′ of
vertices.

Thus, we can compute a subcube decomposition for G recursively. First, compute
Sx=0 and Sx=1. Then, recursively compute subcube decompositions of G − Sx=0 (the
graph formed from G by deleting the vertices in Sx=0) and G− Sx=1. Translate these
subcube decompositions into a subcube decomposition of G by extending each subcube
(Ui × U ′i) of G − Sx=c to a subcube (Vi × V ′i ) of G whose restriction to G − Sx=c is
(Ui × U ′i) and whose restriction to Sx=c is an assignment σ with σ(x) = c (in fact, all
assignments that set x to c agree on the set Sx=c, by construction).

It remains to show that the algorithm runs in polynomial time. The base cases
are clearly computable in polynomial time, as are the individual steps in the recursive
cases, so we only need to show that the number of recursive calls is polynomially
bounded. At the recursive step, we only choose x ∈ U ′ when E(G) = U ′′ × U ′ for
some proper subset ∅ ⊂ U ′′ ⊂ U and, in this case, the two recursive calls are to base
cases. Since each recursive call when x ∈ U splits U ′ into disjoint subsets, there can
be at most |U ′| − 1 such recursive calls, so the total number of recursive calls is linear
in |V (G)|.
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7.5.2 Reduction to a problem with M-purifying lists

Our algorithm for counting listM -partitions uses the data structures from Section 7.5.1
to reduce problems where L is not M -purifying to problems where it is (which we
already know how to solve from Sections 7.3 and 7.4). The algorithm is defined recur-
sively on the set L of allowed lists. The algorithm for parameters L and M calls the
algorithm for Li and M where Li is a subset of L. The base case arises when Li is
M -purifying.

We will use the following computational problem to reduce #L-M-partitions to
a collection of problems #L′-M-partitions that are, in a sense, disjoint.

Problem 7.28. Name. #L-M-purify.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D and a subset L of P(D).

Input. A graph G and a function L : V (G)→ L.

Output. Functions L1, . . . , Lt : V (G)→ L such that

1. for each i ∈ [t], the set {Li(v) | v ∈ V (G)} is M -purifying,

2. for each i ∈ [t] and v ∈ V (G), Li(v) ⊆ L(v), and

3. each M -partition of G that respects L respects exactly one of the functions
L1, . . . , Lt.

We will give an algorithm for solving the problem #L-M-purify in polynomial
time when there is no L-M -derectangularising sequence of length exactly 2. The fol-
lowing computational problem will be central to the inductive step.

Problem 7.29. Name. #L-M-purify-step.

Parameter. A symmetric matrix M ∈ {0, 1, ∗}D×D and a subset L of P(D).

Input. A graph G and a function L : V (G)→ L.

Output. Functions L1, . . . , Lk : V (G)→ L such that

1. for each i ∈ [k] and v ∈ V (G), Li(v) ⊆ L(v),

2. every M -partition of G that respects L respects exactly one of L1, . . . , Lk,
and

3. for each i ∈ [k], there is a W ∈ L which is inclusion-maximal in L but does
not occur in the image of Li.

Note that we can trivially produce a solution to the problem #L-M-purify-step
by letting L1, . . . , Lk be an enumeration of all possible functions such that all lists
Li(v) have size 1 and satisfy Li(v) ⊆ L(v). Such a function Li corresponds to an
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Algorithm 4 A polynomial-time algorithm for the problem #L-M-purify-step
when L ⊆ P(D) is subset-closed, L is not M -purifying and there is no length-2 L-
M -derectangularising sequence. The input is a pair (G,L) with V (G) = {v1, . . . , vn}.
function #L-M-purify-step(G,L)

if there is a vi ∈ V (G) with L(vi) = ∅ then return the empty sequence
else if there are X, Y ∈ L, a, b ∈ X, and d ∈ Y

such that Ma,d = 0 and Mb,d = 1 then
Run Algorithm 5 /* Case 1 */

else if there is an X ∈ L such that M |X×X is not pure then
Run Algorithm 6 /* Case 2 */

else
Run Algorithm 7 /* Case 3 */

assignment of vertices to parts so there is either exactly one Li-respecting M -partition
or none, which means that every L-respecting M -partition is Li-respecting for exactly
one i. However, this solution is exponentially large in |V (G)| and we are interested in
solutions that can be produced in polynomial time. Also, if L(v) = ∅ for some vertex v,
the algorithm is entitled to output an empty list, since no M -partition respects L.

The following definition extends rectangularity to {0, 1, ∗}-matrices and is used in
our proof.

Definition 7.30. A matrix M ∈ {0, 1, ∗}X×Y is ∗-rectangular if the relation HM
X,Y is

rectangular.

Thus, M is ∗-rectangular if and only if Mx,y = Mx′,y = Mx,y′ = ∗ implies that
Mx′,y′ = ∗ for all x, x′ ∈ X and all y, y′ ∈ Y.

We will show in Lemma 7.31 that the function #L-M-purify-step from Algo-
rithm 4 is a polynomial-time algorithm for the problem #L-M-purify-step whenever
L is not M -purifying and there is no length-2 L-M -derectangularising sequence. Note
that a length-2 L-M -derectangularising sequence is a pair X, Y ∈ L such that M |X×Y ,
M |X×X and M |Y×Y are pure and M |X×Y is not ∗-rectangular. If L 6= P(D), it is pos-
sible that a matrix that is not ∗-rectangular has no length-2 L-M -derectangularising
sequence. For example, let D = {1, 2, 3} and L = P({1, 2}) and let M3,3 = 0 and
Mi,j = ∗ for every other pair (i, j) ∈ D2. M is not ∗-rectangular but this fact is not
witnessed by any submatrix M |X×Y for X, Y ∈ L.

Lemma 7.31. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D) be
subset-closed. If L is not M-purifying and there is no length-2 L-M-derectangularising
sequence, then Algorithm 4 is a polynomial-time algorithm for the problem #L-M-
purify-step.

Proof. Let (G,L) be an instance of the problem #L-M-purify-step with V (G) =
{v1, . . . , vn}. If there is a vi ∈ V (G) with L(vi) = ∅ then noM -partition ofG respects L,
so the output is correct. Otherwise, we consider the three cases that can occur in the
execution of the algorithm.
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Algorithm 5 Case 1 in Algorithm 4.
Choose X, Y ∈ L, a, b ∈ X, and d ∈ Y
such that Ma,d = 0, Mb,d = 1 and X and Y are inclusion-maximal in L
for i ∈ [n] do

Li(vi)← L(vi) ∩ {d}
for j < i do

if (vi, vj) ∈ E(G) then
Li(vj)← {d′ ∈ L(vj) | d′ 6= d and Md,d′ 6= 0}

else
Li(vj)← {d′ ∈ L(vj) | d′ 6= d and Md,d′ 6= 1}

for j > i do
if (vi, vj) ∈ E(G) then

Li(vj)← {d′ ∈ L(vj) |Md,d′ 6= 0}
else

Li(vj)← {d′ ∈ L(vj) |Md,d′ 6= 1}
Ln+1(vi)← L(vi) \ {d}

return L1, . . . , Ln+1 (of course, if we have Li(v) = ∅ for any i and v then Li can
be omitted from the output)

Case 1 In this case column d ofM |X×Y contains both a zero and a one. Equivalently,
row d of M |Y×X does. Algorithm 5 groups the set of M -partitions of G that respect L,
based on the first vertex that is placed in part d. For i ∈ [n], Li requires that vi is placed
in part d and v1, . . . , vi−1 are not in part d; Ln+1 requires that part d is empty. Thus,
no M -partition can respect more than one of the Li. Now consider an L-respecting
M -partition σ : V (G) → D and suppose that i is minimal such that σ(vi) = d. We
claim that σ respects Li. We have σ(vi) = d, as required. For j 6= i, we must have
σ(vj) ∈ L(vj) since σ respects L and we must have Md,σ(vj) 6= 1 if (vi, vj) /∈ E(G) and
Md,σ(vj) 6= 0 if (vi, vj) ∈ E(G), since σ is an M -partition. In addition, by construction,
σ(vj) 6= d if j < i. Therefore, σ respects Li. A similar argument shows that σ respects
Ln+1 if σ(v) 6= d for all v ∈ V (G). Hence, any M -partition that respects L respects
exactly one of the Li.

Finally, we show that, for each i ∈ [n + 1], there is a set W which is inclusion-
maximal in L and is not in the image of Li. For i ∈ [n], we cannot have both a and b
in Li(vj) for any vj, so X is not in the image of Li. Y contains d, so Y is not in the
image of Ln+1.

Case 2 In this case, every row of M |X0×X contains a 0, while every row of M |X1×X

fails to contain a zero. Since M |X×X is not pure, but no row of M |X×X contains both
a zero and a one (since we are not in Case 1), X0 and X1 are non-empty. Note that
M |X0×X0 and M |X1×X1 are both pure, but every entry of M |X0×X1 is a ∗.

If VX = ∅ then X is an inclusion-maximal member of L that is not in the image
of L, so the output of Algorithm 6 is correct. Otherwise, (B1, C1), . . . , (Bk, Ck) is the
list containing all partitions (B,C) of VX such that B induces a bipartite graph in G
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Algorithm 6 Case 2 in Algorithm 4.
Choose X ∈ L such that M |X×X is not pure and X is inclusion-maximal in L
Let X0 ⊆ X be the set of rows of M |X×X that contain a 0
X1 ← X \X0
VX ← {vj ∈ V (G) | L(vj) = X}
if VX = ∅ then return L
else

Use the algorithm promised in Lemma 7.25 to compute the list
(B1, C1), . . . , (Bk, Ck) of all bipartite–cobipartite partitions of G[VX ]

for i ∈ [k], j ∈ [n] do
if vj /∈ VX then

Li(vj)← L(vj)
else if vj ∈ Bi then

Li(vj)← X0
else /* vj ∈ Ci*/

Li(vj)← X1
return L1, . . . , Lk

and C induces the complement of a bipartite graph. The algorithm returns L1, . . . , Lk.
X is not in the image of any Li so, to show that {L1, . . . , Lk} is a correct output for
the problem #L-M-purify-step, we just need to show that every M -partition of G
that respects L respects exactly one of L1, . . . , Lk. For i 6= i′, (Bi, Ci) 6= (Bi′ , Ci′) so
there is at least one vertex vj such that Li(vj) = X0 and Li′(vj) = X1 or vice-versa.
Since X0 and X1 are disjoint, no M -partition can simultaneously respect Li and Li′ .
It remains to show that every M -partition respects at least one of L1, . . . , Lk. To do
this, we deduce two structural properties of M |X×X .

First, we show that M |X×X has no ∗ on its diagonal. Suppose towards a contradic-
tion thatMd,d = ∗ for some d ∈ X. If d ∈ X0, then, for each d′ ∈ X1, Md,d′ = Md′,d = ∗
because, as noted above, every entry of M |X0×X1 is a ∗. Therefore, the 2 × 2 ma-
trix M ′ = M |{d,d′}×{d,d′} contains at least three ∗s so it is pure. {d, d′} ⊆ X ∈ L
so, by the hypothesis of the lemma, the length-2 sequence {d, d′}, {d, d′} is not L-M -
derectangularising, soM ′ must be ∗-rectangular, soMd′,d′ = ∗ for all d′ ∈ X1. Similarly,
if Md′,d′ = ∗ for some d′ ∈ X1, then Md,d = ∗ for all d ∈ X0. Therefore, if M |X×X has
a ∗ on its diagonal, every entry on the diagonal is ∗. But M contains a 0, say Mi,j = 0
with i, j ∈ X0. For any k ∈ X1,

M |{i,j}×{j,k} =
0 ∗
∗ ∗

 ,
so the length-2 sequence {i, j}, {j, k} is L-M -derectangularising, contradicting the hy-
pothesis of the lemma (note that {i, j}, {j, k} ⊆ X ∈ L).

Second, we show that there is no sequence d1, . . . , d` ∈ X0 of odd length such that

Md1,d2 = Md2,d3 = · · · = Md`−1,d` = Md`,d1 = ∗ .
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Algorithm 7 Case 3 in Algorithm 4.
Choose inclusion-maximal X and Y in L so that M |X×Y is not pure
Let X0 ⊆ X be the set of rows of M |X×Y that contain a 0
X1 ← X \X0
Let Y0 ⊆ Y be the set of columns of M |X×Y that contain a 0
Y1 ← Y \ Y0
VX ← {vj ∈ V (G) | L(vj) = X}
VY ← {vj ∈ V (G) | L(vj) = Y }
if VX = ∅ or VY = ∅ then return L
else

Let E be the set of edges of G between VX and VY
Use the algorithm promised in Lemma 7.27 to produce a subcube decomposition

(U1, U
′
1), . . . , (Uk, U ′k) of (VX , VY , E)

for i ∈ [k], j ∈ [n] do
if vj ∈ VX and the projection of Ui on vj is {0} then

Li(vj)← X0
else if vj ∈ VX and the projection of Ui on vj is {1} then

Li(vj)← X1
else if vj ∈ VY and the projection of U ′i on vj is {0} then

Li(vj)← Y0
else if vj ∈ VY and the projection of U ′i on vj is {1} then

Li(vj)← Y1
else

Li(vj)← L(vj)
return L1, . . . , Lk

Suppose for a contradiction that such a sequence exists. Note that M |X0×X0 is ∗-
rectangular since X0, X0 is not an L-M -derectangularising sequence and M |X0×X0 is
pure since Case 1 does not apply. We will show by induction that for every non-
negative integer κ ≤ (` − 3)/2, Md1,d`−2κ−2 = ∗. This gives a contradiction by taking
κ = (` − 3)/2 since Md1,d1 = ∗ and we have already shown that M |X0×X0 has no ∗
on its diagonal. For every κ, the argument follows by considering the matrix Mκ =
M |{d1,d`−2κ−1}×{d`−2κ−2,d`−2κ}. The definition of the sequence d1, . . . , d` together with
the symmetry of M guarantees that both entries in row d`−2κ−1 of Mκ are ∗. It is
also true that Md1,d`−2κ = ∗: If κ = 0 then this follows from the definition of the
sequence; otherwise it follows by induction. The fact that Md1,d`−2κ−2 = ∗ then follows
by ∗-rectangularity.

This second structural property implies that, for anyM |X×X-partition of G[VX ], the
graph induced by vertices assigned to X0 has no odd cycles, and is therefore bipartite.
Similarly, the vertices assigned to X1 induce the complement of a bipartite graph.
Therefore, any M -partition of G that respects L must respect at least one of the
L1, . . . , Lk, so it respects exactly one of them, as required.

Case 3 Since Cases 1 and 2 do not apply and L is notM -purifying, there are distinct
X, Y ∈ L such that X and Y are inclusion-maximal in L and M |X×Y is not pure. As
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Algorithm 8 A trivial algorithm for the problem #L-M-purify for the case in which
L is M -purifying.
function #L-M-purify(G,L) return L

in the previous case, the sets X0, X1, Y0 and Y1 are all non-empty.
If either VX or VY is empty then either X or Y is an inclusion-maximal set in L

that is not in the image of L so the output of Algorithm 7 is correct. Otherwise,
(U1, U

′
1), . . . , (Uk, U ′k) is a subcube decomposition of the bipartite subgraph (VX , VY , E).

The Uis are subcubes of {0, 1}VX and the U ′is are subcubes of {0, 1}VY . The algorithm
returns L1, . . . , Lk.

Note that if |U ′i | = 1 then Y is not in the image of Li. Similarly, if |U ′i | > 1 but
|Ui| = 1 then X is not in the image of Li. The definition of subcube decompositions
guarantees that, for every i, at least one of these is the case. To show this definition
of L1, . . . , Lk is a correct output for the problem #L-M-purify-step, we must show
that any M -partition of G that respects L also respects exactly one Li. Since the sets
in {Ui × U ′i | i ∈ [k]} are disjoint subsets of {0, 1}VX∪VY , any M -partition of G that
respects L respects at most one Li so it remains to show that every M -partition of G
respects at least one Li. To do this, we deduce two structural properties of M |X×Y .

First, we show that every entry of M |X0×Y0 is 0. The definition of X0 guarantees
that every row of M |X0×Y0 contains a 0. Since Case 1 does not apply, and M is
symmetric, every entry of M |X0×Y0 is either 0 or ∗. Suppose for a contradiction that
Mi,j = ∗ for some (i, j) ∈ X0 × Y0. Pick i′ ∈ X1. For any j′ ∈ Y0 \ {j} we have
Mi,j = Mi′,j = Mi′,j′ = ∗, so by ∗-rectangularity of M |X×Y0 we have Mi,j′ = ∗. Thus,
every entry of M |{i}×Y0 is ∗, so there is a ∗ in every Y0-indexed column of M . By
the same argument, swapping the roles of X and Y , every entry in M |X0×Y0 is ∗,
contradicting the fact that M |X×Y contains a 0 since M |X×Y is not pure.

Second, a similar argument shows that every entry of M |X1×Y1 is 1.
Thus for all M -partitions σ of G respecting L, for all x ∈ VX and y ∈ VY , if

(x, y) ∈ E then (σ(x), σ(y)) /∈ X0 × Y0 while if (x, y) /∈ E then (σ(x), σ(y)) /∈ X1 × Y1.
Using the definition of subcube decompositions, this shows that any M -partition of G
respecting L respects some Li.

We can now give an algorithm for the problem #L-M-purify. The algorithm
consists of the function #L-M-purify, which is defined in Algorithm 8 for the trivial
case in which L is M -purifying and in Algorithm 9 for the case in which it is not.
Note that for any fixed L and M the algorithm is defined either in Algorithm 8 or in
Algorithm 9 and the function #L-M-purify is not recursive. However, the definition
is recursive, so the function #L-M-purify defined in Algorithm 9 does make a call to
a function #Li-M-purify for some Li which is smaller than L. The function #Li-
M-purify is in turn defined in Algorithm 8 or Algorithm 9. The correctness of the
algorithm follows from the definition of the problem. The following lemma bounds the

134



Algorithm 9 A polynomial-time algorithm for the problem #L-M-purify when
L ⊆ P(D) is subset-closed and is not M -purifying and there is no length-2 L-M -
derectangularising sequence. This algorithm calls the function #L-M-purify-step
from Algorithm 4. It also calls the function #Li-M-purify for various lists Li which
are shorter than L. These functions are defined inductively in Algorithm 8 and here.
function #L-M-purify(G,L)

// ∅ ∈ L since L is subset-closed. Since L is not M -purifying, L 6= {∅},
// hence |L| > 1.
Let B be the empty sequence of list functions
L1, . . . , Lk ← #L-M-purify-step(G,L)
for i ∈ [k] do
Li ←

⋃
v∈V (G)P(Li(v))

L′1, . . . , L
′
j ← #Li-M-purify(G,Li)

Add L′1, . . . , L′j to B
return B

running time.

Lemma 7.32. Let M ∈ {0, 1, ∗}D×D be a symmetric matrix and let L ⊆ P(D) be
subset-closed. If there is no length-2 L-M-derectangularising sequence, then the func-
tion #L-M-purify as defined in Algorithms 8 and 9 is a polynomial-time algorithm
for the problem #L-M-purify.

Proof. Note that L is a fixed parameter of the problem #L-M-purify — it is not
part of the input. The proof is by induction on |L|. If |L| = 1 then L = {∅} so it
is M -purifying. In this case, function #L-M-purify is defined in Algorithm 8. It is
clear that it is a polynomial-time algorithm for the problem #L-M-purify.

For the inductive step suppose that |L| > 1. If L isM -purifying then function #L-
M-purify is defined in Algorithm 8 and again the result is trivial. Otherwise, func-
tion #L-M-purify is defined in Algorithm 9. Note that L ⊆ P(D) is subset-closed
and there is no length-2 L-M -derectangularising sequence. From this, we can conclude
that, for any subset-closed subset L′ of L, there is no length-2 L′-M -derectangularising
sequence. So we can assume by the inductive hypothesis that for all subset-closed
L′ ⊂ L, the function #L′-M-purify runs in polynomial time.

The result now follows from the fact that the function #L-M-purify-step runs
in polynomial time (as guaranteed by Lemma 7.31) and from the fact that each Li is a
strict subset of L, which follows from the definition of problem #L-M-purify-step.
Each M -partition that respects L respects exactly one of L1, . . . , Lk and, hence, it
respects exactly one of the list functions that is returned.

7.5.3 Algorithm for #L-M-partitions and proof of the di-
chotomy

We can now present our algorithm for the problem #L-M-partitions. The algorithm
consists of the function #L-M-partitions which is defined in Algorithm 10 for the
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Algorithm 10 A polynomial-time algorithm for the problem #L-M-partitions
when L is subset-closed and M -purifying and there is no L-M -derectangularising se-
quence.
function #L-M-partitions(G,L)

(V,C)← the instance of #CSP(ΓL,M) obtained by applying the polynomial-
time Turing reduction from Proposition 7.20 to the input (G,L)
return AC(V,C) where AC is the function from Algorithm 3

Algorithm 11 A polynomial-time algorithm for the problem #L-M-partitions
when L is subset-closed and not M -purifying and there is no L-M -derectangularising
sequence. The algorithm calls the function #L-M-purify(G,L) from Algorithm 9.
function #L-M-partitions(G,L)

L1, . . . , Lt ← #L-M-purify(G,L)
Z ← 0
for i ∈ [t] do
Li ←

⋃
v∈V (G)P(Li(v))

(V,Ci)← the instance of #CSP(ΓLi,M) obtained by applying the
polynomial-time Turing reduction from Proposition 7.20 to the input

(G,Li)
Zi ← AC(V,Ci) where AC is the function from Algorithm 3
Z ← Z + Zi

return Z

case in which L is M -purifying and in Algorithm 11 when it is not.

Lemma 7.33. Let M ∈ {0, 1, ∗}D×D be a symmetric matrix and let L ⊆ P(D) be
subset-closed. If there is no L-M-derectangularising sequence, then the function #L-
M-partitions as defined in Algorithms 10 and 11 is a polynomial-time algorithm for
the problem #L-M-partitions.

Proof. If L is M -purifying then the function #L-M-partitions is defined in Algo-
rithm 10. Proposition 7.20 shows that the reduction in Algorithm 10 to a CSP instance
is correct and takes polynomial time. The CSP instance can be solved by the function
AC in Algorithm 3, whose running time is shown to be polynomial in Lemma 7.23.

If L is not M -purifying then the function #L-M-partitions is defined in Algo-
rithm 11. Lemma 7.32 guarantees that the function #L-M-purify is a polynomial-
time algorithm for the problem #L-M-purify. If the list L1, . . . , Lt is empty then
there is no M -partition of G that respects L so it is correct that the function #L-
M-partitions returns 0. Otherwise, we know from the definition of the problem
#L-M-purify that

1. functions L1, . . . , Lt are from V (G) to L,

2. for each i ∈ [t], the set {Li(v) | v ∈ V (G)} is M -purifying,

3. for each i ∈ [t] and v ∈ V (G), Li(v) ⊆ L(v), and
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4. each M -partition of G that respects L respects exactly one of L1, . . . , Lt.

The desired result is now the sum, over all i ∈ [t], of the number of M -partitions of G
that respect Li. Since the list L1, . . . , Lt is generated in polynomial time, t is bounded
by some polynomial in |V (G)|.

Now, for each i ∈ [t], Li is a subset-closed subset of L. Since there is no L-M -
derectangularising sequence, there is also no Li-M -derectangularising sequence. Also,
Li is M -purifying. Thus, the argument that we gave for the purifying case shows that
Zi is the desired quantity.

We can now combine our results to establish our dichotomy for the problem #L-
M-partitions.

Theorem 7.11. Let M be a symmetric matrix in {0, 1, ∗}D×D and let L ⊆ P(D) be
subset-closed. If there is an L-M-derectangularising sequence, then the problem #L-
M-partitions is # P-complete. Otherwise, it is in FP.

Proof. Suppose that there is an L-M -derectangularising sequence D1, . . . , Dk. Recall
(from Definition 7.4) the definition of the subset-closure S(L′′) of a set L′′ ⊆ P(D).
Let

L′ = S({D1, . . . , Dk}) .

Since {D1, . . . , Dk} is M -purifying, so is L′, which is also subset-closed. It follows
that ΓL′,M is well defined (see Definition 7.17) and contains each of the relations
HM
D1,D2 , . . . , H

M
Dk−1,Dk

(and possibly others). Since HM
D1,D2 ◦ H

M
D2,D3 ◦ · · · ◦ H

M
Dk−1,Dk

is not rectangular, #CSP(ΓL′,M) is # P-complete [11, Theorem 2 and Corollary 3] (see
also [25, Lemma 24]). By Proposition 7.20, the problem #L′-M-partitions is # P-
complete so the more general problem #L-M-partitions is also # P-complete. On
the other hand, if there is no L-M -derectangularising sequence, then the result follows
from Lemma 7.33.

7.6 Complexity of the dichotomy criterion

The dichotomy established in Theorem 7.11 shows that, if there exists an L-M -derect-
angularising sequence, then the problem #L-M-partitions is # P-complete; other-
wise, it is in FP. This section addresses the computational problem of determining
which is the case, given L and M .

The following lemma will allow us to show that the problem ExistsDerectSeq
(the problem of determining whether there is an S(L)-M -derectangularising sequence,
given L and M) and the related problem MatrixHasDerectSeq (the problem of
determining whether there is a P(D)-M -derectangularising sequence, given M) are
both in NP. Note that, for this “meta-problem”, L and M are the inputs whereas,
previously, we have regarded them as fixed parameters.
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Lemma 7.35. Let M ∈ {0, 1, ∗}D×D be symmetric, and let L ⊆ P(D) be subset-
closed. If there is an L-M-derectangularising sequence, then there is one of length at
most 512(|D|3 + 1).

Proof. Pick an L-M -derectangularising sequence D1, . . . , Dk with k minimal; we will
show that k ≤ 512(|D|3 + 1). Define

R = HM
D1,D2 ◦H

M
D2,D3 ◦ · · · ◦H

M
Dk−1,Dk

.

Note that R ⊆ D1 × Dk. By the definition of derectangularising sequence, there are
a, a′ ∈ D1 and b, b′ ∈ Dk such that (a, b), (a′, b) and (a, b′) are all in R but (a′, b′) 6∈ R.
So there exist

(x1, . . . , xk), (y1, . . . , yk), (z1, . . . , zk) ∈ D1 × · · · ×Dk

with (x1, xk) = (a, b), (y1, yk) = (a′, b) and (z1, zk) = (a, b′) such that Mxi,xi+1 =
Myi,yi+1 = Mzi,zi+1 = ∗ for every i ∈ [k − 1] but, for any (w1, . . . , wk) ∈ D1 × · · · ×Dk

with (w1, wk) = (a′, b′), there is an i ∈ [k − 1] such that Mwi,wi+1 6= ∗.
SettingD′i = {xi, yi, zi} for each i gives an L-M -derectangularising sequenceD′1, . . . ,

D′k with |D′i| ≤ 3 for each 1 ≤ i ≤ k. (Note that any submatrix of a pure matrix is
pure.) For all 1 ≤ s < t ≤ k define

Rs,t = HM
D′s,D

′
s+1
◦HM

D′s+1,D
′
s+2
◦ · · · ◦HM

D′t−1,D
′
t
.

Since D′1, . . . , D′k is L-M -derectangularising, R1,k is not rectangular but, by the min-
imality of k, every other Rs,t is rectangular. Note also that no Rs,t = ∅ since, if that
were the case, we would have R1,k = ∅, which is rectangular.

Suppose for a contradiction that k > 512(|D|3 + 1). There are at most |D|3 + 1
subsets of D with size at most three, so there are indices 1 ≤ i0 < i1 < i2 < · · · <
i512 ≤ k such that D′i0 = · · · = D′i512 . There are at most 2|D

′
i0
|2 − 1 ≤ 29 − 1 = 511

non-empty binary relations on D′i0 , so Ri0,im = Ri0,in for some 1 ≤ m < n ≤ 512. Since
R1,k is not rectangular,

R1,k = R1,i0 ◦Ri0,in ◦Rin,k = R1,i0 ◦Ri0,im ◦Rin,k = R1,im ◦Rin,k

is not rectangular. Therefore, D′1, D′2, . . . , D′im , D′1+in , D
′
2+in , . . . , D

′
k is an L-M - derect-

angularising sequence of length less than k, which contradicts the minimality of k.

Now that we have membership in NP, we can prove completeness.

Theorem 7.13. ExistsDerectSeq is NP-complete under polynomial-time many-
one reductions.
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Proof. We first show that ExistsDerectSeq is in NP. Given D, a symmetric matrix
M ∈ {0, 1, ∗}D×D and L ⊆ P(D), a non-deterministic polynomial time algorithm for
ExistsDerectSeq first “guesses” an S(L)-M -derectangularising sequence D1, . . . , Dk

with k ≤ 512(|D|3 + 1). Lemma 7.35 guarantees that such a sequence exists if the
output should be “yes”. The algorithm then verifies that eachDi is a subset of a set in L,
that {D1, . . . , Dk} isM -purifying, and that the relation HM

D1,D2 ◦H
M
D2,D3 ◦· · ·◦H

M
Dk−1,Dk

is not rectangular. All of these can be checked in polynomial time without explicitly
constructing S(L).

To show that ExistsDerectSeq is NP-hard, we give a polynomial-time reduc-
tion from the well-known NP-hard problem of determining whether a graph G has an
independent set of size k.

Let G and k be an input to the independent set problem. Let V (G) = [n] and
assume without loss of generality that k ∈ [n]. Setting D = [n]× [k]× [3], we construct
a D×D matrixM and a set L of lists such that there is an S(L)-M -derectangularising
sequence if and only if G has an independent set of size k.

M will be a block matrix, constructed using the following 3×3 symmetric matrices.
Note that each is pure, apart from Id.

Mstart =


∗ ∗ 0
∗ ∗ 0
0 0 ∗

 Mend =


∗ 0 0
0 ∗ ∗
0 ∗ ∗

 Mbij =


∗ 0 0
0 ∗ 0
0 0 ∗



0 =


0 0 0
0 0 0
0 0 0

 Id =


1 0 0
0 1 0
0 0 1

 .

For v ∈ [n] and j ∈ [k], let D[v, j] = {(v, j, c) | c ∈ [3]}. Below, when we say
that M |D[v,j]×D[v′,j′] = N for some 3 × 3 matrix N , we mean more specifically that
M(v,j,c),(v′,j′,c′) = Nc,c′ for all c, c′ ∈ [3]. M is constructed as follows.

1. For all v ∈ [n], M |D[v,1]×D[v,1] = Mstart and M |D[v,k]×D[v,k] = Mend.

2. For all v ∈ [n] and all j ∈ {2, . . . , k − 1}, M |D[v,j]×D[v,j] = Mbij.

3. If v 6= v′, (v, v′) /∈ E(G) and j < k, then

(a) M |D[v,j]×D[v′,j+1] = M |D[v′,j+1]×D[v,j] = Mbij and

(b) M |D[v,j]×D[v′,j′] = M |D[v′,j′]×D[v,j] = 0 for all j′ > j + 1.

4. For all v, v′ ∈ [n] and j, j′ ∈ [k] not covered above, M |D[v,j]×D[v′,j′] = Id.

To complete the construction, let L = {D[v, j] | v ∈ [n], j ∈ [k]}. We will show that G
has an independent set of size k if and only if there is an S(L)-M -derectangularising
sequence.
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For the forward direction of the proof, suppose that G has an independent set
I = {v1, . . . , vk} of size k. We will show that

D[v1, 1], D[v1, 1], D[v2, 2], D[v3, 3], . . . , D[vk−1, k − 1], D[vk, k], D[vk, k]

(where the first and last elements are repeated and the others are not) is S(L)-M -
derectangularising. Since there is no edge (vi, vi′) ∈ E(G) for i, i′ ∈ [k], the matrix
M |D[vi,i]×D[vi′ ,i′] is always one ofMstart,Mend,Mbij and 0, so it is always pure. Therefore,
{D[v1, 1], . . . , D[vk, k]} is M -purifying. It remains to show that the relation

R = HM
D[v1,1],D[v1,1] ◦HM

D[v1,1],D[v2,2] ◦ · · · ◦HM
D[vk−1,k−1],D[vk,k] ◦HM

D[vk,k],D[vk,k]

is not rectangular.

Consider i ∈ [k − 1]. Since (vi, vi+1) /∈ E(G), M |D[vi,i]×D[vi+1,i+1] = Mbij so
HM
D[vi,i],D[vi+1,i+1] is the bijection that associates (vi, i, c) with (vi+1, i + 1, c) for each

c ∈ [3]. Therefore,
HM
D[v1,1],D[v1,2] ◦ · · · ◦HM

D[vk−1,k−1],D[vk,k]

is the bijection that associates (v1, 1, c) with (vk, k, c) for each c ∈ [3]. We have
M |D[v1,1]×D[v1,1] = Mstart and M |D[vk,k]×D[vk,k] = Mend so

HM
D[v1,1],D[v1,1] = {((v1, 1, c), (v1, 1, c′)) | c, c′ ∈ [2]} ∪ {((v1, 1, 3), (v1, 1, 3))}

HM
D[vk,k],D[vk,k] = {((vk, k, 1), (vk, k, 1))} ∪ {((vk, k, c), (vk, k, c′)) | c, c′ ∈ {2, 3}} ,

and, therefore,

R = {((v1, 1, c), (vk, k, c′)) | c, c′ ∈ [3]} \ {((v1, 1, 3), (vk, k, 1))} ,

which is not rectangular, as required.

For the reverse direction of the proof, suppose that there is an S(L)-M -derectangu-
larising sequence D1, . . . , Dm. The fact that the sequence is derectangularising implies
that |Di| ≥ 2 for each i ∈ [m] — see the remarks following Definition 7.10. Each set
in the sequence is a subset of some D[v, j] in L so for every i ∈ [m] let vi denote the
vertex in [n] and let ji denote the index in [k] such that Di ⊆ D[vi, ji]. Clearly, it is
possible to have (vi, ji) = (vi′ , ji′) for distinct i and i′ in [m].

We will finish the proof by showing that G has a size-k independent set. Let

R = HM
D1,D2 ◦ · · · ◦H

M
Dm−1,Dm ,

which is not rectangular because the sequence is S(L)-M -derectangularising. Since
{D1, . . . , Dm} is M -purifying, and any submatrix of Id with at least two rows and at
least two columns is impure, every pair (i, i′) ∈ [m]2 satisfies M |D[vi,ji]×D[vi′ ,ji′ ] 6= Id.
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This means that we cannot have (vi, vi′) ∈ E(G) for any pair (i, i′) ∈ [m]2 so the set
I = {v1, . . . , vm} is independent in G. It remains to show that |I| ≥ k.

Observe that, if vi = vi′ , we must have ji = ji′ since, otherwise, the construction
ensures that

M |D[vi,ji]×D[vi′ ,ji′ ] = M |D[vi,ji]×D[vi,ji′ ] = Id ,

which we already ruled out. Therefore, |I| ≥ |{j1, . . . , jm}|.
We must have |ji − ji+1| ≤ 1 for each i ∈ [m − 1] as, otherwise, we would have

M |D[vi,ji]×D[vi+1,ji+1] = 0, which implies that R = ∅, which is rectangular. There must be
at least one i ∈ [m− 1] such that vi = vi+1 and ji = ji+1 = 1, so M |D[vi,ji]×D[vi+1,ji+1] =
Mstart. If not, R is a composition of relations corresponding to Mbij and Mend and
any such relation is either a bijection, or of the form of Mend, so it is rectangular.
Similarly, there must be at least one i such that vi = vi+1 and ji = ji+1 = k, giving
M |D[vi,ji]×D[vi+1,ji+1] = Mend. Therefore, the sequence j1, . . . , jm contains 1 and k. Since
|ji−ji+1| ≤ 1 for all i ∈ [m−1], it follows that [k] ⊆ {j1, . . . , jm}, so |I| ≥ k, as required.
In fact, {j1, . . . , jm} = [k] since each ji ∈ [k] by construction.

We defined the problem ExistsDerectSeq using a concise input representation:
S(L) does not need to be written out in full. Instead, the instance is a subset L
containing the maximal elements of S(L). For example, when the instance is L =
{D}, we have S(L) = P(D). It is important to note that the NP-completeness of
ExistsDerectSeq is not an artifact of this concise input coding. The elements of
the list L constructed in the NP-hardness proof have length at most three, so the list
S(L) could also be constructed explicitly in polynomial time.

Lemma 7.35 has the following immediate corollary for the complexity of the di-
chotomy criterion of the general #List-M-partitions problem. Recall that, in this
version of the meta-problem, the input is just the matrix M .

Corollary 7.15. MatrixHasDerectSeq is in NP.

Proof. Take L = {D} in Lemma 7.35.

7.7 Cardinality constraints

Finally, we show how lists can be used to implement cardinality constraints of the kind
that often appear in counting problems in combinatorics.

Feder, Hell, Klein and Motwani [37] point out that lists can be used to determine
whether there are M -partitions that obey simple cardinality constraints. For example,
it is natural to require some or all of the parts to be non-empty or, more generally,
to contain at least some constant number of vertices. Given a D × D matrix M , we
represent such cardinality constraints as a function C : D → N. We say that an M -
partition σ of a graph G satisfies the constraint if, for each d ∈ D, |{v ∈ V (G) | σ(v) =
d}| ≥ C(d). Given a cardinality constraint C, we write |C| = ∑

d∈D C(d).
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We can determine whether there is an M -partition of G = (V,E) that satisfies
the cardinality constraint C by making at most |V ||C| queries to an oracle for the list
M -partitions problem, as follows. Let LC be the set of list functions L : V → P(D)
such that:

1. for all v ∈ V, either L(v) = D or |L(v)| = 1, and

2. for all d ∈ D, there are exactly C(d) vertices v with L(v) = {d}.

There are at most |V ||C| such list functions and it is clear that G has an M -partition
satisfying C if, and only if, it has a list M -partition that respects at least one L ∈ LC .
The number of queries is polynomial in |V | as long as the cardinality constraint C is
independent of G.

For counting, the situation is a little more complicated, as we must avoid double-
counting. The solution is to count all M -partitions of the input graph and subtract
off those that fail to satisfy the cardinality constraint. We formally define the problem
#C-M-partitions as follows, parameterized by a D×D matrix M and a cardinality
constraint function C : D → N.

Problem 7.38. Name. #C-M-partitions.

Parameter. A symmetric matrix M in {0, 1, ∗}D×D and C : D → N.

Input. A graph G.

Output. The number of M -partitions of G that satisfy C.

Proposition 7.39. #C-M-partitions reduces to #List-M-partitions under poly-
nomial-time Turing reductions.

Proof. Given the cardinality constraint function C, let R = {d ∈ D | C(d) > 0}:
that is, R is the set of parts that have a non-trivial cardinality constraint. For any
set P ⊆ R, say that an M -partition σ of a graph G = (V,E) fails on P if |{v ∈ V |
σ(v) = d}| < C(d) for all d ∈ P . That is, if σ violates the cardinality constraints on
all parts in P (and possibly others, too). Let Σ be the set of all M -partitions of our
given input graph G. For i ∈ R, let Ai = {σ ∈ Σ | σ fails on {i}} and let A = ⋃

i∈RAi.
By inclusion-exclusion,

|A| = −
∑
∅⊂P⊆R

(−1)|P |
∣∣∣∣ ⋂
i∈P

Ai

∣∣∣∣
= −

∑
∅⊂P⊆R

(−1)|P |
∣∣∣{σ ∈ Σ | σ fails on P}

∣∣∣ .
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We wish to compute
∣∣∣{σ ∈ Σ | σ satisfies C}

∣∣∣ =
∣∣∣Σ∣∣∣− |A|

=
∣∣∣Σ∣∣∣+ ∑

∅⊂P⊆R
(−1)|P |

∣∣∣{σ ∈ Σ | σ fails on P}
∣∣∣ .

Therefore, it suffices to show that we can use lists to count the M -partitions that
fail on each non-empty P ⊆ R. For such a set P , let LP be the set of list functions L
such that

1. for all v ∈ V , either L(v) = D \ P or L(v) = {p} for some p ∈ P , and

2. for all p ∈ P ,
∣∣∣{v ∈ V | L(v) = {p}

}∣∣∣ < C(p).

Thus, the set of M -partitions that respect some L ∈ LP is precisely the set of M -
partitions that fail on P . Also, for distinct L and L′ in LP , the set of M -partitions
that respect L is disjoint from the set of M -partitions that respect L′. So we can
compute

∣∣∣{σ ∈ Σ | σ fails on P}
∣∣∣ by making |LP | calls to #List-M-partitions,

noting that |LP | ≤ |V ||C|.

As an example of a combinatorial structure that can be represented as an M -
partition problem with cardinality constraints, consider the homogeneous pairs intro-
duced by Chvátal and Sbihi [20]. A homogeneous pair in a graph G = (V,E) is a
partition of V into sets U , W1 and W2 such that:

1. |U | ≥ 2;

2. |W1| ≥ 2 or |W2| ≥ 2 (or both);

3. for every vertex v ∈ U , v is either adjacent to every vertex in W1 or to none of
them; and

4. for every vertex v ∈ U , v is either adjacent to every vertex in W2 or to none of
them.

Feder et al. [37] observe that the problem of determining whether a graph has a
homogeneous pair can be represented as the problem of determining whether it has an
Mhp-partition satisfying certain constraints, where D = {1, . . . , 6} and

Mhp =



∗ ∗ 1 0 1 0
∗ ∗ 1 1 0 0
1 1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗


.
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W1 corresponds to the set of vertices mapped to part 1 (row 1 of Mhp), W2 corre-
sponds to the set of vertices mapped to part 2 (row 2 of Mhp), and U corresponds to
the set of vertices mapped to parts 3–6.

In fact, there is a one-to-one correspondence between the homogeneous pairs of G
in which W1 and W2 are non-empty and the Mhp-partitions σ of G that satisfy the
following additional constraints. For d ∈ D, let Nσ(d) = |{v ∈ V (G) | σ(v) = d}| be
the number of vertices that σ maps to part d. We require that

1. Nσ(3) +Nσ(4) +Nσ(5) +Nσ(6) ≥ 2,

2. Nσ(1) > 0 and Nσ(2) > 0, and

3. at least one Nσ(1) and Nσ(2) is at least 2.

To see this, consider a homogeneous pair (U,W1,W2) in which W1 and W2 are non-
empty. Note that there is exactly one Mhp-partition of G in which vertices in W1 are
mapped to part 1 and vertices inW2 are mapped to part 2 and vertices in U are mapped
to parts 3–6. There is exactly one part available to each v ∈ U since v has an edge
or non-edge to W1 (but not both!) ruling out exactly two parts and v has an edge or
non-edge to W2 ruling out an additional part. Going the other way, an Mhp-partition
that satisfies the constraints includes a homogeneous pair.

Now let

Mhs =


∗ 0 1
0 ∗ ∗
1 ∗ ∗

 .
There is a one-to-one correspondence between the homogeneous pairs of G in whichW2

is empty and the Mhs-partitions of G that satisfy the following additional constraints.

1. At least two vertices are mapped to parts 2–3 (vertices in these parts are in U).

2. At least two vertices are mapped to part 1 (vertices in this part are in W1).

Symmetrically, there is also a one-to-one correspondence between the homogeneous
pairs of G in which W1 is empty and the Mhs-partitions of G that satisfy the above
constraints. (Partitions according to Mhs correspond to so-called “homogeneous sets”
but we do not need the details of these.)

It is known from [28] that, in deterministic polynomial time, it is possible to deter-
mine whether a graph contains a homogeneous pair and, if so, to find one. We show
that the homogeneous pairs in a graph can also be counted in polynomial time. We
start by considering the relevant list-partition counting problems.

Theorem 7.40. There are polynomial-time algorithms for #List-Mhp-partitions
and #List-Mhs-partitions.

144



Proof. We first show that there is a polynomial-time algorithm for the problem #List-
Mhp-partitions. The most natural way to do this would be to show that there is no
P(D)-Mhp-derectangularising sequence and then apply Theorem 7.11. In theory, we
could show that there is no P(D)-Mhp-derectangularising sequence by brute force since
|D| = 6, but the number of possibilities is too large to make this feasible. Instead, we
argue non-constructively.

First, if there is no P(D)-Mhp-derectangularising sequence, the result follows from
Theorem 7.11.

Conversely, suppose that D1, . . . , Dk is a P(D)-Mhp-derectangularising sequence.
Let M be the matrix such that Mi,j = 0 if (Mhp)i,j = 1 and Mi,j = (Mhp)i,j, otherwise.
D1, . . . , Dk is also a P(D)-M -derectangularising sequence, since HM

X,Y = H
Mhp
X,Y for any

X, Y ⊆ D and any sequence D1, . . . , Dk is M -purifying because M is already pure.
Therefore, by Theorem 7.11, counting list M -partitions is # P-complete.

However, counting the list M -partitions of a graph G corresponds to counting list
homomorphisms from G to the 6-vertex graph H whose two components are an edge
and a 4-clique, and which has self-loops on all six vertices. There is a very straightfor-
ward polynomial-time algorithm for this problem (a simple modification of the version
without lists in [27]). Thus, # P = FP so, in particular, there is a polynomial-time
algorithm for counting list Mhp-partitions.

The proof that there is a polynomial-time algorithm for #List-Mhs-partitions
is similar.

Corollary 7.41. There is a polynomial-time algorithm for counting the homogeneous
pairs in a graph.

Proof. We are given a graph G = (V,E) and we wish to compute the number of
homogeneous pairs that it contains. By the one-to-one correspondence given earlier,
it suffices to show how to count Mhp-partitions and Mhs-partitions of G satisfying
additional constraints. We start with the first of these. Recall the constraints on the
Mhp-partitions σ that we wish to count:

1. Nσ(3) +Nσ(4) +Nσ(5) +Nσ(6) ≥ 2,

2. Nσ(1) > 0 and Nσ(2) > 0, and

3. at least one Nσ(1) and Nσ(2) is at least 2.

Define three subsets Σ1, Σ2 and Σ1,2 of the set of Mhp-partitions of G that satisfy
the constraints. In the definition of each of Σ1, Σ2 and Σ1,2, we will require that parts 1
and 2 are non-empty and parts 3–6 contain a total of at least two vertices. In Σ1, part 1
must contain at least two vertices; in Σ2, part 2 must contain at least two vertices;
in Σ1,2, both parts 1 and 2 must contain at least two vertices. The number of suitable
Mhp-partitions of G is |Σ1|+ |Σ2| − |Σ1,2|.
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Each of |Σ1|, |Σ2| and |Σ1,2| can be computed by counting the Mhp-partitions of G
that satisfy appropriate cardinality constraints. Parts 1 and 2 are trivially dealt with.
The requirement that parts 3–6 must contain at least two vertices between them is
equivalent to saying that at least one of them must contain at least two vertices or
at least two must contain at least one vertex. This can be expressed with a sequence
of cardinality constraint functions and using inclusion–exclusion to eliminate double-
counting.

Counting constrained Mhs-partitions of G is similar (but simpler).
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Part III

Evolutionary dynamics
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Chapter 8

The Moran process on superstars

The results of this chapter are published in the paper “Amplifiers for the Moran
Process” co-authored with Andreas Galanis, Leslie Goldberg, John Lapinskas and
David Richerby [41].

8.1 Introduction

In this chapter we study the extinction probability of the Moran algorithm on a fam-
ily of directed graphs called the superstars. Recall from Section 1.4 that the Moran
algorithm has a parameter r which is the fitness of “mutants”. All non-mutants have
fitness 1. The algorithm runs on a directed graph. In the initial state, one vertex is
chosen uniformly at random to become a mutant. After this, the algorithm runs in
discrete steps as follows. At each step, a vertex is selected at random, with probability
proportional to its fitness. Suppose that this is vertex v. Next, an out-neighbour w
of v is selected uniformly at random. Finally, the state of vertex v (mutant or non-
mutant) is copied to vertex w. If the graph is finite and strongly connected then with
probability 1, the algorithm will either reach the state where there are only mutants
(known as fixation) or it will reach the state where there are only non-mutants (known
as extinction).

To state our main result for this chapter, recall the definition of superstars.

Definition 1.21. Let k, ` and m be positive integers. The (k, `,m)-superstar is the
directed graph Sk,`,m defined as follows. (See Figure 1.2, page 18.) The vertex set
V (Sk,`,m) of Sk,`,m is the disjoint union of ` size-m sets R1, . . . , R` (called reservoirs)
together with k` vertices v1,1, v1,2, . . . , v`,k and a single centre vertex v∗. The edge set
of Sk,`,m is given by

E(Sk,`,m) =
⋃̀
i=1

({v∗}×Ri)∪ (Ri×{vi,1})∪{(vi,j, vi,j+1) | j ∈ [k−1]}∪{(vi,k, v∗)}}
.

We prove the following theorem about superstars.
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Theorem 1.22. Let ζ(r, n) be any function such that, for any r > 1,

lim
n→∞

ζ(r, n)(n log n)1/3 = 0.

Then there is no infinite family of superstars that is up-to-ζ fixating.

8.1.1 Proof techniques

As we have seen in Section 1.4, it is easy to study the Moran process on a d-regular
graph by considering the transition matrix of the corresponding Markov chain (which
looks like a one-dimensional random walk). Highly symmetric graphs such as undi-
rected stars can also be handled in a straightforward matter, by directly analysing
the transition matrix. Superstars are more complicated and the number of mutant-
configurations is exponential, so instead we resort to dividing the process into phases,
as is typical in the study of stochastic processes.

An essential and common trick in the area of stochastic processes (for example, in
work on the voter model) is moving to continuous time. Instead of directly studying
the discrete-time Moran process, one could consider the following natural continuous-
time model which was studied in [24]: Given a set of mutants at time t, each vertex
waits an amount of time before reproducing. For each vertex, the period of time is
chosen according to the exponential distribution with parameter equal to the vertex’s
fitness, independently of the other vertices. If the first vertex to reproduce is v at
time t+ τ then, as in the standard, discrete-time version of the process, one of its out-
neighbours w is chosen uniformly at random, the individual at w is replaced by a copy of
the one at v, and the time at which w will next reproduce is exponentially distributed
with parameter given by its new fitness. The discrete-time process is recovered by
taking the sequence of configurations each time a vertex reproduces. Thus, the fixation
probability of the discrete-time process is exactly the same as the fixation probability
of the continuous-time process. So moving to the continuous-time model causes no
harm. As [24] explains, analysis can be easier in the continuous-time model because
certain natural stochastic domination techniques apply in the continuous-time setting
but not in the discrete-time setting.

It turns out that moving to the model of [24] does not suffice for our purposes. A
major problem in our proofs is dealing with dependencies. In order to make this feasible,
we instead study a continuous-time model (see “the clock process” in Section 8.3.1) in
which every edge of the underlying graph G is equipped with two Poisson processes, one
of which is called a mutant clock and the other of which is called a non-mutant clock.
The clock process is a stochastic process in which all of these clocks run independently.
The continuous-time Moran process (Definition 8.7) can be recovered as a function of
the times at which these clocks trigger.

Having all of these clocks available still does not give us the flexibility that we need.
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We say that a vertex u “spawns a mutant” in the Moran process if, at some point in
time, u is a mutant, and it is selected for reproduction. We wish to be able to discuss
events such as the event that the vertex u does not spawn a mutant until it has already
been a mutant for some particular amount of time. In order to express such events in
a clean way, making all conditioning explicit, we define additional stochastic processes
called “star-clocks” (see Section 8.3.3). All of the star-clocks run independently in the
star-clock process.

In Section 8.3.4 we provide a coupling1 of the star-clock process with the Moran
process. The coupling is valid in the sense that the two projections are correct — the
projection onto the Moran process runs according to the correct distribution and so
does the projection onto the star-clock process. The point of the coupling is that the
different star-clocks can be viewed as having their own “local” times. In particular,
there is a star-clock M∗

(u,v) which controls reproductions from vertex u onto vertex v
during the time that u is a mutant. The coupling enables us to focus on relevant parts
of the stochastic process, making all conditioning explicit.

The processes that we have described so far are all that we need to derive our upper
bound on the fixation probability of superstars (Section 8.4).

8.1.2 Organisation

In Section 8.2, we define some notation and state some well-known probabilistic bounds
(Chernoff bounds and analysis of gambler’s ruin) which will be used in the proof. In
Section 8.3 we define several stochastic processes which we use to study the Moran
process. Finally, in Section 8.4 we give an upper bound on the fixation probability of
superstars. The main result of the section is Theorem 8.13, which immediately implies
Theorem 1.22.

8.2 Definitions and preliminaries

8.2.1 Notation

We use N−(v) to refer to the set of in-neighbours of a vertex v and N+(v) to refer to
the set of out-neighbours of v. We use d−(v) = |N−(v)| and d+(v) = |N+(v)|.

We refer to the Lebesgue measure of a (measurable) subset S ⊆ R as the measure
of that set, and denote it by len(S).

We use base e for logarithms unless the base is given explicitly.
We write Z≥0 = {0, 1, 2, . . . }, Z≥1 = {1, 2, . . . }, and [n] = {1, 2, . . . , n}.
If b < a, we consider the interval [a, b] to be well-defined but empty. Likewise if

b ≤ a, we consider the intervals (a, b), (a, b] and [a, b) to be well-defined but empty.
1For a definition of a coupling see e.g. [63, Definition 11.3]
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We define empty sums, products, unions etc. to be the identities of the corresponding
operations. For example , ∏0

i=1 i = 1 and ⋃0
i=1Ai = ∅.

Throughout the chapter, we use lower case t’s to denote fixed times and upper case
T ’s to denote stopping times.

8.2.2 Chernoff bounds

We often use the following simple bound which applies to any real number x ∈ [0, 1].

x/2 ≤ 1− e−x ≤ x. (8.1)

We will require the following well-known Chernoff bounds. The first appears in [63,
Theorem 5.4].

Lemma 8.3. Let Y be a Poisson random variable with parameter ρ ≥ 0. If y > ρ and
z < ρ, then

P(Y ≥ y) ≤ e−ρ(eρ)y
yy

and P(Y ≤ z) ≤ e−ρ(eρ)z
zz

.

Corollary 8.4. Let Y be a Poisson random variable with parameter ρ ≥ 0. Then
P(Y ≥ 2ρ) ≤ e−ρ/3 and P(Y ≤ 2ρ/3) ≤ e−ρ/16.

Proof. Lemma 8.3 applied with y = 2ρ and z = 2ρ/3 implies that

P(Y ≥ 2ρ) ≤ e−ρ(eρ)2ρ

(2ρ)2ρ = e−ρ
(
e2

4

)ρ
= e(1−log 4)ρ ≤ e−ρ/3 ,

P(Y ≤ 2ρ/3) ≤ e−ρ(eρ)z
zz

= e−ρ
(3e

2

)2ρ/3
= e−(1−2/3−2 log(3/2)/3)ρ ≤ e−ρ/16 .

Corollary 8.5. Let s be a positive integer and let Y be the sum of s i.i.d. exponential
random variables, each with parameter λ. Then, for any j ≥ 3s/(2λ), P(Y < j) ≥
1− e−λj/16.

Proof. First, note that P(Y < j) = P(Y ≤ j) since P(Y = j) = 0. Then P(Y ≤ j) is
equal to the probability that a Poisson process with parameter λ triggers at least s times
in the interval [0, j]. This is the same as the probability that a Poisson random variable
with parameter λj is at least s. Since s ≤ 2λj/3, we can now use Corollary 8.4.

The following is in [56, Corollary 2.4].

Lemma 8.6. Suppose that Y follows the binomial distribution with n Bernoulli trials,
each with success probability p ∈ (0, 1) and that c > 1. Then, for all y ≥ cnp, P(Y ≥
y) ≤ e−ϕ(c)y, where ϕ(c) = log c− 1 + 1/c. Note that ϕ(2) > 1/6 and ϕ(7) > 1.
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8.3 Stochastic processes

We will be concerned with the discrete-time Moran process [64], as adapted by Lieber-
man, Hauert and Nowak [59] and described in the introduction of this chapter. This is
a discrete model of evolution on an underlying directed graph G where the reproduction
rate of mutants is a parameter r > 0 called the “fitness”.

In this thesis, we consider the situation r > 1, which corresponds to the situation in
which a mutation is advantageous. The fitness r is a parameter of all of our processes.
Our results apply to any fixed r > 1. Since the value of r is fixed, we simplify the
presentation by not including it in the explicit notation and terminology. Thus, from
now on, we say “Moran process” to signify “Moran process with fitness r”.

Following [24] we will simplify our proofs by studying a continuous-time version of
the Moran process. The continuous-time version is also parametrised by G and r and it
has the same fixation probability as the discrete-time version, so our results will carry
over immediately to the discrete process.

In order to deal with conditioning in the proofs we will in fact define several general
stochastic processes, all of which depend on G and r — one of these will be equivalent
to the continuous-time Moran process and others will be useful for dominations.

All of the processes that we study evolve over time. For any process P , we use
F(P ) to denote the filtration of P so Ft(P ) captures the history of the process P up
to and including time t.

8.3.1 The clock process

For each edge e = (u, v) of G we define two Poisson processes — a Poisson process Me

with parameter r/d+(u) and a Poisson process Ne with parameter 1/d+(u). We refer
to these processes as clocks, and when an event occurs in one of them, we say that the
relevant clock triggers. We refer to Me as a mutant clock with source u and target v
and Ne as a non-mutant clock with source u and target v.

We use C(G) to denote the set of all clocks so C(G) = ⋃
e∈E(G){Me, Ne}. We use

P (G) to denote the Cartesian product of all process in C(G). P (G) is the stochastic
process in which all clocks in C(G) evolve simultaneously and independently, starting
at time 0.

With probability 1, the clocks trigger a countably infinite number of times and
these can be indexed by an increasing sequence τ1, τ2, . . .. Also, no clocks trigger
simultaneously and the clocks trigger for an infinitely long period — that is, for every
clock and every t, the clock triggers at some τi > t. For convenience, we take τ0 = 0.
We will use the random variables τ0, τ1, . . . (which depend on the process P (G)) in our
arguments.
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8.3.2 The Moran process

Definition 8.7 (the Moran process). The (continuous-time) Moran process X has
an underlying graph G(X) = G and an initial state X0 = {x0}, where x0 ∈ V (G). At
every time t, the state Xt is a subset of V (G(X)), which we sometimes refer to as the
“set of mutants” at time t. Recall that, for every positive integer i, a clock C ∈ C(G)
triggers at τi. For t ∈ (τi−1, τi), we set Xt = Xτi−1 . Then we define Xτi as follows.

(i) If C = M(u,v) for some (u, v) ∈ E(G) and u ∈ Xτi−1 then Xτi = Xτi−1 ∪ {v}.

(ii) If C = N(u,v) for some (u, v) ∈ E(G) and u /∈ Xτi−1 then Xτi = Xτi−1 \ {v}.

(iii) Otherwise, Xτi = Xτi−1 .

Considering the positive integers i in order, this completes the definition of the Moran
process Xt.

We define some terminology associated with the Moran process X.

• If the clock M(u,v) triggers at time t and u ∈ Xt we say that u spawns a mutant
onto v at time t and that X spawns a mutant onto v at time τi.

• If the clock N(u,v) triggers at time t and u /∈ Xt we say that u spawns a non-
mutant onto v at time t. We say that X spawns a non-mutant onto v at time
τi.

• If v ∈ Xτi and v 6∈ Xτi−1 we say that v becomes a mutant at time τi.

• If v ∈ Xτi−1 and v 6∈ Xτi we say that v becomes a non-mutant at time τi or that
v dies at time τi.

Note that v does not necessarily become a mutant at time τi when some u spawns a
mutant onto v at time τi since v may already be a mutant at that time.

For convenience, we include the filtration Ft(P (G)) in the filtration Ft(X) of the
Moran process so the sequence of trigger-times τ0, τ1, . . . up to time t can be determined
from Ft(X).

Definition 8.8. We say that the Moran process is extinct by time t if, for all t′ ≥ t,
Xt′ = ∅. We say that it fixates by time t if, for all t′ ≥ t, Xt′ = V (G(X)). We say that it
absorbs by time t if it is extinct by time t or it fixates by time t. The fixation probability
is the probability that, for some t, it fixates by time t. The extinction probability is the
probability that, for some t, it is extinct by time t.

Remark 8.9. In Definition 8.7, say that τi is a “relevant trigger time” if (i) or (ii)
occurs rather than (iii). The discrete-time Moran process [64], as adapted by Lieber-
man, Hauert and Nowak [59] is the Markov chain Xτ0 , Xτi1

, Xτi2
, . . ., where τi1 , τi2 , . . .
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is the increasing sequence of relevant trigger times. Note that the fixation probabil-
ity of the discrete-time Moran process is the same as the fixation probability of the
continuous-time process Xt, so we will study the process Xt in this chapter.

Remark 8.10. The Moran process Xt is extinct by time t if Xt = ∅ and fixates by
time t if Xt = V (G(X)). If G is strongly connected then the fixation probability and
the extinction probability sum to 1.

Definition 8.11. For the Moran Process X, any vertex u ∈ V (G(X)), and any t ≥ 0,
we define im(X, u, t) to be the measure of the set {t′ ≤ t | u ∈ Xt′}. Similarly, we
define in(X, u, t) to be the measure of the set {t′ ≤ t | u /∈ Xt′}.

The subscript “m” stands for “mutant” since im(X, u, t) is the amount of time that
u is a mutant in X, up until time t. Similarly, the subscript “n” stands for non-
mutant. The random variables im(X, u, t) and in(X, u, t) are determined by Ft(X).
Also, im(X, u, t) + in(X, u, t) = t.

8.3.3 The star-clock process

Consider the Moran process process X. We wish to be able to discuss events such as
the event that a vertex u does not spawn a mutant until it has been a mutant for time
t. In order to express such events in a clean way, making all conditioning explicit, we
define additional stochastic processes.

For each edge e = (u, v) of G we define four further Poisson processes — Poisson
processes M∗

e and M∗
e each with parameter r/d+(u) and Poisson processes N∗e and N∗e

each with parameter 1/d+(u). We refer to these processes as star-clocks. We identify
sources and targets of star-clocks in the same way that we did for clocks. For example,
the star-clock M∗

(u,v) has source u and target v.
We use C∗mut(G) to denote the set C∗mut(G) = ⋃

e∈E(G){M∗
e , N

∗
e}. We use C∗nmut(G)

to denote the set C∗nmut(G) = ⋃
e∈E(G){N∗e ,M

∗
e}.

The star-clock process P ∗(G) is the stochastic process where all star-clocks in
C∗mut(G) ∪ C∗nmut(G) evolve simultaneously and independently, starting at time 0.

8.3.4 A coupled process

Given the Moran process X, let G = G(X). We will now define a stochastic process
Ψ(X) which is a coupling of X (which includes the clock process P (G)) with the
newly-defined star-clock process P ∗(G). Intuitively, the idea of the coupling is that
each clockM(u,v) in P (G) will evolve followingM∗

(u,v) when u is a mutant and following
M
∗
(u,v) when u is a non-mutant. Similarly, N(u,v) will evolve following N∗(u,v) when u is

a non-mutant and N∗(u,v) when u is a mutant. In the coupling, we pause the star-clocks
in C∗mut(G) ∪ C∗nmut(G) while they are not being used to drive clocks in C(G), so that,
e.g., the “local time” of a clock M∗

(u,v) at global time t is im(X, u, t).
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We will be able to deduce both Ft(X) and Ft(P ∗(G)) from the filtration FT (Ψ(X))
of the coupled process at an appropriate stopping time T — the details are given below.
The fact that the coupling is valid (which we will show below) will ensure that both of
the marginal processes, X and P ∗(G), evolve according to their correct distributions.

To construct the coupling we start with a copy of the star-clock process P ∗(G)
and with the initial state X0 of the Moran process X. We define τ0 = 0 (so we have
implicitly defined Fτ0(X)).

Suppose that, for some non-negative integer j, we have defined Fτj(X). Given this
and the evolution of the star-clock process P ∗(G), we will show how to define τj+1 and
Fτj+1(P (G)) which determine Fτj+1(X). To do this, let tj be the minimum t > 0 such
that one of the following occurs.

• For some u ∈ Xτj , a star-clock in C∗mut(G) with source u triggers at time
im(X, u, τj) + t, or

• for some u /∈ Xτj , a star-clock in C∗nmut(G) with source u triggers at time
in(X, u, τj) + t.

We define τj+1 = τj + tj. No clocks in C(G) trigger in the interval (τj, τj+1). We now
determine which clock from C(G) triggers at time τj+1 by reconsidering each case.

• If u ∈ Xτj and M∗
(u,v) triggers at time im(X, u, τj)+ tj thenM(u,v) triggers at time

τj+1.

• If u ∈ Xτj and N
∗
(u,v) triggers at time im(X, u, τj) + tj then N(u,v) triggers at time

τj+1.

• If u /∈ Xτj , and N∗(u,v) triggers at time in(X, u, τj) + tj then N(u,v) triggers at time
τj+1.

• If u /∈ Xτj and M
∗
(u,v) triggers at time in(X, u, τj) + tj then M(u,v) triggers at time

τj+1.

This fully defines Fτj+1(P (G)) and hence Fτj+1(X). So we have fully defined the cou-
pling and therefore the process Ψ(X).

Before showing that the coupling is valid, it will be helpful to state exactly what in-
formation is contained in Ft(Ψ(X)). Certainly this includes Ft(X) which itself includes
Ft(P (G)). Also, Ft(P (G)) defines a non-negative integer j so that t ∈ [τj, τj+1). We
will use j to state the information that Ft(Ψ(X)) contains for the evolution of P ∗(G).

• For each star-clock C ∈ C∗mut(G) with source u ∈ Xτj , Ft(Ψ(X)) includes a list
of the times in [0, im(X, u, τj) + t− τj] when C triggers.

• For each star-clock C ∈ C∗mut(G) with source u /∈ Xτj , Ft(Ψ(X)) includes a list
of the times in [0, im(X, u, τj)] when C triggers.
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• For each star-clock C ∈ C∗nmut(G) with source u /∈ Xτj , Ft(Ψ(X)) includes a list
of the times in [0, in(X, u, τj) + t− τj] when C triggers.

• For each star-clock C ∈ C∗nmut(G) with source u ∈ Xτj , Ft(Ψ(X)) includes a list
of the times in [0, in(X, u, τj)] when C triggers.

To show that the coupling is valid we must show that both of the marginal processes,
X and P ∗(G), evolve according to their correct distributions. The fact that P ∗(G)
does so is by construction. To show that X does so, it suffices to prove that for all
j ∈ Z≥0 and all possible values fj of Fτj(X), the distribution of Fτj+1(X) conditioned
on Fτj(X) = fj is correct. Note that the only information contained in Fτj+1(X) but
not Fτj(X) is the value of τj+1 and the identity of the clock in C(G) that triggers at
time τj+1.

Let f ′j be an arbitrary possible value of Fτj(Ψ(X)) that is consistent with the event
Fτj(X) = fj, in the sense that the intersection of the events Fτj(Ψ(X)) = f ′j and
Fτj(X) = fj is non-empty. Recall from the definition of Ψ(X) that, conditioned on
Fτj(Ψ(X)) = fj, Fτj+1(X) depends only on particular star-clocks in particular intervals,
as follows.

• For each u ∈ Xτj , it depends on the evolution of each star-clock in C∗mut(G) with
source u only during the interval (im(X, u, τj),∞). It does not depend on the
evolution of star-clocks in C∗nmut(G) with source u.

• For each u /∈ Xτj , it depends on the evolution of each star-clock in C∗nmut(G) with
source u only during the interval (in(X, u, τj),∞). It does not depend on the
evolution of star-clocks in C∗mut(G) with source u.

For each star-clock, these intervals are disjoint from the intervals exposed in f ′j,
and the start of each interval is determined by f ′j. Moreover, in the interval (τj, τj+1],
each clock in C(G) is triggered by a unique clock in C∗mut(G) ∪ C∗nmut(G) with the same
rate. Thus all clocks in C(G) trigger with the correct rates in this period and they are
independent of each other (since all of the star-clocks in P ∗(G) evolve independently).
We conclude that Fτj+1(P (G)), and hence Fτj+1(X), has the appropriate distribution.
The coupling is therefore valid.

By construction, we have the following observation.

Observation 8.12. Let X be the Moran process and consider Ψ(X). Let (u, v) be an
edge of G(X). Given t > 0, let j be the maximum integer such that τj < t. Then the
following are true.

• M(u,v) triggers at time t if and only if either u ∈ Xτj and M∗
(u,v) triggers at time

im(X, u, t) or u /∈ Xτj and M
∗
(u,v) triggers at time in(X, u, t).

• N(u,v) triggers at time t if and only if either u /∈ Xτj and N∗(u,v) triggers at time
in(X, u, t) or u ∈ Xτj and N

∗
(u,v) triggers at time im(X, u, t).
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8.4 An upper bound on the fixation probability of
superstars

Recall the definition of a (k, `,m)-superstar (Definition 1.21). We use n = `(k+m)+1
to denote the number of vertices of a (k, `,m)-superstar.

Given any i ∈ [`], we say that vi,1vi,2 . . . vi,k is the path associated with the reser-
voir Ri. We will often consider the case that the initial mutant x0 is in a reservoir.
When it is possible, we simplify the notation by dropping the index i of the reservoir.
Thus, we write R for the reservoir containing x0 and we write v1 . . . vk for the path
associated with R. So if R = Ri then for each j ∈ [k], we write vj as a synonym for vi,j.
The main result of this section is the following upper bound on the fixation probability
of the superstar.

Theorem 8.13. Let r > 1. Then there exists a constant cr > 0 (depending on r) such
that the following holds for all positive integers k, ` and m. Choose x0 uniformly at
random from V (Sk,`,m). Let X be the Moran process (with fitness r) with G(X) = Sk,`,m
and X0 = {x0}. Then the probability that X goes extinct is at least 1/(cr(n log n)1/3).

8.4.1 Proof Sketch

In this Section, we give an informal sketch of the proof of Theorem 8.13. The presen-
tation of the proof itself does not depend upon the sketch so the reader may prefer
to skip directly to the proof. In all of our proof sketches, we use the word “likely” to
mean “sufficiently likely”. We leave the details of “how likely” to the actual proofs.

If m is small relative to k (in particular, if m < k(n log n)1/3) then the initial mu-
tant x0 is likely to be placed in a path, rather than in a reservoir. If this happens, then
it is likely to go extinct. This easy case is dealt with in Lemma 8.14 and corresponds
to Case 2 in the proof of Theorem 8.13. (Case 1 is the trivial case where n < n0.)

Another easy case arises if ` is sufficiently small relative to n (in particular, if
` = O((n log n)1/3)). This case is dealt with in Lemma 8.15 and corresponds to Case 3
in the proof of Theorem 8.13. In this case, even when x0 is placed in a reservoir R,
it is still likely that x0 dies before v2 ever becomes a mutant. This is because it takes
roughly Θ(m) time for the mutation to spread from v1 to v2 since a mutant at v1 has
only probability Θ(1/m) of spawning a mutant before it dies. On the other hand, since
` is small, x0 is sufficiently likely to die in Θ(m) time. For details, see the proof of
Lemma 8.15.

The remaining case, Case 4 in the proof of Theorem 8.13, is deemed the “difficult
regime” and is dealt with in Section 8.4.3. In this case, it is easy to show that ` =
Ω(κ log n) and m = Ω(κ) where κ = max{3k, 70r4 log n}.

It is likely that the initial mutant x0 is placed in a reservoir R, and the key lemma,
showing that it is sufficiently likely to go extinct, is Lemma 8.17.
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At a very high level, the argument proceeds as follows. Suppose that v∗ does not
spawn a mutant before x0 dies. Then it is very easy to see that, after x0 dies, the path
of reservoir R is likely to go extinct quickly.

Thus, the crux of the argument is to show that x0 is likely to die before v∗ spawns
a mutant. Each time v∗ becomes a mutant it has an O(1/`) chance of spawning a
mutant before dying, so roughly our goal is to show that x0 is sufficiently likely to die
before v∗ becomes a mutant Ω(`) times.

Very roughly, our high-level approach is to partition time into intervals of length
κ = O(m). In each block of O(m/κ) such intervals, v2 is likely to become a mutant
O(1) times. Each time this happens, it is likely that R’s path will again fill with non-
mutants within O(κ) time, so it is likely that vk is a mutant for at most O(κ) time
during the block and it is likely that v∗ becomes a mutant at most O(κ) times during
the block. Combining O(`/κ) blocks, it is likely that v∗ becomes a mutant at most
O(`) times by time `m/κ. Since N(v∗,x0) has rate 1/(`m), it is also likely that x0 dies
by time `m/κ.

In more detail, the proof of Lemma 8.17 shows that x0 dies before v∗ spawns a
mutant as long as certain events called P1–P5 occur. These events are defined in the
statement of Lemma 8.23. They formalise the high-level approach that we have just
described. It is important that most of these events are defined in terms of clock-
triggers so that we can get good upper bounds on the probability that they fail and
thus prove (in Lemma 8.23) that they are likely to occur simultaneously.

The proof of Lemma 8.17 tracks a quantity σ(t) which is the number of times that
vk (the end of the path of the reservoir containing x0) spawns a mutant onto the centre
vertex v∗ by time t. The proof uses P1–P5 to show that σ(t) stays O(`) up to a fixed
time tx0 = O(`m/κ). As we noted, the analysis divides the period up to time tx0

into intervals of size κ. Event P5 ensures that during most such intervals, non-mutant
clocks with target v1 and mutant clocks with targets v1 and v2 behave appropriately
so that, if x0 is the only mutant in R during the interval, then v2 does not become a
mutant during the interval. The fact that x0 is indeed the only mutant in R follows
from event P1 which ensures that v∗ does not spawn a mutant while σ(t) is small. Then
since v2 does not become a mutant during the interval, event P3 ensures that the clocks
along the path trigger in such a way that (unless v1 or v∗ spawn a mutant) the only
mutants remaining at the end of the interval are in {x0, v1}. This ensures that σ(t)
stays small through another interval. Event P5 only ensures the above during “most
such intervals” but event P4 ensures that the mutant clock with source vk does not
trigger too often, so the remaining intervals are not too problematic. Thus, events P1,
P3, P4 and P5, taken together, ensure that σ(tx0) is O(`).

Given that σ(tx0) is O(`), it is easy to show that the initial mutant goes extinct
during the next two intervals (beyond time tx0). Event P1 ensures that v∗ doesn’t
spawn any mutants. Event P2 ensures that the initial mutant x0 has already died by
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time tx0 . Finally, event P3 ensures that any remaining mutants die in the path during
the next two intervals.

The difficult part of the proof is defining events P1–P5 in such a way that we
can show (in Lemma 8.23) that they are likely to occur simultaneously. It turns out
(Lemma 8.27, Corollary 8.29 and Lemma 8.30) that events P3–P5 are so unlikely to fail
that we bound this probability with a simple union bound, avoiding any complicating
conditioning. (Of course, for this it was necessary to express these events in terms
of clocks rather than in terms of the underlying Moran process.) In order to simplify
the presentation, we deal with P1 and P2 together, in Lemma 8.26. Roughly, they
correspond to the event that, as long as σ(t) = O(`) then v∗ does not spawn a mutant
at time t and, for t = tx0 , x0 dies by time t. This event is implied by the conjunction
of three further events.

• E1 is the event that no star-clock M∗
(v∗,v) (for any v) triggers in [0, 1/r].

• E2 is the event that the star-clock N∗(v∗,x0) triggers in [0, tx0 − 1].

• E3 corresponds informally to the event that v∗ is a mutant for a period of time
shorter than 1/r during the first O(`) times that it becomes a mutant (though the
formal definition is expressed in terms of clocks, and is a little more complicated).
Note the intention, though, which is to ensure that v∗ is a mutant for a period
of time shorter than 1/r, which makes E1 relevant.

Lemma 8.25 shows that E3 is very likely to hold. In the proof of Lemma 8.26, it is
observed that E1 and E2 are independent (by the definition of the star-clocks) and that
P(E1) = 1/e. The proof demonstrates that E2 is sufficiently likely, giving the desired
bound.

8.4.2 The easy regimes

Lemma 8.14. Choose x0 uniformly at random from V (Sk,`,m). Let X be the Moran
process with G(X) = Sk,`,m and X0 = {x0}. The extinction probability of X is at least
k/(2r(m+ k)).

Proof. We have

P(x0 /∈ R1 ∪ · · · ∪R`) = 1− `m

`(m+ k) + 1 ≥ 1− m

m+ k
= k

m+ k
.

Moreover, if x0 /∈ R1 ∪ · · · ∪ R`, then x0 has an in-neighbour of out-degree 1 so, with
probability at least 1/(1 + r) ≥ 1/(2r), x0 dies before spawning a mutant. The result
therefore follows.

Lemma 8.15. Suppose m ≥ 12r and x0 ∈ R1 ∪ · · · ∪ R`. Let X be the Moran
process with G(X) = Sk,`,m and X0 = {x0}. The extinction probability of X is at
least 1/(26r2`).
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Proof. Let R be the reservoir containing x0, and let v1 . . . vk be the path associated
with R. Let ξ = bm/(2r)c, t∗ = m/(4r2) and J = [0, t∗]. For all t ≥ 0, let E1, E2 and
E3
t be events defined as follows.

E1: N(v∗,x0) triggers in J .

E2: M(x0,v1) triggers at most ξ times in J .

E3
t : min{t′ > t | for some v 6= x0, N(v,v1) triggers at t′}

< min{t′ > t |M(v1,v2) triggers at t′}.

Finally, let T iv1 be the i’th time at which the clock M(x0,v1) triggers and define E3 =⋂ξ
i=1 E3

T iv1
.

Suppose that events E1, E2 and E3 occur. We will show that X goes extinct. Let
ξ′ be the number of times that v1 becomes a mutant in J . By E2, ξ′ ≤ ξ. By E3, for
each of the first ξ′ times that v1 becomes a mutant, it dies before spawning a mutant.
Thus, for all t ∈ J , Xt ⊆ {x0, v1}. Also, by E1, x0 dies in J . As soon as x0 dies, and
v1 dies for the (ξ′)’th time, X is extinct.

We bound P(E1 ∩ E2 ∩ E3) below. Since N(v∗,x0) has rate 1/(`m), we have

P(E1) = 1− e−t∗/(`m) = 1− e−m/(4r2`m) ≥ 1−
(

1− 1
8r2`

)
= 1

8r2`
. (8.2)

Here the inequality follows by (8.1). Moreover, sinceM(x0,v1) has rate r, by Corollary 8.4
we have

P(E2) ≥ 1− e−m/(12r) ≥ 1− e−1. (8.3)

For any t ∈ J , let f be a possible value of Ft(X). Let Φ be the random variable
containing the list of times in J at which N(v∗,x0) and M(x0,v1) trigger. Let ϕ be a
possible value of Φ which is consistent with the events Ft(X) = f and E1 ∩ E2. Note
that ϕ determines E1∩E2. By memorylessness and independence of clocks in C(Sk,`,m),
we have

P
(
E3
t | Ft(X) = f,Φ = ϕ

)
= m− 1
m− 1 + r

= 1− r

m− 1 + r
≥ 1− r

m
.

Thus for all i ∈ [ξ], P
(
E3
T iv1
| E1 ∩ E2

)
≥ 1− r/m. It follows by a union bound that

P
(
E3 | E1 ∩ E2

)
≥ 1− ξ

(
r

m

)
≥ 1

2 . (8.4)

Since E1 and E2 depend entirely on distinct clocks in C(Sk,`,m) in fixed intervals,
the two events are independent. Thus by (8.2)–(8.4), we have

P
(
E1 ∩ E2 ∩ E3

)
= P

(
E1
)
P
(
E2
)
P
(
E3 | E1 ∩ E2

)
≥
( 1

8r2`

)(
1− 1

e

) 1
2 ≥

1
26r2`

,

and the result follows.

161



8.4.3 The difficult regime

Definition 8.16. Let K = 70 and κ = max{3k,Kr4 log n}.

Lemma 8.17. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose that ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Fix x0 ∈
R1 ∪ · · · ∪ R`. Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}. Then
the extinction probability of X is at least 1/(7Kr4κ).

The following corollary, which applies to the regime in which κ = 3k, is immediate.

Corollary 8.18. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose that k ≥ (K/3)r4 log n, ` ≥ 3Kr4k log n, m ≥ 18r2k and
n ≥ n0. Fix x0 ∈ R1 ∪ · · · ∪ R`. Let X be the Moran process with G(X) = Sk,`,m and
X0 = {x0}. Then the extinction probability of X is at least 1/(21Kr4k).

The crux of our proof of Lemma 8.17 is Lemma 8.23. In order to state this lemma,
we require the following additional definitions.

Definition 8.19. Let tx0 = `m/(Kr4κ), and tmax = 2`m. For all i ∈ Z≥0, let Ii =
(iκ, (i+ 1)κ]. For all t ∈ [0, tmax], let

σ(t) =
∣∣∣{t′ ≤ t | vk spawns a mutant onto v∗ at time t′}

∣∣∣ .
The reason that we give tx0 its name is that we will be most concerned with the

case in which x0 dies in the interval [0, tx0 ].

Definition 8.20. Let I ⊆ [0,∞) be an interval, let R ∈ {R1, . . . , R`}, suppose x0 ∈ R,
and let v1 . . . vk be the path associated with R. We say that v1 clears before spawning
a mutant within I if at least one of the following statements holds:

(i) M(v1,v2) does not trigger in I, or

(ii) for some v 6= x0, N(v,v1) triggers in I before M(v1,v2) first triggers in I.

Definition 8.21. Let i ∈ Z≥0, let R ∈ {R1, . . . , R`}, suppose x0 ∈ R, and let v1 . . . vk

be the path associated with R. We say that v2 is protected in Ii if both of the following
properties hold.

(i) v1 clears before spawning a mutant within Ii.

(ii) For all t ∈ Ii such that M(x0,v1) triggers at time t, v1 clears before spawning a
mutant within (t, (i+ 1)κ].

In particular, suppose that v2 is protected in Ii and that x0 is the only mutant in
R for the duration of Ii. Then as we will see in the proof of Lemma 8.17, v2 does not
become a mutant in Ii.
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Definition 8.22. Let i ∈ Z≥0, let R ∈ {R1, . . . , R`}, suppose x0 ∈ R, and let v1 . . . vk

be the path associated with R. We say that v1 . . . vk clears within Ii if there exist
v0 ∈ R \{x0} and times iκ < t1 < · · · < tk+1 ≤ (i+ 1)κ satisfying both of the following
properties.

(i) For all j ∈ [k], N(vj−1,vj) triggers at time tj, and N(vk,v∗) triggers at time tk+1.

(ii) M(x0,v1) does not trigger in the interval [t1, t2].

To see the purpose of this definition consider the following. Suppose that Xiκ ⊆
{x0, v1, . . . , vk, v

∗}, that neither v1 nor v∗ spawns a mutant within Ii, and that v1 . . . vk

clears within Ii. Then, as we will see in the proof of Lemma 8.17, we will have X(i+1)κ ⊆
{x0, v1}.

Our main task will be to prove the following lemma.

Lemma 8.23. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Let R ∈ {R1, . . . , R`},
and let v1 . . . vk be the path associated with R. Fix x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then, with probability at least 1/(7Kr4κ), the
following events occur simultaneously.

P1: ∀t ≤ tmax, σ(t) ≥ b`/(2r)c+ 1 or v∗ does not spawn a mutant at time t.

P2: σ(tx0) ≥ b`/(2r)c+ 1 or x0 /∈ Xtx0
.

P3: For all integers i with 0 ≤ i ≤ tx0, v1 . . . vk clears within Ii.

P4: For all integers i with 0 ≤ i ≤ tx0, the clock M(vk,v∗) triggers at most b2rκc times
within Ii.

P5: For all but at most 8r2tx0/m integers i with 0 ≤ i ≤ tx0/κ, v2 is protected in Ii.

Note that the definition of P5 considers i up to tx0/κ, because it corresponds to at
most tx0/κ intervals of length κ. The definitions of P3 and P4 consider larger values
of i. In fact, it is only necessary to take i up to tx0/κ + 2 in P3 and P4 but we state
the lemma as we did to avoid clutter. As a first step towards proving Lemma 8.23, we
prove Lemmas 8.25 and 8.26 which give a lower bound on the probability that P1 and
P2 hold.

Definition 8.24. Let R ∈ {R1, . . . , R`}, let v1 . . . vk be the path associated with R,
and suppose x0 ∈ R. Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}.
We give two mutual recurrences to define stopping times T hn for all h ∈ Z≥0 and T hm for
all h ∈ Z≥1. The subscript “n” stands for “non-mutant” and the subscript “m” stands
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for “mutant”.

T hn =


0, if h = 0,

min

t > T hm

∣∣∣∣∣∣∣
t = tmax or some clock N(v,v∗)

with v 6= vk triggers at t

 , otherwise.

T hm = min{t > T h−1
n | t = tmax or vk spawns a mutant onto v∗ at t}.

Finally, for all h ∈ Z≥1, let Yh = T hn − T hm.

Lemma 8.25. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n and n ≥ n0. Let R ∈ {R1, . . . , R`} and let
v1 . . . vk be the path associated with R. Let x0 ∈ R. Let X be the Moran process with
G(X) = Sk,`,m and X0 = {x0}. Then

P

b`/(2r)c∑
i=1

Yi <
1
r

 ≥ 1− 1
n2 .

Proof. Let n0 be an integer which is sufficiently large with respect to r. We claim that
Y1, . . . , Yb`/(2r)c are stochastically dominated above by b`/(2r)c independent exponential
variables, each with parameter ` − 1. To see this claim, fix i ∈ Z≥1, t ≥ 0, and
y1, . . . , yi−1, t

i
m > 0. Let fi be a possible value of Ftim(X). Suppose that the events

Y1 = y1, . . . , Yi−1 = yi−1, T im = tim and Ftim(X) = fi are consistent, and note that in
this case Ftim(X) = fi determines the other events.

If t ≥ 0 satisfies tim + t ≥ tmax, it follows that tim + t ≥ T in and hence if Ftim(X) = fi

then Yi = T in − tim ≤ t. Hence, for all such t,

P
(
Yi ≤ t | Ftim(X) = fi

)
= 1 ≥ 1− e−(`−1)t. (8.5)

Suppose instead that tim + t < tmax. If Ftim(X) = fi then Yi ≤ t if and only if some
clock N(v,v∗) with v 6= vk triggers in the interval (tim, tim + t]. These clocks have total
rate `− 1, and so by memorylessness we have

P
(
Yi ≤ t | Ftim(X) = fi

)
= 1− e−(`−1)t. (8.6)

Since (8.5) and (8.6) apply to every value of fi consistent with Y1 = y1, . . . , Yi−1 =
yi−1 and T im = tim, it follows that

P
(
Yi ≤ t | Y1 = y1, . . . , Yi−1 = yi−1

)
≥ 1− e−(`−1)t.

Thus ∑b`/(2r)ci=1 Yi is stochastically dominated above by a sum S of b`/(2r)c i.i.d. expo-
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nential variables with parameter `− 1. Corollary 8.5 applies since

1
r
≥ 3b`/(2r)c

2(`− 1) ,

so we have

P

b`/(2r)c∑
i=1

Yi <
1
r

 ≥ P
(
S <

1
r

)
≥ 1− e−(`−1)/(16r) ≥ 1− 1

n2 ,

as required.

We are now in a position to prove that P1 and P2 occur with reasonable probability.

Lemma 8.26. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 2 and n ≥ n0. Let R ∈ {R1, . . . , R`}
and let v1 . . . vk be the path associated with R. Let x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then P(P1 ∩ P2) ≥ 1/(6Kr4κ).

Proof. Let n0 be an integer which is sufficiently large with respect to r. Consider the
process Ψ(X). Define the following three events.

E1: no star-clock M∗
(v∗,v) (for any v) triggers in [0, 1/r].

E2: the star-clock N∗(v∗,x0) triggers in [0, tx0 − 1].

E3:
∑b`/(2r)c
i=1 Yi < 1/r.

We will prove that P(E1 ∩ E2 ∩ E3) ≥ 1/(6Kr4κ), and that if E1 ∩ E2 ∩ E3 occurs then
so does P1 and P2.

We first bound P(E1 ∩E2 ∩E3) below. The sum of the parameters of the star-clocks
in {M∗

(v∗,v)} is r, so P(E1) = e−1. We have tx0 = `m/(Kr4κ) ≥ m log n ≥ 2 log n0

by hypothesis so, by choice of n0, we may assume tx0 ≥ 25. The parameter of the
star-clock N∗(v∗,x0) is 1/(`m), so using (8.1) we have

P(E2) = 1− e−(tx0−1)/(`m) ≥ 1− e−24tx0/(25`m) ≥ 12tx0

25`m = 12
25Kr4κ

.

Note that E1 and E2 are independent of each other by the definition of the star-
clock process P ∗(Sk,`,m) and the fact that the intervals in the definitions of E1 and E2

are fixed: tx0 = `m/(Kr4κ) does not depend on the evolution of Ψ(X). So we have
P(E1∩E2) ≥ 12/(25eKr4κ). Finally, by Lemma 8.25 together with the fact that κ ≤ n,
it follows that

P(E1 ∩ E2 ∩ E3) ≥ P(E1 ∩ E2)− P(E3) ≥ 12
25eKr4κ

− 1
n2 ≥

1
6Kr4κ

. (8.7)

We next show that E1 and E3 together imply that P1 occurs. If v∗ does not spawn
a mutant before time tmax then P1 occurs, so suppose instead that v∗ spawns a mutant
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for the first time at some time tsp ≤ tmax. ( The “s” subscript in tsp stands for “spawn”.)
We must show that σ(tsp) ≥ b`/(2r)c+ 1. This will ensure that P1 occurs since σ(t) is
monotonically increasing.

Since v∗ spawns no mutants before time tsp, we have Xt ⊆ {x0, v1, . . . , vk, v
∗} for

all t < tsp, and so (recalling Definition 8.11)

im(X, v∗, tsp) ≤
∑
i≥1,
T im<tsp

Yi. (8.8)

Since E3 occurs, we have ∑
1≤i≤b`/(2r)c,

T im<tsp

Yi <
1
r
. (8.9)

However, since E1 occurs and v∗ spawns a mutant at tsp, we have im(X, v∗, tsp) ≥ 1/r.
Therefore, by (8.8) and (8.9),

∑
i≥1,
T im<tsp

Yi >
∑

1≤i≤b`/(2r)c,
T im<tsp

Yi.

Hence T b`/(2r)c+1
m < tsp. Thus, σ(tsp) ≥ b`/(2r)c+ 1, and P1 occurs.

Finally, we show that P1, E2 and E3 together imply that P2 occurs. Suppose σ(tx0) ≤
b`/(2r)c. We have tx0 ≤ `m ≤ tmax, so by P1, v∗ spawns no mutants in [0, tx0 ]. Hence
as in (8.8), we have

im(X, v∗, tx0) ≤
∑
i≥1,

T im<tx0

Yi =
∑
i≥1,

T im≤tx0

Yi.

Since σ(tx0) ≤ b`/(2r)c, it follows by E3 that im(X, v∗, tx0) < 1/r and therefore
in(X, v∗, tx0) ≥ tx0 − 1/r > tx0 − 1. Since E2 occurs, it follows that v∗ spawns a
non-mutant onto x0 at some time t ≤ tx0 . Since v∗ spawns no mutants in [0, tx0 ], x0

cannot become a mutant in (t, tx0 ], so x0 /∈ Xtx0
and P2 occurs.

Thus E1∩E2∩E3 implies that P1 and P2 occur, and so the result follows from (8.7).

Lower bounds for the probabilities that properties P3–P5 hold follow from Chernoff
bounds without too much difficulty.

Lemma 8.27. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 2 and n ≥ n0. Let R ∈ {R1, . . . , R`}
and let v1 . . . vk be the path associated with R. Let x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then P(P3) ≥ 1− 1/n.

Proof. Let n0 be an integer which is sufficiently large with respect to r. Fix i ∈ Z≥0

— we will bound the probability that v1 . . . vk clears within Ii (as in Definition 8.22).
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Let v0 ∈ R \ {x0} be arbitrary. For all h ∈ Z≥0, let

T1,h = min{t ≥ iκ+ h | t = iκ+ h+ 1/2 or N(v0,v1) triggers at t}

T2,h = min{t > T1,h | t = iκ+ h+ 1 or (M(x0,v1) does not trigger in [T1,h, t)

and N(v1,v2) triggers at t)}.

Let Eh be the event that T1,h < iκ+ h+ 1/2 and T2,h < iκ+ h+ 1.

The probability that the clock N(v0,v1) triggers in [iκ+h, iκ+h+1/2) is 1−e−1/2. For
any t1 ∈ [iκ+h, iκ+h+1/2) the probability that there is a t2 ∈ (t1, iκ+h+1) such that
N(v1,v2) triggers at t2, andM(x0,v1) does not trigger in [t1, t2] is (1−e−(r+1)(iκ+h+1−t1))/(r+
1). To see this, note that the 1−e−(r+1)(iκ+h+1−t1) factor corresponds to the probability
that eitherN(v1,v2) orM(x0,v1) triggers in the relevant interval (together, they correspond
to a Poisson process with rate r+1). The 1/(r+1) factor corresponds to the probability
that it is actually N(v1,v2) rather than M(x0,v1) that triggers first. Since the relevant
interval has length at least 1/2, the product of these two factors is at least (1 −
e−(r+1)/2)/(r + 1). So

P(Eh)≥
(
1−e−1/2

)(
1−e−(r+1)/2

)
/
(
r+1

)
≥(1−e−1/2)(1−e−1)/(r+1)≥ 1

5(r + 1)≥
1

10r .

Moreover, the events {Eh | h ∈ Z≥0} are mutually independent, as they depend
only on the behaviour of clocks in C(Sk,`,m) in fixed disjoint intervals. Thus

P
(
Eh holds for some 0 ≤ h ≤ (Kr4 log n)/3

)
≥ 1−

(
1− 1

10r

)b(Kr4 logn)/3c+1

≥ 1−
(

1− 1
10r

)(Kr4 logn)/3

≥ 1− e−(Kr3 logn)/30

≥ 1− e−2 logn = 1− 1
n2 . (8.10)

Now, for all integers j with 3 ≤ j ≤ k + 1, define

Tj =


min{t > iκ+ κ/2 | N(v2,v3) triggers at t} if j = 3,

min{t > Tj−1 | N(vj−1,vj) triggers at t} if 4 ≤ j ≤ k,

min{t > Tk | N(vk,v∗) triggers at t} if j = k + 1.

Note that if Tk+1 < (i + 1)κ, then T3, . . . , Tk+1 ∈ Ii. By memorylessness and inde-
pendence of distinct clocks in C(Sk,`,m), the random variables T3 − (iκ + κ/2), T4 −
T3, . . . , Tk+1−Tk are k−1 i.i.d. exponential variables with rate 1, and Tk+1−(iκ+κ/2)
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is their sum. Corollary 8.5 applies because κ/2 ≥ 3(k − 1)/2, so

P
(
Tk+1 < (i+ 1)κ

)
= P

(
Tk+1 − (iκ+ κ/2) < κ/2

)
≥ 1− e−κ/32 ≥ 1− e−(Kr4 logn)/32 ≥ 1− 1

n2 . (8.11)

Suppose Eh holds for some 0 ≤ h ≤ (Kr4 log n)/3. Note that T2,h ≤ iκ + κ/2.
Suppose further that Tk+1 < (i+ 1)κ. Then setting t1 = T1,h, t2 = T2,h and tj = Tj for
all j ∈ {3, . . . , k+1}, we see that t1, . . . , tk+1 satisfy the requirements of Definition 8.22
and so v1 . . . vk clears within Ii. It therefore follows by (8.10), (8.11), and a union bound
that

P(v1 . . . vk clears within Ii) ≥ 1− 2
n2 .

Hence by a union bound over all integers i with 0 ≤ i ≤ tx0 and by tx0 ≤ n/4 it follows
that

P(P3) ≥ 1− 2tx0 ·
2
n2 ≥ 1− n

2 ·
2
n2 ≥ 1− 1

n
.

Lemma 8.28. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose n ≥ n0. Fix x0 ∈ R1 ∪ · · · ∪ R`. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. With probability at least 1− 1/n2, for all integers
i with 0 ≤ i ≤ tx0, every clock in C(Sk,`,m) triggers at most b2rκc times in Ii.

Proof. Let n0 be an integer which is sufficiently large with respect to r. Fix a given clock
C ∈ C(Sk,`,m), fix i ∈ Z≥0 with i ≤ tx0 , and write a ≤ r for the rate of C(Sk,`,m). The
number of times that C triggers in Ii follows the Poisson distribution with parameter
aκ. Since the number of triggers is an integer and 2rκ ≥ 2aκ, by Corollary 8.4 we have

P(C triggers at most b2rκc times in Ii) = P(C triggers at most 2rκ times in Ii)

≥ P(C triggers at most 2aκ times in Ii)

≥ 1− e−aκ/3 ≥ 1− e−(Kr4 logn)/3.

There are at most 2n2 clocks in C(Sk,`,m) and at most tx0 + 1 ≤ 2n2 choices of i. Thus
by a union bound, with probability at least 1 − 4n4e−Kr

4 logn/3 ≥ 1 − 1/n2, no single
clock in C(Sk,`,m) triggers more than b2rκc times in any interval Ii with 0 ≤ i ≤ tx0 .

The following corollary follows immediately from Lemma 8.28. Of course, the prob-
ability bound in the corollary can be strengthened to 1− 1/n2, but we state what we
will later use.

Corollary 8.29. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose n ≥ n0. Fix x0 ∈ R1 ∪ · · · ∪ R`. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then P(P4) ≥ 1− 1/n.

The following lemma gives a lower bound on the probability that P5 occurs. In
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this lemma, we require that m ≥ 6r2κ, rather than m ≥ 2, which we have so far been
assuming.

Lemma 8.30. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Let R ∈ {R1, . . . , R`}
and let v1 . . . vk be the path associated with R. Fix x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then P(P5) ≥ 1− 1/n.

Proof. Let n0 be an integer which is sufficiently large with respect to r. Fix i ∈ Z≥0.
For all t ∈ Ii, define the following events E1

t and E2
i .

E1
t : min{t′ > t | for some v 6= x0, N(v,v1) triggers at t′}

< min{t′ > t |M(v1,v2) triggers at t′}.

E2
i : M(x0,v1) triggers at most b2rκc times in Ii.

Thus E1
t occurs if and only if v1 clears before spawning a mutant within (t,∞). Let

Ti,0 = iκ, and let Ti,h be the h’th time in Ii at which the clock M(x0,v1) triggers, or
(i+ 1)κ if no such time exists. Note that if ⋂b2rκch=0 E1

Ti,h
∩E2

i occurs, then v2 is protected
in Ii.

Now consider any t ∈ Ii and let ft be a possible value of Ft(X). By memorylessness,
we have

P
(
E1
t | Ft(X) = ft

)
= m− 1
m− 1 + r

= 1− r

m− 1 + r
≥ 1− r

m
.

In particular, since the event Ti,h = t is determined by Ft(X), it follows by a union
bound that

P

b2rκc⋂
h=0
E1
Ti,h

 ≥ 1− (b2rκc+ 1)r
m

≥ 1− 3r2κ

m
.

By Lemma 8.28 we have P(E2
i ) ≥ 1− 1/n2, so it follows by a union bound that

P(v2 is protected in Ii) ≥ P

b2rκc⋂
h=0
E1
Ti,h
∩ E2

i

 ≥ 1− 3r2κ

m
− 1
n2 . (8.12)

Since I0, I1, . . . are disjoint intervals, the events that v2 is or is not protected in
these intervals are independent by memorylessness. Thus the number of intervals Ii
with 0 ≤ i ≤ tx0/κ in which v2 is not protected is stochastically dominated above
by a binomial distribution consisting of btx0/κc+ 1 Bernoulli trials, each with success
probability 3r2κ/m+ 1/n2. This distribution has expectation

(⌊
tx0

κ

⌋
+ 1

)(3r2κ

m
+ 1
n2

)
≤ 4r2tx0

m
= 4r2`

Kr4κ
,

so by Lemma 8.6 we have

P(P5) ≤ e−(1/6)8r2tx0/m = e−(4/3)r2`/(Kr4κ) ≤ e−(4/3)r2 logn ≤ 1
n
.
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Here the penultimate inequality follows since ` ≥ Kr4κ log n by hypothesis. The result
therefore follows.

Now that we have proved lower bounds on the probability that each of P1–P5 occur,
Lemma 8.23 follows easily.

Lemma 8.23. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Let R ∈ {R1, . . . , R`},
and let v1 . . . vk be the path associated with R. Fix x0 ∈ R. Let X be the Moran process
with G(X) = Sk,`,m and X0 = {x0}. Then, with probability at least 1/(7Kr4κ), the
following events occur simultaneously.

P1: ∀t ≤ tmax, σ(t) ≥ b`/(2r)c+ 1 or v∗ does not spawn a mutant at time t.

P2: σ(tx0) ≥ b`/(2r)c+ 1 or x0 /∈ Xtx0
.

P3: For all integers i with 0 ≤ i ≤ tx0, v1 . . . vk clears within Ii.

P4: For all integers i with 0 ≤ i ≤ tx0, the clock M(vk,v∗) triggers at most b2rκc times
within Ii.

P5: For all but at most 8r2tx0/m integers i with 0 ≤ i ≤ tx0/κ, v2 is protected in Ii.

Proof. P(P1∩· · ·∩P5) ≥ P(P1∩P2)−P(P3)−P(P4)−P(P5). Let n0 be an integer which
is sufficiently large with respect to r. Then we bound each term on the right-hand side
by applying (in order) Lemma 8.26, Lemma 8.27, Corollary 8.29 and Lemma 8.30 to
obtain

P(P1 ∩ · · · ∩ P5) ≥ 1
6Kr4κ

− 3
n
≥ 1

7Kr4κ
,

as required. The final inequality follows since, by hypothesis, κ ≤ `/(Kr4 log n) ≤
n/ log n.

We are now at last in a position to prove Lemma 8.17, which we will then use to
prove Theorem 8.13.

Lemma 8.17. Consider any r > 1. There is an n0, depending on r, such that the
following holds. Suppose that ` ≥ Kr4κ log n, m ≥ 6r2κ and n ≥ n0. Fix x0 ∈
R1 ∪ · · · ∪ R`. Let X be the Moran process with G(X) = Sk,`,m and X0 = {x0}. Then
the extinction probability of X is at least 1/(7Kr4κ).

Proof. Let n0 be an integer which is sufficiently large with respect to r. Let R be
a reservoir in {R1, . . . , R`} and let v1 . . . vk be the path associated with R. Suppose
x0 ∈ R. By Lemma 8.23, it suffices to assume that P1 – P5 occur and to prove that X
goes extinct.

Recall the definition of σ(t) from Definition 8.19. Note that σ(0) = 0 and σ(t) is
monotonically increasing in t. We will first bound σ(tx0) from above (assuming that
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P1–P5 occur). Consider an interval Ii with 0 ≤ i ≤ tx0 (technically, we need only
consider 0 ≤ i ≤ tx0/κ, but the extra generality does no harm and we will later need to
consider slightly larger i). Note that Ii ⊆ [0, tmax] since (i+ 1)κ ≤ 2tx0κ = tmax/(Kr4).
Suppose that σ(iκ) ≤ b`/(2r)c − b2rκc. We will derive an upper bound on σ((i+ 1)κ)
by splitting into cases.

Case 1: i > 0 and v2 is protected in Ii−1 and Ii. First note that since P1

occurs and σ(iκ) ≤ b`/(2r)c, v∗ does not spawn a mutant over the course of [0, iκ] and
so

Xt ⊆ {x0, v1, . . . , vk, v
∗} for all t ∈ [0, iκ].

Now, suppose for a contradiction that v2 becomes a mutant at some time t̂2 ∈ Ii−1.
Then v1 must have become a mutant beforehand. Let t̂1 be the latest time in [0, t̂2] at
which this occurs, and note that M(x0,v1) must have triggered at time t̂1. Since v2 is
protected in Ii−1, if it were the case that t̂1 ∈ Ii−1, then v1 would clear before spawning
within (t̂1, iκ] and so v1 would die in (t̂1, t̂2). This is impossible since v1 spawns a
mutant at time t̂2, and v1 does not become a mutant in (t̂1, t̂2] by the definition of t̂1.
We therefore have t̂1 /∈ Ii−1, so t̂1 ≤ (i − 1)κ. Since v2 is protected in Ii−1, v1 clears
before spawning a mutant within Ii−1, so v1 dies in ((i−1)κ, t̂2) — again contradicting
the fact that v1 spawns a mutant at time t̂2. Thus we can conclude that v2 does not
become a mutant in Ii−1.

Since P3 occurs, v1 . . . vk clears within Ii−1. Let v0 ∈ R\{x0} and t1, . . . , tk+1 ∈ Ii−1

be as in Definition 8.22. Since N(v0,v1) triggers at time t1, it follows that v1 /∈ Xt1 .
Since M(x0,v1) does not trigger in [t1, t2], v1 does not become a mutant in [t1, t2] and
so v1 /∈ Xt2 . Since N(v1,v2) triggers at time t2, it follows that v2 /∈ Xt2 . We have
already seen that v2 does not become a mutant in Ii−1, so it follows that v2 /∈ Xt for
all t ∈ [t2, iκ].

Now, v3 /∈ Xt3 since N(v2,v3) triggers at time t3 ∈ [t2, iκ]. Since v2 is a non-mutant
throughout [t2, iκ], it follows that v3 /∈ Xt for all t ∈ [t3, iκ]. Repeating the argument
for t4, . . . , tk+1, we see that v2, . . . , vk, v

∗ /∈ Xiκ and hence Xiκ ⊆ {x0, v1}.

Since Xiκ ⊆ {x0, v1}, no mutants can be spawned in Ii until v2 next becomes a
mutant. However, by the same argument as above, the fact that v2 is protected in Ii
implies that v2 does not become a mutant in Ii. Hence Xt ⊆ {x0, v1} for all t ∈ Ii, and
in particular vk does not spawn a mutant onto v∗ in Ii. Thus σ((i+ 1)κ) = σ(iκ) This
gives the desired upper bound on σ((i+ 1)κ).

Case 2: Case 1 does not hold. Suppose for a contradiction that σ((i + 1)κ) ≥
σ(iκ) + b2rκc + 1. Then vk spawns a mutant onto v∗ at least b2rκc + 1 times in Ii,
contradicting P4. Thus σ((i+ 1)κ) ≤ σ(iκ) + b2rκc. Again, we have the desired upper
bound on σ((i+ 1)κ).

Combining Cases 1 and 2, we have proved that whenever 0 ≤ i ≤ tx0 and σ(iκ) ≤
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b`/(2r)c − b2rκc,

σ((i+ 1)κ) = σ(iκ), if i > 0 and v2 is protected in Ii−1 and Ii, and

σ((i+ 1)κ) ≤ σ(iκ) + b2rκc, otherwise.
(8.13)

Since P5 occurs and ` ≥ Kr4κ log n, the number of intervals Ii such that 0 ≤ i ≤ btx0/κc
and Case 1 does not hold is at most

1 + 2
∣∣∣∣{i ∈ Z≥0

∣∣∣∣ i ≤ ⌊tx0

κ

⌋
, v2 is not protected in Ii

}∣∣∣∣ ≤ 1 + 2 · 8r2tx0

m

= 1 + 16r2`

Kr4κ
≤ 17r2`

Kr4κ
.

Moreover, again using the fact that ` ≥ Kr4κ log n,

b2rκc · 17r2`

Kr4κ
≤ 34r3`

Kr4 = 34`
Kr
≤
⌊
`

2r

⌋
− b2rκc.

Since σ(0) = 0, it therefore follows by repeated application of (8.13) that

σ(tx0) ≤ σ
(⌊
tx0

κ
+ 1

⌋
κ
)
≤
⌊
`

2r

⌋
− b2rκc. (8.14)

Now consider the behaviour of the process in the interval (tx0 , btx0/κ+ 2cκ]. From
(8.14), we have that σ(btx0/κ + 1cκ) ≤ b`/(2r)c − b2rκc, so by (8.13) it follows that
σ(btx0/κ+ 2cκ) ≤ b`/(2r)c and so, since P1 occurs, v∗ does not spawn a mutant in the
interval [0, btx0/κ+ 2cκ].

Since P2 occurs and (8.14) holds, we have x0 /∈ Xtx0
, so for all t ∈ (tx0 , btx0/κ+2cκ],

we have Xt ⊆ {v1, . . . , vk, v
∗}. Since P3 occurs, v1 . . . vk clears within Ibtx0/κ+1c. Let

v0 ∈ R\{x0} and the sequence of times t1, . . . , tk+1 ∈ Ibtx0/κ+1c be as in Definition 8.22.
Then for all i ∈ [k], N(vi−1,vi) triggers at time ti and so vi /∈ Xt for all t ∈ [ti, btx0/κ+2c]κ.
Likewise, v∗ /∈ Xt for all t ∈ [tk+1, btx0/κ + 2c]κ. In particular, Xbtx0/κ+2cκ = ∅, so X
goes extinct and the result holds.

8.4.4 Proving the main theorem (Theorem 8.13)

We now have everything we need to prove Theorem 8.13, which follows relatively easily
from Lemmas 8.14, 8.15 and 8.17.

Theorem 8.13. Let r > 1. Then there exists a constant cr > 0 (depending on r) such
that the following holds for all positive integers k, ` and m. Choose x0 uniformly at
random from V (Sk,`,m). Let X be the Moran process (with fitness r) with G(X) = Sk,`,m
and X0 = {x0}. Then the probability that X goes extinct is at least 1/(cr(n log n)1/3).

Proof. Fix r > 1 as in the statement of the theorem. Recall from Definitions 8.16
and 8.19 that K = 70 and κ = max{3k,Kr4 log n}. Let n0 be the smallest integer such
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that, for n ≥ n0, Lemma 8.17 and Lemma 8.26 applies and also

(n log n)1/3 ≥ n1/3 ≥ max{18r2, 6Kr6 log n,Kr4(log n)2} . (8.15)

We split into cases depending on the values of k, `, m and n. We show that in each
case, the statement of the theorem holds, provided cr ≥ max{2rn0, 156r6K}.

Case 1: n < n0. We show that with probability at least 1/2rn0, x0 dies before
spawning a single mutant. Indeed, at the start of the process x0 spawns a mutant with
rate r, and every choice of x0 ∈ V (Sk,`,m) has an in-neighbour so x0 dies with rate at
least 1/n. Thus X goes extinct with probability at least

1
n

1
n

+ r
≥ 1

2rn ≥
1

2rn0
,

so the result follows since cr ≥ 2rn0.

Case 2: n ≥ n0, m < k(n log n)1/3. By Lemma 8.14, X goes extinct with
probability at least

k

2r(m+ k) ≥
k

2r(k(n log n)1/3 + k) ≥
1

4r(n log n)1/3 ,

where the final inequality holds since (n log n)1/3 ≥ 1. The result follows since cr ≥ 4r.

Case 3: n ≥ n0, m ≥ k(n log n)1/3 and ` < 3Kr4(n log n)1/3. Note that

P(x0 ∈ R1 ∪ · · · ∪R`) = `m

`(m+ k) + 1 ≥
m

m+ k + 1 ≥
1
2 , (8.16)

where the final inequality is valid since m ≥ k(n log n)1/3 ≥ 2k. We will therefore
condition on x0 ∈ R1 ∪ · · · ∪R`. Moreover, we have m ≥ k(n log n)1/3 ≥ 12r. Thus by
Lemma 8.15 and (8.16), X goes extinct with probability at least

1
2 ·

1
26r2`

≥ 1
156r2Kr4(n log n)1/3 ,

so the statement holds since cr ≥ 156Kr6.

Case 4: n ≥ n0, m ≥ k(n log n)1/3 and ` ≥ 3Kr4(n log n)1/3. Note that

m ≥ k(n log n)1/3 ≥ 6r2 max{3k,Kr4 log n} = 6r2κ.

We will also show that ` ≥ Kr4κ log n, in order to apply Lemma 8.17. Since ` ≥
3Kr4(n log n)1/3 and n = `(m + k) + 1 ≥ `m, we have m ≤ n/` ≤ (n2/ log n)1/3. It is
also immediate from (8.15) and the hypothesis on ` that

` ≥ K2r8(log n)2. (8.17)
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Therefore,

3k ≤ 3m
(n log n)1/3 ≤

3n1/3

(log n)2/3 = 3Kr4(n log n)1/3

Kr4 log n ≤ `

Kr4 log n. (8.18)

It therefore follows from (8.17), (8.18) and the definition of κ (Definition 8.16) that
` ≥ Kr4κ log n, and so we may apply Lemma 8.17.

As in Case 3, (8.16) holds. Thus by (8.16) and Lemma 8.17, X goes extinct with
probability at least 1/(14Kr4κ). By (8.18) we have 3k ≤ 3n1/3, and so

1
14Kr4κ

= 1
14Kr4 max{3k,Kr4 log n} ≥

1
14Kr4 max{3n1/3, Kr4 log n} = 1

42Kr4n1/3 ,

and the result follows since cr ≥ 156Kr6.
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Chapter 9

Future directions

Recall the conjecture of Faben and Jerrum.

Conjecture 1.7 (Faben and Jerrum). Let H be a graph. If its involution-free reduc-
tion H∗ has at most one vertex, then #2HomsToH is in P; otherwise, #2HomsToH
is #2 P-complete.

Our results show that this conjecture is true when H is a cactus graph or a square-
free graph. To prove this conjecture for all graphs H, one has to show that for all
involution-free graphs that contain a 4-cycle and contain at least two cycles that share
at least one edge, #2HomsToH is # P-complete.

We do not believe that the restriction to square-free graphs is fundamental, since
our results on pinning apply to all involution-free graphs for counting modulo 2 (Sec-
tion 2.4) and neither our definition of hardness gadgets (Definition 5.3) nor our proof
that the existence of a (0, 2)-gadget for H implies that #2HomsToH is #2 P-complete
(Corollary 4.5) requires H to be square-free. However, all the actual (0, 2)-gadgets that
we find for the target graphs H do rely on the absence of 4-cycles, as discussed in Sec-
tion 5.3.2, and removing this restriction seems technically challenging. We note that
dealing with 4-cycles also caused significant difficulties in cactus graphs (Chapter 4).

It is interesting to see whether a dichotomy can be proven for #pHomsToH for all
primes p. Theorem 1.10 shows that for all asymmetric trees the polynomial-time cases
are the ones described in Corollary 2.9. By adapting the techniques presented in Chap-
ters 4 and 5 for locating gadgets in graphs we could use Corollary 3.12 to show that
the dichotomy of #pHomsToH holds for other families of asymmetric graphs besides
trees. Our pinning approach though requires the “orbit compatibility” property (Defi-
nition 2.22), which can only be guaranteed when either p = 2 or H is an asymmetric
graph. To overcome this obstacle a more powerful pinning technique is needed. When
considering the problem #kHomsToH for general integers k and not just primes, the
polynomial-time algorithm does not hold. Furthermore, as we show in Section 3.6,
techniques available to the more general framework of the constraint satisfaction prob-
lem, that reduce the complexity of counting modulo an integer to counting modulo its
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prime factors, do not apply to graph homomorphism problems.
Another important open problem in the area of modular counting is extending

the dichotomy of Guo et al. [49] for #kCSP to include functions of arbitrary domain
size. A dichotomy for #kCSP of arbitrary domain size would imply a dichotomy for
#kHomsToH.

Further interesting question in the area is to consider the problem of counting (or
counting modulo an integer) graph homomorphisms from restricted inputs, such as
planar graphs. This would be of particular interest in the modular counting setting,
as the problems that have different tractability depending on the value of the modulus
are, in their majority, planar problems —like Valiant’s famous restricted version of
3-SAT [72].

Another way of restricting the input would be to introduce lists, as we did with
matrix partitions. The input for counting list homomorphisms modulo an integer is a
graph G and a list function L from the vertices of G to sets of vertices of the target
graph H and the output is the number (modulo an integer) of homomorphisms from
G to H that respect L. Lists could potentially break symmetries in modular counting,
in the following way. Assume we are interested in counting (modulo 2) the number of
homomorphisms of a graph G to a graph H that respect a list function L. Further
assume that H has an involution exchanging v ∈ V (H) with u ∈ V (H). Unless
L(v) = L(u), we cannot reduce H by involutions by removing u and v from H, which
is what we did in the unlisted version of the problem.

For counting matrix partitions of graphs, the unlisted version of the problem for large
matrices (of size at least 5×5) remains open. The lists enable us to pin for free and that
is what allowed us to prove hardness for the listed version of problem. Dyer, Goldberg
and Richerby [26] conjectured that the dichotomy criterion we proved for the listed
problem is the same for the unlisted problem. Studying the listed or unlisted version
of the problem in the modular counting setting is also interesting. For the unlisted
version, one could take advantage of the cancellations and develop a pinning approach
that could give an interesting dichotomy theorem.
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Appendix A

The program used in the proof of
Lemma 6.18

In this appendix we have included the source code and the output file of the program
we used for proving Lemma 6.18. Lemma 6.18 identifies values of the parameters γ, λ
and p, where p < 100, for which #pZγ,λ is #p P-hard.

The program, written in Python, cycles over all values of the parameters γ, λ, and p
for p < 100. For each parameter value the program then searches for a suitable gadget,
by computing and comparing Zτ(J),0

γ,λ (G(J), x) and Zτ(J),1
γ,λ (G(J), x) for a set of partially

pinned graphs with distinguished vertices as given in the proof of Lemma 6.18.
The only value of the parameters it fails to find a gadget is p = 41, γ = 18 and

λ = 6. In fact Lemma 6.18 can be strengthened to include the rest of the values of the
parameters for p = 41.

Source Code
#! / p a t h / t o / i n t e r p r e t e r

#The f o l l o w i n g program s e a r c h e s f o r p o s s i b l e g a d g e t s t h a t w i l l g i v e h a r d n e s s f o r t h e prob lem
#o f computing t h e p a r t i t i o n f u n c t i o n o f a two−s p i n system w i t h e x t e r n a l f i e l d
#on a m u l t i g r a p h modulo a prime p .
import math

#Compute n c h o o s e r .
def nCr (n , r ) :

f = math . f a c t o r i a l
i f n<r : g=0
e l s e : g=f (n) / f ( r ) / f (n−r )

return g

#Compute t h e p a r t i t i o n f u n c t i o n o f t h e ( k+1)− c l i q u e when t h e d i s t i n g u i s h e d v e r t e x i s mapped t o 0 .
#g c o r r e s p o n d s t o \gamma and l t o \ lambda .
#The l f a c t o r i s t a k e n away from t h e 0− p a r t i t i o n and w i l l be added l a t e r .
def z_out (k , g , l ) :

return sum(nCr (k , i )∗pow( l , i )∗ (pow( g , nCr (k−i , 2 ) ) ) for i in range ( k+1))

#Compute t h e p a r t i t i o n f u n c t i o n o f t h e ( k+1)− c l i q u e when t h e d i s t i n g u i s h e d v e r t e x i s mapped t o 1 .
#g c o r r e s p o n d s t o \gamma and l t o \ lambda .
def z_in (k , g , l ) :

return sum(nCr (k , i )∗ (pow( l , i ) )∗ (pow( g , nCr (k−i , 2 ) ) ) ∗ (pow( g , ( k−i ) ) ) for i in range ( k+1))

#A s i m p l e p r i m a l i t y t e s t i n g .
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def is_prime (n ) :
i f n % 2 == 0 and n > 2 :

return False
return a l l (n % i for i in range (3 , int (math . sq r t (n ) ) + 1 , 2 ) )

#Make t h e l i s t c o n t a i n i n g t h e primes .
primes =[ ]

for i in range ( 4 , 1 00 ) : #The program s t a r t s w i t h p=5 as f o r p=3 we a l r e a d y know t h e c o m p l e x i t y .
i f is_prime ( i ) : primes . append ( i )

print primes

#Check i f a l i s t o f l i s t s i s a l l 1 .
#This w i l l be used t o c h e c k i f we found a l l g a d g e t s f o r a prime p .
def a l l o n e s ( c ) :

f l a g=1
for i in range ( ( len ( c ) ) ) :

for j in range ( len ( c [ i ] ) ) :
i f c [ i ] [ j ] !=1 : f l a g=0

return f l a g

#Find t h e non−z e r o e l e m e n t s o f a m a t r i x and r e t u r n them i n a l i s t .
#This i s used t o i d e n t i f y t h e v a l u e s g , l , p f o r which we haven ’ t found a g a d g e t y e t .
def unsolved ( c ) :

u=[ ]
f l a g=1
for i in range ( ( len ( c ) ) ) :

for j in range ( len ( c [ i ] ) ) :
i f c [ i ] [ j ] !=1 : u . append ( [ i +2, j +2])#Add 2 as g , l s t a r t from 2 .

return u

#The f i r s t g a d g e t we t r y i s t h e pinned−v e r t e x−p a r a l l e l −e d g e s g a d g e t ,
#t o g e t h e r w i t h a c l i q u e .
#Compute z_in and z_out and s t o r e i t i n a l i s t t o s p e e d up c o m p u t a t i o n s .
#k [ 1 ] i s t h e s i z e o f t h e c l i q u e .
def precomp (k , g , l ) :

z =[0 ,0 ]
z [0 ]= l ∗z_out (k [ 1 ] , g , l )
z [1 ]= z_in (k [ 1 ] , g , l )
return z

#This f u n c t i o n c h e c k s w e t h e r t h e above g a d g e t works .
#k [ 0 ] i s t h e number o f e d g e s i n c i d e n t t o t h e pinned v e r t e x .
#We c h e c k i f t h e 0− p a r t i t i o n i s non−z e r o and e q u i v a l e n t t o t h e 1− p a r t i t i o n modulo p .
def c l i q u e (k , z , g , p ) :

i f z [0]%p!=0 and z [0]%p==(pow( g , k [ 0 ] ) ∗ z [1 ] )%p :
return 1

e l s e :
return 0

f1=open( ’ output_gadgets1 . txt ’ , ’w ’ ) #Open t h e o u t p u t f i l e .

u=[ ] #L i s t c o n t a i n i n g t h e u n s o l v e d v a l u e s o f k , g , l .

#In t h i s r o u t i n e we c h e c k f o r g a d g e t s .
#We w i l l i n c r e m e n t t h e number o f p a r a l l e l e d g e s k [ 0 ] and t h e s i z e o f t h e c l i q u e k [ 1 ]
#In n e s t e d l o o p s .

f 1 . wr i t e ( ’ Search ␣ f o r ␣ gadgets ␣by␣ i n c r e a s i n g ␣ the ␣ s i z e ␣ o f ␣one␣ c l i q u e . ’ )
f 1 . wr i t e ( ’ \n ’ )
for p in primes :

c =[ [0 for i in range (2 , p−1)] for j in range (2 , p ) ] #c [ g ] [ l ]=1 when we have a g a d g e t .
for g in range (2 , p−1): #Loop o v e r v a l u e s o f g . E x c l u d e d g =0 ,1 ,−1.

for l in range (2 , p ) : #Loop o v e r v a l u e s o f l . E x c l u d e d l =0 ,1.
f l a g=0
k=[0 for i in range ( 2 ) ]
for k [ 1 ] in range ( 1 0 0 ) : #Loop o v e r t h e c l i q u e s i z e .

z=precomp (k , g , l )
for k [ 0 ] in range (p ) : #Loop o v e r t h e number o f e d g e s .

f l a g=c l i q u e (k , z , g , p)
i f f l a g==1: break

i f f l a g==1:
c [ l −2] [ g−2]=1 #I n d i c a t e i n c t h a t we have a g a d g e t .
break
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i f f l a g==0: u . append ( [ p , [ g , l ] ] ) #Add t h e u n s o l v e d p a r a m e t e r s t o u .
so lved=a l l o n e s ( c ) #Check i f we c o v e r e d a l l g , l f o r t h i s prime .
print ( ’ For ’ ,p , ’ covered ␣ a l l ␣ i s ␣ ’ , so lved==1)
f1 . wr i t e ( ’ For␣p=’ )
p_txt=str (p)
f1 . wr i t e ( p_txt )
f1 . wr i t e ( ’ ␣ covered ␣ a l l ␣g , l ␣ i s ␣ ’ ) #Write t o t h e f i l e i f g a d g e t s have been found f o r a l l g , l .
so lv_txt=str ( so lved==1)
f1 . wr i t e ( so lv_txt )
f1 . wr i t e ( ’ \n ’ )

print u #The l i s t u c o n t a i n s t h e v a l u e s [ p , [ g , l ] ] f o r which he have not found g a d g e t s y e t .
b=str (u)
f1 . wr i t e ( ’ \n ’ )
f 1 . wr i t e ( ’ Unresolved ␣ va lues ␣ o f ␣ [ p , [ g , l ] ] ␣ a f t e r ␣ f i r s t ␣ search : ’ )
f 1 . wr i t e ( ’ \n ’ )
f 1 . wr i t e (b)
f1 . wr i t e ( ’ \n ’ )

# We w i l l now s e a r c h f o r g a d g e t s f o r t h e e l e m e n t s o f u .

#Create t h e m a t r i x c o n t a i n i n g z_in and z_out f o r e v e r y g a d g e t we t r y .
#The v e c t o r x c o n t a i n s t h e number o f each g a d g e t we combine .
#The g a d g e t s are a pinned v e r t e x w i t h x [ 0 ] p a r a l l e l edges ,
#a 2−path , a 3−p a t h and c l i q u e s o f i n c r e a s i n g s i z e .
#In x , t h e number o f P_2 and P_3 we i n c l u d e come b e f o r e t h e c l i q u e s .
#i n c o n t r a s t t o as i t i s w r i t t e n i n t h e p r o o f o f t h e Lemma .
def precompute (x , g , l ) :

z =[ [0 for i in range ( len ( x ) ) ] for j in range ( 2 ) ]
z [ 0 ] [ 0 ]= l
z [ 1 ] [ 0 ]= g
z [ 0 ] [ 1 ]=pow( l ,2)+2∗ l+g #The 0 p a r t i t i o n o f a 2−p a t h / l .
z [ 1 ] [ 1 ]=pow( l ,2)+ l ∗g+l+pow( g , 2 ) #The 1 p a r t i t i o n o f a 2−p a t h .
z [ 0 ] [ 2 ]=pow( l ,3)+3∗pow( l ,2)+ 2∗ l ∗g+l+pow( g , 2 ) #The 0 p a r i t i o n o f a 3−p a t h / l .
z [ 1 ] [ 2 ]=pow( l ,3)+2∗pow( l ,2)+pow( l , 2 )∗ g+2∗ l ∗g+l ∗pow( g ,2)+pow( g , 3 )

#The 1 p a r i t i o n o f a 3−p a t h / l .
for j in range (3 , len ( x ) ) :

z [ 0 ] [ j ]=z_out ( j−2,g , l ) #The 0− p a r t i t i o n o f t h e c l i q u e .
z [ 1 ] [ j ]=z_in ( j−2,g , l ) #The 1− p a r t i t i o n o f t h e c l i q u e .

return z

#This f u n c t i o n c h e c k s w e t h e r t h e g a d g e t works .
#x i s t h e v e c t o r c o n t a i n i n g t h e c l i q u e s i z e s .
#Compute t h e 0− p a r t i t i o n and 1− p a r t i t i o n #a c c o d r i n g t o o b s e r v a t i o n 6 . 1 5 i n t e x t .
#Then c h e c k t h a t t h e 0− p a r t i t i o n i s non−z e r o and e q u i v a l e n t t o t h e 1− p a r t i t i o n modulo p .
def gadget (x , z , p ) :

w_out=z [ 0 ] [ 0 ]
w_in=pow( z [ 1 ] [ 0 ] , x [ 0 ] ) #The p a r t i t i o n o f t h e pinned v e r t e x p a r a l l e l −e d g e s g a d g e t .
for i in range (1 , len ( x ) ) :

w_out=w_out∗pow( z [ 0 ] [ i ] , x [ i ] )
w_in=w_in∗pow( z [ 1 ] [ i ] , x [ i ] )

i f w_out%p!=0 and w_in%p==w_out%p : #Check w e t h e r t h e g a d g e t works .
return 1

e l s e :
return 0

#C y c l e o v e r t h e p o s s i b l e v a l u e s o f k_i , where k_i i s t h e number o f c l i q u e s o f s i z e i .
#I n c r e a s e number o f t h e s m a l l e s t not maxed o u t s e t o f c l i q e s .
#The numbers k−i are s t o r e d i n a v e c t o r x .
#We o n l y c h e c k up t o p−1 c o p i e s o f each g a d g e t −−due t o modulo a r i t h m e t i c .
def i nc (x , p ) :

k=0
while x [ k]==p−1:

x [ k]=0
k=k+1

x [ k]=x [ k]+1
return x

f1 . wr i t e ( ’ \n ’ )
f 1 . wr i t e ( ’ Finding ␣ gadgets ␣ f o r ␣ the ␣ remaining ␣ va lues . ’ )
f 1 . wr i t e ( ’ \n ’ )

#Test a c o m b i n a t i o n o f p a t h s and c l i q u e s as c o n s t r u c t e d from precompute
#f o r p o s s i b l e g a d g e t s i n t h e remaining v a l u e s .
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w=[]#This i s t h e l i s t o f v a l u e s f o r which t h e n e x t s e a r c h f o r g a d g e t s f a i l s .

for i in range ( len (u ) ) : #Loop o v e r t h e e l e m e n t s o f u .
p=u [ i ] [ 0 ]
g=u [ i ] [ 1 ] [ 0 ]
l=u [ i ] [ 1 ] [ 1 ]
print (p , g , l )
x=[0 for j in range ( 5 ) ] #The i n i t i a l v e c t o r o f number o f g a d g e t s o f each t y p e .
y=[p−1 for j in range ( 5 ) ] #The end v e c t o r o f number o f g a d g e t s o f each t y p e .
z=precompute (x , g , l )
f l a g=0
while f l a g==0 and x!=y :

inc (x , p) #Increment t h e v e c t o r o f number o f g a d g e t s .
f l a g=gadget (x , z , p) #Check i f t h e g a d g e t works .
i f f l a g==1:

print x #Return t h e g a d g e t v e c t o r t h a t works .
a=str (u [ i ] )
b=str ( x )
f1 . wr i t e ( a )
f1 . wr i t e ( ’ ␣ gadget ␣ found␣with␣x=’ )
f1 . wr i t e (b)
f1 . wr i t e ( ’ \n ’ )

i f f l a g==0: w. append (u [ i ] ) #I f not s o l v e d add t h e v a l u e s [ p , [ g , l ] ] t o t h e l i s t w .

# Return t h e v a l u e s f o r which we don ’ t have a h a r d n e s s p r o o f .
print w

f1 . wr i t e ( ’ \n ’ )
w_txt=str (w)
f1 . wr i t e ( ’ Unresolved ␣ va lues ␣ o f ␣ [ p , [ g , l ] ] ␣ a f t e r ␣ f i n a l ␣ search : ’ )
f 1 . wr i t e ( ’ \n ’ )
f 1 . wr i t e (w_txt )
f1 . c l o s e ( )

Output File
Search f o r gadgets by i n c r e a s i n g the s i z e o f one c l i q u e .
For p=5 covered a l l g , l=True
For p=7 covered a l l g , l=True
For p=11 covered a l l g , l=True
For p=13 covered a l l g , l=True
For p=17 covered a l l g , l=True
For p=19 covered a l l g , l=True
For p=23 covered a l l g , l=True
For p=29 covered a l l g , l=True
For p=31 covered a l l g , l=False
For p=37 covered a l l g , l=True
For p=41 covered a l l g , l=False
For p=43 covered a l l g , l=False
For p=47 covered a l l g , l=True
For p=53 covered a l l g , l=True
For p=59 covered a l l g , l=True
For p=61 covered a l l g , l=False
For p=67 covered a l l g , l=False
For p=71 covered a l l g , l=False
For p=73 covered a l l g , l=False
For p=79 covered a l l g , l=False
For p=83 covered a l l g , l=True
For p=89 covered a l l g , l=False
For p=97 covered a l l g , l=False

F i r s t search unreso lved va lues o f [ p , [ g , l ] ] :
[ [ 3 1 , [ 5 , 1 3 ] ] , [ 3 1 , [ 5 , 1 7 ] ] , [ 3 1 , [ 5 , 2 3 ] ] , [ 3 1 , [ 2 5 , 3 ] ] , [ 3 1 , [ 2 5 , 2 3 ] ] , [ 4 1 , [ 1 8 , 6 ] ] ,
[ 4 3 , [ 6 , 2 ] ] , [ 4 3 , [ 3 6 , 4 ] ] , [ 4 3 , [ 3 6 , 9 ] ] , [ 4 3 , [ 3 6 , 1 1 ] ] , [ 4 3 , [ 3 6 , 1 2 ] ] , [ 4 3 , [ 3 6 , 1 5 ] ] ,
[ 4 3 , [ 3 6 , 2 3 ] ] , [ 4 3 , [ 3 6 , 2 4 ] ] , [ 6 1 , [ 1 3 , 3 1 ] ] , [ 6 1 , [ 1 3 , 3 7 ] ] , [ 6 1 , [ 1 3 , 5 0 ] ] , [ 6 1 , [ 1 3 , 5 1 ] ] ,
[ 6 1 , [ 4 7 , 4 0 ] ] , [ 6 1 , [ 4 7 , 5 1 ] ] , [ 6 7 , [ 2 9 , 2 ] ] , [ 6 7 , [ 29 , 7 ] ] , [ 6 7 , [ 2 9 , 3 4 ] ] , [ 6 7 , [ 2 9 , 3 9 ] ] ,
[ 6 7 , [ 2 9 , 4 3 ] ] , [ 6 7 , [ 2 9 , 4 8 ] ] , [ 6 7 , [ 2 9 , 5 2 ] ] , [ 6 7 , [ 2 9 , 5 3 ] ] , [ 6 7 , [ 2 9 , 5 8 ] ] , [ 6 7 , [ 2 9 , 5 9 ] ] ,
[ 6 7 , [ 3 7 , 3 6 ] ] , [ 6 7 , [ 3 7 , 4 1 ] ] , [ 6 7 , [ 3 7 , 6 3 ] ] , [ 7 1 , [ 5 , 4 0 ] ] , [ 7 3 , [ 8 , 1 4 ] ] , [ 7 3 , [ 8 , 1 5 ] ] ,
[ 7 3 , [ 2 7 , 4 7 ] ] , [ 7 3 , [ 2 7 , 6 0 ] ] , [ 7 3 , [ 2 7 , 6 9 ] ] , [ 7 3 , [ 4 6 , 2 8 ] ] , [ 7 3 , [ 4 6 , 5 9 ] ] , [ 7 3 , [ 4 6 , 6 9 ] ] ,
[ 7 3 , [ 6 4 , 1 8 ] ] , [ 7 3 , [ 6 4 , 3 6 ] ] , [ 7 3 , [ 6 4 , 3 9 ] ] , [ 7 3 , [ 6 4 , 4 1 ] ] , [ 7 3 , [ 6 4 , 4 7 ] ] , [ 7 3 , [ 6 4 , 5 7 ] ] ,
[ 7 3 , [ 6 4 , 6 9 ] ] , [ 7 3 , [ 6 4 , 7 1 ] ] , [ 7 9 , [ 2 3 , 5 7 ] ] , [ 7 9 , [ 2 3 , 5 8 ] ] , [ 7 9 , [ 5 5 , 3 0 ] ] , [ 7 9 , [ 5 5 , 5 7 ] ] ,
[ 7 9 , [ 5 5 , 7 0 ] ] , [ 8 9 , [ 3 4 , 2 2 ] ] , [ 8 9 , [ 3 4 , 6 7 ] ] , [ 8 9 , [ 5 5 , 3 6 ] ] , [ 8 9 , [ 5 5 , 5 3 ] ] , [ 9 7 , [ 2 2 , 5 ] ] ,
[ 9 7 , [ 2 2 , 1 2 ] ] , [ 9 7 , [ 2 2 , 1 5 ] ] , [ 9 7 , [ 2 2 , 2 8 ] ] , [ 9 7 , [ 2 2 , 4 5 ] ] , [ 9 7 , [ 3 5 , 1 0 ] ] , [ 9 7 , [ 3 5 , 1 7 ] ] ,
[ 9 7 , [ 3 5 , 2 5 ] ] , [ 9 7 , [ 3 5 , 4 4 ] ] , [ 9 7 , [ 3 5 , 5 2 ] ] , [ 9 7 , [ 3 5 , 6 5 ] ] , [ 9 7 , [ 3 5 , 6 7 ] ] , [ 9 7 , [ 3 5 , 7 1 ] ] ,
[ 9 7 , [ 3 6 , 7 6 ] ] , [ 9 7 , [ 6 1 , 2 ] ] , [ 9 7 , [ 6 1 , 1 3 ] ] , [ 9 7 , [ 6 1 , 1 5 ] ] , [ 9 7 , [ 6 1 , 1 7 ] ] , [ 9 7 , [ 6 1 , 4 0 ] ] ,
[ 9 7 , [ 6 1 , 4 2 ] ] , [ 9 7 , [ 6 1 , 4 7 ] ] , [ 9 7 , [ 6 1 , 5 9 ] ] , [ 9 7 , [ 6 1 , 6 0 ] ] , [ 9 7 , [ 6 1 , 6 7 ] ] , [ 9 7 , [ 6 1 , 7 4 ] ] ,
[ 9 7 , [ 6 1 , 8 5 ] ] , [ 9 7 , [ 7 5 , 1 3 ] ] , [ 9 7 , [ 7 5 , 5 2 ] ] , [ 9 7 , [ 7 5 , 6 9 ] ] ]

180



Finding gadgets f o r the remaining va lues .
[ 3 1 , [ 5 , 1 3 ] ] gadget found with x=[1 , 1 , 0 , 0 , 0 ]
[ 3 1 , [ 5 , 1 7 ] ] gadget found with x=[0 , 1 , 4 , 0 , 0 ]
[ 3 1 , [ 5 , 2 3 ] ] gadget found with x=[0 , 1 , 0 , 0 , 0 ]
[ 3 1 , [ 2 5 , 3 ] ] gadget found with x=[0 , 7 , 0 , 0 , 0 ]
[ 3 1 , [ 2 5 , 2 3 ] ] gadget found with x=[0 , 9 , 0 , 0 , 0 ]
[ 4 3 , [ 6 , 2 ] ] gadget found with x=[1 , 2 , 0 , 0 , 1 ]
[ 4 3 , [ 3 6 , 4 ] ] gadget found with x=[1 , 4 , 0 , 0 , 0 ]
[ 4 3 , [ 3 6 , 9 ] ] gadget found with x=[1 , 10 , 0 , 0 , 0 ]
[ 4 3 , [ 3 6 , 1 1 ] ] gadget found with x=[0 , 2 , 0 , 0 , 0 ]
[ 4 3 , [ 3 6 , 1 2 ] ] gadget found with x=[2 , 3 , 0 , 0 , 0 ]
[ 4 3 , [ 3 6 , 1 5 ] ] gadget found with x=[1 , 4 , 0 , 0 , 0 ]
[ 4 3 , [ 3 6 , 2 3 ] ] gadget found with x=[0 , 2 , 0 , 0 , 0 ]
[ 4 3 , [ 3 6 , 2 4 ] ] gadget found with x=[1 , 2 , 0 , 0 , 0 ]
[ 6 1 , [ 1 3 , 3 1 ] ] gadget found with x=[2 , 4 , 1 , 0 , 0 ]
[ 6 1 , [ 1 3 , 3 7 ] ] gadget found with x=[0 , 1 , 3 , 0 , 1 ]
[ 6 1 , [ 1 3 , 5 0 ] ] gadget found with x=[0 , 5 , 0 , 0 , 0 ]
[ 6 1 , [ 1 3 , 5 1 ] ] gadget found with x=[1 , 2 , 3 , 0 , 0 ]
[ 6 1 , [ 4 7 , 4 0 ] ] gadget found with x=[1 , 3 , 0 , 1 , 0 ]
[ 6 1 , [ 4 7 , 5 1 ] ] gadget found with x=[0 , 4 , 1 , 0 , 0 ]
[ 6 7 , [ 2 9 , 2 ] ] gadget found with x=[2 , 21 , 0 , 0 , 0 ]
[ 6 7 , [ 2 9 , 7 ] ] gadget found with x=[2 , 13 , 0 , 0 , 0 ]
[ 6 7 , [ 2 9 , 3 4 ] ] gadget found with x=[1 , 9 , 0 , 0 , 0 ]
[ 6 7 , [ 2 9 , 3 9 ] ] gadget found with x=[2 , 9 , 0 , 0 , 0 ]
[ 6 7 , [ 2 9 , 4 3 ] ] gadget found with x=[0 , 0 , 9 , 0 , 0 ]
[ 6 7 , [ 2 9 , 4 8 ] ] gadget found with x=[1 , 3 , 1 , 0 , 0 ]
[ 6 7 , [ 2 9 , 5 2 ] ] gadget found with x=[0 , 5 , 0 , 0 , 0 ]
[ 6 7 , [ 2 9 , 5 3 ] ] gadget found with x=[0 , 1 , 4 , 0 , 0 ]
[ 6 7 , [ 2 9 , 5 8 ] ] gadget found with x=[1 , 3 , 1 , 0 , 0 ]
[ 6 7 , [ 2 9 , 5 9 ] ] gadget found with x=[1 , 8 , 0 , 0 , 0 ]
[ 6 7 , [ 3 7 , 3 6 ] ] gadget found with x=[2 , 2 , 0 , 0 , 0 ]
[ 6 7 , [ 3 7 , 4 1 ] ] gadget found with x=[0 , 1 , 1 , 0 , 0 ]
[ 6 7 , [ 3 7 , 6 3 ] ] gadget found with x=[0 , 1 , 1 , 0 , 0 ]
[ 7 1 , [ 5 , 4 0 ] ] gadget found with x=[3 , 0 , 3 , 0 , 0 ]
[ 7 3 , [ 8 , 1 4 ] ] gadget found with x=[0 , 5 , 3 , 0 , 0 ]
[ 7 3 , [ 8 , 1 5 ] ] gadget found with x=[0 , 1 , 1 , 2 , 0 ]
[ 7 3 , [ 2 7 , 4 7 ] ] gadget found with x=[2 , 1 , 2 , 0 , 0 ]
[ 7 3 , [ 2 7 , 6 0 ] ] gadget found with x=[0 , 5 , 1 , 0 , 0 ]
[ 7 3 , [ 2 7 , 6 9 ] ] gadget found with x=[2 , 5 , 0 , 0 , 0 ]
[ 7 3 , [ 4 6 , 2 8 ] ] gadget found with x=[2 , 11 , 0 , 0 , 0 ]
[ 7 3 , [ 4 6 , 5 9 ] ] gadget found with x=[0 , 5 , 0 , 0 , 0 ]
[ 7 3 , [ 4 6 , 6 9 ] ] gadget found with x=[0 , 7 , 0 , 0 , 0 ]
[ 7 3 , [ 6 4 , 1 8 ] ] gadget found with x=[1 , 0 , 0 , 2 , 0 ]
[ 7 3 , [ 6 4 , 3 6 ] ] gadget found with x=[2 , 4 , 0 , 0 , 0 ]
[ 7 3 , [ 6 4 , 3 9 ] ] gadget found with x=[0 , 5 , 1 , 0 , 0 ]
[ 7 3 , [ 6 4 , 4 1 ] ] gadget found with x=[1 , 20 , 0 , 0 , 0 ]
[ 7 3 , [ 6 4 , 4 7 ] ] gadget found with x=[0 , 6 , 1 , 0 , 0 ]
[ 7 3 , [ 6 4 , 5 7 ] ] gadget found with x=[1 , 10 , 0 , 0 , 0 ]
[ 7 3 , [ 6 4 , 6 9 ] ] gadget found with x=[1 , 4 , 2 , 0 , 0 ]
[ 7 3 , [ 6 4 , 7 1 ] ] gadget found with x=[2 , 20 , 0 , 0 , 0 ]
[ 7 9 , [ 2 3 , 5 7 ] ] gadget found with x=[0 , 1 , 6 , 0 , 0 ]
[ 7 9 , [ 2 3 , 5 8 ] ] gadget found with x=[0 , 9 , 0 , 1 , 0 ]
[ 7 9 , [ 5 5 , 3 0 ] ] gadget found with x=[0 , 11 , 0 , 0 , 0 ]
[ 7 9 , [ 5 5 , 5 7 ] ] gadget found with x=[2 , 10 , 1 , 0 , 0 ]
[ 7 9 , [ 5 5 , 7 0 ] ] gadget found with x=[2 , 10 , 0 , 1 , 0 ]
[ 8 9 , [ 3 4 , 2 2 ] ] gadget found with x=[2 , 1 , 0 , 0 , 0 ]
[ 8 9 , [ 3 4 , 6 7 ] ] gadget found with x=[3 , 10 , 0 , 0 , 0 ]
[ 8 9 , [ 5 5 , 3 6 ] ] gadget found with x=[1 , 8 , 0 , 0 , 0 ]
[ 8 9 , [ 5 5 , 5 3 ] ] gadget found with x=[1 , 20 , 0 , 0 , 0 ]
[ 9 7 , [ 2 2 , 5 ] ] gadget found with x=[2 , 0 , 5 , 0 , 0 ]
[ 9 7 , [ 2 2 , 1 2 ] ] gadget found with x=[0 , 9 , 0 , 0 , 0 ]
[ 9 7 , [ 2 2 , 1 5 ] ] gadget found with x=[1 , 2 , 7 , 0 , 0 ]
[ 9 7 , [ 2 2 , 2 8 ] ] gadget found with x=[0 , 15 , 0 , 0 , 0 ]
[ 9 7 , [ 2 2 , 4 5 ] ] gadget found with x=[3 , 3 , 0 , 0 , 0 ]
[ 9 7 , [ 3 5 , 1 0 ] ] gadget found with x=[1 , 3 , 0 , 0 , 0 ]
[ 9 7 , [ 3 5 , 1 7 ] ] gadget found with x=[1 , 13 , 0 , 0 , 0 ]
[ 9 7 , [ 3 5 , 2 5 ] ] gadget found with x=[0 , 10 , 0 , 0 , 0 ]
[ 9 7 , [ 3 5 , 4 4 ] ] gadget found with x=[2 , 3 , 0 , 0 , 0 ]
[ 9 7 , [ 3 5 , 5 2 ] ] gadget found with x=[0 , 2 , 2 , 1 , 0 ]
[ 9 7 , [ 3 5 , 6 5 ] ] gadget found with x=[2 , 22 , 0 , 0 , 0 ]
[ 9 7 , [ 3 5 , 6 7 ] ] gadget found with x=[1 , 10 , 1 , 0 , 0 ]
[ 9 7 , [ 3 5 , 7 1 ] ] gadget found with x=[2 , 0 , 1 , 0 , 0 ]
[ 9 7 , [ 3 6 , 7 6 ] ] gadget found with x=[4 , 11 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 2 ] ] gadget found with x=[1 , 6 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 1 3 ] ] gadget found with x=[1 , 15 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 1 5 ] ] gadget found with x=[2 , 31 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 1 7 ] ] gadget found with x=[2 , 9 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 4 0 ] ] gadget found with x=[0 , 6 , 0 , 1 , 0 ]
[ 9 7 , [ 6 1 , 4 2 ] ] gadget found with x=[0 , 11 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 4 7 ] ] gadget found with x=[1 , 20 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 5 9 ] ] gadget found with x=[1 , 11 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 6 0 ] ] gadget found with x=[0 , 13 , 0 , 0 , 0 ]
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[ 9 7 , [ 6 1 , 6 7 ] ] gadget found with x=[1 , 1 , 1 , 0 , 0 ]
[ 9 7 , [ 6 1 , 7 4 ] ] gadget found with x=[2 , 15 , 0 , 0 , 0 ]
[ 9 7 , [ 6 1 , 8 5 ] ] gadget found with x=[1 , 0 , 1 , 0 , 3 ]
[ 9 7 , [ 7 5 , 1 3 ] ] gadget found with x=[3 , 1 , 0 , 0 , 0 ]
[ 9 7 , [ 7 5 , 5 2 ] ] gadget found with x=[1 , 21 , 0 , 0 , 0 ]
[ 9 7 , [ 7 5 , 6 9 ] ] gadget found with x=[0 , 21 , 0 , 0 , 0 ]

F ina l unreso lved va lues o f [ p , [ g , l ] ] are :
[ [ 4 1 , [ 1 8 , 6 ] ] ]
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