
Efficient Identification of Improving Moves in a Ball for
Pseudo-Boolean Problems

Francisco Chicano
Dept. de Lenguajes y Ciencias

de la Computación
Universidad de Málaga,
Andalucía Tech, Spain

chicano@lcc.uma.es

Darrell Whitley
Dept. of Computer Science
Colorado State University

Fort Collins CO, USA
whitley@cs.colostate.edu

Andrew M. Sutton
Fakultät für Mathematik

und Informatik
Friedrich-Schiller-Universität Jena

07743 Jena, Germany
andrew.sutton@uni-jena.de

ABSTRACT
Hill climbing algorithms are at the core of many approaches
to solve optimization problems. Such algorithms usually re-
quire the complete enumeration of a neighborhood of the
current solution. In the case of problems defined over bi-
nary strings of length n, we define the r-ball neighborhood
as the set of solutions at Hamming distance r or less from
the current solution. For r � n this neighborhood con-
tains Θ(nr) solutions. In this paper efficient methods are
introduced to locate improving moves in the r-ball neighbor-
hood for problems that can be written as a sum of a linear
number of subfunctions depending on a bounded number of
variables. NK-landscapes and MAX-kSAT are examples of
these problems. If the number of subfunctions depending
on any given variable is also bounded, then we prove that
the method can explore the neighborhood in constant time,
despite the fact that the number of solutions in the neigh-
borhood is polynomial in n. We develop a hill climber based
on our exploration method and we analyze its efficiency and
efficacy using experiments with NKq-landscapes instances.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
Hill Climbing, Local Search, NK-landscapes, Pseudo-Boolean
Optimization

1. INTRODUCTION
Local search algorithms work by starting at an initial so-

lution and then moving from one solution to a “neighboring”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598304

solution in the search space. The set of solutions that can
be reached in one move from solution x is called the neigh-
borhood of x, denoted with N(x). Most modern forms of
local search often use some form of Iterated Local Search [4].
Thus, any advance in local search algorithms can have an
important impact in the solution of the problem.

A simple implementation of local search requires enumer-
ating the entire neighborhood of the current solution. In
steepest ascent local search, the algorithm moves to a so-
lution providing the largest improvement of the objective
function; in next ascent search moves to the first improving
solution it finds in the neighborhood. For problems defined
over a binary search space, the most common neighborhood
is the “bit-flip” Hamming distance 1 neighborhood. Given
inputs of binary strings of length n, the size of this neighbor-
hood is n, and exactly n neighbors are examined to locate
an improving move.

In the current paper, we introduce a next ascent local
search algorithm that is capable of identifying improving
moves within r steps for k-bounded Pseudo-Boolean opti-
mization problems. In this case, the neighborhood is a ra-
dius r Hamming ball: the set of all solutions at most Ham-
ming distance r from the current solution. The size of this
neighborhood is O(nr). For specific distributions of vari-
ables, we prove that all new improving moves can be iden-
tified in Θ(1) time using Θ(n) space per move.

Whitley and Chen [8] proposed a steepest descent algo-
rithm for NK-landscapes and MAX-kSAT with an average
time complexity of Θ(1) per move for the Hamming dis-
tance 1 neighborhood. Their algorithm works n times faster
than a näıve implementation of the neighborhood explo-
ration. This result is expressed as average time complexity
because the time required in one single move is not bounded
by a constant but over m moves the time required for next
ascent and for approximate steepest ascent is bounded by
O(m). Their algorithm is based on the Walsh decomposition
of the objective function. The secret of the resulting speedup
is based on the fact that on average a bit-flip affects only
a constant number of terms in the Walsh decomposition of
the objective function. For all k-bounded pseudo-Boolean
functions, the time complexity of their steepest descent is
O(k22k). For MAX-kSAT the value of k is the number of
literals per clause while for NK-landscapes k = K + 1.

In a later paper, Chen et al. [1] used the concept of sec-
ond derivative of a pseudo-Boolean function to improve the
computation time of the steepest descent for NK-landscapes
for the Hamming distance 1 neighborhood. Using a second

437

derivative, they reduce the time needed to identify improv-
ing moves from O(k22k) to O(k3). In addition, the new
approach avoids the use of the Walsh transform, making the
approach conceptually simpler.

In this paper, we generalize this result to present a local
search algorithm that can look r moves ahead and iden-
tify all improving moves. This means that moves are being
identified in a neighborhood containing all solutions that lie
within a Hamming ball of radius r around the current so-
lution. We assume that r = O(1). If r � n, the number
of solutions in such a neighborhood is Θ(nr). New improv-
ing moves located up to r moves away can be identified in
constant time. The memory required by our approach is
O(n). To achieve O(1) time per move, the number of sub-
functions in which any variable appears must be bounded by
some constant c. We then prove that the resulting algorithm
requires O((3kc)rn) space to track potential moves.

In order to evaluate our approach we perform an experi-
mental study based on NKq-landscapes. The results reveal
not only that the time required by the next ascent is inde-
pendent of n, but also that increasing r we obtain a signifi-
cant gain in the quality of the solutions found.

The rest of the paper is organized as follows. In the next
section we introduce the pseudo-Boolean optimization prob-
lems. Section 3 defines the“Scores”of a solution and provide
an algorithm to efficiently update them during a local search
algorithm. We propose in Section 4 a next ascent hill climber
with the ability to identify improving moves in a ball of ra-
dius r in constant time. Section 5 empirically analyzes this
hill climber using NKq-landscapes instances and Section 6
outlines some conclusions and future work.

2. PSEUDO-BOOLEAN OPTIMIZATION
Our method for identifying improving moves in the radius

r Hamming ball can be applied to all k-bounded pseudo-
Boolean Optimization problems. This makes our method
quite general: every compressible pseudo-Boolean Optimiza-
tion problem can be transformed into a quadratic pseudo-
Boolean Optimization problem with k = 2.

The family of k-bounded pseudo-Boolean Optimization
problems have also been described as an embedded landscape.
An embedded landscape [3] with bounded epistasis k is de-
fined as a function f(x) that can be written as the sum
of m subfunctions, each one depending at most on k input
variables. That is:

f(x) =

m∑
i=1

f (i)(x), (1)

where the subfunctions f (i) depend only on k components
of x. Embedded Landscapes generalize NK-landscapes and
the MAX-kSAT problem. We will consider in this paper that
the number of subfunctions is linear in n, that is m ∈ O(n).
For NK-landscapes m = n and is a common assumption in
MAX-kSAT that m ∈ O(n).

3. SCORES IN THE HAMMING BALL
For v, x ∈ Bn, and a pseudo-Boolean function f : Bn → R,

we denote the Score of x with respect to move v as Sv(x),
defined as follows:1

Sv(x) = f(x⊕ v)− f(x), (2)

1We omit the function f in Sv(x) to simplify the notation.

where ⊕ denotes the exclusive OR bitwise operation. The
Score Sv(x) is the change in the objective function when we
move from solution x to solution x⊕ v, that is obtained by
flipping in x all the bits that are 1 in v.

All possible Scores for strings v with |v| ≤ r must be
stored as a vector. The Score vector is updated as local
search moves from one solution to another. This makes it
possible to know where the improving moves are in a ball of
radius r around the current solution. For next ascent, all of
the improving moves can be buffered. An approximate form
of steepest ascent local search can be implemented using
multiple buffers [9].

If we naively use equation (2) to explicitly update this
Score vector, we will have to evaluate all

∑r
i=0

(
n
i

)
neigh-

bors in the Hamming ball. Instead, if the objective function
satisfies some requirements described below, we can design
an efficient next ascent hill climber for the radius r neigh-
borhood that only stores a linear number of Score values and
requires a constant time to update them. We next explain
the theoretical foundations of this next ascent hill climber.

The first requirement for the objective function is that it
must be written such that each subfunction depends only on
k Boolean variables of x (k-bounded epistasis). In this case,
we can write the scoring function Sv(x) as an embedded
landscape:

Sv(x) =

m∑
l=1

(
f (l)(x⊕ v)− f (l)(x)

)
=

m∑
l=1

S(l)
v (x), (3)

where we use S
(l)
v to represent the scoring functions of the

subfunctions f (l). Let us define wl ∈ Bn as the binary string
such that the i-th element of wl is 1 if and only if f (l) depends
on variable xi. The vector wl can be considered as a mask
that characterizes the variables that affect f (l). Since f (l)

has bounded epistasis k, the number of ones in wl, denoted
with |wl|, is at most k. By the definition of wl, the next
equalities immediately follow.

f (l)(x⊕ v) = f (l)(x) for all v ∈ Bn with v ∧ wl = 0, (4)

S(l)
v (x) =

{
0 if wl ∧ v = 0,

S
(l)
v∧wl

(x) otherwise.
(5)

Equation (5) claims that if none of the variables that
change in the move characterized by v is an argument of
f (l) the Score of this subfunction is zero, since the value of
this subfunction will not change from f (l)(x) to f (l)(x⊕ v).

On the other hand, if f (l) depends on variables that change,

we only need to consider for the evaluation of S
(l)
v (x) the

changed variables that affect f (l). These variables are char-
acterized by the mask vector v ∧ wl. With the help of (5)
we can write (3) as:

Sv(x) =

m∑
l=1

wl∧v 6=0

S
(l)
v∧wl

(x), (6)

3.1 Scores Decomposition
The Score values in a ball of radius r give more informa-

tion than just the change in the objective function for moves
in that ball. Let us illustrate this idea with the moves in the
balls of radius r = 1 and r = 2. Let us assume that xi and
xj are two variables that do not appear together as argu-
ments of any subfunction f (l). Then, the Score of the move

438

x1 x2 x3 x4

f (1) f (2) f (3) f (4)

(a) Function

x1 x2

x3x4

(b) Variable interaction graph

Figure 1: A function with k = 2 bounded epistasis,
n = 4 variables and m = 4 subfunctions (top) and its
corresponding variable interaction graph (bottom).

we obtain when we flip both variables is the sum of the Score
values of the moves of each variable in isolation. To see this,
let us denote with i, j the binary string with position i and
j set to 1 and the rest set to 0. Similarly, we denote with i
the binary string having 1 only in position i. According to
(6) we can write:

Si,j(x) =

m∑
l=1

wl∧i,j 6=0

S
(l)
i,j∧wl

(x),

since xi and xj do not appear together in any subfunction,
there is no wl with 1s in both i and j positions, and we can
write:

Si,j(x) =

m∑
l=1

wl∧i 6=0

S
(l)
i∧wl

(x) +

m∑
l=1

wl∧j 6=0

S
(l)
j∧wl

(x)

= Si(x) + Sj(x),

which is the claimed result. This means that if i and j
are not improving moves, then i, j cannot be an improv-
ing move. Thus, the Scores in the 1-ball are also implicitly
providing information of higher order moves in which the
involved variables do not interact. In our example, we only
need to track and update all the 2-ball Scores i, j for which

i and j appear together in at least one subfunction f (l).
This reasoning can be generalized to higher order moves.

In order to do this let us introduce the variable interaction
graph G = (V,E), where V is the set of Boolean variables
and E contains all the pairs of variables (xi, xj) that interact
each other, that is, (xi, xj) ∈ E if there exists a subfunction

f (l) that depends on xi and xj . In Figure 1 we show a func-
tion with k-bounded epistasis and its corresponding variable
interaction graph.

Let us consider the Score of the move with characteristic
vector v. Abusing notation, we use v to represent also the
set of variables that will be flipped in the move. Let us
denote with G[v] the subgraph of G induced by v, that is,
the subgraph containing only the vertices in v and the edges
of E between vertices in v. If G[v] is connected then we
cannot compute the Score of the move as the sum of Scores
of lower order moves. If the graph is not connected, then
we can decompose the Score as a sum of at least two Scores
of lower order moves. These necessary lower order moves

are determined by the connected components of G[v]. For
example, in the function of Figure 1 the scoring function
S1,3,4 can be written as the sum of the scoring functions
S1 and S3,4. If we want to know if there is at least one
improving move in a ball of radius r, we have to consider
the Scores of all the moves v with |v| ≤ r for which G[v] is
a connected graph. We will denote this set of moves with
Mr to simplify the notation in the following. In the next
subsection we will address the question of how many of these
Scores exist and what is the cost in time of updating them
after a move.

3.2 Scores Update
Instead of computing the Scores from scratch using (6)

after every move, it is more efficient in time to store the
Scores Sv(x) of the current solution x in memory and update
only those that are affected by the move. We will consider
in the next paragraphs the cost in time of this update and
we will prove that it is independent of n if the number of
subfunctions in which any variable appears is bounded by
some constant c. Under the same assumptions, we will prove
that the number of Scores we need to store in memory is
linear in n.

When we flip a set of bits t, only the value of some sub-
functions f (l) will be affected: exactly those subfunctions
for which wl ∧ t 6= 0. If subfunction f (l) is affected, all

the S
(l)
v (x) values with v ∧ wl 6= 0 could also change and,

as a consequence, we have to update the Sv stored Scores
for v ∧ wl 6= 0. For each of these Scores, the update re-
lated to subfunction f (l) can consist in computing the value

S
(l)
v (x ⊕ t) = f (l)(x ⊕ t ⊕ v) − f (l)(x ⊕ t), computing the

value S
(l)
v (x) = f (l)(x⊕v)−f (l)(x) and updating the stored

value of Sv by subtracting S
(l)
v (x) and adding S

(l)
v (x ⊕ t).

This procedure is shown in Algorithm 1, where the term Sv

represents the Score of move v stored in memory.

Algorithm 1 Efficient algorithm for Scores update

Input: S, x, t
1: for l = 1 to m such that wl ∧ t 6= 0 do
2: for v ∈Mr such that wl ∧ v 6= 0 do
3: Sv ← Sv + f (l)(x⊕ t⊕ v)− f (l)(x⊕ t)

−f (l)(x⊕ v) + f (l)(x)
4: end for
5: end for

Let us prove that Algorithm 1 is correct. First, we can
observe that in the inner loop we can make variable v to take
values for which wl ∧ v = 0, since in this case f (l)(x ⊕ t ⊕
v) = f (l)(x⊕ t) and f (l)(x⊕ v) = f (l)(x), what means that
the right hand side in line 3 is reduced to Sv (no update).
For the same reason, we can make variable l in the first
loop to take all values from 1 to m, even those for which
wl ∧ t = 0. The reason why we use the conditions wl ∧ t 6= 0
and wl ∧ v 6= 0 in Algorithm 1 is efficiency: each condition
reduces the computational complexity of the algorithm by
a factor of n (this will be clear later). But efficiency is
irrelevant in the proof of correctness, so we will assume that
the conditions are not there. Under this assumption lines 1
and 2 can be swapped in the algorithm. The result is shown
in Algorithm 2.

The outer loop of Algorithm 2 is just iterating over all the
possible moves v ∈ Mr to update all the Scores. The inner

439

Algorithm 2 Simple algorithm for Scores update

Input: S, x, t
1: for v ∈Mr do
2: for l = 1 to m do
3: Sv ← Sv + f (l)(x⊕ t⊕ v)− f (l)(x⊕ t)

−f (l)(x⊕ v) + f (l)(x)
4: end for
5: end for

loop computes the new value for Sv using the expression:

Sv(x) +

m∑
l=1

(
f (l)(x⊕ t⊕ v)− f (l)(x⊕ t)

−f (l)(x⊕ v) + f (l)(x)
)

= Sv(x) +

m∑
l=1

(
S(l)
v (x⊕ t)− S(l)

v (x)
)

= Sv(x) +

m∑
l=1

S(l)
v (x⊕ t)−

m∑
l=1

S(l)
v (x)

= Sv(x⊕ t),

where we used (3). This proves that Algorithm 1 (and Al-
gorithm 2) are correct, since its goal is to compute Sv(x⊕ t)
starting from Sv(x).

In the update of line 3 of Algorithm 1 only subfunction
f (l) is involved. The time required to evaluate f (l) must
be some function of k, since f (l) depends only on k bits of
the input string. Let us call this function b(k). In the case
of NK-landscapes and MAX-kSAT, b(k) ∈ O(k) (we should
remember that in NK-landscapes k = K + 1).

Let us now count how many times the body of the outer
loop in Algorithm 1 is executed. We do this by counting
how many subfunctions f (l) have the property wl ∧ t 6= 0.

We first introduce an additional assumption: each Boolean
variable xi appears in at most c subfunctions. Under this
assumption, the number of subfunctions containing at least
one of the bits in t (condition wl ∧ t 6= 0) is at most c|t|.
Since |t| is bounded by the constant r, the inner loop is run
at most cr times, which is a constant. It is common to have
m ∈ O(n), so the difference between including the condition
wl ∧ t 6= 0 or not in the first loop is a factor of n, as we
mentioned earlier.

Once the outer loop has fixed a value for l, we need to
compute how many moves v ∈ Mr fulfill wl ∧ v 6= 0 to end
with a final expression for the time required by Algorithm 1.
There is a way to enumerate all these moves v that also
give us a bound for its cardinality. Since G[v] must be a
connected graph, we can always find a spanning tree of the
graph. If we build all the possible trees of subgraphs of G
having at most r variables and with root in each variable
that appears in f (l), we are sure that we considered all the
possible v ∈ Mr such that wl ∧ v 6= 0. In effect, let us
suppose that there is a v ∈Mr such that wl ∧ v 6= 0. Then,
there is a variable xi in wl that is included in v and we can
build a spanning tree of G[v] with root xi.

How many sets v we will find this way? We can easily
give an upper bound. Given a variable xi, the number of
variables that interact with xi (adjacent nodes in the vari-
able interaction graph) is bounded by ck. Given a tree of
r nodes with xi in the root, we have to assign variables

to the rest of the nodes in such a way that two connected
nodes have interacting variables. The ways in which we can
do this is bounded by O((ck)r−1). We have to repeat the
same operation for all the possible rooted trees and each of
the k variables in subfunction f (l). Thus, a bound for the
v ∈ Mr such that wl ∧ v 6= 0 is O(k(ck)r−1Tr), where Tr is
the number of rooted trees with r vertices.

The number of rooted trees of r vertices can be computed
using the following recurrence [2]:

Tr+1 =
1

r

r∑
l=1

∑
d|l

d Td

Tr−l+1, (7)

T1 = 1. (8)

This series has the following asymptotic behaviour [5]:

lim
r→∞

Tr

Tr−1
≈ 2.955765, (9)

Using this property, a bound for the number of moves
v ∈ Mr such that wl ∧ v 6= 0 is O(cr−1(3k)r). This process
must be repeated for all the subfunctions affected by t, which
we proved to be bounded by c|t|. Taking into account that
the time to evaluate each Score is O(b(k)) we finally have
the total time O(b(k)(3kc)r|t|) to update all the Scores Sv

for v ∈Mr when we flip |t| bits. This time is independent of
n, provided that neither k, r nor c depends on n. This result
was already proved by Szeider for the MAX-kSAT and SAT
problems [6]. We generalize Szeider’s result and design an
algorithm based on it. To the best of our knowledge there
is no previous local search algorithm based on this result.

The number of Scores Sv we have to store is the cardinality
of Mr. We can find a bound for this cardinality using the
following argument. If we flip all the n variables in turn we
will update all the Scores Sv with v ∈ Mr at least once.
According to the previous paragraph the time required to
update all the affected Scores after 1 bit flip is O(b(k)(3kc)r).
Dividing by the cost of evaluating a subfunction b(k) and
multiplying by the n bits that we flip, we have that the
number of moves in Mr is O((3kc)rn). This means O(n)
space to store the Scores. This is the reason why in line 2
of Algorithm 1 removing the condition wl ∧ v 6= 0 means
executing line 3 around O(n) more times.

Two other complexity issues should be noted. There is
an up-front one-time initialization cost. The Score vector
must be initialized and this also has cost O((3kc)rn). We
also need to distinguish between “old” improving moves and
“new” improving moves. After any set of bit flips unto ra-
dius r there are only a constant number of changes to the
Score vector. Therefore there are at most a constant num-
ber of “new” improving moves that are created as a result of
the most recent move. However, there can be a significant
number of “old” improving moves that have already been
identified. Just as there are at most a constant number of
“new” improving moves after any update of the Score vector,
there are also at most a constant number of “old” improving
moves that are destroyed by any update of the Score vector.

We end this section providing a theorem with the main
result of the paper. The proof of this theorem has been
given in the previous paragraphs.

Theorem 1. Let f be a function defined over Bn that
can be written in the form (1) where each subfunction f (l)

440

depends only on at most k Boolean variables and each vari-
able appears in at most c subfunctions. Let the graph G be
the variable interaction graph of f and Mr the set of moves
v ∈ Br up to order r such that G[v] is a connected graph.
Then:

• The cardinality of Mr is O((3kc)rn).

• We only need to check the Scores Sv(x) with v ∈ Mr

of the current solution x to determine the presence of
an improving move in a ball of radius r around x. If
the Scores are stored in memory this check requires
constant time.

• The Scores Sv(x) for v ∈Mr can be updated when we
move from one solution x to x ⊕ t using Algorithm 1
in time O(b(k)(3kc)r|t|), where b(k) is a bound of the

time required to evaluate any subfunction f (l). This
time is independent of n if k, r and c are independent
of n.

4. THE HAMMING-BALL HILL CLIMBER
The efficient Scores update of Algorithm 1 can be used

in combination with any trajectory-based method like, It-
erated Local Search or Tabu Search. In this section we de-
scribe a next ascent hill climber based on it. The proposed
hill climber is shown in Algorithm 3. We assume maximiza-
tion and for this reason we say that it is an “ascent” hill
climber. However, the algorithm can consider minimization
just changing the > operators in lines 5 and 10 by < oper-
ators. In the algorithm, variable best stores the best found
solution at any given time. The algorithm starts by assign-
ing the special value ⊥, which means “no solution” to best.
Next, it enters a loop that is repeated until the stopping
condition is met. Each run of the loop body is an ascent
starting from a random solution in the search space. In the
loop, once a random solution has been selected and stored in
x, the algorithm computes the Scores Sv(x) for all v ∈ Mr

using the expression (6). The inner loop starting in line 5
implements the next ascent. While an improving move ex-
ists (Sv > 0 for some v ∈ Mr), the algorithm selects one
of the improving moves t (line 6), updates the Scores using
Algorithm 1 (line 7) and changes the current solution by the
new one (line 8).

Algorithm 3 Hamming-ball next ascent.

1: best ← ⊥
2: while stop condition not met do
3: x← randomSolution();
4: S ← computeScores(x);
5: while Sv > 0 for some v ∈Mr do
6: t← selectImprovingMove(S);
7: updateScores(S,x,t);
8: x← x⊕ t;
9: end while

10: if best = ⊥ or f(x) > f(best) then
11: best← x;
12: end if
13: end while

Regarding the selection of the improving move, our ap-
proach in the experiments was to select always the one with
the lowest Hamming distance to the current solution, that

is, the lowest value of |t|. The main reason for selecting the
nearest improving move is that, as stated by Theorem 1,
the time required for updating the Scores is proportional to
|t|. Thus, the nearest improving move is the fastest move
in our algorithm. This selection can be done in constant
time, since the classification of the moves as improving or
non-improving can be done when the Scores are calculated
and the Scores can be added to different lists depending on
the distance to the current solution.

From the point of view of computation time, we expect
the statements between lines 6 and 8 to run in a time that
is independent of n. However, this time depends on k, c
and r, where r is the only algorithm-dependent parameter
(the others depend on the problem instance). According to
Theorem 1, the time is exponential in r. Therefore, we have
to be especially careful when we set the radius of the ball.
Lines 3 and 4 are expected to run in linear time with respect
to n, since the number of Scores (and variables) is linear.

Let us now consider the quality of the solutions obtained
by the algorithm when we change r. Let us pick two radii
for the ball: r1 < r2. Let us imagine that two ascents start
from the same solution, one in each algorithm. Both in-
stances of the algorithm will visit the same solutions until
the algorithm with radius r1 gets stuck in a local optimum
or a plateau. In this case, however, the algorithm with r2,
which is considering a larger neighborhood, could find an im-
proving move and could continue. Thus, we expect longer
ascents and better quality solutions at the end of the ascents
for larger values of r.

The fitness value of the best solution is a non-decreasing
function of the time. As we increase r we expect better
solutions at the end of the ascents, but the time spent in each
ascent is also longer. It could happen that an instance of the
algorithm with a lower value for r can reach better solutions
earlier just because it is faster and finds an appropriate path
joining lower distance moves. This fact makes impossible to
set an a priori value for r that is valid for all the problems
and instances. In the experimental section we will discuss
this issue again on the results.

5. EXPERIMENTAL RESULTS
In this section we present experimental results obtained

with the Hamming-ball next ascent. For the experiments we
used NKq-landscapes. They are randomly generated func-
tions that are specially interesting because it is possible to
change their ruggedness and neutrality changing K and q,
respectively. The objective function is:

f(x) =

n∑
l=1

f (l)(x), (10)

where each subfunction f (l) depends on variable xl and other
K variables and we have k = K + 1. These variables can be
randomly selected from the remaining n−1, which yields the
random-model NKq-landscapes. If the variables for subfunc-
tion f (l) are {xl, xl+1, . . . , xl+K} with sum modulo n (and
indices in the range 1 to n), then we have the adjacent-model
NKq-landscapes. The latter has the advantage that a global
optimum can be found in polynomial time using an algo-
rithm proposed by Wright et al. [10], but also the number
of subfunctions depending on a given variable is constant:
c = k = K + 1. In the random-model there is no constant
bound for the number of subfunctions in which the variables

441

appear: a variable could appear in up to n subfunctions. The
2K+1 values that each subfunction f (l) can take in both, the
adjacent and random models, are randomly generated from
the set of integers {0, 1, . . . , q − 1}.

We proved in Section 3 that the Scores can be updated
in a time that is independent of the size of the problem
n. However, in a real implementation of Algorithm 3 there
are two initialization procedures that require more than con-
stant time. First, it is necessary to compute the set of moves
Mr and allocate memory for the corresponding Scores. This
is done only once for each problem instance and we call it
instance-dependent initialization. Second, at the beginning
of each ascent, a random solution has to be selected from
the search space and the Scores for the solution have to be
computed. We call this procedure solution-dependent ini-
tialization.

5.1 Illustrating Average Runtime
In a first experiment, we will estimate the average cost of

each move empirically. We will do this by flipping every vari-
able the same number of times; each individual flip results
in a unique set of updates to the Score vector. This means
we ignore improving moves and focus exclusively on the cost
of updating the Score vector for every possible bit flip.

For a test problem we will use the adjacent-model NKq-
landscape. We used instances of the problem with n = 1, 000
to n = 12, 000, K = 1 to K = 4 and q = 2K+1. We
generated 30 instances for each combination of values and
averaged the results over the 30 instances. For r we used
values r = 1 to 4. In each run we start from a random
solution and flip each bit of the solution in turn until we
reach 120, 000 flips. For instances with n = 12, 000 this
means flipping each bit exactly ten times. In order to have
an unbiased distribution of bit flips only divisors of 12, 000
are allowed values for n. This way we ensure that each bit
is flipped the same number of times in each instance.

In Figure 2 we can see the time required by the 120, 000
bit flips for K = 3 and all the values of r as a function
of the size n. Except for some random fluctuations, the
time is constant. Figure 3(a) shows the cardinality of Mr

as a function of n. We can clearly see the predicted linear
evolution. In Figures 3(b) and 3(c) we can observe the times
required by the instance-dependent and solution-dependent
initialization procedures. They increase more or less linearly
with n. They can impose a time-limit to add to the memory-
limit imposed by |Mr| in the scalability of our proposal. The
same behaviour can be observed for the other values of K
(not shown). However, as we increase K, the times and |Mr|
also increase.

Since the time for performing the 120,000 moves is the
same for all n, we have computed the mean time for all the
values of n while K and r are fixed. Figure 4 shows how
this time depends on K for different values of r. According
to the results of Section 3 this time is exponential in r with
K appearing in the base of the expression.

We repeated the previous experiment with the random-
model NKq-landscape. In Figure 5(a) we can see the time
required by the 120, 000 bit flips for K = 3, q = 16 and
r = 1 to 3 as a function of the size n. Now we can observe
a slight increase of the time with n. This is a consequence
of the increasing number of subfunctions that depend on
the same variable. Figure 5(c) shows the average (in the
30 instances) of the largest number of subfunctions a single

Figure 2: Time for Score updates in the adjacent-
model NKq-landscapes.

(a) Scores stored in memory (b) Instance-dependent init.

(c) Solution-dependent init.

Figure 3: Times and Scores for adjacent-model
NKq-landscapes.

Figure 4: Time required for the 120,000 moves in
the adjacent-model NKq-landscape as a function of
K. Each curve corresponds to a different value of r.

variable affects. In the adjacent-model this number was con-
stant, exactly c = K + 1. In the random-model this number
is increasing with n and is not bounded by a constant. Re-
garding the cardinality of Mr, it still increases in a linear

442

way with n as illustrated in Figure 5(b), although in theory
the increase could be more than linear.

(a) Time for Score updates (b) Scores stored in memory

(c) Maximum subfunctions affected, c

Figure 5: Time, Scores and maximum number
of subfunctions affected by a single variable for
random-model NKq-landscapes.

5.2 On the Quality of the Solutions
In Section 4 we argued that an ascent of the Hamming-

ball next ascent with radius r1 < r2 cannot obtain a better
solution than an ascent starting from the same solution but
using radius r2. As a consequence, if the stopping condi-
tion of Algorithm 3 is to reach a fixed number of ascents,
then we expect the quality of the solutions using r2 to be
no worse than the quality of the solutions when r1 is the
radius. However, larger radius also means longer execution
time, not only for the Scores update but also for the differ-
ent initialization procedures. If the stopping condition is to
reach a fixed amount of time we cannot say which radius is
the best option. The experiments in this section illustrate
what happens in this case of NKq-landscapes.

Let us start analyzing the adjacent-model. We fix n =
10, 000 and generated 30 instances for each combination of K
used. We run the algorithm for 120 seconds in all the cases.
Figure 6 shows the average fitness over the 30 instances of
the best solution found by the algorithms against the elapsed
time from the start of the search. The radius used are r = 1
to 6. In the figure K = 2 and q = 8. We can observe
that using larger values for r the algorithm is able to find
better solutions at any time. In the figure, it is clear that the
algorithm with r = 1 cannot reach in 120 seconds the quality
of the solutions found by the one with r = 2 at the beginning
of its search. The same applies in the comparison with other
radii. We can conclude that, in this example and for r = 1
to 6, increasing the value of r we obtain progressively better
algorithms, even when the stopping condition is a time limit.

However, this improvement has also limitations. The gain
in the quality of the solutions when we increase r from 1 to 2
is larger than the gain when we increase r from 2 to 3. Since
the fitness value of the global optimum acts as a bound for
the quality of the solutions, there must be an r value for
which there is no gain. At this point, increasing r we can
only penalize the efficacy of the algorithm because the run-

Figure 6: Best solution fitness over time for the
Hamming-ball next ascent in adjacent-model NKq-
landscapes.

time will still increase. To check this fact, we show in Fig-
ure 7 the normalized distance to the global optimum of the
Hamming-ball next ascent for different radii (note that we
are maximizing the objective function, but minimizing the
distance to the global optimum). The points are averages
over 30 random instances with n = 10, 000, K = 1, q = 4
and r = 1 to 10. The algorithms were run for 120 seconds.
The normalized distance to the optimum, nd, is:

nd(x) =
f∗ − f(x)

f∗
, (11)

where f∗ is the fitness value of the global optimum, com-
puted using the algorithm by Wright et al. [10].

Figure 7: Normalized distance to the global opti-
mum for the Hamming-ball next ascent.

With r = 1 the algorithm is approximately within 3.6% of
the global optimum after 20 seconds. As we increase r, the
algorithms get closer to the global optimum and the gains
shrink. For r = 3 the results are withing 0.2% of the global
optimum. For r > 3 the differences are so small that cannot
be observed in the plot. For r ≥ 6 an optimal solution is
found in all the instances. For r = 6 the solution is found
in 3.7 seconds. For r = 7 it is found in 2.1 seconds, and this
is the fastest algorithm. For r = 8, 9 and 10 the algorithm
requires 2.8 s, 3.4 s, and 5 s to find the optimal solution. For
r = 10 the algorithm finds an optimal solution in the first
ascent for all the instances.

Let us now consider a random NKq-Landscape, one that
does not use adjacent interacting variables. In Figure 8 we

443

plot the quality of the best solution as a function of time.
The instance used has n = 10, 000, K = 2 and q = 8.
The plot shows the average over 30 randomly generated in-
stances. We observe the same behaviour as in the adjacent-
model. The only remarkable difference is that the instance
dependent initialization is longer and this is why the curves
are displaced in time as r increases.

Figure 8: Best solution fitness over time for the
Hamming-ball next ascent in random-model NKq-
landscapes.

5.3 NKq-landscapes and MAX-kSAT
It has been empirically observed a common pattern in

some industrial instances of MAX-3SAT. The number of
clauses in which the same three variables appear is four
with a high frequency. An hypothesis to explain this pat-
tern is that these groups of clauses appear as a consequence
of the Tseitin transformation [7], which is used to trans-
form a general Boolean expression into CNF. The result is
that these MAX-3SAT instances are similar in structure to
NKq-landscapes instances with K = 2 and q = 5. Thus,
we could expect the Hamming-ball next ascent to share the
same behaviour in MAX-3SAT instances (and MAX-kSAT
instances) as the NKq-landscape instances we have stud-
ied. In order to confirm this hypothesis we show in Fig-
ure 9 the fitness of the best solution against time for 30 ran-
domly generated MAX-3SAT instances with groups of four
clauses with the same variables. The number of variables is
n = 10, 000 and clauses are m = 40, 000.

Figure 9: Best solution fitness over time for the
Hamming-ball next ascent in MAX-3SAT.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have provided an algorithm to efficiently

identify improving moves in a Hamming ball of radius r

around a solution of a k-bounded pseudo-Boolean optimiza-
tion problem that can be written as a sum of subfunctions.

The empirical results on NKq-landscape instances show
that increasing r improves the quality of the solutions found
by next ascent local search. Further work is needed to study
the benefits and limitations of using the Hamming Ball r-
radius neighborhood for problems such as MAX-kSAT. The
efficient algorithm for updating the Scores vector can also be
combined with different strategies to escape from plateaus
and local optima. In particular, a random walk flipping a
small fraction of the decision variables could considerably
reduce the computation time of the random restart.

7. ACKNOWLEDGMENTS
This research was sponsored by the Fulbright program,

the Spanish Ministry of Education (“José Castillejo” mobil-
ity program), the Universidad de Málaga, Andalućıa Tech,
the Spanish Ministry of Science and Innovation and FEDER
under contract TIN2011-28194, VSB-Technical University
of Ostrava under contract OTRI 8.06/5.47.4142 and the
Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant number FA9550-11-1-0088.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The authors would also
like to thank the organizers and participants of the seminar
on Theory of Evolutionary Algorithms (13271) at Schloß
Dagstuhl - Leibniz-Zentrum für Informatik.

8. REFERENCES
[1] W. Chen, D. Whitley, D. Hains, and A. Howe. Second

order partial derivatives for NK-landscapes. In
Proceeding of GECCO, pages 503–510. ACM, 2013.

[2] S. R. Finch. Mathematical Constants, chapter Otter’s
Tree Enumeration Constants, pages 295–316.
Cambridge University Press, 2003.

[3] R. Heckendorn, S. Rana, and D. Whitley. Test
function generators as embedded landscapes. In
FOGA, pages 183–198. Morgan Kaufmann, 1999.

[4] H. H. Hoos and T. Stützle. Stochastic Local Search:
Foundations and Applications. Morgan Kaufman,
2004.

[5] R. Otter. The number of trees. Annals of
Mathematics, 49(3):583–599, 1948.

[6] S. Szeider. The parameterized complexity of k-flip
local search for SAT and MAX SAT. Discrete
Optimization, 8(1):139–145, 2011.

[7] G. S. Tseitin. On the complexity of derivations in the
propositional calculus. Studies in Mathematics and
Mathematical Logic, Part II:115–125, 1968.

[8] D. Whitley and W. Chen. Constant time steepest
descent local search with lookahead for NK-landscapes
and MAX-kSAT. In Proceeding of GECCO, pages
1357–1364. ACM, 2012.

[9] D. Whitley, A. Howe, and D. Hains. Greedy or not?
best improving versus first improving stochastic local
search for MAXSAT. In Proc.of AAAI-2013, 2013.

[10] A. Wright, R. Thompson, and J. Zhang. The
computational complexity of NK fitness functions.
IEEE Trans. Evol. Comp., 4(4):373–379, 2000.

444

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140424132837
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140424132837
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 1
 AllDoc
 5

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

