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ABSTRACT

When the epistasis of the fitness function is bounded by a
constant, we show that the expected fitness of an offspring
of the (141)-EA can be efficiently computed for any point.
Moreover, we show that, for any point, it is always possi-
ble to efficiently retrieve the “best” mutation rate at that
point in the sense that the expected fitness of the resulting
offspring is maximized.

On linear functions, it has been shown that a mutation
rate of 1/n is provably optimal. On functions where epistasis
is bounded by a constant k, we show that for sufficiently high
fitness, the commonly used mutation rate of 1/n is also best,
at least in terms of maximizing the expected fitness of the
offspring. However, we find for certain ranges of the fitness
function, a better mutation rate can be considerably higher,
and can be found by solving for the real roots of a degree-
k polynomial whose coefficients contain the nonzero Walsh
coefficients of the fitness function. Simulation results on
maximum k-satisfiability problems and NK-landscapes show
that this expectation-maximized mutation rate can cause
significant gains early in search.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms

Theory, Algorithms, Performance

Keywords
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1. INTRODUCTION

Evolutionary Algorithms (EAs) are probabilistic direct
search methods that are often applied to the task of func-
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tion optimization. It is well-understood that the choice of
the mutation rate parameter can have a strong impact on
the performance of EAs, and a large number of experimen-
tal and theoretical investigations have been carried out to
determine the optimal mutation rate.

Many experimental studies have suggested a mutation
rate between 0.001 and 0.01 [7, 11, 23]. In many cases, how-
ever, mutation rates that cause an EA to perform well on one
class of functions may produce poor performance on another
class of functions. Indeed, Droste et al. [9] have given theo-
retical evidence that a mutation rate of 1/n (where n is the
input size) guarantees convergence in O(n logn) time for the
(14+1)-EA applied to linear functions. On the other hand,
Jansen and Wegener [17] have introduced a function for
which a mutation rate of 1/n leads to superpolynomial run-
time of the (1+1)-EA with high probability while a mutation
rate of 1"% leads to expected polynomial time convergence
on the same function. Furthermore, Doerr et al. [8] present a
particular pseudo-Boolean function for which changing the
mutation rate of the (1+1)-EA by a constant factor leads
to an exponential performance gap. Such results stress the
importance of an understanding of the relationship between
the mutation rate and the function being searched.

On linear functions, this relationship is well-understood.
For instance, in the case of ONEMAX, it is straightforward to
derive an analytical expression for the probability of a suc-
cessful mutation [1]. In the case of general pseudo-Boolean
functions, the probability of a successful mutation from any
arbitrary point is difficult to know. Furthermore, analyti-
cal expressions specifying optimal mutation rates have not
previously been derived for epistatically bounded pseudo-
Boolean functions.

In this paper, we focus on the simple case of the (14+1)-EA.
We show that when the fitness function is a pseudo-Boolean
function whose epistasis is bounded by a constant, it is al-
ways possible to efficiently compute the ezpected fitness of
a mutation from each string for a given rate. We show that
it is then always possible to solve for the mutation rate that
maximizes the expected fitness of the offspring for any point.

1.1 The (1+1)-EA

We concentrate on the (141)-EA applied to the task of
maximizing pseudo-Boolean functions, i.e., those of the form
f:{0,1}™ — R. The (1+1)-EA has been subject to a num-
ber of theoretical studies [9, 10, 17, 21, 22]. The algorithm
is presented below, parameterized by mutation rate p.



(1+1)-EA(p)

1 Choose z € {0,1}" uniformly at random

2 while stopping criteria not met

3 do

4 Yy<—T

5 Flip each bit of y independently with prob. p
? if f(y) > f(x)

then z «— y

The mutation rate parameter p controls the degree to
which each search point is perturbed to produce the next
search point. Often, a constant mutation rate of p = 1/n
is recommended [3, 21], especially for linear functions. On
functions with nonlinearity, there is strong evidence that the
optimal mutation rate is time-dependent [1, 4, 15, 16].

For some functions, it is possible to compute the exact
probability of a successful mutation as a function of fitness
level and mutation rate [3, 17]. This is especially useful in
the case of runtime analysis because it allows one to bound
the expected number of mutations until a successful offspring
is produced. However, in the case of general pseudo-Boolean
functions, this probability is difficult to compute. When
this probability is not known, one solution is to use self-
adaptation [2] in which each individual is augmented with
an encoding of its own mutation rate and the rate is adapted
along with the function parameters.

While linear, unimodal functions have a provably optimal
mutation rate of 1/n, Bick pointed out that when the fitness
is multimodal, a search for a dynamically varying mutation
rate different from a constant value may be worthwhile to
overcome local optima [3]. On the classical LEADINGONES
function, Béttcher, Doerr, and Neumann [5] derived an ex-
act expression for the expected runtime of a (141)-EA as
a function of mutation rate and proved that the standard
1/n rate recommended for linear functions is suboptimal.
They also showed that a time-varying mutation rate can
improve the runtime. Hesser and Méinner [15] presented a
theoretical argument that suggested the mutation probabil-
ity in a population-based GA employing crossover should
decrease with time. In this paper we also find evidence for
this on epistatically k-bounded functions. In fact, we find
that each point has its own “expectation-best” mutation rate
that maximizes the expected fitness of its offspring. This
rate changes in response to the relationship between the fit-
ness of the point itself and the expected fitness of points that
lie within Hamming distance k.

We now show that on an epistatically k-bounded pseudo-
Boolean function, even if we cannot recover the optimal mu-
tation rate (in terms of success probability) for a point, we
can at least efficiently compute the mutation rate that max-
imizes the expected fitness of the offspring.

2. PRELIMINARIES

Let f: {0,1}" — R be a pseudo-Boolean function. We
say f is k-bounded if it can be written as the sum over
subfunctions that each depend on at most k bits. In this
paper we will assume that the range of f is nonnegative. In
the context of function optimization and search, adding an
arbitrary constant to satisfy this constraint will not affect
the behavior of the algorithm.

For any z € {0,1}" we will denote the b*™" element of the
string = as z[b]. We denote [{b : z[b] = 1}| simply as |z|.
Any k-bounded pseudo-Boolean function can be written in
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its orthogonal Walsh basis expansion

2" —1

> wipi(a)

=0

f(@)

where w; is a real value corresponding to the i*® Walsh co-
efficient and v;(z) is the ™ Walsh function defined as

i) = [J -,
b=1

Here, the i in the exponent is taken to be in its length-n
binary string representation.

Let z € {0,1}". The Hamming sphere of radius r around
x is the set of points {y € {0,1}" : H(z,y) = r}. We will
write the expectation of f over a sphere of radius r around
T as

ST >

-1
r
{yH(z,y)=r}

this is interpreted as the expected fitness of a bitstring drawn
uniformly at random from points lying at radius r from x.
Sutton et al. [24] showed that

)

where IC,.(|i],n) is the order-r Krawtchouk polynomial [20],

K (lilm) = 3 <'j> (’”;_';')U)j.

In the case that f is k-bounded there are at most a poly-
nomial number of nonzero Walsh coefficients w; (see e.g.,
Heckendorn et al. [13]); hence S can always be efficiently
computed. Furthermore, so long that f is k-bounded, if the
Walsh coefficients are not known a priori, they can be ef-
ficiently retrieved deterministically in O(n*) time [18], or
stochastically with negligible error in O(n?logn) time [14].
If there are m nonzero Walsh coefficients, Choi et al. [6]
present an O(mlogn) adaptive randomized algorithm for
finding all of them with high probability.

F(),

S: = (1)

> Ke(lil, n)witpi(x)

iw; #0

3. MUTATION RATES

Applying standard mutation to an element x € {0,1}" is
analogous to performing n independent Bernoulli trials to
determine whether or not to change each bit of z. Thus, the
probability that the offspring of  under mutation with rate
p lies at Hamming distance r from « is distributed binomi-
ally: (7)p"(1 — p)"~". Letting

ar= Y Kelil,n)witi(z),

B:w; #0

(2)

we can immediately compute the expected fitness of the off-
spring as



We can re-express Equation (3) as a degree-n polynomial in
p as

Mz(p):A0+A10+A2p2+~“+Anp” (4)

where

Am: Am —¢ n—m—i—é) -1 l. 5
> ( AN IEY (5)
When f is epistatically bounded by a constant, the Walsh
coefficients can be found in polynomial time and the coeffi-
cients A,, can be efficiently computed. Later, we will also
see that it is possible to further bound the degree of this
polynomial.

To find the mutation rate p which maximizes the expected
fitness of the offspring of  we simply need to find

arg max M, (p) = argmax Ao + Aip + A2p2 + o+ App™.
0<p<1 0<p<1

The first and second derivatives of the expected fitness are

d e
%Mz(p) = A1 +2Ap+ 3Asp2 4+ -+ nAnp !

and
d2
dp?

It is easy to find the stationary points of M;(p) by nu-
merically solving for the real roots of %Mz(p). Of course,

we can use the so-called “second derivative test” to test for
concavity and solve for the local maxima point set

d &
M= {p: d—pMz(p) =0 and d—pQMz(p) < 0}.

M, (p) = 2A2 + 6A3p+ 12144,02 +--+n(n— l)Anp"72.

The mutation rate that maximizes the expected fitness of
the offspring is easily retrieved by finding the point p* €
(M N10,1]) U{0,1} such that M, (p*) is maximal.

3.1 Degeneracy: when no mutation is “best”

The polynomial defined in (4) always has a maximum in
the interval [0,1]. The degenerate case is when M, (p) is
monotonically decreasing and no stationary points lie within
the interval. Moreover, it is possible that any maxima ly-
ing within the interval have evaluation strictly less than
M (0). In this case, the “optimal” value is p* = 0. Since
M, (0) = f(x), this means that there is no possible muta-
tion rate (constant across bitstrings) that will produce an
offspring whose expectation is greater than f(z): the fitness
of the current point. This corresponds to a local optimum in
“expectation space”, that is, any mutation is disimproving
in expectation. In Sections 4 and 5 we will find conditions
on the fitness of f in which this degeneracy must hold for
linear functions and k£ > 1-bounded functions, respectively.

Choosing a suitable nonzero mutation rate.

When any mutation rate is expected to produce an off-
spring with lower fitness, the optimal choice to maximize
expected fitness is to perform no mutation. Instead, we
would like to perform mutations that, in some sense, mini-
mize the expected loss in fitness.

Suppose p* = 0. Let 0 < p <« 1 be any positive value
close to zero. Then we know

Ma(p) = (L=p)" f(z)+ Y p"(1=p)"7"S; < Ma(0) = f(a).

r=1

Ignoring the higher order terms we can write

(1=p)"f(z) <Ma(p) < f(2).

Choosing a mutation rate p = k/n means that in expecta-
tion, k£ bits will be changed. We can recover the “standard”
recommended mutation rate of p = 1/n by observing from
the above inequality,

(1 - %) f() <M, (S) < J(@).

Asymptotically we have
e " f(z) < M, (%) < f(z).

The lower bound on M. (%) is maximized when k = 1. Thus,
when the offspring is expected to be disimproving, the muta-
tion rate 1/n maximizes the lower bound on the expectation
of the fitness of the offspring under the constraint that we
flip at least 1 bit in expectation. Moreover, in this case we
know the expected fitness of the offspring of x is asymptot-
ically bounded below by e™* f(z).

The slope of the M (p) polynomial at zero tells us how
quickly the expected fitness falls off by choosing close-to-zero
mutation rates. Interestingly, this slope is exactly n times
the difference between the fitness of the current point and
the average fitness over the immediate neighbors at Ham-
ming distance 1. This can be derived easily by observing

that
d
LML (0) = Ay,
p 0) =4

so by (5), the slope of the M (p) polynomial at zero is equal
to a1 — nag. From (2) it is easy to see that

ar= Y Ki(|il,n)with; = nS;, by (1)
rw; #0

and,

ao= Y Ko(lil,n)wip; = f(x)

iw; #0

so the rate of change at zero is equal to n (S}c - f(x)) Of
course this makes intuitive sense: the change in expecta-
tion of very small mutations is completely determined by
the difference between the current point and its immediate
neighbors.

4. LINEAR FUNCTIONS

Many results exist for the linear (or separable) case, that
is, k = 1-bounded pseudo-Boolean functions. In the case of a
linear function, the Walsh basis expansion has only nonzero
terms in the zeroth and first order. Therefore,

ar = ’CT((]?n)wO + Z K:T(lan)wi"pi(x) by (2)

irli|=1

(e L
i:i|=1 j=0
- (“) (1004 52 @) = ) )

n — 2r




and since wo = 27" " o4y f(@) = f is the average fitness
over all bitstrings (see e.g., [12]),

n —2r

(- 1).

=3 (74 22020 (500 )

x (m"_ g> (" e Z)> (-1)",

which simplifies significantly to

f(z if m=0;
An=12(f—f(@) ifm=1;
0 otherwise.

Thus if f is a linear (1-bounded) pseudo-Boolean function,
the expected fitness of an offspring using mutation rate p is
simply

M. (p) = f(2) + 2 (f - f(2)) p.

So in the case of linear functions, the polynomial terms of
order greater than one vanish and the M, (p) polynomial is
always a line with y-intercept f(x) and slope equal to twice
the difference between the mean fitness and the fitness of x.
Therefore we have recovered the well-known result for lin-
ear functions that when f(z) < f, M (1) is maximal (since
the slope is positive) and when f(x) > f, M,(0) is max-
imal (negative slope). On such functions, large mutations
are quickly able to reach the mean value, after which the
smallest mutation probability that still flips at least one bit
in expectation, namely 1/n maximizes the expected fitness
of the offspring. This agrees somewhat with the result of
Droste et al. [9] that on linear functions the (14+1)-EA con-
verges in O(nlogn) steps with this mutation rate, and a
constant mutation rate of much larger or much smaller re-
sults in provably longer convergence times.

Here we also see a weakness in relying solely on the ex-
pected fitness of the offspring to choose a mutation rate. In
the case of linear functions, when f(z) = f, the mutation
rate that maximizes the probability of success is equal to %
(see e.g., [1]). However, using with the M (p) polynomial,
when f(z) = f, the A; term vanishes and M, (p) is a con-
stant function: all mutation rates give the same expectation
of f(x).

‘We can thus conclude that success probability, when avail-
able, presents better high-resolution information about the
optimal mutation rate: i.e., that which maximizes the prob-
ability of a successful offspring. However, on general k-
bounded pseudo-Boolean functions where that probability
is unknown or difficult to compute, the expectation of fit-
ness offers a compromise.

5. FUNCTIONS OF BOUNDED EPISTASIS

Linear functions, while amenable to analysis, are a some-
what restricted class of fitness functions. At the other ex-
treme, the entire set of general pseudo-Boolean functions
is rather expansive. The class of pseudo-Boolean functions
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whose epistasis is bounded by some constant k& contains fit-
ness functions that can be very difficult for evolutionary al-
gorithms, and includes a collection of NP-hard optimization
problems such as maximum k-satisfiability and the unre-
stricted model of NK-landscapes.

In the last section we saw that the M (p) polynomial co-
efficients A,, vanish for m > 1. As expected, one can gen-
eralize the result to k-bounded pseudo-Boolean functions.

PROPOSITION 1. Let f be an arbitrary k-bounded pseudo-

Boolean function. Consider the My (p) polynomial for any
x € {0,1}". If m > k then Am = 0.

PRrROOF SKETCH. The proof is based on showing that the
sum of the first k + 1 terms ¢ = 0,...,k of A, in (5) is
exactly equal to the additive inverse of the sum of the last
m — k terms £ = (k + 1),...,m. This is mostly tedious
manipulation and is thus omitted here. [

It follows from Proposition 1 that in general, when f is
epistatically bounded by a constant k, the expected fitness
of the offspring is a degree k polynomial in the mutation
rate. In order to compute the rate p* that yields the maxi-
mal expected fitness, it is enough to solve for the real roots
of the degree k — 1 polynomial dipMz (p) as described above.

Proposition 1 also asserts that only the fitness of the
points that lie within Hamming distance k of any individual
completely determine the expected fitness of the offspring
since any A,, contains terms involving S} only for r < m.
Thus, as in the linear case, it is enough to compute the mean
fitness in Hamming spheres out to radius k. It follows that
if the mean fitness in spheres of radius one to k are strictly
less than the fitness at x, M, (p) is degenerate and no muta-
tion rate will produce offspring with expected fitness above
the fitness at . We formalize this argument in the following
lemma.

LemMA 1. If ST < S2 for all 0 < r < k, then M,(0) s
maximal.

PRrROOF. Choose 0 < p < 1. Then
1— nSO n 7 1— nfTSr
(1-p)"S; + ; <T>p (1-p)" 'S},

ng0 - n s n—rg0
<(1-p) Sz+;<r>p(l p)" S,

Se (i <Z> p(1— p)"’")

r=1
< M,(0).
Since the choice of p was arbitrary, and, by Proposition 1
all coefficients above k vanish, it follows that M (0) is max-
imal. O

M. (p)

Clearly, when k£ > 1, k-bounded functions do not have
simple linear M (p) polynomials as we saw in the previous
section. To illustrate this we plot the M, (p) polynomials
for several random points drawn from various k-bounded
functions in Figure 1.

Heckendorn et al. [13] among others proposed using NK-
landscapes and k-satisfiability problems as test problem do-
mains for evolutionary algorithms. Since both are represen-
tative k-bounded pseudo-Boolean functions we now report
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Figure 1: M,(p) polynomials for random points in
the MAX-3-SAT search space (n = 100) [TOP] and NK-
landscapes (N = 100, K = 3) [BOTTOM].

the results of a number of numerical simulations that study
the p* mutation rate and compare it to static rates found in
the literature.

5.1 Unrestricted NK-landscapes

The NK-landscape model [19] is a stochastic method for
constructing fitness functions over binary sequences of length
n. The model was developed to study how epistasis affects
the ruggedness of the fitness landscape. The fitness function
for the NK model is defined as

$@) = 3" g (il oo} o), alb2))

where g; : {0,1}%T! — [0,1] gives the fitness contribution
of the 7% bit in z, and K other bits {b{’}. Typically, the
codomain values for g; are generated uniformly at random
and fixed during search.

There are two variants of the NK model. In the adjacent
model, the set of K bits {bgj )} that interact epistatically
with bit j are adjacent to bit j on the bit string. In the un-
restricted model (sometimes called the random model), the

epistatic bit pattern {bgj)} for the " bit is drawn randomly
(and fixed) from the n — 1 remaining bits. Thus for each bit
7, there are (") possible selections for the set {bij)}. Since
the fitness function is expressed as the sum of n functions
each of which depends only on a single bit and the K bits
in its epistatic pattern, the function is epistatically bounded
by K +1. Wright et al. [25] proved that the problem of find-
ing the global optimum for the adjacent model is in P by
giving a P-time dynamic programming solution. Moreover,
they proved that the unrestricted model is NP-hard. In this
paper, we concentrate on the unrestricted NK model.

To illustrate the behavior of the optimal rate p* we per-
formed 500 trials of 500 generations each of the (1+1)-EA
employing three different mutation rates: 1) the commonly
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Figure 2: Log-log plot of mean mutation rates for
(141)-EA on 500 trials of 500 generations each on
an unrestricted NK-landscape model with n = 100,
K =3.

recommended 1/n, 2) a “hard-wired” rate of 0.001, and 3)
the expectation-optimal rate given by the maximum of M (p)
at each point. The NK-landscape function parameters were
n = 100 and K = 3. In each case, the extra time necessary
to solve for the real roots of dipr (p) was negligible since
the degree of the polynomial was so low (k = 4). When the
expectation maximal rate p* reaches degeneracy (i.e., the
maximum is at M, (0)), we revert to the mutation rate of
1/n that we proved in Section 3.1 maximizes the expected
fitness of the offspring while imposing the constraint that at
least some bits are flipped in expectation.

In Figures 2 and 3 we plot the average mutation rate p as
a function of generation. As the fitness of the points remain
below the average fitness within Hamming radius k, there
is a significant increase from the recommended rate of 1/n.
However, very quickly the fitness of the point exceeds the
expectation of the fitness within radius k and M, (p) reaches
degeneracy and the rate reverts to 1/n. Until degeneracy is
attained, this trend coincides with claims of others [3, 15]
that the best mutation rate tends to decrease during search.

On the NK-landscape with bounded epistasis, the opti-
mal rate p* reverts quickly to the recommended rate of 1/n.
However, we see that it leads to significant gains very early
in search. In Figure 4 we plot the mean fitness values over
time of the (1+1)-EA for a representative NK-landscape us-
ing the three mutation rate schemes. Before the p* rate be-
comes degenerate, significant gains are made over the static
1/n rate.

5.2 Maximum k-satisfiability

Another well-studied problem that yields a k-bounded fit-
ness function is the NP-hard maximum k-satisfiability prob-
lem (MAX-k-SAT). An instance of MAX-k-SAT is given by
a Boolean formula over n variables in conjunctive normal
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0.001

Figure 3: Log-log plot of mean mutation rates for
(141)-EA on 500 trials of 500 generations each on
an unrestricted NK-landscape model with n = 100,
K =2.
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fitness

0.55

10 20 50 100 500
generation

Figure 4: Log-log plot of mean fitness of (14+1)-EA
on 500 trials of 500 generations each on an unre-
stricted NK-landscape model with n = 100, K = 3.

form where each disjunctive clause is of length at most k.
The objective is to find a Boolean assignment to the n vari-
ables that maximizes the number of clauses satisfied. Since
the set of all Boolean assignments to n variables is isomor-
phic to {0,1}", the fitness function can be expressed as a
pseudo-Boolean function that counts how many clauses in
the formula are satisfied under a corresponding assignment.
Supposing the formula has a family of m clauses, the fitness
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Figure 5: Log-log plot of mean fitness of (141)-EA
on 500 trials of 500 generations each on an unre-
stricted NK-landscape model with n =100, K = 2.

function can be written as
f@)=>gi(x)
j=1

where g; is a binary indicator function that evaluates to 1 if
and only if clause j is satisfied under the assignment corre-
sponding to z. Since g; only depends on the state of the vari-
ables belonging to clause j, and this quantity is bounded by
k, the MAX-k-SAT fitness function is epistatically bounded
by k.

We performed 500 trials of 500 generations each of the
(141)-EA on two randomly generated Boolean formulas with
50 variables and 218 clauses, and 100 variables and 430
clauses. The algorithm employed the three different mu-
tation rates discussed above. Again, when the optimal rate
reaches degeneracy, we revert to the rate that maximizes
expected fitness while enforcing bits to be flipped in expec-
tation.

In Figure 6 we report the p values found during search.
Again, due to the simplicity of the M, (p) polynomial, the
solution time is negligible to compute p* in each case. In
both instances, we see again the decrease of the expectation-
optimal rate quickly to the degenerate rate where it then
reverts to the standard 1/n mutation rate around genera-
tion 20 to 50. The initially higher expectation-optimal rate
shown in Figure 6 translates to early gains in search as re-
ported in Figure 7 when compared to standard and hard-
wired mutation rates.

6. CONCLUSION

We have shown that when the epistasis of the fitness func-
tion is bounded by a constant k, it is possible to efficiently
compute the expected fitness of a mutation in the (1+1)-EA
for any given mutation rate. Moreover, it is also possible to
efficiently compute for any point the mutation rate that re-
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Figure 6: Log-log plot of mean mutation rates for the (14+1)-EA on 500 trials of 500 generations each on
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Figure 7: Log-log plot of mean fitness values for the (14+1)-EA on 500 trials of 500 generations each on

MAX-3-SAT instances.

sults in the highest possible expected fitness (supposing that
the mutation rate must be constant across the string).

We have also proved that, for strings with fitness higher
than the expectation in Hamming spheres up to radius k,
the frequently recommended rate of 1/n yields the maximal
expected fitness of offspring while imposing the constraint
that some bits are flipped in expectation.
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