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Abstract
Parameterized runtime analysis seeks to understand the influence of problem structure
on algorithmic runtime. In this paper, we contribute to the theoretical understanding of
evolutionary algorithms and carry out a parameterized analysis of evolutionary algo-
rithms for the Euclidean traveling salesperson problem (Euclidean TSP). We investigate
the structural properties in TSP instances that influence the optimization process of evo-
lutionary algorithms and use this information to bound their runtime. We analyze the
runtime in dependence of the number of inner points k. In the first part of the paper, we
study a (μ + λ) EA in a strictly black box setting and show that it can solve the Euclidean
TSP in expected time O

(
n · A(ε) · max

{
(μ/λ) · n2, 1

} + (μ/λ) · n4k(2k − 1)!
)

where A is a
function of the minimum angle ε between any three points. Based on insights provided
by the analysis, we improve this upper bound by introducing a mixed mutation strat-
egy that incorporates both 2-opt moves and permutation jumps. This strategy improves
the upper bound to O

(
n · A(ε) · max

{
(μ/λ) · n2, 1

} + (μ/λ) · n2k(k − 1)!
)
. In the second

part of the paper, we use the information gained in the analysis to incorporate domain
knowledge to design two fixed-parameter tractable (FPT) evolutionary algorithms for
the planar Euclidean TSP. We first develop a (μ + λ) EA based on an analysis by M.
Theile, 2009, ”Exact solutions to the traveling salesperson problem by a population-
based evolutionary algorithm,” Lecture notes in computer science, Vol. 5482 (pp. 145–155),
that solves the TSP with k inner points in O(max{2kk2n2λ-1, n}) generations with proba-
bility 1 − e-�(n). We then design a (μ + λ) EA that incorporates a dynamic programming
step into the fitness evaluation. We prove that a variant of this evolutionary algorithm
using 2-opt mutation solves the problem after O(max{(k − 2)!k2k-2λ-1, 1}) steps in ex-
pectation with a cost of O(nk) for each fitness evaluation.

Keywords
Evolutionary algorithms, runtime analysis, parameterized analysis, combinatorial
optimization.

1 Introduction

In many real applications, the inputs of an NP-hard combinatorial optimization problem
may be structured or restricted in such a way that it becomes tractable to solve in practice
Manuscript received: October 9, 2012; revised: August 30, 2013 and December 6, 2013; accepted: January 8,
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despite having a worst-case exponential time bound. Parameterized analysis seeks to
address this by expressing algorithmic runtime in terms of an additional hardness
parameter that isolates the source of exponential complexity in the problem structure.
In this paper, we study the application of evolutionary algorithms (EAs) to the Euclidean
traveling salesperson problem (TSP) and consider the runtime of such algorithms as
a function of both problem size and a further parameter that influences how hard the
problem is to solve by an EA.

1.1 The Euclidean Traveling Salesperson Problem

Iterative heuristic methods (such as local search and evolutionary algorithms) that rely
on the exchange of a few edges such as the well-known 2-opt (or 2-change) operator
are popular choices for solving large-scale TSP instances in practice. This is partly due
to the fact that they have a simple implementation and typically perform well empir-
ically. However, for these algorithms, theoretical understanding still remains limited.
Worst-case analyses demonstrate the existence of instances on which the procedure can
be inefficient. Chandra et al. (1999), building on unpublished results due to Lueker,
have shown that local search algorithms employing a k-change neighborhood opera-
tor can take exponential time to find a locally optimal solution. Even in the Euclidean
case, Englert et al. (2007) have recently shown that a local search algorithm employing
inversions can take worst-case exponential time to find tours that are locally optimal.

If the search operator is restricted to specialized 2-opt moves that remove only edges
that intersect in the plane, van Leeuwen and Schoone (1981) proved that a tour that has
no such planar intersections can be reached in O(n3) moves, even if a move introduces
further intersecting edges. If the vertices are distributed uniformly at random in the unit
square, Chandra et al. (1999) showed that the expected time to find a locally optimal
solution is bounded by O(n10 log n). More generally, for so-called φ-perturbed Euclidean
instances, Englert et al. (2007) proved that the expected time to find a locally optimum
solution is bounded by O(n4+1/3 log(nφ)φ8/3). These results also imply similar bounds
for simple ant colony optimization algorithms as shown in Kötzing et al. (2012).

To allow for a deeper insight into the relationship between problem instance struc-
ture and algorithmic runtime, we appeal in this paper to the theory of parameterized
complexity (Downey and Fellows, 1999; Flum and Grohe, 2006). Rather than expressing
the runtime solely as a function of problem size, parameterized analysis decomposes
the runtime into further parameters that are related to the structure of instances. The
idea is to find parameters that partition off the combinatorial explosion that leads to
exponential runtimes (Downey and Fellows, 1999).

In the context of TSP, a number of parameterized results currently exist. Deı̆neko
et al. (2006) showed that, if a Euclidean TSP instance with n vertices has k vertices interior
to the convex hull, there is a dynamic programming algorithm that can solve the instance
in time bounded by g(k) · nO(1), where g is a function that depends only on k. This means
that this parameterization belongs to the complexity class FPT, the class of parameter-
ized problems that are considered fixed-parameter tractable. Of course, membership
in FPT depends strongly on the parameterization itself. For example, the problem of
searching the k-change neighborhood for metric TSP is hard for W[1] due to Marx (2008).
FPT ⊆ W[1], but the containment is conjectured to be proper (Flum and Grohe, 2006).

1.2 Computational Complexity of Evolutionary Algorithms

Initial studies on the computational complexity of EAs consider their runtime on classes
of artificial pseudo-Boolean functions (Droste et al., 2002; He and Yao, 2001, 2003; Yu and
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Zhou, 2006). The goal of these studies is to consider the impact of the different modules of
an EA and to develop new methods for their analysis. This early work was instrumental
in establishing a rigorous understanding of the behavior of EAs on simple functions, for
identifying some classes of problems that simple EAs can provably solve in expected
polynomial time (Droste et al., 2002), and for disproving widely accepted conjectures
(e.g., that evolutionary algorithms are always efficient on unimodal functions; Droste
et al., 1998).

More recently, classical polynomial-time problems from combinatorial optimiza-
tion such as minimum spanning trees (Neumann and Wegener, 2006, 2007) and shortest
paths (Baswana et al., 2009; Doerr et al., 2011; Scharnow et al., 2004) have been con-
sidered. In this case, one does not hope to beat the best problem-specific algorithms
for classical polynomial solvable problems. Instead, these studies provide interesting
insights into the search behavior of these algorithms and show that many classical
problems are solved by general-purpose algorithms such as EAs in expected polyno-
mial time.

Research on NP-hard combinatorial optimization problems such as makespan
scheduling, covering problems, and multi-objective minimum spanning trees (Neu-
mann, 2007; Witt, 2005) show that EAs can achieve good approximations for these
problems in expected polynomial time. In the case of the TSP, Theile (2009) has proved
that a (μ + 1) EA based on dynamic programming can exactly solve the TSP in at most
O(n32n) steps when μ is allowed to be exponential in n. For a comprehensive presenta-
tion of the different results that have been achieved see, for example, the recent text of
Neumann and Witt (2010).

Algorithmic runtime on NP-hard problems can be studied in much sharper detail
from the perspective of parameterized analysis, and this has only recently been started
in theoretical work on EAs. Parameterized results have been obtained for the vertex
cover problem (Kratsch and Neumann, 2009), the problem of computing a spanning
tree with a maximal number of leaves (Kratsch et al., 2010), variants of maximum
2-satisfiability (Sutton et al., 2012), and makespan scheduling (Sutton and Neumann,
2012).

1.3 Our Results

In this paper, we carry out a parameterized complexity analysis for evolutionary algo-
rithms on the planar Euclidean TSP. Specifically, using the parameterization of Deı̆neko
et al. (2006), we prove upper bounds on the expected time for certain EAs to solve pla-
nar TSP instances as a function of n, the number of points in the instance, and of k, the
number of inner points, that is, the points that lie on the interior of the convex hull of the
planar TSP instance. Our motivation is to use this parameterization from the classical
algorithms community to understand the influence of the number of inner points on the
runtime of a black box EA, and then to design EAs that exploit this problem structure
to obtain fixed-parameter tractable runtimes.

In the first part of the paper, we investigate EAs applied to the planar Euclidean TSP
entirely from a black box perspective. We consider the parameterized runtime bounds
on algorithms that do not have access to any concrete problem information. Specifically,
in the black box scenario, algorithms can only access the fitness value of each candidate
solution as measured by tour length. Our results are for the (μ + λ) EA which operates
on a population of μ permutations (candidate Hamiltonian cycles) and produces λ

offspring in each generation using a mutation operator based on 2-opt. This analysis
provides further insight into the optimization process that allows us to design a mixed
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mutation operator that uses both 2-opt moves and permutation jumps and improves
the upper bound on the expected runtime of the (μ + λ) EA. This part of the paper is
an extension of work presented at AAAI 2012 (Sutton and Neumann, 2012).

In the second part of the paper, we leave the black box setting and consider EAs that
have access to both fitness values and the ordering of the points that lie on the convex
hull. This ordering can be precomputed in polynomial time. Using this approach, we
design two fixed-parameter tractable (FPT) evolutionary algorithms for the parameteri-
zation of Deı̆neko et al. This first algorithm builds on the previous study of Theile (2009)
and the general framework for evolutionary algorithms for dynamic programming pre-
sented in Doerr et al. (2011). It works with a large population where each individual can
be seen as an entry of the dynamic programming table of the classical approach. The
population size grows exponentially with the number of inner points and we assume
that this result is mainly of theoretical interest.

While the first FPT algorithm is interesting mostly from a theoretical perspective,
our second FPT algorithm is highly practical as a heuristic search algorithm. Instead of
searching for a permutation of the n given points, we apply evolutionary search only
to find a good permutation of the k inner points. The outer points (lying on the convex
hull) have to appear in cycling order γ according to the convex hull in any optimal
solution. For a fixed permutation x on the inner points, the best possible tour according
to γ and x can be computed in time O(nk) using dynamic programming. We make
use of these ideas and propose to use EAs that work with permutations of the inner
points. Our theoretical investigations show that commonly used mutation operators
for permutations such as inversions, jumps, and exchanges yield fixed-parameter EAs.
Furthermore, our experimental investigations confirm that this approach leads to sig-
nificantly better results if the number of inner points is not too large. This part of the
paper is an extension of work presented at CEC 2013 (Nallaperuma et al., 2013).

This paper is organized as follows. In Section 2 we introduce the problem, state
some preparatory material, and discuss parameterized analysis. In Section 3 we study
the runtime of a (μ + λ) EA on Euclidean TSP instances in a black box setting. We first
consider the time it takes for such algorithms to solve instances whose points lie in
convex position, that is, have no inner points. We then prove rigorous runtime bounds
for the algorithms as a function of the number of inner points in an instance. In Section
4, we design two EAs with access to some instance-specific information and prove that
they are fixed-parameter tractable EAs, that is, they solve the planar TSP with k inner
points in expected time g(k) · nO(1) where g depends only on k. We conclude the paper
in Section 5.

2 Preliminaries

Let V be a set of n points in the plane labeled as [n] = {1, . . . , n} such that no three
points are collinear. We consider the complete, weighted Euclidean graph G = (V,E)
where E is the set of all 2-sets from V. The weight of an edge {u, v} ∈ E is equal to d(u,v):
the Euclidean distance separating the points. The goal is to find a set of n edges of
minimum weight that form a Hamiltonian cycle in G. A candidate solution of the TSP
is a permutation x : V → V . We will sometimes associate a permutation x with its linear
form, which is simply the length-n sequence (x(1), x(2), . . . , x(n)). The Hamiltonian cycle
in G induced by a permutation x is the set of n edges

C(x) = {{x(1), x(2)}, {x(2), x(3)}, . . . , {x(n − 1), x(n)}, {x(n), x(1)}} .
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Figure 1: Edges that intersect at a point p form the diagonals of a convex quadrilateral
in the plane. Interior edges define nondegenerate triangles with given angles.

The optimization problem is to find a permutation x which minimizes the fitness
function

f (x) =
∑

{u,v}∈C(x)

d(u, v). (1)

Geometrically, it will often be convenient to consider an edge {u, v} as the unique
planar line segment with end points u and v. We say a pair of edges {u, v} and {s, t}
intersect if they cross at a point in the Euclidean plane. An important observation, which
we state here without proof, is that any pair of intersecting edges form the diagonals of
a convex quadrilateral in the plane (see Figure 1).

PROPOSITION 1: If {u, v} and {s, t} intersect at a point p, they form the diagonals of a convex
quadrilateral described by points u, s, v, and t. Hence edges {s, u}, {s, v}, {t, v}, and {t, u} form
a set of edges that mutually do not intersect.

DEFINITION 1: A tour C(x) is called intersection-free if it contains no pairs of edges that intersect.

The convex hull of V is the smallest convex set containing V. A point v ∈ V is called
an inner point if v lies in the interior of the convex hull of V. We denote as Inn(V ) ⊂ V

the set of inner points of V. A point v ∈ V \ Inn(V ) is called an outer point. The set of
such points we denote by Out(V ). Hence Inn(V ) and Out(V ) partition V.

Note that every tour C(x) for all permutations x on V corresponds to a set of edges
that describe a closed polygon in the plane. The covertex class of a polygon is the class
of all polygons that have the same vertex set as the given polygon. The following two
theorems are due to Quintas and Supnick (1965).

THEOREM 1: A planar polygon that is shortest of its covertex class and whose vertices are
noncollinear cannot intersect itself.

THEOREM 2: A planar polygon that is shortest of its covertex class and whose vertices are
noncollinear must contain the vertices on the boundary of its convex hull in their cyclic order.

We call the unique cyclic order that arises from the points in Out(V ) hull-order.
We say a permutation x respects hull-order if any two points in the subsequence of x
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induced by Out(V ) are consecutive in x only if they are adjacent along the boundary of
the convex hull of V. Thus, Theorem 2 states that, if x is a minimum of f, then x respects
hull-order. We will actually need a slightly stronger result than the one provided by the
claim of Theorem 2. This is captured by the following.

LEMMA 1: If C(x) is intersection-free, then x respects hull-order.

Lemma 1 follows from arguments in the proof of Theorem 2 above. In particular,
Quintas and Supnick (1965) show that if a polygon does not contain the vertices on the
boundary of the convex hull in their cyclic order, then the polygon must intersect itself
(and hence, by Theorem 1, cannot be optimal). The claim of the lemma follows then by
contraposition.

2.1 Parameterized Analysis

Parameterized complexity theory is an extension to traditional computational com-
plexity theory in which the analysis of hard algorithmic problems is decomposed into
parameters of the problem input. This approach illuminates the relationship between
hardness and different aspects of problem structure because it often isolates the source
of exponential complexity in NP-hard problems.

A parameterization of a problem is a mapping of problem instances into the set
of natural numbers. We are interested in expressing algorithmic complexity in terms
of both problem size and the extra parameter. Formally, let L be a language over a
finite alphabet �. A parameterization of L is a mapping κ : �∗ → N. The corresponding
parameterized problem is the pair (L, κ).

For a string x ∈ �∗, let k = κ(x) and n = |x|. An algorithm deciding x ∈ L in time
bounded by g(k) · nO(1) is called a fixed-parameter tractable (or fpt-) algorithm for the
parameterization κ . Here g : N → N is an arbitrary but computable function. Similarly,
an algorithm that decides a parameterized problem (L, κ) in time bounded by ng(k) is
called an XP-algorithm.

When working with the runtime of randomized algorithms such as evolutionary
algorithms, one is often interested in the random variable T which somehow measures
the number of generations the algorithm must take to decide a parameterized problem.
A randomized algorithm with expected optimization time E(T ) ≤ g(k) · nO(1) (respec-
tively, E(T ) ≤ ng(k)) is a randomized fpt-algorithm (respectively, XP-algorithm) for the
corresponding parameterization κ .

In the case of the Euclidean TSP on a set of points V, we want to express the
runtime complexity as a function of n and k where n = |V | and k is the number of inner
points: the vertices that lie in the interior of the convex hull of V. For the corresponding
optimization problem, we are interested in the runtime until the optimal solution is
located.

3 Black Box EAs

We begin by investigating the parameterized runtime behavior of simple randomized
search heuristics on the Euclidean TSP purely from a black box perspective. From
this perspective, we assume that the heuristics do not have any access to problem
information other than the fitness of an individual as measured by the tour length
induced by the corresponding permutation.
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Figure 2: The effect of the inversion σ I
ij operation on a Hamiltonian cycle. Inverting a

subsequence in the permutation representation corresponds to a 2-opt (or 2-change)
move in which a pair of edges in the current Hamiltonian cycle are replaced by a pair
of edges not in the current cycle.

3.1 Permutation Operators

Randomized search heuristics that are applied to solving TSP instances are usually
designed to iteratively search the space of permutations in order to minimize the fitness
function defined in Equation (1). Each permutation corresponds to a particular Hamil-
tonian cycle in the graph. To move through the space of candidate solutions, move or
mutation operators are often constructed based on some kind of elementary operations
on the set of permutations on V. For the black box algorithms, we will consider two
such operations: inversions and jumps, which we define as follows.

DEFINITION 2: The inversion operation σ I
ij transforms permutations into one another by segment

reversal in their linear forms.
A permutation x is transformed into a permutation σ I

ij [x] by inverting the subsequence of
the linear form of x from position i to position j where 1 ≤ i < j ≤ n.

x = (x(1), . . . , x(i − 1), x(i), x(i + 1), . . . , x(j − 1), x(j ), x(j + 1), . . . , x(n)),

σ I
ij [x] = (x(1), . . . , x(i − 1), x(j ), x(j − 1), . . . , x(i + 1), x(i), x(j + 1), . . . , x(n)).

In the space of Hamiltonian cycles, the permutation inversion operation is essen-
tially identical to the well-known 2-opt (or 2-change) operation for TSP. The usual effect
of the inversion operation is to delete the two edges {x(i − 1), x(i)} and {x(j ), x(j + 1)}
from C(x) and reconnect the tour C(σ I

ij [x]) using edges {x(i − 1), x(j )} and {x(i), x(j +
1)} (see Figure 2). Here and subsequently, we consider arithmetic on the indices to be
modulo n, that is, 1 − 1 = n and n + 1 = 1. Since the underlying graph G is undirected,
when (i, j ) = (1, n), the operation has no effect because the current tour is only reversed.
There is also no effect when (i, j ) ∈ {(2, n), (1, n − 1)}. In this case, it is straightforward
to check that the edges removed from C(x) are equal to the edges replaced to create
C(σ I

ij [x]).

DEFINITION 3: The jump operation σ
J
ij transforms permutations into one another by position

shifts in their linear form. A permutation x is transformed into a permutation σ
J
ij [x] by moving

the element in position i in the linear form of x into position j in the linear form of σ J
ij [x] while the

Evolutionary Computation Volume 22, Number 4 601



A. M. Sutton, F. Neumann, and S. Nallaperuma

x(i − 1)

x(i + 1)

x(j − 1)

x(j + 1) x(j)

x(i)

x(1)

x(n)

x(i − 1)

x(i + 1)

x(j − 1)

x(j + 1) x(j)

x(i)

x(1)

x(n)

Figure 3: The effect of the jump operation σ
J
ij on a Hamiltonian cycle.

other elements between position i and position j are shifted in the appropriate direction. Without
loss of generality, suppose i < j . Then,

x = (x(1), . . . , x(i − 1), x(i), x(i + 1), . . . , x(j − 1), x(j ), x(j + 1), . . . , x(n)),

σ
J
ij [x] = (x(1), . . . , x(i − 1), x(i + 1), . . . , x(j − 1), x(j ), x(i), x(j + 1), . . . , x(n)).

Since σ
J
i(i+1) and σ

J
(i+1)i have the same effect, there are n(n − 1) − (n − 1) = (n − 1)2

unique jump operations. The jump operator σ
J
ij was used by Scharnow et al. (2004) in

the context of runtime analysis of EAs on permutation sorting problems.

3.2 The (μ + λ) EA

We study the (μ + λ) EA, a population-based EA that employs only mutation and
selection as search operators. The (μ + λ) EA, outlined in Algorithm 1, employs uni-
form selection for reproduction (cf. line 5 of Algorithm 1), and truncation selection for
replacement (see Algorithm 2).

When designing EAs, it is usually desirable to have a mutation operator that is ca-
pable of making sufficiently large changes to candidate solutions. Mutation strategies
for combinatorial structures such as paths and permutations can in some sense sim-
ulate the behavior of simple bitstring mutation by aggregating the mutation operator
and applying it a number of times governed by a Poisson process (Scharnow et al.,
2004). For the TSP, we introduce here the mutation operator called 2-opt-mutation (see
Algorithm 3) that applies to an individual permutation a sequence of s + 1 random in-
version operations where s is drawn from a Poisson distribution with unit expectation.
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Algorithm 2 PP ))select

xAlgorithm 3 2-opt-mutation (   )

If we restrict the mutation operation to a single inversion move and set μ = λ = 1,
the resulting algorithm is randomized local search (RLS), which is simply a randomized hill
climber in the space of permutations using 2-opt moves. RLS, illustrated in Algorithm 4,
operates by iteratively applying random inversion operations to a permutation in order
to try to improve the fitness of the corresponding tours. Unlike the (μ + λ) EA, RLS can
only generate immediate inversion neighbors so it can become indefinitely trapped in
local optima (on the other hand, the (μ + λ) EA can eventually escape the local optima,
but possibly only after a very long time).

Evolutionary algorithms are simply computational methods that rely on random
decisions, so we consider them here as special cases of randomized algorithms. To analyze
the run time of such an algorithm, we examine the sequence of best-so-far solutions it
discovers during execution (x(1), x(2), . . . , x(t), . . .) as an infinite stochastic process where
x(t) denotes the best permutation (in terms of fitness) in the population at iteration t.
The goal of runtime analysis is to study the random variable that equals the first time t
when x(t) is a candidate solution of interest (e.g., an optimal solution). The optimization
time of a randomized algorithm is the random variable

T = inf{t ∈ N : f (x(t)) is optimal}. (2)

In the case of the (μ + λ) EA, this corresponds to the number of generations (iterations
of the mutation, evaluation, selection process) that occur before an optimal solution
has been introduced to the population. This is somewhat distinct from the traditional
measure of the number of explicit calls to the fitness function (Auger and Doerr, 2011;
Neumann and Witt, 2010). However, in the case of the (μ + λ) EA, this measurement
can be obtained from T by Tf = μ + λT , since we need μ fitness function calls to
evaluate the initial population and each generation requires evaluating an additional
λ individuals. We discuss this further in Section 3. In this paper, we will estimate the
expected optimization time of the (μ + λ) EA. This quantity is calculated as E(T ), the
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expectation of T. However, we will also report the bounds on E(Tf ), the expected
number of fitness evaluations needed until a solution is found.

DEFINITION 4: Let α be an indicator function defined on permutations of V as

α(x) =
{

1 if C(x) contains intersections;

0 otherwise.

DEFINITION 5: Let β be an indicator function defined on permutations of V as

β(x) =
{

1 − α(x) if f (x) non-optimal

0 otherwise.

The random variable corresponding to optimization time can be expressed as the
infinite series

T =
∞∑
t=1

(
α(x(t)) + β(x(t))

)
. (3)

In order to characterize the behavior of EAs and express their expected runtime in
terms of the number of points n and the number of inner points k, we analyze a Markov
chain generated by the algorithm. We construct the Markov chain as follows. Given a
point set V, each permutation x on V that corresponds to a tour C(x) that is non-optimal
is a unique state in the Markov chain. Finally, every permutation that corresponds to
an optimal tour in V is associated with a single absorbing state opt . We then bipartition
the state space (minus opt) into two sets Sα and Sβ where

Sα = {x : C(x) contains intersecting edges},
and

Sβ = {x : C(x) is intersection-free } \ {opt}.
Note that opt /∈ Sα since the optimal tour cannot contain intersections. In terms of the
Markov chain, the optimization time T is the first hitting time of the state opt . We will
need the following two preparatory lemmas.

LEMMA 2: If there are values 0 < p < 1 and c > 0 with p and c constant with respect to t (but
not necessarily n), such that for any x ∈ Sα , the transition probability from x to some x ′ with
f (x ′) < f (x) − c is bounded below by p, then

E

( ∞∑
t=1

α(x(t))

)
≤ p-1n(dmax − dmin)/c,

where dmax and dmin are the maximum and minimum distances between any two points in V,
respectively.

PROOF: Denote fα = min{f (x) | x ∈ Sα} to be the minimum cost over all tours with inter-
sections. Furthermore, let f ∗ = max{f (x) | x ∈ Sβ ∪ {opt} and f (x) < fα} be the highest
cost of all intersection-free tours that have a strictly lower cost than fα (this is well-
defined since at least the optimal tour has a strictly lower cost than fα). Note that once
the algorithm generates a state z with f (z) ≤ f ∗, it will never return to a state in Sα (since
such as state has strictly worse fitness). We define a nonnegative distance function δ as

δ(x) =
{

f (x) − f ∗ if x ∈ Sα ;

0 otherwise.
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For all x ∈ Sα , f (x) ≥ ndmin. Moreover, f ∗ ≤ ndmax. Hence δ(x) ≤ n(dmax − dmin).
Let (y(1), y(2), . . .) be the stochastic process that is a restriction of (x(1), x(2), . . .) con-

structed by taking only permutations y(t) ∈ Sα in the same order. We consider the drift
of the random sequence {δ(y(t)); t = 1, 2, . . .}.

From any solution y(t), the probability to improve the fitness by at least c is bounded
below by p. Therefore, we have

E(δ(y(t)) − δ(y(t+1))) ≥ cp.

By the additive drift theorem (He and Yao, 2001), the random variable Tα = inf{t ∈ N :
δ(y(t)) = 0} is bounded above by p-1n(dmax − dmin)/c. Finally, the series on the LHS of
the claimed inequality is the total time the algorithm spends in Sα , or more precisely,

∞∑
t=1

α(x(t)) =
∞∑
t=1

α(y(t)) = Tα,

and hence the claim follows. �

LEMMA 3: If there is a constant 0 < q < 1 such that for any x ∈ Sβ , the transition probability
from x to opt is bounded below by q, then

E

( ∞∑
t=1

β(x(t))

)
≤ q-1

PROOF: Again, since q > 0 for any x ∈ Sβ there is a nonzero probability the algorithm
exits the state x and transits to the absorbing state opt . This event is characterized as
an independent Bernoulli trial with success probability at least q. It follows that the
series in the claim can be estimated by a geometrically distributed random variable
with parameter q, and therefore the expected time spent in states contained in the Sβ

partition is bounded above by q-1. �

In Section 3.3 we will introduce a constraint on the angles between edges that give
rise to suitable values for c in the claim of Lemma 2. This, along with corresponding
values for p and q (that appear in the claims of Lemmas 2 and 3, respectively), will
allow us to bound the expected runtime in terms of n and k. Before doing so, it will be
convenient to state a number of lemmas that will be useful in the analysis. To preserve
the flow of the text, we defer their proofs to the appendix.

LEMMA 4: Let x be a permutation such that C(x) is not intersection-free. Then there exists
an inversion that removes a pair of intersecting edges and replaces them with a pair of non-
intersecting edges.

PROOF: (see Appendix). �

Note that it is still possible that the introduced edges intersect with some of the
remaining edges in C(y).

LEMMA 5: Suppose |Inn(V ) | = k. Then there are at most
(

n

k

)
k! distinct intersection-free tours.

PROOF: (see Appendix). �

LEMMA 6: Suppose |Inn(V ) | = k and C(x) is an intersection-free tour on V. Then there
is a sequence of at most k jump operations that transforms x into an optimal permutation.
Similarly, there is a sequence of at most 2k inversion operations that transform x into an optimal
permutation.

PROOF: (see Appendix). �
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Sβ · · ·

opt

q

q q

Sα x · · ·

x′ f(x′) < f(x) − c

p

Figure 4: Partitioned Markov chain with transition probability bounds. Sα contains
all states corresponding to tours that have intersecting edges. Sβ contains all states
corresponding to suboptimal intersection-free tours. Note that x ′ can be in either Sα or
Sβ .

3.3 Angle-Bounding, Quantization, and Resulting Structural Properties

A challenge to the runtime analysis of algorithms that employ edge exchange operations
such as 2-opt is that, when points are allowed in arbitrary positions, the minimum
change in fitness between neighboring solutions can be made arbitrarily small. Indeed,
proof techniques for worst-case analysis often leverage this fact (Englert et al., 2007).
To circumvent this, we impose bounds on the angles between points, which allows us
to express runtime results as a function of trigonometric expressions involving these
bounds. Momentarily, we will refine this further by introducing a class of TSP instances
embedded in an m × m grid. In that case, we will see that the resulting trigonometric
expression is bounded by a polynomial in m.

We say V is angle-bounded by ε for some 0 < ε < π/2 if for any three points u, v,w ∈
V , 0 < ε < θ < π − ε where θ denotes the angle formed by the line from u to v and the
line from v to w. This allows us to express a bound in terms of ε on the change in fitness
from a move that removes an inversion.

LEMMA 7: Suppose V is angle-bounded by ε. Let x be a permutation such that C(x) is not
intersection-free. Let y = σ I

ij [x] be the permutation constructed from an inversion on x that
replaces two intersecting edges in C(x) with two non-intersecting edges.1 Then, if dmin denotes

the minimum distance between any two points in V, f (x) − f (y) > 2dmin

(
1−cos(ε)

cos(ε)

)
.

PROOF: (see Appendix). �

1Lemma 4 guarantees the existence of such an inversion.

606 Evolutionary Computation Volume 22, Number 4



Parameterized Runtime Analyses of EAs for the Planar Euclidean TSP

Figure 5: Quantizing a set of n points in the plane onto an m × m grid. Coordinates are
rounded to the nearest value in a set of m equidistant values.

The lower bound on the angle between any three points in V provides a constraint
on how small the change in fitness between neighboring inversions can be. This lower
bound is useful in the case of a quantized point set. This occurs when the points can be
embedded on an m × m grid as illustrated in Figure 5.

Quantization, for example, occurs when the x and y coordinates of each point in
the set are rounded to the nearest value in a set of m equidistant values (e.g., integers).
We point out that it is still important that the quantization preserve the constraint on
collinearity since collinear points violate a nonzero angle bound. We have the following
lemma.

LEMMA 8: Suppose V is a set of points that lie on an m × m unit grid, no three collinear. Then
V is angle-bounded by arctan

(
1/(2(m − 2)2)

)
.

PROOF: (see Appendix). �

Lemma 8 allows us to translate the somewhat awkward trigonometric expression
in the claim of Lemma 7 (and subsequent lemmas that depend on it) into a convenient
polynomial that can be expressed in terms of m.

LEMMA 9: Let V be a set of n points that lie on an m × m unit grid, no three collinear. Then, V
is angle-bounded by ε where cos(ε)/(1 − cos(ε)) = O(m4).

PROOF: (see Appendix). �

We are now ready to prove the following technical lemma for 2-opt mutation (see
Algorithm 3). This lemma will be instrumental in proving runtime bounds later in the
paper.

LEMMA 10: Let V be a set of planar points in convex position angle-bounded by ε. We have the
following.

1. For any x ∈ Sα , the probability that 2-opt mutation creates an offspring y with f (y) <

f (x) − 2dmin
(
1 − cos(ε)

)
/
(
cos(ε)

)
is at least 2/(en(n − 1)).

2. For any x ∈ Sβ , the probability that 2-opt mutation creates an optimal solution is at least
(en4k(2k − 1)!)-1

PROOF: For (1), suppose x ∈ Sα . By Lemma 4, there is at least one pair of intersecting
edges in C(x) that can be removed with a single inversion operation σ I

ij . Let y = σ I
ij [x].
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By Lemma 7, f (y) satisfies the fitness bound in the claim. It suffices to bound the
probability that y is produced by 2-opt-mutation (x).

Let E1 denote the event that Poisson mutation performs exactly one inversion (i.e.,
s = 0 in line 2 of Algorithm 3). Let E2 denote the event that the pair (i, j ) is specifically
chosen for the inversion.

We have Pr{E1} = e-1 from the Poisson density function and Pr{E2|E1} ≥ (n(n −
1)/2)-1. Thus, the probability that 2-opt mutation creates y from x is

Pr{E1 ∩ E2} = Pr{E1} · Pr{E2|E1} ≥ 2/(en(n − 1)).

For (2), suppose x ∈ Sβ . Thus, C(x) is intersection-free, and it follows from Lemma
6 that there are at most 2k inversion moves that transform x into an optimal solution.

Let E′
1 denote the event that Poisson mutation performs exactly 2k inversions (i.e.,

s = 2k − 1 in line 2 of Algorithm 3). Let E′
2 denote the event that all 2k inversions are

the correct moves that transform x into an optimal solution.
Again, from the Poisson density function, Pr{E′

1} = (e(2k − 1)!)-1. Since Pr{E′
2|E′

1} ≥
(n(n − 1)/2)-2k ≥ n-4k , the probability of transforming x into an optimal solution is at
least

Pr{E′
1 ∩ E′

2} = Pr{E′
1} · Pr{E′

2|E′
1} ≥ (en4k(2k − 1)!)-1. �

Finally, since the time bounds in the remainder of this paper are expressed as a
function of the angle bound ε, and the bounds on point distance, it will be useful to
define the following function.

DEFINITION 6: Let V be a set of points angle-bounded by ε. We define

A(ε) =
(

dmax

dmin
− 1

) (
cos(ε)

1 − cos(ε)

)
where dmax and dmin respectively denote the maximum and minimum Euclidean distance between
points in V.

3.4 Instances in Convex Position

A finite point set V is in convex position when every point in V is a vertex on its convex
hull. Deı̆neko et al. (2006) observed that the Euclidean TSP is easy to solve when V is
in convex position. In this case, the optimal permutation is any linear ordering of the
points which respects the ordering of the points on the convex hull. Such an ordering
can be found in time O(n log n) (de Berg et al., 2008).

In the context of EAs the natural question arises, if V is in convex position, how
easy is it for simple randomized search heuristics? In this case, a tour is intersection-free
if and only if it is globally optimal, hence finding an optimal solution is exactly as hard
as finding an intersection-free tour. Since an intersection can be (at least temporarily)
removed from a tour by an inversion operation (cf. Lemma 4), we focus in this section
on algorithms that use the inversion operation.

We begin our analysis of instances in convex position by considering RLS. RLS op-
erates on a single candidate solution by performing a single inversion in each iteration.
Since each inversion which removes an intersection results in a permutation whose
fitness is improved by the amount bounded in Lemma 7, it is now straightforward
to bound the time it takes for RLS to discover a permutation that corresponds to an
intersection-free tour.

THEOREM 3: Let V be a set of planar points in convex position angle-bounded by ε. The expected
time for RLS to solve the TSP on V is O(n3A(ε)) where A is defined in Definition 6.

608 Evolutionary Computation Volume 22, Number 4



Parameterized Runtime Analyses of EAs for the Planar Euclidean TSP

PROOF: Consider the infinite stochastic process (x(1), x(2), . . .) generated by Algorithm
4. It suffices to bound the expectation of the random variable T defined in Equation (2).
Since V is in convex position, any intersection-free tour is globally optimal. Thus, in this
case Sβ = ∅, and Equation (3) can be written as

T =
∞∑
t=1

α(x(t)).

Consider an arbitrary permutation x ∈ Sα . Since C(x) must contain intersections, by
Lemma 4, there is an inversion σ I

ij which removes a pair of intersecting edges and
replaces them with a pair of non-intersecting edges. Moreover, by Lemma 7, such an
inversion results in an improvement of at least

2dmin (1 − cos(ε)) / (cos(ε)) . (4)

If the state x is visited by RLS, the probability that this particular inversion is selected
uniformly at random is 2/(n(n − 1)). Thus, we have the conditions of Lemma 2 with
p = 2/(n(n − 1)) and c equal to the expression in equation (4) and the claimed bound
on the expectation of T follows. �

COROLLARY 1 (TO THEOREM 3): If V is in convex position and embedded in an m × m grid with
no three points collinear, then RLS solves the TSP on V in expected time O(n3m5).

PROOF: The bound follows immediately from Theorem 3 since V is in convex position
and since, by Lemma 8, V is angle-bounded by arctan

(
1/(2(m − 2)2)

)
, dmax ≤ (m − 1)

√
2,

and dmin ≥ 1. Appealing to Lemma 9 yields cos(ε)/(1 − cos(ε)) = O(m4). Substituting
these terms into the bound of Theorem 3 completes the proof. �

We now consider the optimization time of the (μ + λ) EA using 2-opt mutation
defined in Algorithm 1 applied to a set of points in convex position. Obviously, in this
case we will find μ and λ terms appearing in the runtime formulas. We will assume
that μ and λ are polynomials in both n and k. We will also find that setting λ = �(μn2)
ensures that a transition from any state x(t) ∈ Sα to a state which improves on the fitness
by at least a specified amount occurs with constant probability.

Such a setting has the effect of reducing the number of generations spent removing
intersections from the best-so-far tours. However, it is important to note that the number
of calls to the fitness function must be accordingly increased by a factor of �(μn2) in each
generation. Nevertheless, the expected number of generations can be a useful measure
when considering parallel EAs. As Jansen et al. (2005) have pointed out, when the
fitness evaluation of the offspring can be performed on parallel processors, the number
of generations corresponds to the parallel optimization time. In such a case, we would
observe a quadratic factor improvement in the parallel runtime corresponding to the
segment spent in tours with intersections. Nevertheless, we also report the bound on
the number of total fitness function evaluations.

The following theorem bounds the number of expected generations that the (μ + λ)
EA needs to solve the Euclidean TSP on a set of angle-bounded points in convex position.

THEOREM 4: Let V be a set of planar points in convex position angle-bounded by ε. The expected
time for the (μ + λ) EA using 2-opt mutation to solve the TSP on V is bounded above by
O

(
n · A(ε) · max

{
(μ/λ) · n2, 1

})
where A is as defined in Definition 6.

PROOF: The sequence of best-so-far permutations generated by Algorithm 1 is the infinite
stochastic process (x(1), x(2), . . .) and we seek the expectation of the random variable T
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defined in Equation (2). Again, in the case of convex position, there are no non-optimal
intersection-free tours so that Sβ = ∅ and

T =
∞∑
t=1

α(x(t)).

As long as x(t) is non-optimal, C(x(t)) must contain at least one pair of intersecting edges.
Hence, in generation t, if x(t) is selected for mutation to create one of the λ offspring,
then by Lemma 10, 2-opt mutation must improve the best-so-far solution by at least
c = 2dmin (1 − cos(ε)) / (cos(ε)) with probability at least (en(n − 1)/2)-1. The probability
that at least one of the λ offspring improves on x(t) by at least this amount is

p ≥ 1 −
(

1 − 1
μen(n − 1)/2

)λ

.

We now make the following case distinction on λ.

Case 1: λ ≥ μen(n − 1)/2. For this setting of λ, we have p ≥ 1 − e-1, so an intersec-
tion is removed in each generation with constant probability. Invoking Lemma 2, the
expected time to find an intersection-free tour is at most O(nA(ε)).

Case 2: λ < μen(n − 1)/2. Here we have

1 −
(

1 − 1
μen(n − 1)/2

)λ

≥ 1 − e−λ/(μen(n−1)/2) ≥ λ

μen(n − 1)
.

The final inequality comes from the fact that e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1. Thus, in
this case we have p ≥ λ/(μen2). Applying Lemma 2, the expected time to find an
intersection-free tour is at most O((μ/λ) · n3A(ε)).

Thus, the expected time to solve the instance is bounded by O(max{(μ/λ) · n3A(ε),
nA(ε)}) which yields the claimed bound. �

We immediately get the following corollary.

COROLLARY 2 (TO THEOREM 4): Let V be a set of planar points in convex position angle-
bounded by ε. The expected number of fitness evaluations needed by the (μ + λ) EA using
2-opt mutation to solve the TSP on V is bounded above by O

(
n · A(ε) · max

{
μn2, λ

})
, and the

expected optimization time of the (1 + 1) EA is bounded above by O
(
n3A(ε)

)
, where A is as

defined in Definition 6.

Moreover, analogous to the corollary to Theorem 3, we have the following.

COROLLARY 3 (TO THEOREM 4): If V is in convex position and embedded in an m × m grid
with no three points collinear, then the (μ + λ) EA solves the TSP on V in expected time
O

(
nm5 · max

{
(μ/λ) · n2, 1

})
3.5 Instances with k Inner Points

We now turn our attention to TSP instances in which Out(V ) �= V and express the
expected runtime in terms of n = |V |, the number of points, and k = |Inn(V ) |, the
number of inner points.

3.5.1 2-opt Mutation
We use the structural analysis in Section 3.3 to show that when there are few inner
points, intersection-free tours are somehow “close” to an optimal solution in the sense
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that relatively small perturbations by the EA suffice to solve the problem. Again, recall
that we assume μ and λ are polynomials in both n and k.

THEOREM 5: Let V be a set of points angle-bounded by ε such that |Inn(V ) | = k. The expected
time for the (μ + λ) EA using 2-opt mutation to solve the TSP on V is bounded above by
O

(
n · A(ε) · max

{
(μ/λ) · n2, 1

} + (μ/λ) · n4k(2k − 1)!
)
.

PROOF: We argue by analyzing the Markov chain generated by the (μ + λ) EA using
2-opt mutation. Let (x(1), x(2), . . .) denote the sequence of best-so-far states visited by the
(μ + λ) EA.

In generation t, if x(t) ∈ Sα , then the probability of generating an offspring that
improves the fitness by at least c = 2dmin (1 − cos(ε)) / (cos(ε)) is identical to that in the
proof of Theorem 4. Arguing in the same manner as in the proof of Theorem 4, we have

∞∑
t=1

α(x(t)) = O
(
n · A(ε) · max

{
(μ/λ) · n2, 1

})

On the other hand, if x(t) ∈ Sβ , and if it is selected for mutation, then, by Lemma 10,
2-opt mutation produces the optimal solution with probability at least (en4k(2k − 1)!)-1.
Hence, the overall probability of generating an optimal permutation when x(t) is the
(intersection-free) population-best permutation is at least

q ≥ 1 −
(

1 − 1
μen4k(2k − 1)!

)λ

≥ λ

2μen4k(2k − 1)!
.

Since this is the probability that the Markov chain transits from a state x(t) ∈ Sβ to the
optimal state, substituting the value for q into the claim of Lemma 3, we have

E

( ∞∑
t=1

β(x(t))

)
= O((μ/λ) · n4k(2k − 1)!).

The bound on E(T ) then follows from Equation (3) and linearity of expectation. �

We also get the following corollary.

COROLLARY 4 (TO THEOREM 5): Let V be a set of points angle-bounded by ε such that |Inn(V ) | =
k. The expected number of fitness evaluations needed for the (μ + λ) EA using 2-opt mutation
to solve the TSP on V is bounded above by O

(
n · A(ε) · max

{
μn2, λ

} + μn4k(2k − 1)!
)

and the
expected optimization time for the (1 + 1) EA is O

(
n3 · A(ε) + n4k(2k − 1)!

)
.

Again, from Lemmas 8 and 9 we also have the following corollary.

COROLLARY 5 (TO THEOREM 5): Let V be a set of points quantized on an m × m grid such that
|Inn(V ) | = k. The expected time for the (μ + λ) EA using 2-opt mutation to solve the TSP on
V is O

(
nm5 · max

{
(μ/λ) · n2, 1

} + (μ/λ) · n4k(2k − 1)!
)
.

3.5.2 Mixed Mutation Strategies
The Markov chain analysis relies on the inversion operator to construct an intersection-
free tour, but then relies on the inversion operator to simulate the jump operator in
order to transform an intersection-free tour into an optimal solution. We now introduce
a mutation technique called mixed-mutation (outlined in Algorithm 5) that performs
both inversion and jump operations, each with constant probability. This allows for an
upper bound that is smaller by a factor of �(n2k(2k − 1)!/(k − 1)!). We remark here that
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we only use mixed mutation as a tool to reduce the upper bound, and cannot claim that
it results in a faster algorithm due to the absence of a lower bound.

Similar to Lemma 10, we have the following result for mixed mutation.

LEMMA 11: Let V be a set of planar points in convex position angle-bounded by ε. Then,
1. For any x ∈ Sα , the probability that mixed mutation creates an offspring y with f (y) <

f (x) − 2dmin
(
1 − cos(ε)

)
/
(
cos(ε)

)
is at least (en(n − 1))-1.

2. For any x ∈ Sβ , the probability that mixed mutation creates an optimal solution is at
least (2en2k(k − 1)!)-1.

PROOF: For (1), the probability that mixed mutation selects inversions is 1/2 and the
rest of the claim follows from the argument of Lemma 10.

For (2), suppose x ∈ Sβ . Thus, C(x) is intersection-free, and it follows from Lemma
6 that there are at most k jump operations that transform x into an optimal solution.
The remainder of the proof is identical to that of Lemma 10. The probability that mixed
mutation selects jump operations contributes the leading factor of 2-1. �

THEOREM 6: Let V be a set of points angle-bounded by ε such that |Inn(V ) | = k. The expected
time for the (μ + λ) EA using mixed mutation to solve the TSP on V is bounded above by
O

(
n · A(ε) · max

{
(μ/λ) · n2, 1

} + (μ/λ) · n2k(k − 1)!
)
.

PROOF: The proof is identical to the proof of Theorem 5, except that we substitute the
probabilities from Lemma 11 into Lemmas 2 and 3. �

We immediately get the following corollary.

COROLLARY 6 (TO THEOREM 6): Let V be a set of points angle-bounded by ε such that |Inn(V ) | =
k. The expected number of fitness evaluations needed for the (μ + λ) EA using mixed mutation
to solve the TSP on V is bounded above by O

(
n · A(ε) · max

{
μn2, λ

} + μn2k(k − 1)!
)

and the
expected optimization time for the (1 + 1) EA is bounded above by O

(
n3 · A(ε) + n2k(k − 1)!

)
.

As before, from Lemmas 8 and 9 we have the following.

COROLLARY 7 (TO THEOREM 6): Let V be a set of points quantized on an m × m grid such that
|Inn(V ) | = k. The expected time for the (μ + λ) EA using mixed mutation to solve the TSP on
V is O

(
nm5 · max

{
(μ/λ) · n2, 1

} + (μ/λ) · n2k(k − 1)!
)
.

4 Fixed-Parameter Evolutionary Algorithms

Moving away from the black box perspective, we now consider designing EAs that are
given access to a small amount of problem information. Specifically, we allow the algo-
rithms access to the ordering of points that lie on the convex hull. Using this information,
we design two fixed-parameter tractable EAs for the inner point parameterization of
Deı̆neko et al. (2006).

DEFINITION 7: Let V be a set of points in the plane. We define γ as a linear order on Out(V )

γ = (p1, p2, . . . , pn−k)

such that for all i ∈ {1, . . . , n − k}, pi and pi+1 are adjacent on the boundary of the convex hull
of V. We say a permutation x on V is γ -respecting if and only if

x-1(pi) < x-1(pj ) ⇒ i < j.
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Algorithm 5 xmixed-mutation (   )

Note that, by definition, every γ -respecting permutation respects hull-order (as
defined in Section 2). The linear order γ can be found in O(n log n) time using well-
known methods from computational geometry (de Berg et al., 2008).

4.1 A Population-Based Approach

In this section we describe a (μ + λ) EA that solves the TSP to optimality in fixed-
parameter tractable time. We build on the evolutionary dynamic programming frame-
work for TSP introduced by Theile (2009). We show that a slight modification to Theile’s
(μ + 1) EA that carefully maintains the invariant that the points in Out(V ) remain in
convex-hull order for each individual allows us to improve the time bound significantly
on instances for which the number of inner points is not too large.

Given a set of planar points V, with |V |=n and |Inn(V ) |=k, let γ = (p1, p2, . . . , pn−k)
denote the order on Out(V ) given by Definition 7. A permutation x on a subset U of
V is a bijection x : U → U . The (μ + λ) EA is described in Algorithm 6. The (μ + λ)
EA maintains a population P of μ permutations on subsets of V that have a special
structure that we now describe. Let S ⊆ Inn(V ), let i ∈ {1, . . . , n − k}, and let r ∈ S ∪ {pi}.
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An individual x = x(i,S,r) is a permutation on S ∪ {p1, p2, . . . , pi} with the following
properties.

1. x(1) = p1.
2. x(|S| + i) = r .
3. x is γ -respecting, that is, p1, p2, . . . , pi appear in order.
For a permutation x(i,S,r), we call the set S ∪ {p1, p2, . . . , pi} its ground set and we

call r its tail vertex.
The TSP tour defined by a permutation x(i,S,r) is a cycle (p1, vx(2), . . . , vx(|S|+i-1), r, p1),

that is, it starts at p1, runs over all nodes in (S ∪ {p2, . . . , pi})/r such that any nodes in
Out(V ) are visited in the order they appear in γ , and finally visits r before returning
to p1. The full population of the (μ + λ) EA consists of an individual x(i,S,r) for every
i ∈ {1, . . . , n − k}, every S ⊆ Inn(V ), and possible tail vertex r.

The fitness function f assigns a nonnegative real value to each individual x(i,S,r)
representing the cost of the tour through the vertices in the ground set of x = x(i,S,r).

f (x(i,S,r)) =
|S|+i∑
j=1

d(vx(j ), vx(j+1)) (5)

where the summation indices are taken to be modulo |S| + i.
In each generation, λ individuals are selected uniformly at random from the popu-

lation P and an offspring is created for each individual by applying a mutation operator.
This mutation operator attempts to extend each individual by “growing” its ground
set. To mutate a single individual x = x(i,S,r), a vertex v is chosen uniformly at random
from the remaining vertices in (Inn(V ) \ S) ∪ {pi+1}. A new permutation x ′ is created by
concatenating v to the linear order described by x, that is, for j ∈ {1, . . . , |S| + i + 1},

x ′(j ) =
{

v if j = |S| + i + 1;

x(j ) otherwise.

Thus x ′ is defined on a different (slightly larger) ground set than x using v as the new
tail vertex. Following our notation, we have

x ′ =
{

x ′
(i,S∪{v},v) if v ∈ Inn(V );

x ′
(i+1,S,v) if v = pi+1.

Obviously, when i = n − k and S = Inn(V ), the mutation operator has no effect, since
the ground set cannot be extended for such an individual.

In order to introduce sufficiently large changes to the population in each generation,
we utilize the Poisson mutation strategy in the same manner as both Theile’s original
algorithm and the black box EAs introduced in Section 3. Specifically, in each generation,
for each of the selected λ individuals, we apply the mutation operator defined above
s + 1 times, where s is drawn from a Poisson distribution with unit expectation.

Finally, we again employ truncation selection in the sense that each mutated off-
spring may only replace the individual in the parent population with the same ground
set and tail vertex. This replacement occurs only if the fitness of the mutated offspring
is at least as good as the parent individual in question. Thus, at the end of a generation,
the parent population size μ is preserved.

We now bound the expected time until the (μ + λ) EA described in Algorithm 6 has
solved a TSP instance on n points with k inner points to optimality. We first bound the
population size μ with the following lemma.
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LEMMA 12: The parent population size μ is bounded above by O(2kkn).

PROOF: The population is initialized by constructing, for each possible distinct ground
set (S ⊆ Inn(V )) ∪ ({p1, p2, . . . , pi} ⊆ Out(V )) and each legal tail vertex r a length |S| +
i permutation x = x(i,S,r) such that x(1) = p1, x(|S| + i) = r , and the elements from
{p1, p2, . . . , pi} appear in the same order as they do in γ . Note that to maintain the
correct ordering, the tail vertex cannot be any point pj for j < i, or the ordering with
respect to γ is violated. Therefore, the tail vertex can be any member of S ∪ {pi}.

We count the number of distinct ground sets S ∪ {p1, p2, . . . , pi} along with the
number of ways to select a tail vertex legally from the ground set. There are ( k

|S| ) ways
to choose a distinct set S ⊆ Inn(V ). On the other hand, the order of the outer points
is fixed by γ , so there are only (n − k) ways to choose a distinct set of outer points
{p1, . . . , pi}. Finally, for such a ground set, there are |S| + 1 ways to choose the tail
vertex r ∈ S ∪ {pi}. In total, there are

(n − k)
k∑

s=0

(
k

s

)
(s + 1) = O(2kkn)

distinct permutations in the initial population. Since (μ + λ) truncation selection main-
tains a constant population size throughout the process, the claim holds. �

After the population P is initialized, for each ground set (S ⊆ Inn(V )) ∪ ({p1, p2, . . . ,

pi}) and each legal tail vertex r ∈ S ∪ {pi}, there exists some permutation x = x(i,S,r) ∈ P

that respects the order γ .
We consider the function

F : {1, 2, . . . , n − k} × 2Inn(V) × V → R+
where F (i, S, r) is the length of the shortest path starting at p1 and ending at r, visiting
each point in {p1, . . . , pi} ∪ S exactly once, and respecting the order γ . Because each
Hamiltonian path possesses the optimal substructure property (i.e., subpaths of optimal
paths are also optimal paths), F can be defined recursively using the Bellman principle
(Bellman, 1962; Deı̆neko et al., 2006),

F (i, S, r) =
⎧⎨
⎩

min
q∈S∪{pi−1}

F (i − 1, S, q) + d(q, r) if r ∈ Out(V );

min
q∈(S\{r})∪{pi }

F (i, S \ {r}, q) + d(q, r) if r ∈ Inn(V ).

Thus, if there is a permutation with an optimal subpath in the population, there exists
some correct mutation that can construct a longer path that is also optimal. Further-
more, a permutation x(i,S,r) that represents a suboptimal path through the ground set
S ∪ {p1, p2, . . . , pi} can always be replaced by one that represents an optimal subpath
through that ground set, that is, some x ′

(i,S,r) such that f (x ′
(i,S,r)) = F (i, S, r) < f (x(i,S,r))

by the selection operation. Hence, once an optimal subpath is found for a particular
ground set and tail vertex, the subpath optimality is never lost. To bound the optimiza-
tion time of the (μ + λ) EA, it suffices to bound the time until a particular length-n
permutation x(n-k,Inn(V ),r) has its optimal path in the population.

The proof of the runtime is a straightforward extension of Theile’s (2009) argument
that the (μ + 1) EA can simulate dynamic programming on a function similar to F in a
randomized fashion.

THEOREM 7: Let V be a set of n points in the Euclidean plane with |Inn(V ) | = k. After
O(max{2kk2n2λ-1, n}) generations, the (μ + λ) EA has solved the TSP on V to optimality in
expectation and with probability 1 − e-�(n).
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PROOF: Suppose there exists an individual x = x(i,S,r) such that f (x(i,S,r)) = F (i, S, r).
Since selection for reproduction occurs uniformly at random, with probability at least
1/μ, x is selected for reproduction to produce one of the λ offspring by mutation in each
subsequent generation. Furthermore, with probability e-1, only a single mutation step
is performed on x (i.e., s = 0 following line 11 of Algorithm 6). Finally, the probability
that x is extended in an optimal fashion is at least 1/(k + 1), that is, the probability that
the correct vertex q is chosen out of (Inn(V ) \ S) ∪ {pi+1} to create an optimal subpath
on the ground set S ∪ {p1, p2, . . . , pi} ∪ q.

Assuming an optimal subpath of length m − 1 already exists in the parent popula-
tion, let π denote the probability that at least one of the λ offspring corresponds to an
optimal subpath of length m by applying the correct mutation to the parent individual
representing optimal subpath of length m − 1. We have

π ≥ 1 −
(

1 − 1
eμ(k + 1)

)λ

In the base case, the permutation x(p1,{},p1) corresponds to an optimal length-1 path and
is present after initialization in lines 1–2 of Algorithm 6. Since optimal paths through a
given ground set and tail vertex are never lost, it follows by induction that the expected
number of generations until an optimal path of length m exists in the population is at
most mπ -1. Thus, the expected number of generations until an optimal solution enters
the population is bounded above by nπ -1. We make a case distinction on λ.

Case 1: λ < eμ(k + 1). In this case, we have

π ≥ 1 −
(

1 − 1
eμ(k + 1)

)λ

≥ 1 − e-λ/(eμ(k+1)) ≥ λ

eμ(k + 1)
,

again since e-x ≤ 1 − x/2 for 0 ≤ x ≤ 1. The expected number of generations until the
optimal solution is found is at most

nπ -1 ≤ enμ(k + 1)λ-1 = O(2kk2n2λ-1).

In the last step, we have applied the result of Lemma 12.
Case 2: λ ≥ eμ(k + 1). For this setting of λ we have π ≥ 1 − e-1 and the number of

generations until the optimal solution is found is at most nπ-1 = O(n).

To prove the concentration result, for some constant c > 0 and any m ∈ {1, . . . , n −
1}, let t := αemμ(k + 1) be the number of generations needed to produce an optimal sub-
path of length m where α = cn/m. We define a sequence of random indicator variables
Xi ∈ {0, 1} for all i ∈ {1, . . . , t} such that Xi = 1 if the correct mutation has occurred to
extend an optimal subpath in the ith generation. Let X = ∑t

i=1 Xi . The expectation of X
is E(X) = ∑t

i=1 Pr(Xi = 1) = tπ ≥ cn, by the above bounds on π .
If X < m, then the (μ + λ) EA has not created an optimal subpath in t fitness

evaluations, and the probability of this event is at most e-cn/2+m by Chernoff bounds.

Suppose there are � individuals in the population that are length m. Clearly � ≤ m
(

n−1
m

)
.

The probability that at least one of the � individuals in P has not been optimized within
t generations is, by the union bound, at most

�∑
i=1

e−cn+m ≤ m

(
n − 1

m

)
e-c′n ≤ exp

(
m ln(n − 1) − m ln m − c′n + ln m

) = e-�(n),

where c′ ≥ c/2 − m/n is a constant. This completes the proof. �
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COROLLARY 8 (TO THEOREM 7): The expected number of fitness evaluations is E(Tf ) = μ +
λE(T ) = O(max{2kk2n2, λn}).
4.2 Searching for Permutations of Inner Points

In this section, we propose an approach that makes use of insights in the context of
parameterized complexity. By Theorem 2, the outer points Out(V ) are always visited
in hull-order in every optimal solution. In the following, we assume that γ is the fixed
order on the outer points given in Definition 7. Let x be a permutation on the inner
points Inn(V ). Using the dynamic programming algorithm of Deı̆neko et al., one can
compute the shortest Hamiltonian cycle respecting γ and x in time O(nk).

These ideas suggest that using a heuristic to only search for an optimal permutation
x∗ on the inner points can significantly reduce the effective size of the search space, and
thus lead to quicker solution times for EAs. For each permutation on the inner points x,
the quality can be evaluated by running a dynamic programming algorithm to compute
the best possible tour using γ and x.

Let γ = (p1, p2, . . . , pn-k) be the fixed order of the outer points and x = (q1, . . . , qk)
be an arbitrary permutation of the inner points. We can compute the shortest tour
respecting γ and x using the dynamic programming approach of Deı̆neko et al. (2006),
which we state in the following.

The dynamic programming algorithm computes a three-dimensional table F with
entries F [i, j,m] where i ∈ {1, . . . , n − k}, j ∈ {0, 1, . . . , k}, and m ∈ {Inn,Out}. The al-
gorithm computes for each triple (i, j,m) the cost of the shortest path from p1 through
all nodes p1, . . . , pi and q1, . . . qj respecting the orders γ and x. The path ends at pi

iff m = Out determines that the last node is an outer point and ends at qj iff m = Inn

determines that the last node is an inner point.
The length of the shortest tour respecting γ and x is given by

Dyn(x) = min{F [n − k, k,Out] + d[pn−k, p1], F [n − k, k, Inn] + d[qk, p1]}
The computation of the dynamic program starts with F [1, 0,Out] = 0 and we get

F [i, j, Inn] = min{F [i, j − 1,Out] + d[pi, qj ], F [i, j − 1, Inn] + d[qj−1, qj ]}
for i ∈ {1, 2, . . . , n − k} and j ∈ {1, . . . , k}. Also,

F [i, j,Out] = min{F [i − 1, j,Out] + d[pi−1, pi], F [i − 1, j, Inn] + d[qj , pi]}
for i ∈ {2, 3, . . . , n − k} and j ∈ {0, . . . , k}. For impossible states, the entries are set to ∞,
namely, F [1, j,Out] = ∞ if j ∈ {1, . . . , k} and F [i, 0, Inn] = ∞ if i ∈ {1, . . . , n − k}.

The time computing the F array is proportional to its size which is 2(n − k) · (k + 1).
Therefore, the fitness Dyn(x) for a given permutation x of the inner points can be
computed in time O(nk).

For our theoretical investigations, we study (μ + λ) EAs working on permutations
of the inner points. The (μ + λ) EAk (see Algorithm 7) starts with μ permutations on the
set of inner points and creates in each iteration λ offspring by mutation. The mutation
operator applies s + 1 basic operations where s is chosen according to the Poisson
distribution with unit expectation. Then truncation selection is applied to preserve the
best μ individuals out of all individuals for the next generation.

For mutation, we employ the inversion (2-opt) and permutation jump mutation
operators introduced in Section 3.1. In the case of inversions, however, it is no longer
clear whether this is the correct choice for the new search space, which is restricted only
to orderings on the inner points. In addition to inversions and jumps (see Definitions 2
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and 3), we also consider the exchange operator, which exchanges two elements (chosen
uniformly at random) in the ordering of a permutation. We formalize the exchange
operator in the following definition.

DEFINITION 8: The exchange operation σ E
ij takes a permutation x and produces a permutation

σ E
ij [x] such that

σ E
ij [x](�) =

⎧⎪⎨
⎪⎩

x(j ) if � = i

x(i) if � = j

x(�) otherwise.

We denote by (μ + λ) EAk
i , (μ + λ) EAk

j , and (μ + λ) EAk
e , the variants of the (μ + λ)

EAk using inversions, jumps, and exchanges, respectively.
In the following, we investigate the number of operations needed in order to obtain

an optimal solution in dependence of the chosen mutation operator. This will lead to
different upper bounds on the runtime of the algorithm. For all the operators, we show
that they yield fixed-parameter tractable results.

THEOREM 8: Let V be a set of n points in the Euclidean plane with |Inn(V ) | = k. The expected
number of generations needed to solve the TSP on V for both the (μ + λ) EAk

j , and the (μ + λ)
EAk

e is bounded by O(max{(k − 1)!k2kλ-1, 1}). For the (μ + λ) EAk
i , the bound is O(max{(k −

2)!k2k-2λ-1, 1}).
PROOF: Let π be a lower bound on the probability to transform an arbitrary non-
optimal solution into an optimal solution. Suppose there are no optimal solutions in the
population. The probability that at least one of the λ offspring is optimal is bounded
below by 1 − (1 − π )λ ≥ min{λπ, 1 − e-1}.

The probability that a mutation operation consisting of a specific sequence of � basic
operations occurs is at least

1
e(� − 1)!k2�

.

Thus, if � is the maximum number of operations needed to transform an arbitrary
solution into the optimal, the expected waiting time (in terms of generations) until
such an event is at most O(max{(� − 1)!k2�λ-1, 1}). The number of inversions needed
to transform an arbitrary permutation on k elements into any other permutation on
the same elements is at most k − 1 (this is due to a conjecture by Gollan that was later
proved by Bafna and Pevzner, 1996. For the jump and exchange operators, the number
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of these operations required is obviously at most k. The claimed bounds on the expected
number of generations for each variant follow from these arguments, and the proof is
complete. �

As usual, the expected number of fitness evaluations E(Tf ) can be derived by
Tf = μ + λE(T ) where E(T ) is bounded by Theorem 8.

The previous theorem shows that simple EAs are fixed-parameter tractable EAs
for the considered problem when working with permutations on the inner points and
applying dynamic programming as part of the fitness evaluation. Note that dynamic
programming takes time O(nk). This is more expensive than computing the cost of a
given tour on n cities, which can be done in O(n) time. However, it is still feasible to
use the dynamic programming approach as part of each fitness evaluation. In the next
section, we show that this also leads to a significantly better optimization process than
working with the standard approach that searches through the set of permutations on
all n cities.

4.3 Experiments

In this section, we carry out experimental investigations for the approach proposed
in the previous section. We consider a simple (1 + 1) EA, a specific case of the above
studied (μ + λ) EA where the population consists of one individual and one offspring
is generated at each iteration. We study the three variants of the (1 + 1) EAk working
on permutations of the set of inner points and compare them to the standard (1 + 1)
EAn (see Algorithm 8) approach working on permutations of the whole set of the given
n points. We denote by (1 + 1) EAn

i , (1 + 1) EAn
j , and (1 + 1) EAn

e , the variants of (1 + 1)
EAn using inversions, jumps, and exchanges, respectively.

We consider several planar Euclidean TSP instances of various sizes (25, 50, and
100) and, within each size class, control the percentages of inner points. The instance
generation process is described in detail in the next section. We calculate the solution
quality reached within a given time limit on each instance. On these instances, we run
the EAs using each mutation strategy for both the (1 + 1) EAn and the (1 + 1) EAk . As a
baseline, we also compute the value of the optimal solution on each instance using the
exact TSP solver Concorde (Applegate et al., n.d.).

For each run, we set time limits based on the instance size. Hence, we run each EA
for 1 s on instances with 25 points, 3 s for instances with 50 points, and finally 15 s for
instances with 100 points. We measure the iteration count which is the number of fitness
function calls for each EA. The (1 + 1) EAn runs roughly 200,000 iterations within the
given time limits for all instance sizes. On the other hand, the (1 + 1) EAk performs in
the range of 1000–5000 iterations. The number of iterations performed by the (1 + 1) EAk

decreases as a function of the ratio of outer points to inner points in the instance. The
experiments are conducted on a PC with 2.4 GHz Intel Core i5 CPU and 4GB 1,333 MHz
DDR3 RAM.
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4.3.1 Parameterized Instances
Since we need to study the impact of the number of inner points on algorithm perfor-
mance, we cannot use standard benchmark instances, since it is not clear how to cleanly
control the number of inner points in such problem sets. Instead, we generate random
instances controlling for the percentage of points that lie in the interior of the convex
hull. For each size category {25, 50, 100}, we generate a set of 30 instances each with
inner point percentages 5%, 10%, 20%, 30%, and 40%. For example, the set 50/10% con-
tains 30 TSP instances on n = 50 planar points such that exactly k = 5 lie in the interior
of the convex hull. To construct such instances, we first generate the outer points on a
convex hull, and then add the required number of inner points. We create a circle with
a given radius and randomly generate outer points on the circumference by producing
a random angle and then deriving x and y coordinates from the angle with respect to the
y axis. This process continues until we have constructed the required values for n − k.
We then identify the convex hull and generate random points inside the hull within a
distance of zero to the radius. Here, we accept a randomly generated inner point only
if it falls inside the convex hull.

4.3.2 Results
We measured the solution quality obtained within the allocated time for the six
(1 + 1) EA variants described in this paper. We also compared each with the opti-
mal solution computed by Concorde. The dataset consists of 30 instances from each
group representing each instance size and each inner node percentage.

The results suggest that the (1 + 1) EAk approach consistently leads to more effective
optimization when there are not too many inner points. In Table 1, we see the average
values of solution quality obtained for the instances in each instance size and inner
point percentage. For some cases, variants of (1 + 1) EAk (e.g., the set of n = 25 with 5%
inner points) reach the optimal values computed by the exact solver Concorde, while
in most instances, they optimize the instances more effectively than the corresponding
variants that search through permutations on all n points ((1 + 1) EAn). In a few cases,
where the inner point percentage is high, the new approach tends to perform poorly.
This is expected, since the construction procedures are leveraging the constraints on the
convex hull. Therefore, we expect the performance to degrade as the number of inner
points becomes large with respect to the problem size.

To further investigate the effect of mutation strategy, we examine the three variants
of the (1 + 1) EAk for the problem set n = 100 and 40% inner points. The solution quality
reached in the allocated time (15 s) is plotted as a function of instance for each variant
in Figure 6.

To determine whether the (1 + 1) EAk outperforms the (1 + 1) EAn with statistical
significance, we perform a one-tailed Wilcoxon signed rank test (Wilcoxon, 1945) on
the solution quality measurements obtained after the allocated runtime. The resulting
positive rank sum (W) and confidence (p values) are recorded. We perform the test
for each mutation strategy on each instance, and observe the effect of inner point per-
centage and size. To perform these analyses, we use the GNU R software environment
(R Development CoreTeam, 2011). The results are summarized in Table 2 where the
control variables (instance size and inner point percentage) are indicated in the first
column.

In the first result column of Table 2, we see that the (1 + 1) EAk
e consistently

outperforms the (1 + 1) EAn
e with statistical significance on every TSP instance (p <

.001). In such cases, with at least 99.9% confidence we reject the null hypothesis that
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Table 1: Average minimum tour length values (rounded) obtained by the six algorithms
((1 + 1) EAn

e , (1 + 1) EAk
e , (1 + 1) EAn

i , (1 + 1) EAk
i , (1 + 1) EAn

j , (1 + 1) EAk
j ) and exact

value by Concorde (from left to right) for the set of 30 instances in each category having
sizes 25, 50, and 100 and inner point percentages 5, 10, 20, 30, and 40.

Instance Exchanges Inversions Jumps

n/% inner (1 + 1) EAn
e (1 + 1) EAk

e (1 + 1) EAn
i (1 + 1) EAk

i (1 + 1) EAn
j (1 + 1) EAk

j Concorde

25/5% 81,937 53,141 53,665 53,141 59,173 53,141 53,141
25/10% 82,592 57,904 59,190 57,896 66,070 57,483 57,482
25/20% 86,646 63,005 64,222 63,132 70,232 61,787 61,324
25/30% 83,869 67,864 67,570 67,325 72,586 65,761 64,165
25/40% 84,941 70,912 68,486 69,363 72,649 67,229 65,370
50/5% 128,640 61,090 63,258 61,098 73,293 60,936 60,936
50/10% 131,391 67,155 69,625 67,012 79,230 66,389 65,831
50/20% 131,027 79,682 81,414 78,429 87,586 77,019 74,809
50/30% 133,533 89,645 86,474 86,662 95,599 83,730 79,785
50/40% 131,902 97,231 89,271 92,597 98,999 90,102 82,469
100/5% 210,234 69,996 74,392 69,895 81,839 69,466 68,990
100/10% 211,502 83,840 86,301 82,720 95,024 81,613 79,529
100/20% 208,611 104,295 100,239 98,373 113,363 98,855 90,840
100/30% 215,322 121,505 109,335 112,168 125,907 110,406 98,853
100/40% 212,083 138,134 117,594 124,852 135,720 128,331 105,432

Figure 6: Comparison of solution quality (minimum tour length values) of (1 + 1) EAk
e ,

(1 + 1) EAk
i , and (1 + 1) EAk

j obtained within 15 s on 30 instances of size 100 and inner
point percentage 40.

the (1 + 1) EAk
e does not perform better than the (1 + 1) EAn

e in favor of the alternative
hypothesis that (1 + 1) EAk

e performs better than (1 + 1) EAn
e . The W values indicate
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Table 2: Results of Wilcoxon signed rank tests for minimum tour length values within
time limits (2, 3, and 15 s for 25, 50, and 100 sizes accordingly) for (1 + 1) EAn

e > (1 + 1)
EAk

e (exchanges), (1 + 1) EAn
i > (1 + 1) EAk

i (inversions) and (1 + 1) EAn
j > (1 + 1) EAk

j

(jumps), positive rank sums (W) and confidence (p) values are displayed accordingly.
A * denotes p < .001.

Instance Exchanges Inversions Jumps

n/% inner W p W p W p

25/5% 465 * 91 * 253 *
25/10% 465 * 336 * 465 *
25/20% 465 * 366 0.003 465 *
25/30% 465 * 293 0.11 465 *
25/40% 465 * 172 0.894 465 *
50/5% 465 * 335 * 435 *
50/10% 465 * 435 * 465 *
50/20% 465 * 431 * 465 *
50/30% 465 * 217 0.627 465 *
50/40% 465 * 33 1 465 *
100/5% 465 * 460 * 465 *
100/10% 465 * 462 * 465 *
100/20% 465 * 399 * 465 *
100/30% 465 * 147.5 0.960 461 *
100/40% 465 * 56 1 394 *

positive rank sums of the difference of two pairs ((1 + 1) EAk
e and (1 + 1) EAn

e ). Greater
values mean higher differences in algorithm performance.

For the inversion operator, the rank sum values in Table 2 are increasing as a function
of instance size. This is a result of the widening gap between solution quality in these
experiments and shows the scalability of our approaches compared to the classical (1 +
1) EA. Furthermore, we observe that when the inner point percentage increases to 40%,
the performance of the (1 + 1) EAk begins to degrade. This is reflected in the large p
values for these instances where we can no longer conclude that the (1 + 1) EAk variant
is outperforming the classical (1 + 1) EA. We expect such behavior as the inner point
density increases. Interestingly, the (1 + 1) EAk using the exchange operator and jump
operator is still performing surprisingly well compared to the classical EA for this level
of inner point percentage.

To assess the effect of the mutation strategies on the performance of the (1 +
1) EAk , we conduct another one-tailed Wilcoxon signed rank test for the pairwise
comparison of the three variants of the (1 + 1) EAk . We present these results in Table 3.
We cannot conclude from this test that the inversion operator performs better than the
jump operation. However, the p values in the final column suggest that, in most cases,
jump mutation is performing better than exchange mutation with statistical significance.

5 Conclusion

In this paper, we have studied the runtime complexity of EAs on the Euclidean TSP. We
have carried out a parameterized analysis that studies the dependence of the hardness
of a problem instance on the number of inner points in the instance. Moreover, we have
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Table 3: Results of Wilcoxon signed rank tests for minimum tour length values within
time limits (2, 3, and 15 s for 25, 50, and 100 sizes, accordingly) for (1 + 1) EAk

i < (1 + 1)
EAk

j (test 1), (1 + 1) EAk
j < (1 + 1) EAk

e (test 2), positive rank sums (W) and confidence
(p) values are displayed accordingly. A * denotes p < .001.

Instance Test 1 Test 2

n/% inner W p W p

25/5% 0 1 0 1
25/10% 1 0.9688 14 0.0625
25/20% 64 0.999 315 *
25/30% 96 0.9981 454 *
25/40% 70 0.9998 463 *
50/5% 0 1 28 0.007812
50/10% 108 0.9713 304 0.0001238
50/20% 90 0.9988 464 *
50/30% 64 0.9999 465 *
50/40% 49 1 465 *
100/5% 109 0.9382 221 0.05741
100/10% 77 0.9996 460 *
100/20% 278 0.1799 456 *
100/30% 194 0.786 456 *
100/40% 310 0.02423 446 *

shown that under reasonable geometric constraints (low angle bounds), simple EAs
solve planar TSP instances that are in convex position in polynomial time.

We have bounded the expected number of generations for a black box (μ + λ) EA
to solve a TSP instance with k inner points as O(n · A(ε) · max{(μ/λ) · n2, 1} + (μ/λ) ·
n4k(2k − 1)!). Using the analysis, we have also introduced a mixed mutation strategy
based on both permutation jumps and 2-opt moves that attains an improved bound
on the expectation of O(n · A(ε) · max{(μ/λ) · n2, 1} + (μ/λ) · n2k(k − 1)!). Hence, with
this paper, we have shown that the (μ + λ) EA in a black box setting is a randomized
XP-algorithm for the inner point parameterization of Deı̆neko et al. (2006).

Moving out of the black box setting, we have shown that the addition of a small
amount of domain knowledge (namely, the hull-respecting order of the outer points)
allows us to design two fixed-parameter EAs for the TSP. The first approach is based on
a recently proposed dynamic programming framework for evolutionary computing. It
works with a very large population and is mainly of theoretical interest. Our second
approach searches for a permutation of the inner points and uses a dynamic program-
ming algorithm that runs in time O(nk) as part of the fitness evaluation. Although the
theoretical bound for the second fixed-parameter algorithm is worse than the one for
the large population fixed-parameter EA, we consider it more applicable in practice.
Our experimental investigations for the (1 + 1) EAs analyzed in this paper suggest that
working with a permutation on the inner points can lead to significantly better results.
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Appendix

PROOF OF LEMMA 4: Suppose {x(i − 1), x(i)} and {x(j ), x(j + 1)} intersect in C(x). Let
y = σ I

ij [x]. Then
C(x) \ C(y) = {{x(i − 1), x(i)}, {x(j ), x(j + 1)}} , and

C(y) \ C(x) = {{x(i − 1), x(j )}, {x(i), x(j + 1)}} .

By Proposition 1, since {x(i − 1), x(i)} and {x(j ), x(j + 1)} intersect, the two new edges
introduced to C(y) by σ I

ij do not intersect. �

PROOF OF LEMMA 5: We first claim that the number of permutations on n points in which

some subset of p < n points all remain in the same fixed order is
(

n

n−p

)
(n − p)!. To

construct such a permutation, each of the n − p “free” points can be placed before all p
points, or after any of the p points. Thus, for each of the n − p free points, there are p + 1
positions relative to the non-free points from which we can choose (with replacement)

yielding
(

(p+1)+(n−p)−1
n−p

)
=

(
n

n−p

)
choices for relative placement. For each such choice,

there are (n − p)! distinct ways to order the free points.
Fix some point v ∈ Out(V ). Suppose C(x) is intersection-free. There is a transfor-

mation (specifically, either the identity, or a permutation with exactly one cycle and no
fixed points) that maps x to a sequence z in which v appears to the left of any other el-
ement in Out(V ), yet C(x) = C(z). Hence, the number of distinct intersection-free tours
is bounded by the number of sequences of points in V where the elements of Out(V )
appear in hull-order, and v appears to the left of any other element of Out(V ). By the
above claim, there are exactly

(
n

k

)
k! such permutations and the lemma is proved. �

PROOF OF LEMMA 6: We begin by proving that there are at most k jump operations to
transform x into an optimal permutation. By Lemma 1, since C(x) is intersection-free, x
respects hull-order. Let x∗ be an optimal permutation such that the elements in Out(V )
have the same linear order in x∗ as they do in x. Then x can be transformed into x∗ by
moving each of the k inner points into their correct position.

The claim that at most 2k inversions suffice to transform x into an optimal permu-
tation immediately follows from the fact that any jump operation can be simulated by
at most two consecutive inversion operations. In particular,

σ
J
ij [x] =

⎧⎪⎪⎨
⎪⎪⎩

σ I
ij [x] if |i − j | = 1;

σ I
i(j−1)[σ

I
ij [x]] if i − j < 1;

σ I
(j+1)i[σ

I
ji[x]] if i − j > 1.

Since a sequence of at most k jump operations can be simulated by a sequence of at
most 2k inversion operations, the claim is proved. �

PROOF OF LEMMA 7: The inversion σ I
ij removes intersecting edges {u, v} and {s, t} from

C(x) and replaces them with the pair {s, u} and {t, v} to form C(y). We label the point at
which the original edges intersect as p.
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Denote as θu the angle between the line segments that join u to p and u to s. Similarly,
denote as θs the angle between the line segments that join s to p and s to u (see Figure 1).
Since all angles are strictly positive, the points u, s, and p form a nondegenerate triangle
with angles θs , θu, and (π − (θs + θu)). By the law of sines we have

d(s, u)
sin (π − (θs + θu))

= d(s, u)
sin (θs + θu)

= d(u, p)
sin(θs)

= d(s, p)
sin(θu)

.

Hence,

d(u, p) + d(s, p) = d(s, u)
(

sin(θs) + sin(θu)
sin (θs + θu)

)
. (6)

Since u, s, and p form a triangle, 0 < (θs + θu) < π and we have

0 < sin(θs) < 1 since 0 < θs < π,

0 < sin(θu) < 1 since 0 < θu < π,

0 < sin (θs + θu) < 1 since 0 < θs + θu < π.

Furthermore, since V is angle-bounded by 0 < ε < π − ε, then by Equation (6)

d(u, p) + d(s, p) > d(s, u)
(

sin(ε) + sin(ε)
sin(ε + ε)

)
= d(s, u)sec(ε) > d(s, u). (7)

The rightmost inequality holds since ε > 0 and ε + ε < π and the function sec(x) is
strictly positive in this regime. Since there is also a nondegenerate triangle formed by
the points t, v, and p, a symmetric argument holds and thus

d(t, p) + d(v, p) > d(t, v)sec(ε) > d(t, v). (8)

Combining Equations (7) and (8) we have

f (x) − f (y) = [d(u, v) + d(s, t)] − [d(t, v) + d(s, u)]

= d(u, p) + d(v, p) + d(t, p) + d(s, p) − (d(t, v) + d(s, u))

> (d(t, v) + d(s, u)) sec(ε) − (d(t, v) + d(s, u)) > 0.

The constraint that the difference is strictly positive follows directly from Equations (7)
and (8). (This constraint prevents a trivial lower bound, which would become problem-
atic in later proofs.) Hence,

f (x) −f (y) > [d(t, v) + d(s, u)] (sec(ε) − 1) ≥ 2dmin (sec(ε) − 1) = 2dmin

(
1 − cos(ε)

cos(ε)

)
. �

PROOF OF LEMMA 8: The grid imposes a coordinate system on V in which the concept of
line slope is well-defined. Let u, v,w ∈ V be arbitrary points. We consider the angle θ

at point v formed by the lines from v to u and v to w. Let s1 and s2 denote the slope of
these lines, respectively. If the slopes are of opposite sign, then θ ≥ 2 arctan((m − 1)-1),
since the lines form hypotenuses of two right triangles with adjacent sides of length at
most m − 1 and opposite sides with length at least 1 (see Figure 7).

We now consider the case where the slopes are nonnegative. The nonpositive case
is handled identically (or by simply changing the sign of the slopes by the appropriate
transformation). Without loss of generality, assume s1 > s2 ≥ 0. Equality is impossible
since u, v, and w cannot be collinear. Since the points lie on an m × m grid, s1 and s2
must be ratios of whole numbers at most m − 1, say s1 = a/b and s2 = c/d. The angle at
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Figure 7: If the slope of the lines from v to u and v to w are of opposite sign, they form
the hypotenuses of two right triangles and θ ≥ 2 arctan((m − 1)-1).

point v is θ = arctan(a/b) − arctan(c/d) = arctan
(

ad−cb
bd+ac

)
. The minimum positive value

for the expression (ad − cb)/(bd + ac) over the integers from 0 to m − 1 is 1
2(m−2)2 . Since

the inverse of the tangent is monotonic, the minimum nonzero angle must be θ ≥
arctan

(
1/(2(m − 2)2)

)
. �

PROOF OF LEMMA 9: It follows from Lemma 8 that the angle bound on V is ε =
arctan(1/(2(m − 2)2)). Since cos(arctan(x)) = 1/

√
1 + x2 we have

cos(ε)
1 − cos(ε)

= 2(m − 2)2√
1 + 4(m − 2)4 − 2(m − 2)2

.

and since z/(
√

1 + z2 − z) = O(z2), setting z = 2(m − 2)2 completes the proof. �
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