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Abstract

Many scheduling problems are posed as optimization prob-
lems where the goal is to find a feasible schedule that maxi-
mizes the utilization of some resource. In some domains it is
also necessary to consider the quality of the resulting sched-
ule. In most research these two quantities are independent.
This paper introduces a real world problem in which radar
tasks must be allocated to track objects in space. We explore
the trade-off between off-line task resource utilization and a
measure of task quality that correlates to whether tasks are ac-
tually successfully executed. We develop two general types
of algorithms that differ in the way they reason about quality
and explore the trade-off between high quality solutions and
solutions with high resource utilization.

Introduction
Quality-based scheduling problems associate some measure
of quality with each task in the schedule. In such prob-
lems, it may be desirable to trade-off the quality of sched-
uled tasks and the number of tasks that can be scheduled.
For instance, Wang and Smith (2005) introduce an oversub-
scribed scheduling problem in which task durations can be
condensed at the expense of a task quality measure to attain
feasibility.

In this paper, we explore the trade-off between quality and
utilization in static schedules created for an on-line schedul-
ing problem. The spacetrack scheduling problem is to con-
trol resource allocation on a phased array radar to track ob-
jects in space; operators schedule tracking tasks to collect
observations on near Earth and high orbit targets.

In this research, the quality of an observation is measured
by a track’s predicted signal to noise ratio (SNR): a func-
tion of the target object’s location and orientation during the
tracking task. The SNR approximately estimates the proba-
bility of target illumination. The utilization level of the off-
line schedule measures how many tasks are feasibly accom-
modated given the resource limitations of the system.

There is a large degree of uncertainty regarding the po-
sition and visibility of an orbiting object. The quality of a
task corresponds to the probability of detection. Therefore,
utilization is a static measurement of the resource usage of
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the off-line schedule, while quality is a static surrogate met-
ric for estimating the likelihood the tasks will have to be
rescheduled later. We believe it is important to examine the
interplay between quality and utilization in off-line sched-
ules, and the performance of different algorithms on both
measurements. This research is a first step toward designing
a dynamic scheduling algorithm.

Problem Description
The Space Surveillance Network is an aggregation of 25 op-
tical and radar tracking stations around the globe maintained
by United States Space Command. A phased array radar is
part of a population of devices used for sustaining a cata-
log of objects in orbit. Phased array radars are capable of
steering the radar beam electronically using phase correla-
tion between an array of geometrically positioned antennas.
Such a configuration allows the radar to track many objects
in virtual simultaneity. However, the number of objects that
can be tracked at a given time is limited by the duty cycle of
the radar.

Radar operators are given a list of prioritized targets to
track during a 24 hour period and must compute a tracking
schedule that efficiently allocates radar power to collect ob-
servations on each object. To scan multiple objects at once,
phased array radars must interleave a number of pulses. The
energy of a pulse is a function of its width in time; so an
object with a higher range requires a longer pulse width to
ensure illumination than a closer object. Since target range
is time variant, the pulse width requirement for a track will
change depending on where it occurs in the schedule. We
are allowed to schedule several tracks at once provided that
their interleaved pulses do not violate the feasibility of the
schedule and the power limits of the system.

In addition to previously discussed factors, the SNR of
a scheduled observation is a function of the target object’s
range and how it is situated with respect to the radar’s field of
view. Higher SNR levels correspond both to better expected
observation quality and a greater probability that the target
is illuminated by the radar.

Formally, let T be a set of tracking tasks that must execute
using a renewable resource of finite power (i.e., capacity) P
over a discrete time domain D. P models the duty cycle
limits attributed to the radar system. Additionally, each task

430



i ∈ T is associated with the following quantities:

πi ∈ 1, 2, . . . (1)
wi = {(a1, b1), (a2, b2), . . . , (a|wi|, b|wi|)} (2)

di ∈ Z+ (3)
oi = {set of Keplerian orbital elements} (4)

where (1) denotes the priority of task i, (2) is a set of visi-
bility windows associated with the tracking task, and (3) is
the duration in time units necessary to collect the required
observations.

A set of Keplerian orbital elements oi for each object (4)
allows for the calculation of the object’s position at any time
τ ∈ D. This allows us to compute the following functions:

r(oi, τ) (5)
θ(oi, τ) (6)

snr(oi, τ) =
rcs · cos2 θ(oi, τ) · LG

r(oi, τ)4
(7)

pw(oi, τ) = F (r(oi, τ)) (8)

where (5) is the range of object oi at time τ and (6) is the
object’s angle off the normal vector to the radar’s face plane
(known as the “boresight”). This is included to represent
scan loss exhibited at high off-normal beam angles. These
quantities are used to calculate the SNR (equation 7) asso-
ciated with object oi at time τ , and the pulse width (equa-
tion 8) required to illuminate it at its range. The rcs term
is the radar cross section (scattering coefficient) and models
the target object’s profile with respect to the array. The LG
term is loop gain: a constant defined by parameters of the
specific radar system.

A solution to the problem specifies a subset of tasks T ′ ⊂
T to be placed in the schedule and a mapping s : T ′ → D
that assigns start times to tasks. A feasible solution is de-
fined as follows. Let Mτ be the set of all tasks i ∈ T ′
scheduled to be concurrently executing at time τ : this im-
plies s(i) ≤ τ ≤ s(i) + di for all τ ∈ D. Then,

∀i ∈ T ′, ∃(aj , bj) ∈ wi, aj ≤ s(i) ≤ s(i) + di ≤ bj (9)
∀τ ∈ D,∑i∈Mτ

pw(oi, τ) ≤ P (10)

∀τ ∈ D, ∀i ∈Mτ , snr(oi, τ) ≥ 11dB (11)

Constraint (9) asserts the requirement that the task must
execute during a visibility window, and (10) states that the
pulse width needed by a set of concurrently executing tracks
must not exceed the radar system’s duty cycle limits P at any
time. Lastly, (11) models the requirement that the SNR (in
decibels) of a tracking task must be above an 11 dB thresh-
old to obtain any return.

Algorithms
As a target moves through the visibility cone, its range and
angle changes to produce a mound shaped signal to noise
curve during the window of visibility. To maximize the SNR
of tasks, a promising approach is to assign tracks to occur
directly on the peak of this curve, when the SNR is high-
est during the visibility window. Empirically, using a maxi-
mal SNR “on-peak” scheduling strategy does not necessarily

correspond to an optimal solution; if many peaks occur in
concert, assigning tracks to peaks may produce duty cycle
violations. Moving tracks off of their peaks or scheduling
them to occur in a visibility window of lower average SNR
might resolve resource contention. The general idea is to
balance power usage to obtain a higher utilization without a
great sacrifice in overall SNR of tasks.

We define two classes of algorithms that differ in the way
they explore the solution space. We refer to the class of
methods that only schedule tracks to occur on their SNR
peaks as on-peak methods. These algorithms must choose
a set of peaks in such a way to achieve high utilization.
Since on-peak methods are constrained to a significantly
small subset of the solution space, it may be possible to at-
tain higher utilization if we allow tasks to be scheduled off
of their SNR peaks. In this case, latent contention may be
eliminated by expanding the set of allowable solutions.

This motivates the second class of algorithms which we
shall call off-peak. These methods search the set of feasi-
ble start times: a significantly larger superset of the region
allowed to on-peak algorithms. Because of this, off-peak
methods are not as confined and can explore more feasible
schedules, but solutions with high utilization may not be as
densely distributed in this space.

In each algorithm class we apply three approaches: a
greedy constructive framework, local search, and a genetic
algorithm.

on-peak off-peak
Greedy bestWindow priorityOffPeak
Local onPeakLocal offPeakLocal
GA onPeakGA offPeakGA

For the on-peak methods, the bestWindow constructive
approach operates by placing all time windows in a list
sorted by descending peak SNR. While the list is not empty,
it chooses the first window and attempts to schedule the cor-
responding task. If the task does not fit into the schedule in
the corresponding time window, it deletes the window from
the list; if the task has no windows remaining, it is effec-
tively discarded from the schedule. Otherwise, it schedules
the task and deletes the remaining time windows on the list
associated with that task 1.

Both the onPeakLocal and the onPeakGA employ a
schedule builder that takes an ordering of tasks and inserts
each of them into their first available on-peak time in the
schedule. The onPeakLocal method searches for task order-
ings by exploring neighborhoods induced by the shift oper-
ator while the onPeakGA evolves a population of insertion
orderings.

The shift operator defines a neighborhood of a current task
permutation p (an insertion ordering) as all (|T | − 1)2 pairs
(x, y) in p subject to y 6= x − 1. A neighbor of p parame-
terized by the position pair (x, y) is the permutation p′ ob-
tained by shifting the task at position x into position y leav-
ing the relative order of all other tasks unchanged. Likewise,
the onPeakGA maintains a population of task permutations

1We thank Ross M. McConnell for the idea behind the best-
Window heuristic.
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and employs a schedule builder to translate each population
member into a fitness value.

The priorityOffPeak constructive heuristic simply in-
serts tasks in priority order (ties are broken arbitrarily) to
their first feasible position in the schedule. The offPeakLo-
cal search first greedily places all tracks on their first avail-
able peaks and performs a neighborhood search by perturb-
ing each start time by a Gaussian random variable ε. If a
start time is pushed out of a window, it is moved to the next
window. Similarly, the offPeakGA evolves a population of
feasible time vectors. Each vector corresponds to a set of
task start times in a schedule. The genetic algorithm em-
ploys mutation and recombination to drive a search for more
promising schedule times. Note that the off-peak methods
are priority biased: if a subset of tasks violate duty cycle
constraints, those with lowest priority are bumped.

Experiment
Based on data obtained from the SENSOR Eglin SLEP
program at ITT Industries, we constructed a model of the
scheduling problem and generated 15 synthetic problems.
To control the degree of resource constraint, we divided the
problems into three sets of five with differing task cardinali-
ties but equivalent power limits. The sets contained 1000,
2000, and 3000 tasks. For each task, we synthesized a
corresponding target object by computing orbital elements
through randomized generate and test. We calculated the
range and boresight angle for a given object and time by
using a Simple General Perturbations (SGP) orbit propaga-
tor (Hoots & Roehrich 1980) to compute position vectors
from the generated elements. From these quantities we com-
puted the SNR and pulse width using equations (7) and (8).
We chose required durations for tracking tasks uniformly
from 30-50 seconds. Each problem had a 24 hour time do-
main.

We assigned task priorities by drawing one of five cat-
egories from a distribution that models real data from the
Space Control Center. To weight significance, we assigned
a bump penalty of 50, 40, 30, 20, and 10 to each priority,
from high to low respectively. We selected these values to
induce a penalty proportional to the priority values used at
Eglin, but also to produce penalties that lie in the same in-
terval as the SNR values.

We used a loop gain of 150 dB which is incorporated into
the SNR calculations (equation 7) as the LG term. We raise
the required pulse width for a track by a power of 2 for every
1000 km of range. We imposed a P = 256 µs pulse width
limit to simulate duty cycle bounds and artifacts introduced
by radar resolution.

To collect data that characterize the relationship between
solution quality and schedule utilization, we ran each algo-
rithm on each set and recorded the total SNR and penalty of
tasks bumped. The searches optimize an objective function
defined as the ratio of the total solution quality to priority
weighted penalty of discarded tasks (inverse utilization):

∑
i∈T ′ snr(oi, τ)∑

b∈T−T ′ penalty(πb)
, for τ = s(i), . . . , s(i) + di

where penalty(1) = 50, penalty(2) = 40, . . .,penalty(5) =
10. We ran these searches for 20000 evaluations each and
averaged their results over 10 runs.

The onPeakLocal search implemented a next descent
strategy in permutation space over the neighborhood defined
by the shift operator. The offPeakLocal search employed a
Gaussian step size with a standard deviation of 10 seconds.

The onPeakGA used an order-based permutation
crossover (Syswerda 1991). The offPeakGA employed
HUX recombination and Gaussian mutation with a standard
deviation of 10 seconds. The difference in crossover opera-
tor is due to the differences in representations (permutation
gene representation versus integer gene). The Gaussian mu-
tation was used in the offPeakGA to perturb task start posi-
tions in the same way the offPeakLocal does. Both genetic
algorithms maintained a population size of 100 members
and utilized the Genitor steady-state framework originated
by Whitley (1989).

The quality and utilization results from the experiments
are shown in Figure 1.

Discussion
The spacetrack scheduling problem poses some interesting
problems to AI scheduling methods. The difficult quality
function serves to confound the topology of the problem
space and solutions with high quality and utilization mea-
sures are elusive. Good solutions will be found along a
Pareto front. Specifically, there is an inherent trade-off be-
tween high SNR values and high utilization measures.

We conjecture that high-quality schedules, those whose
tracking tasks must lie on or near SNR peaks, tend to have
more rigidity than schedules that allow more diffusion of
tasks in time. The pliability in lower quality schedules may
serve to mitigate resource competition.

The priorityOffPeak heuristic consistently found the so-
lutions that maximized utilization compared to other meth-
ods. Since its performance eclipses every on-peak method,
there is evidence that allowing the scheduler to consider
off peak insertion does admit higher utilization by allowing
greater task dispersion in the schedule to smooth out con-
tention peaks.

However, the relatively poor performance of the off-peak
local and genetic algorithms raised a number of questions.
The solution space explored by the off-peak GA and local
search is significantly larger and less constrained than the
on-peak search space, and promising solutions will tend to
be much more sparsely distributed. This may cause off-peak
search algorithms to spend most of their time in uninterest-
ing regions of the problem space. On the other hand, the
on-peak methods, though confined to a subset of accessible
schedules, are able to move much more quickly through the
space and find an acceptable interposition of quality and uti-
lization.

It should also be noted that the representations used by the
on-peak methods and the off-peak methods are very differ-
ent. The on-peak representations and search operators have
been shown to be effective in other related scheduling prob-
lems, and are more customized to fit known properties of the
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Figure 1: Solution quality vs. utilization for solutions found by algorithms on each problem set. Error bars denote standard
deviation between problems.

search space. The off-peak methods however treat the prob-
lem as a black box parameter optimization problem, and thus
use less problem specific information.

To maximize quality, bestWindow is consistently the
top performer at the cost of reduced utilization. However,
at high SNR values, tracking tasks are more likely to be
successful; so under some circumstances, such a trade-off
may be desirable. Conversely, if high utilization offsets the
degradation in quality (e.g., there are more total success-
ful observations under a high utilization strategy), simple
off-peak heuristics such as priorityOffPeak could be suf-
ficient. One potential problem is that this method does not
pay enough attention to high priority tasks.

The crucial issue with the priorityOffPeak method is that
such a decline in quality may in reality correspond to a po-
tentially poor utilization if SNR levels become low enough
to cause tracks to be missed. For example, in the case of the
1000 task set, if the quality degradation causes over 6% of
the tasks to be missed, it will attain a true utilization that is
no better than the solution discovered by the bestWindow
heuristic.

A good trade-off between the two measures is found by
the on-peak iterative search algorithms. These algorithms
are inherently quality biased since they search the set of so-
lutions that have all of their tasks scheduled on the highest
possible SNR of their assigned time window. In our exper-
iment, the local search and the GA were able to exploit in-
formation about which peaks yielded better utilization by
moving around contention. Although both performed sim-
ilarly, the onPeakLocal search dominates the onPeakGA
when the number of tasks to be scheduled is 2000 or 3000.
Furthermore, the on-peak searches are more mobile and ex-
plore a wider range of potential solutions compared to the
other methods.

Conclusions
In this paper we have presented a new scheduling problem in
which a balance of resource utilization and quality in a static
schedule will affect the final on-line utilization of a dynamic
schedule. We have explored the relationship between static

utilization and quality as a first step toward designing a dy-
namic scheduler. We have found an empirical trade-off be-
tween the rigidity of high quality solutions and the plasticity
of high utilization solutions.
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