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Abstract The (1 + 1) EA is a simple evolutionary algorithm that is known to be
efficient on linear functions and on some combinatorial optimization problems. In this
paper, we rigorously study its behavior on three easy combinatorial problems: finding
the 2-coloring of a class of bipartite graphs, solving a class of satisfiable 2-CNF
formulas, and solving a class of satisfiable propositional Horn formulas. We prove
that it is inefficient on all three problems in the sense that the number of iterations
the algorithm needs to minimize the cost functions is superpolynomial with high
probability. Our motivation is to better understand the influence of problem instance
structure on the runtime character of a simple evolutionary algorithm.We are interested
inwhat kind of structural features give rise to so-calledmetastable states at which, with
probability 1− o(1), the (1+ 1) EA becomes trapped and subsequently has difficulty
leaving. Finally, we show how to modify the (1 + 1) EA slightly in order to obtain a
polynomial-time performance guarantee on all three problems.

Keywords Runtime analysis · Lower bounds · (1 + 1) EA

1 Introduction

Randomized search heuristics such as evolutionary algorithms are general-purpose
techniques for function optimization that are often applied to complex problems. These
algorithms are usually deployed in situations in which problem-specific knowledge is
incomplete or missing and the structure of the problem is not well-defined, changes
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dynamically, or is not completely accessible to the algorithm designer [18]. Still, it
is often useful to study the behavior of randomized search heuristics on problems
with well-understood structure in order to better understand their working principles.
For evolutionary algorithms such as the (1+ 1) EA, linear pseudo-Boolean functions
have served this purpose well for obtaining positive theoretical results. For example,
Witt [28] has recently shown that the (1 + 1) EA requires only en ln n + O(n) steps
in expectation and with high probability to optimize these functions. This bound is
tight up to lower order terms, and is at most a polylogarithmic factor slower than the
corresponding black-box complexity [8].

The use of computationally easy functions as an object of study has also illuminated
several fundamental properties of randomized search heuristics and has cultivated the
development of new proof techniques [7] and new efficient algorithms [5]. Inspired
by these successes, we want to commute this approach into the realm of combinatorial
problems with easily understood structure and study the influence of such structure on
algorithm behavior. In particular, we are interested in natural, computationally easy
problems for which the (1+ 1) EA is provably inefficient. Our main focus is to better
understand the structural properties of problems that pose challenges to evolutionary
algorithms.

Our negative results are obtained by rigorously proving the existence ofmetastable
states in the search space that arise from a particular condition called spin-flip sym-
metry, which is an invariance of the objective function under permutations on the
alphabet [26]. Issues arising from spin-flip symmetry have been investigated for ran-
domized search heuristics on the Ising model from statistical physics [3,13]. Simple
variants of the Ising model are easy; the one-dimensional model can be optimized by
the (1 + 1) EA in expected time bounded by O(n3) [11], and the two-dimensional
variant with positive unit weights can be optimized by the Metropolis algorithm in
expected time bounded by O(n4.5) [10]. Sudholt [24] proved that the expected runtime
of the (μ + λ) EA applied to the Ising model on binary trees is bounded below by
2Ω(n), but that a simple genetic algorithm using crossover with a population size of
two could solve the problem in expected polynomial time.

Inefficient behavior of the (1+1) EA on easy combinatorial optimization problems
has already been observed in a few other settings. Giel and Wegener [12] proved that
the (1 + 1) EA takes exponential time in expectation to find the maximum matching
on a class of bipartite graphs. Neumann et al. [17] showed that the (1 + 1) EA takes
superpolynomial time with high probability to find the minimum cut in a weighted
digraph and proved that a multi-objective evolutionary algorithm runs in polynomial
time.

Insight into specific problem structure is often useful for the design ofmore efficient
variation operators. This is common in applications, but has also been studied from
a theoretical perspective. Doerr et al. [6] proved that tailored mutation operators for
the Eulerian cycle problem on a graph of m edges can improve the efficiency of
randomized local search and the (1 + 1) EA resulting in an upper bound of O(m3).
This beats the upper bound for the general version of the (1 + 1) EA by a factor of
m2. Motivated similarly, Jansen and Sudholt [14] considered asymmetric mutation
operators for binary strings on functions for which good solutions have low (or high)
Hamming weight and give asymptotic speed-ups for the (1+1) EA on certain pseudo-
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Boolean functionswith this property. Raidl et al. [22] showed that, when using a biased
edge-exchange mutation for minimum spanning tree, the expected optimization time
of the (1 + 1) EA solving minimum spanning tree is asymptotically equivalent to
Kruskal’s classical algorithm. In the current paper, we will develop a problem-specific
operator that yields even a superpolynomial speed-up for the (1 + 1) EA on bipartite
coloring and 2-SAT, and for a particular class of propositional Horn formulas.

A preliminary version of this paper appeared in the proceedings of GECCO
2014 [25]. The paper is organized as follows. In the remainder of this section, we
introduce the algorithm and basic analytical framework. In Sect. 2, we analyze the
runtime of the (1 + 1) EA searching for a 2-coloring of a bipartite graph and provide
tail bounds that prove with high probability the evolutionary algorithm needs at least
a superpolynomial number of iterations in the worst case.

In Sect. 3 we prove a similar result for the (1 + 1) EA searching for a satisfying
assignment to satisfiable 2-CNF formulas and Horn formulas. Both problems are
easy in the classical sense, but we show that there are instances for which, with high
probability, the (1+1) EA does not find a satisfying assignment in time that is bounded
above by any polynomial in the number of variables.

Finally, in Sect. 4 we show that the (1+ 1) EA can be adapted slightly by changing
the fitness function and mutation operator to take advantage of domain-specific infor-
mation, and that this adaptation results in a polynomial-time performance guarantee
for every 2-coloring instance and every satisfiable 2-CNF formula. Furthermore, we
prove that it can efficiently solve the class of pathological Horn satisfiability formulas
presented in Sect. 3.2. We conclude the paper in Sect. 5.

1.1 Preliminaries

We consider in this paper the minimization of nonlinear pseudo-Boolean functions
f : {0, 1}n → Rwhere f measures the cost of candidate solutions (encoded as length-
n bitstrings) to a combinatorial problem. For a bitstring x ∈ {0, 1}n , we will denote the
i-th element in x as x[i]. The (1+ 1) EA, defined in Algorithm 1 for minimizing f , is
a basic randomized search heuristic for optimizing discrete functions. The (1+ 1) EA
has been a prominent object of study in theoretical investigations of randomized search
heuristics [2] since it is a degenerate evolutionary algorithm in the sense that it uses the
smallest nontrivial population size (one), simple uniformmutation, no recombination,
and a simple survival selection scheme. This natural simplicity facilitates theoretical
analysis while still reflecting the behavior of more complex evolutionary approaches.

Algorithm 1: (1 + 1) EA.
Choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x ;
Flip each bit y[i] independently with probability 1/n;
if f (y) ≤ f (x) then x ← y
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We regard a run of Algorithm 1 as an infinite stochastic process {x (t) : t ∈ N0},
where x (t) ∈ {0, 1}n denotes the candidate solution generated in iteration t of the
algorithm. The optimization time T of an algorithm is the random variable

T := inf
{
t ∈ N0 : f (x (t)) is minimal

}
.

In the following, we will be primarily interested in tail bounds for T . In other words,
we want to derive rigorous estimates on the probability that T exceeds some value
g(n).

We will need the following theorem that relates the drift of a stochastic process to
bounds on its hitting time.

Theorem 1 (Negative Drift [19,20]) Let {Xt : t ∈ N0} be a sequence of random
variables overR≥0. Suppose there exist an interval [a, b] ⊆ R, two constants δ, ε > 0
and, possibly depending on � := b − a, a function r(�) satisfying 1 ≤ r(�) =
o(�/ log(�)) such that for all t ≥ 0 the following two conditions hold:

1. E(Xt+1 − Xt | Xt , a < Xt < b) ≥ ε;
2. For all j ≥ 0, Pr(|Xt+1 − Xt | ≥ j | Xt , a < Xt ) ≤ r(�)

(1+δ) j
.

Then there is a constant c > 0 such that for T := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it
holds Pr(T ≤ 2c�/r(�)) = 2−Ω(�/r(�)).

2 Coloring Bipartite Graphs

Given a graph G = (V, E) and a set [k] = {1, 2, . . . , k}, a coloring of G is a mapping
χ : V → [k]. We are interested in finding a coloring χ that minimizes the set of
monochromatic edges {(u, v) ∈ E : χ(u) = χ(v)}. We say a graph G is k-colorable
if there exists a k-coloring χ� such that

{
(u, v) ∈ E : χ�(u) = χ�(v)

} = ∅.

Note that a graph is 2-colorable if and only if it is bipartite, and in this case the problem
of finding a 2-coloring with no monochromatic edges is in P. Obviously, a 2-coloring
of a bipartite graph can be found in time linear to the size of the graph by depth-first
search. In this section, we will introduce a class of pathological instances of bipartite
graphs that the (1 + 1) EA fails to solve efficiently with high probability.

We construct a graph G = (V, E) on |V | = n vertices as follows. Let 0 < ε < 1/2
be an arbitrary real constant. Without loss of generality, let m = n2ε/4 − 1/2 and
k = Θ(n1−2ε) be integers. A block is a subgraph Gi = (Vi , Ei ) where |Vi | =
4m + 2 = n2ε and |Ei | = 2m2 + 2m + 1.

The setVi is composed of fivemutually disjoint sets {Ai , Bi ,Ci , Di , {ui , vi }}where
|Ai | = |Bi | = |Ci | = |Di | = m. The subgraph induced by Ai ∪ Bi is isomorphic
to the complete bipartite graph Km,m . Similarly, the subgraph induced by Ci ∪ Di is
also isomorphic to Km,m . We construct the remaining 2m + 1 edges to form a cutset
between these two complete bipartite subgraphs. We add (ui , vi ) to Ei , and an edge
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Fig. 1 Bipartite block subgraph Gi = (Vi , Ei )

Fig. 2 A bipartite graph G constructed by connecting a sequence of k = Θ(n1−2ε) blocks

between ui and every vertex in Bi , as well as an edge between vi and every vertex in
Ci . Clearly Gi is bipartite (see Fig. 1).

We construct G by taking a sequence of k = Θ(n1−2ε) blocks G1,G2, . . . ,Gk

(see Fig. 2) and attaching Gi to Gi+1 for all 1 ≤ i < k by adding arbitrary edges
between vertices in Di and Ai+1 subject to the constraint that the maximum degree
of the subgraph of G induced by Ai+1 ∪ Di is one.

The set of all 2-colorings of G is isomorphic to {0, 1}n , and, as is typical with evo-
lutionary algorithms, we consider each candidate solution as a bitstring x ∈ {0, 1}n .
The pseudo-Boolean fitness function f : {0, 1}n → N0 counts the number of mono-
chromatic edges in a coloring, i.e.,

f (x) = | {(u, v) ∈ E : x[u] = x[v]} |. (1)

Here x[u] is the element of the bitstring corresponding to vertex u. Obviously, a 2-
coloring corresponding to x is optimal if and only if f (x) = 0. Furthermore, the
function f has the property of spin-flip symmetry since f (x) = f (σ (x)) where
σ : {0, 1}n → {0, 1}n is the permutation that takes each bitstring to its complement.
The presence of spin-flip symmetry can have a strong influence on the dynamics of a
search algorithm [26], and we will shortly see that it can produce deceptive regions in
the search space.
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We want to analyze the performance of Algorithm 1 minimizing f as defined in (1)
on the graph G. The main result of this section is that, with high probability, the
(1 + 1) EA optimizing the pseudo-Boolean fitness function defined in Eq. (1) fails to
find a 2-coloring for G in time bounded by any polynomial of n.

Theorem 2 Let G be a bipartite graph as defined above for any real constant 0 <

ε < 1/2. With probability 1− o(1), the (1+ 1) EA does not find a feasible 2-coloring
of G in 2Ω(nε ) steps.

Before proving Theorem 2, we will need a few definitions and technical lemmas.
We will use the following result to obtain tight bounds on the probabilities of specific
events.

Lemma 1 Let 1 ≤ h(n) < n be an integer function of n. Then

h(n)

en
≤ 1 −

(
1 − 1

n

)h(n)

≤ h(n)

n
.

Proof For the lower bound, we have

1 − (1 − 1/n)h(n)

1/n
= 1 − (1 − 1/n)h(n)

1 − (1 − 1/n)
,

which is equal to the sum of the first h(n) terms of a geometric series:

h(n)−1∑
j=0

(1 − 1/n) j ≥ h(n)(1 − 1/n)n−1 ≥ h(n)/e.

The upper bound follows from Bernoulli’s inequality. 
�
Definition 1 For a block Gi , we say that a 2-coloring x of G is deceptive for Gi if
the following five conditions hold.

1. x[ui ] = x[vi ] = 0.
2. |{v ∈ Ai : x[v] = 0}| > m/2,
3. |{v ∈ Bi : x[v] = 1}| > m/2,
4. |{v ∈ Ci : x[v] = 1}| > m/2,
5. |{v ∈ Di : x[v] = 0}| > m/2,

For brevity, we will sometimes in this case say x is deceptive when Gi is clear from
context.

Definition 2 Let δ : {0, 1}n × 2V → N0 count the deviation of the majority color
from |U |/2 in a setU ⊆ V under a particular coloring. That is, for a 2-coloring x and
a subset U ⊆ V ,

δ(x,U ) = max
z∈{0,1} |{v ∈ U : x[v] = z}| − |U |/2.
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Fig. 3 A metastable state for a block Gi . Deceptive colorings for Gi lie in this state’s basin of attraction,
i.e., the stochastic process drifts toward this metastable state in the region of deceptive colorings for Gi

Let Gi be a block. For each U ∈ {Ai , Bi ,Ci , Di } we define a function

ψU (x) =
{

δ(x,U ) if x is deceptive for Gi ;
0 otherwise.

We define the following block potential function with respect to Gi .

ϕi (x) = ψAi (x) + ψBi (x) + ψCi (x) + ψDi (x).

Informally, a coloring is called deceptive for a block Gi because it lies in the basin
of attraction of a so-called metastable state where the only monochromatic edge in
the block is (ui , vi ) (see Fig. 3). This metastable state is an attractor for the dynamics
of the (1 + 1) EA, and we formalize this in the following lemma that ensures that
the stochastic process described by the (1 + 1) EA has a positive drift toward this
metastable state.

Lemma 2 Let x (t) be the coloring found in iteration t of the (1+ 1) EA. Suppose x (t)

is deceptive for a block Gi , and let P be the event that mutation changes the color of
some vertices in Gi in iteration t. Suppose that

√
m/5 ≤ ψU (x (t)) ≤ √

m/4

for each U ∈ {Ai , Bi ,Ci , Di }. Then there exists a positive constant c such that

E
(
ϕi (x

(t+1)) − ϕi (x
(t))

∣∣∣ P
)

> 4c.
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Proof Wefirst show that under the claimed conditions there exists a positive constant c
such that the expectation ofψAi (x

(t+1))−ψAi (x
(t)) conditioned on P is at least c. Let

y be the offspring created by uniform mutation in iteration t of the (1+ 1) EA. By the
selection process, x (t+1) = y if and only if f (y) ≤ f (x (t)), otherwise x (t+1) = x (t).
Define the random variable Z := ψAi (x

(t+1)) − ψAi (x
(t)) and let IP be the indicator

random variable for event P .
In this proof, we will rely heavily on the law of total probability and partition the

probability space based on the following events (along with their complements). Let
Q1 be the event that in iteration t , mutation does not change the color of any vertices
in V \ Ai . Let Q2 be the event that the block remains deceptive after mutation and
selection.

We first consider the event Q1 ∩ Q2. Since x (t) is deceptive for Gi , the majority of
vertices in Ai are labeled 0 by x (t). Furthermore, each vertex in Ai labeled 1 is adjacent
to at leastm/2+√

m/5 vertices labeled 1 in Bi , and adjacent to at mostm/2−√
m/5

vertices labeled 0 in Bi , and at most one vertex in Di−1 possibly labeled 0.
Under event Q1, if the majority color in Ai is strictly reduced by mutation, the

resulting coloring y has strictly more monochromatic edges, and thus y will not be
accepted. Thus, Q1 ⊆ Q2 and so Q1 ∩ Q2 = Q1 and it suffices to bound E(Z | Q1).
There arem−(m/2+ψAi (x

(t))) vertices labeled 1 by x (t). The probability that exactly
one of these vertices changes color under mutation is at least 1/(en). Each such event
contributes to the expectation of Z under Q1. Since a reduction in majority color
will not be accepted under Q1, by linearity of expectation and the assumed bounds
on ψAi ,

E(Z | Q1 ∩ Q2) = E(Z | Q1) ≥ (m/2 − √
m/4)/(en).

We now examine the event Q1∩Q2. In this case, vertices outside Ai are allowed to
change, and the vertices of majority color in Ai might be lost after selection because
a change in V \ Ai is so favorable that it masks any loss of fitness coming from
Ai . Before bounding the expectation of Z conditioned on Q1 ∩ Q2, we consider
the expected change in the majority color of Ai under pure mutation, that is, ignor-
ing any effect of selection. Since each vertex changes color with probability 1/n,
by linearity of expectation, the expected change in majority color of Ai under pure
mutation is:

(
m −

(m
2

+ ψAi (x
(t))

))/
n −

(m
2

+ ψAi (x
(t))

)/
n ≥ −

√
m

2n
. (2)

The inequality is due to the assumption thatψAi (x
(t)) ≤ √

m/4. Under event Q1∩Q2,
the expected loss in majority color under mutation and selection cannot be greater than
the expected loss under pure mutation. By (2) we thus have

E
(
Z | Q1 ∩ Q2

) ≥ −
√
m

2n
.

123



Algorithmica (2016) 75:507–528 515

Applying the law of total probability, we can write

E(Z | Q2) = E(Z | Q1 ∩ Q2)Pr(Q1 | Q2) + E(Z | Q1 ∩ Q2) (1 − Pr(Q1 | Q2))

≥ (m/2) − √
m/4

en
Pr(Q1 | Q2) −

√
m

2n
(1 − Pr(Q1 | Q2))

≥ (m/2) − √
m/4

e2n
−

√
m

2n

since Pr(Q1 | Q2) ≥ Pr(Q1) = (1 − 1/n)n−m ≥ 1/e. Again, by the law of total
probability,

E(Z) = E(Z | Q2)(1 − Pr(Q2)) + E(Z | Q2)Pr(Q2).

The block can only go non-deceptive after mutating at least
√
m/5 bits. The number

of bits that change under mutation is distributed binomially, so the probability that at
least

√
m/5 bits in block Gi change is at most

(4m+2√
m/5

)
(1/n)

√
m/5 ≤ 1/(

√
m/5)! so we

have Pr(Q2) ≤ e−Ω(
√
m logm). Thus,

E(Z) ≥ (m/2) − √
m/4

e2n
−

√
m

2n
− e−Ω(

√
m logm).

To complete the proof, we must condition the expectation on the event P . If event
P has not occurred, no change is possible inside the block and Z must be zero. Stated
more formally, for an element ω of the probability space, Z(ω) = 0 if ω ∈ P and so
we have Z = Z IP . By definition,

E(Z | P) = E(Z IP )/Pr(P) = E(Z)/Pr(P).

Since Pr(P) = 1−Pr(P) = 1−(1−1/n)4m+2, by applying Lemma 1, we can tightly
bound the probability of P ,

(4m + 2)/(en) ≤ Pr(P) ≤ (4m + 2)/n,

and thus

E(Z | P) ≥ 2m − √
m

16e2m + 8e2
− e

√
m

8m + 4
− e−Ω(

√
m logm).

It follows that, for n sufficiently large, there exists a positive constant c such that

E(Z |P) = E
(
ψAi (x

(t+1)) − ψAi (x
(t))

∣∣∣ P
)

> c.

Using symmetric arguments, the expected differences for ψBi , ψCi , and ψDi are also
all bounded below by c. The claim for the block potential function ϕi then follows by
linearity of expectation. 
�
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Fig. 4 Stochastic drift of the block potential function Xt = ϕi (x
(t)) on a coloring deceptive for Gi

We have therefore proved that the drift (conditioned on P) of the stochastic process
{ϕi (x (t)) : t ∈ N0} is strictly positive for a set of colorings in the deceptive region
for Gi . Figure 4 illustrates the situation. This lemma formalizes the concept that for
colorings deceptive for a block Gi , in expectation the (1 + 1) EA is attracted to the
metastable state for Gi .

Definition 3 For a block Gi , we say a deceptive 2-coloring x of G is bad for Gi if
the following five conditions hold.

1. x[ui ] = x[vi ] = 0.
2. |{v ∈ Ai : x[v] = 0}| ≥ m/2 + √

m/4,
3. |{v ∈ Bi : x[v] = 1}| ≥ m/2 + √

m/4,
4. |{v ∈ Ci : x[v] = 1}| ≥ m/2 + √

m/4,
5. |{v ∈ Di : x[v] = 0}| ≥ m/2 + √

m/4,

We sometimes say that such a coloring is bad when Gi is clear from context.

Lemma 3 Let U ⊆ V be a subset of m vertices where m > 4. In any uniformly
random coloring of U, at least m/2 + √

m/4 vertices in U are colored 0 (1) with
probability at least 1

15e > 1/41.

Proof Let X be the random variable that counts the number of vertices in U colored
0 (1) in a uniformly random coloring of V . Since X is distributed binomially, we have
the following lower bound for any 0 < t < m/8 (derived explicitly in [15, Proposition
7.3.2 on page 46] and follows as a special case of a result due to Feller [9]).

Pr(X ≥ E(X) + t) ≥ 1

15
e−16t2/m .

The claim holds by substituting E(X) = m/2 and t = √
m/4 < m/8. 
�

Lemma 3 gives a lower bound on the probability that, in a uniformly random 2-
coloring, there is a majority of vertices of a certain color in a subset of size m, and
that this majority deviates fromm/2 by at least

√
m/4. This immediately provides the

following bound on the probability that the initial random 2-coloring is bad for any
block.
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Lemma 4 Let Gi = (Vi , Ei ) be an arbitrary block of G. With at least constant
probability, the initial uniformly random 2-coloring is bad for Gi .

Proof Since {Ai , Bi ,Ci , Di , {ui , vi }} form a partition of Vi , the five events in Def-
inition 3 are mutually independent, and it suffices to show their joint probability
is bounded below by a constant. Clearly, event (1), i.e., the event in which x[ui ] =
x[vi ] = 0 in the initial coloring x ∈ {0, 1}n , occurs with probability 1/4. By Lemma 3,
the probability of each of events 2–5 is at least 1/41. By independence, the joint prob-
ability of the five events is Ω(1). 
�

We are now ready to prove the main result of this section.

Proof of Theorem 2 A feasible 2-coloring of G must be non-deceptive for all blocks
so a necessary condition for every feasible 2-coloring x� is that ϕi (x�) = 0 for every
i ∈ {1, 2, . . . , k}. If at any time during the execution of the (1+1) EAa block is bad, the
algorithm must change the color of at least Ω(

√
m) vertices to make it non-deceptive.

Suppose that x (0) is bad with respect to block Gi . We consider the restriction of
the stochastic process {x (t) : t ∈ N0} consisting only of steps in which there is a
mutation that changes vertices in Gi . The drift of ϕi in this process is exactly the
conditional drift from the claim of Lemma 2. We now appeal to the Negative Drift
Theorem (Theorem 1). The first condition of Theorem 1 is given by Lemma 2. Since
the (1 + 1) EA uses uniform mutation, the number of vertices that change under
mutation is distributed binomially so the probability of a jump of size at least j is at
most

(n
j

)
(1/n) j ≤ 2− j+1 and so the second condition holds with δ = 1 and r(�) = 2.

Thus, with probability 1−o(1), the EA needs 2Ω(
√
m) = 2Ω(nε ) steps in this restricted

process to reduce the potential of a bad block since m = Θ(n2ε). Since the restricted
process to solve the bad block can only be faster than the optimization time of the EA
(in which there can only be additional steps where nothing occurs within the block), it
follows that with high probability the EA needs at least superpolynomial time to solve
any bad blocks.

Finally, by Lemma 4, with probability p = Ω(1) the initial uniformly random
coloring is already bad for an arbitrary block. Consequently, with probability at least
1 − (1 − p)k = 1 − o(1) there is at least one bad block in the initial coloring. The
asymptotic expression follows from the fact that k = Θ(n1−2ε). Thus, with high
probability, the EA must first fix a bad block, and this takes superpolynomial time
with high probability. Since all bad blocks must be fixed before a feasible 2-coloring
is found, the claim follows. 
�

3 Tractable Subclasses of Propositional Formulas

Propositional satisfiability is an important combinatorial problem with extensive the-
oretical and practical relevance. A propositional logic formula is an expression built
from a set of Boolean variables, logical operators (∧,∨,¬) and parentheses. A propo-
sitional formula is said to be satisfiable if there is an assignment to its variables so that
the entire formula evaluates to true. If no such assignment exists, it is unsatisfiable.
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In general, deciding the satisfiability of a propositional formula isNP-hard. Schae-
fer’s Dichotomy Theorem [23] identifies a set of properties that guarantee a formula is
decidable in polynomial time: (1) formulas that are satisfied when all variables are set
to false (respectively, true), (2) formulas formed by conjunctions of disjunctive clauses
that each contain at most one positive (respectively, negative) literal (3) formulas in
conjunctive normal form with at most two literals in each clause, and (4) affine formu-
las. On the other hand, the class of formulas for which none of these properties hold
is NP-complete. In this section, we study the behavior of the (1 + 1) EA searching
for satisfying assignments to tractable formulas with properties (2) and (3). Formu-
las satisfying property (2) are called Horn (respectively, reverse Horn) formulas, and
formulas satisfying property (3) are called 2-CNF formulas.

In the context of propositional satisfiability, the (1+ 1) EA is obviously an incom-
plete heuristic because it is incapable of proving that a formula is unsatisfiable. We
therefore restrict our analysis to its performance on satisfiable formulas. This restric-
tion has the following theoretical motivation. Suppose T is the random variable that
counts the number of iterations until the (1+1)EAfinds a satisfying assignment to a sat-
isfiable formula on n variables and that we can estimate tail bounds Pr(T ≥ g(n)) ≤ ε

for some constant 0 < ε < 1. Then we can construct a Monte Carlo algorithm with
one-sided error as follows.Given an arbitrary formula on n variables, run the (1+1) EA
for g(n) steps and declare it unsatisfiable if no satisfying assignment is found during
that time, otherwise return the found assignment. In this strategy, the (1 + 1) EA can
only produce an incorrect result on satisfiable formulas, and the corresponding error
probability is atmost ε.On the other hand, bounds of the formPr(T ≥ g(n)) = 1−o(1)
indicate that with high probability at least g(n) steps are needed before any satisfying
assignment is found, and a suitable error probability is not attained for g(n) or fewer
iterations.

3.1 Satisfiable 2-CNF Formulas

A propositional formula in k-conjunctive normal form (k-CNF) is a set of disjunctive
clauses on a set of n Boolean variables in which each clause is a set of at most k literals
(a variable or its negation). A formula is said to be satisfiable if there is an assignment
to the variables such that all clauses in the formula evaluate to true. If there is no such
assignment, the formula is said to be unsatisfiable.

For k ≥ 3, the problem of deciding the satisfiability of k-CNF formulas is already
NP-complete. However, when k = 2, there is a linear time deterministic algorithm [1]
for solving the decision problem, and a randomized local search heuristic that can
identify satisfiable formula in quadratic time [16,21].

In this section we study the performance of the (1 + 1) EA on satisfiable 2-CNF
formulas. The set of assignments to n Boolean variables {v1, v2, . . . , vn} is isomorphic
to {0, 1}n , the set of length-n bitstrings.Given abitstring x ∈ {0, 1}n ,we assignvariable
vi the value true if and only if x[i] = 1 and vi the value false if and only if x[i] = 0.
A literal � is satisfied by an assignment x ∈ {0, 1}n if � = vi and x[i] = 1, or � = ¬vi
and x[i] = 0.
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We call a literal negative if it is an instance of a negated variable, otherwise, it is
positive. A clause is satisfied by x if at least one of its literals is satisfied by x . Given
an assignment x , we use the standard fitness function for propositional satisfiability
that counts the number of unsatisfied clauses under x , that is,

f (x) = | {C ∈ F : C is not satisfied by x} |. (3)

Thus, the satisfying assignments of F are exactly the zeros of f . We now show by a
straightforward reduction that the result in Sect. 2 also carries over to 2-CNF formulas.

LetG = (V, E) be a graph on n vertices. We construct a 2-CNF formula consisting
of n variables v1, v2, . . . vn with 2|E | clauses as follows. For every edge (vi , v j ) ∈ E
we add the clauses (vi ∨ v j ) and (¬vi ∨ ¬v j ). For any assignment, at most one of
these clauses is violated, and one is violated if and only if x[i] = x[ j]. Thus the fitness
of x calculated by the coloring fitness function defined in Eq. (1) is equivalent to the
fitness defined by the number of unsatisfied clauses in Eq. (3) for the corresponding
formula. The next Lemma follows as an immediate consequence.

Lemma 5 Let G = (V, E) be a bipartite graph. Then the 2-CNF formula constructed
using the above process is satisfiable.

Moreover, the equivalence immediately implies that there are also hard 2-CNF
formulas for the (1 + 1) EA. In particular, this result entails the following theorem.

Theorem 3 Let F be a propositional formula constructed by reduction from the bipar-
tite graph G in Sect.2. By Lemma 5, F is satisfiable. With probability 1 − o(1), the
(1 + 1) EA does not find a satisfying assignment to F in 2Ω(nε ) steps.

We will later revisit this problem in Sect. 4 as the groundwork for designing an
efficient version of the (1 + 1) EA that incorporates the structure of the propositional
formula under an assignment to the mutation and selection operators.

3.2 Satisfiable Horn Formulas

Another easy to solve subclass of propositional satisfiability is Horn satisfiability in
which one is interested in determining the satisfiability of Horn formulas. A Horn
formula is a propositional formula in conjunctive normal form such that each clause
is a Horn clause. A Horn clause is a disjunctive clause containing at most one pos-
itive literal. Horn satisfiability is interesting from our perspective because it can be
considered the hardest of all “easy problems” in the sense that it is complete for P [4].

Similar to the approach of Sect. 2, we construct a class of pathological Horn for-
mulas on variables that are provably difficult to optimize by the (1+1) EA. This class
of formulas is close to the set of 2-CNF formulas in the sense that they contain many
clauses of length two. However, since they also contain a significant proportion of very
long clauses, a Horn formula cannot be directly transformed to a 2-CNF formula in the
same manner as with the transformation of bipartite graphs in Sect. 3.1. Nevertheless,
we will show in Sect. 4 that a (1 + 1) EA that has been modified to be efficient on
2-CNF formulas will also perform well for this class of Horn formulas.
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We define a ring formula R on a set of r variables {v1, v2, . . . , vr } and 2r + 1
clauses as follows.

R = Ra ∧ Rb

Ra =
r∧

i=1

(
(vi ∨ ¬vi+1 (mod r)) ∧ (¬vi ∨ vi+1 (mod r))

)

Rb = (¬v1 ∨ ¬v2 ∨ · · · ∨ ¬vr ).

Denote V [R] to be the set of variables in R. All 2r clauses of Ra are only satisfied
when vi = v j for all vi , v j ∈ V [R]. The singleton clauseRb is satisfied when at least
one variable vi ∈ V [R] is set to false.

We construct a pathological formula Fpath on n variables as follows. Without loss
of generality, assume r = √

n is an integer and take Fpath to be the conjunction of
√
n

rings on
√
n mutually disjoint sets of variables. Clearly, Fpath is a Horn formula on n

variables and 2n + √
n clauses.

Using the same approach aswith 2-CNF formulas,we associate each distinct assign-
ment to the n variables of Fpath with an element of {0, 1}n and consider the (1+1) EA
minimizing the pseudo-Boolean function defined in (3) that counts the number of
unsatisfied clauses of Fpath under any given assignment. The main result of this sec-
tion is stated in the following theorem.

Theorem 4 With probability superpolynomially close to one, the (1 + 1) EA needs
Ω(nlog n) steps to solve Fpath.

To prove Theorem 4wemake use of the following definitions. LetR be an arbitrary
ring of Fpath. We say a state x ∈ {0, 1} is a metastable state for R if x[v] = 1 for all
v ∈ V [R]. Similarly, we say x is a ground state for R if x[v] = 0 for all v ∈ V [R].
We call a state x a low-energy state for R if it is either a metastable state for R or it
is a ground state for R. In general, we say x is a low-energy state for Fpath if it is a
low-energy state for all its rings. We call a low-energy state for Fpath the ground state
for Fpath if it is a ground state for all of its rings. All remaining low-energy states for
Fpath are called metastable states for Fpath.

Clearly, if x is a ground state for Fpath, then f (x) = 0 and x is the unique satisfying
assignment for Fpath. Our choice of terminology becomes clear from the claim of the
following lemma, which formalizes the concept that metastable states are difficult for
the (1 + 1) EA to leave.

Lemma 6 Consider the (1 + 1) EA working on Fpath. If the current state x of the
(1 + 1) EA is metastable for Fpath, then with probability superpolynomially close to
one, it needs Ω(nlog n) additional steps to reach the ground state.

Proof If the current state is metastable, in order to make an improving move, the
(1+ 1) EA must change all the bits of at least one ring at once. The waiting time until
any particular r bits flip under uniform mutation is geometrically distributed with
success probability
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p =
(
1

n

)r (
1 − 1

n

)n−r

≤ 1

nr
.

The probability that the EA needs strictly fewer than t steps until a success is 1 −
(1 − p)t ≤ t/nr where we have applied Bernoulli’s inequality. Thus the probability
it takes at least t = nlog n steps is bounded below by 1 − n−r+log n . Setting r = √

n
completes the proof. 
�
Lemma 7 LetR be an arbitrary ring in Fpath. Let T be the first point in time such that
x (T ) is a low-energy state for Fpath. Then x (T ) is metastable for R with probability
1/2.

Proof We identify the symmetries of the search space and show that the probability of
first hitting a low-energy state for whichR ismetastable is equivalent to the probability
of first hitting a low-energy state that is a ground state forR. We define an absorbing
Markov chain {Xt : t ∈ N0} on the state space {0, 1}n . Let A ⊆ {0, 1}n be the set of
all states that are low-energy for Fpath. We partition A := B ∪ C into the set B of all
low-energy states that are metastable forR and the set C of low-energy states that are
ground states for R. We set A to be absorbing and for all y /∈ A,

Pr(Xt = x | Xt−1 = y) :=
(
1

n

)dH (x,y) (
1 − 1

n

)n−dH (x,y)

[ f (x) ≤ f (y)]. (4)

where dH (x, y) denotes Hamming distance between x and y and [·] is the Iverson
bracket. In other words, the dynamics of the Markov chain are equivalent to the (1 +
1) EA until an absorbing state is reached.

We now argue that the hitting probabilities of B and C are equal. Let σ be the
unique involutory permutation σ : {0, 1}n → {0, 1}n such that for y = σ(x),

y[v] =
{
1 − x[v] if v ∈ V [R] ,

x[v] otherwise.

We argue that σ is a symmetry of the Markov chain in the following sense.

x ∈ B ⇐⇒ σ(x) ∈ C, (5)

x ∈ C ⇐⇒ σ(x) ∈ B, (6)

Pr(Xt = x | X0 = y) = Pr(Xt = σ(x) | X0 = σ(y)). (7)

Identities (5) and (6) are obvious from the definition of σ . To prove Identity (7), note
that all variables that appear in the clauses of Fpath other than R are fixed by σ .
Moreover, if a clause is unsatisfied (satisfied) in Ra , it remains unsatisfied (satisfied)
under σ . Finally, as long as x and σ(x) are not in A, then Rb is satisfied under
both x and σ(x) since both must contain at least one false variable and at least one
true variable. Thus the count of unsatisfied clauses in R are invariant under σ so
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f (y)− f (x) = f (σ (y))− f (σ (x)). By this fact and the fact thatσ preservesHamming
distances we see from the definition in (4),

Pr(Xt = x | Xt−1 = y) = Pr(Xt = σ(x) | Xt−1 = σ(y))

and (7) follows directly from this by induction on powers of the Markov transition
matrix.

Let y ∈ {0, 1}n be arbitrary and let hB(y) and hC (y) be the absorption probabilities
for B and C respectively. Since Xt ∈ B �⇒ Xt+1 ∈ B,

hB(y) = lim
t→∞Pr(Xt ∈ B | X0 = y)

= lim
t→∞

∑
x∈B

Pr(Xt = x | X0 = y)

= lim
t→∞

∑
σ(x)∈C

Pr(Xt = σ(x) | X0 = σ(y)) by (7)

= lim
t→∞Pr(Xt ∈ C | X0 = σ(y))

= hC (σ (y)).

Since the (1+1) EA is initializedwith a uniform random string, we need to calculate
the hitting probability for B andC under the uniform distribution. In particular, for any
y ∈ {0, 1}n , we have Pr(X0 = y) = 2−n so the uniform distributed hitting probability
for B is

∑
y∈S

2−nhB(y) =
∑
y∈S

2−nhC (σ (y)),

and is therefore equivalent to the uniform distributed hitting probability forC . Because
the Markov chain is absorbing (clearly every transient state can reach a state in A in a
finite number of steps) it hits A = B ∪ C almost surely, and the proof is complete. 
�

The proof of the time bound for the (1 + 1) EA is now straightforward.

Proof of Theorem 4 Let T be the first point in time the (1+ 1) EA finds a low-energy
state x (T ) for Fpath. By Lemma 7, x (T ) is the ground state for Fpath with probability

(1− 1/2)
√
n . Thus with probability 1− 2−√

n , x (T ) is a metastable state for Fpath and
the time bound follows from Lemma 6. 
�

4 Designing an Efficient EA

In this section we show how to slightly modify the evolutionary algorithm listed in
Algorithm 1 to run in expected polynomial time on every bipartite graph, and every
satisfiable 2-CNF formula. We also show that the class of satisfiable Horn formulas
introduced in Sect. 3.2 can be solved in polynomial time by this modification. To
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achieve this, we leave the black-box setting and introduce problem-specific informa-
tion into the runtime environment of the evolutionary algorithm. We focus on the case
of satisfiable 2-CNF formulas and then implicitly rely on the equivalence stated in
Sect. 3.1. We then prove the result extends also to the pathological formulas con-
structed in Sect. 3.2 that are not covered by the reduction.

Wemodify Algorithm 1 in two ways. First, we change the representation slightly so
that in each iteration the algorithm works on a subformula induced by the unsatisfied
clauses. Second, we employ a nonuniform mutation rate that takes into consideration
the number of unsatisfied clauses in which each variable appears (cf. Algorithm 2).
Given a complete assignment to all n variables of a satisfiable 2-CNF formula, if
an unsatisfied clause C exists, choosing a variable uniformly at random from C and
negating it results in an assignment that is closer to a satisfying assignment with
probability at least 1/2. This is the insight behind the conflict-directed random walk
algorithm discovered independently by Papadimitriou [21] and McDiarmid [16]. This
algorithm iteratively flips a variable uniformly at random from an arbitrary unsatisfied
clause until a satisfying assignment is found. As long as a solution exists, the expected
runtime of the conflict-directed random walk is quadratic in n.

The modifications to the (1 + 1) EA that result in Algorithm 2 yield a process that
behaves closer to the Papadimitriou–McDiarmid algorithm and less like a traditional
evolutionary algorithm (a close look reveals that the selection step is even redundant).
Moreover, our runtime bound is a

√
m-factor slower than Papadimitriou–McDiarmid

for reasons we discuss at the end of the section. Nevertheless, we consider these modi-
fications in the context of tailored search operators [6,14,22]. Specifically, we want to
show that even small modifications that incorporate problem-specific knowledge into
the representation and variation operators can close a superpolynomial runtime gap.

Let F be a propositional formulawithm clauses and n variables. For any assignment
x ∈ {0, 1}n , we denote the unsatisfied subformula induced by x as

F[x] = {C ∈ F : C is not satisfied under x}.

Let γi (x) count the clauses in F[x] that contain the i-th variable vi . For the fitness
function, we use a subscript to denote the formula, e.g., fF[x](y) is the number of
clauses in the induced subformula F[x] that are not satisfied by y.

Algorithm 2: Modified (1 + 1) EA.
Choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x ;

Flip each bit y[i] with probability γi(x)|F[x]|+1 ;
if fF[x](y) ≤ fF[x](x) then x ← y

Theorem 5 Let F be a satisfiable 2-CNF formula on n variables with m pairwise
distinct clauses. Algorithm 2 finds a satisfying assignment for F in expected time
bounded by O(n2

√
m).
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Proof Let x� be a satisfying assignment to F . We examine the stochastic process
{Xt : t ∈ N0} on {0, 1, . . . , n} where

Xt =
{

|{x (t)[i] �= x�[i] : i ∈ {1, . . . , n}}| if F[x (t)] �= ∅;
0 otherwise.

Thus Xt is zero only if x (t) is a satisfying assignment, otherwise Xt is the Hamming
distance between x� and the candidate solution of the (1 + 1) EA in iteration t . Let
T ∈ {0, 1, 2, . . .} ∪ {∞} be a random variable defined as T := inf{t ∈ N0 : Xt = 0}.
T therefore measures the number of iterations until the (1+1) EA finds any satisfying
assignment. In the following, we make the implicit assumption that no other satisfying
assignment is found before x�, which could only result in a faster process.

Denote the filtration Ft−1 := X0, . . . , Xt−1. Let Δt = Xt − Xt−1. We first show
that there exists a σ 2 = Ω(1/

√
m) such that E(Δ2

t | Ft−1) ≥ σ 2. We will later apply
this fact to derive an asymptotic bound on the expectation of T . For any t > 0, let
x = x (t−1) be the candidate solution during iteration t −1 of the (1+1) EA. Note that
the selection operation in Algorithm 2 is actually superfluous since it is impossible to
generate a disimproving move with respect to F[x]. Thus Δt measures the change in
Hamming distance to x�, provided that no other satisfying assignment has been found.
Let Zi ∈ {0, 1} for i ∈ {1, . . . , n} be the set of Bernoulli random variables that take
on the value 1 if and only if the i-th bit of x flips. Thus, letting n′ denote the number
of distinct variables in F[x] and m′ the number of clauses in F[x],

Δt =
n′∑
i=1

ai Zi , where ai =
{

−1 if x (t−1)[i] �= x�[i];
1 otherwise.

Since each bit is flipped independently, we have

E
(
Δ2

t | Ft−1

)
≥ Var(Δt ) =

n′∑
i=1

Var(ai Zi ) =
n′∑
i=1

a2i Var(Zi ) .

In the final step, we use the fact that the ai depend only on x (t−1) and x�, and so given
Ft−1, they are fixed (not random variables) in this context. Now since ai ∈ {−1, 1}
for all i ∈ {1, . . . , n′},

Var(Δt ) =
n′∑
i=1

Var(Zi ) =
n′∑
i=1

γi (x)

m′ + 1

(
1 − γi (x)

m′ + 1

)
≥ n′

m′ + 1

(
1 − 1

m′ + 1

)

≥ n′

2(m′ + 1)
.

In any set ofm′ distinct clauses, theremust be at least
√
m′/2 distinct variables. Setting

σ 2 = √
m′/(4m′ + 4) = Ω(1/

√
m) since m′ ≤ m, we have the claimed bound on

E(Δ2
t | Ft−1).
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We now show that, using the modified mutation and selection operators of Algo-
rithm 2,

E (Δt | Ft−1) ≤ 0. (8)

Each unsatisfied clause C in F[x] contains a literal � thatmust be set incorrectly since
C is satisfied by x�. Let S be the set of variables in F[x] corresponding to such literals.
Let R denote the set of remaining variables in F[x]. Flipping any variable in S moves
the solution closer to x�, whereas flipping a variable in R moves the solution further
from x�. Thus we have

Δt ≤ |{bits in R that flip}| − |{bits in S that flip}|.

By definition, each clause contains at least one variable from S and the sum of γi (x)
over i ∈ S (resp., i ∈ R) counts at least half (resp., at most half) of the 2m′ literals in
F[x]. Thus,

E (| {bits in S that flip} |) =
∑
i∈S

γi (x) /
(
m′ + 1

) ≥ m′

(m′ + 1)

E (| {bits in R that flip} |) =
∑
i∈R

γi (x) /
(
m′ + 1

) ≤ m′

(m′ + 1)
,

and Inequality (8) holds. We define the random variable Yt = X2
t − 2nXt − tσ 2.

E(Yt | Ft−1) = E
(
(Xt−1 + Δt )

2 − 2n (Xt−1 + Δt ) − tσ 2 | Ft−1

)
.

Using the fact that any function g, E(g(Xt−1) | Ft−1) = g(Xt−1), and by linearity
of expectation,

E (Yt | Ft−1) = X2
t−1 − 2nXt−1 − tσ 2 + (2Xt−1 − 2n)E (Δt | Ft−1)

+ E
(
Δ2

t | Ft−1

)

= Yt−1 − σ 2 + (2Xt−1 − 2n)E (Δt | Ft−1) + E
(
Δ2

t | Ft−1

)

≥ Yt−1.

The final inequality comes from the fact that (2Xt−1 − 2n)E(Δt | Ft−1) ≥ 0, taking
Xt−1 ≤ n together with Inequality (8), and from E(Δ2

t | Ft−1) − σ 2 ≥ 0 by our
previous bound onE(Δ2

t | Ft−1). Therefore, the sequence {Yt } is a submartingalewith
respect to the sequence {Xt }, and by the Optional Stopping Theorem [27, Theorem
10.10] E(YT ) ≥ E(Y0). Therefore,

E
(
X2
T

)
− 2nE(XT ) − σ 2E(T ) ≥ E

(
X2
0 − 2nX0

)
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and since X2
T = XT = 0 and 0 ≤ X0 ≤ n,

E(T ) ≤ E
(
2nX0 − X2

0

)
/σ 2 ≤ n2/σ 2 = O

(
n2

√
m

)
,

which follows by the asymptotic bound on σ 2. 
�
Thus, themodified (1+1) EAcan solve every satisfiable 2-CNF formula in expected

polynomial time. Moreover, by Lemma 5, the modified algorithm can also find the
2-coloring of any bipartite graph in expected polynomial time. The following theorem
extends the polynomial time bound of the modified (1 + 1) EA to also cover the
pathological Horn formulas of the previous section.

Theorem 6 Let Fpath be a pathological Horn formula on n variables and 2n + √
n

clauses as constructed in Sect. 3.2. Algorithm 2 finds a satisfying assignment for Fpath
in expected time bounded by O(n3).

Proof Wefirst observe that at any time during the execution of themodified (1+1) EA,
if x (t) is a ground state for a ring R, then for all s ≥ t , x (s) is also a ground state for
R. This follows since γi

(
x (t)

) = 0 for all i ∈ V [R], and therefore the probability of
mutation flipping a bit corresponding to any variable inR is zero. Since this remains
invariant for all times greater than t , it must be the case that once the (1+ 1) EA finds
a ground state for a ring, it remains in a ground state indefinitely.

We therefore only need to estimate the expected time until a ground state is found
for an arbitrary ring. Let R be an arbitrary ring in Fpath and let x� be a ground state
forR. We examine the stochastic process {Xt : t ∈ N0} on {0, 1, . . . ,√n} where

Xt =
∣∣∣
{
x (t)[v] �= 0 : v ∈ V [R]

}∣∣∣ .

Thus Xt is zero only if x (t) is a ground state forR.As before, let T ∈ {0, 1, 2, . . .}∪{∞}
be the random variable T := inf{t ∈ N0 : Xt = 0} and let Ft−1 := X0, . . . , Xt−1.
Let Δt = Xt − Xt−1.

Letting F[x] denote the clauses ofR that are not satisfied by x , using the same argu-
mentation as in the proof of Theorem 5, it is clear that E(Δ2

t | Ft−1) = Ω(1/
√
m) =

Ω(1/
√
n).

Note that if x = x (t−1) is metastable forR, E(Δt | Ft−1) ≤ 0, since x[v] = 1 for
every v ∈ V [R]. Therefore, we assume that x is not metastable. In this case, every
unsatisfied clause of R is a 2-CNF clause in Ra . Let S and R be the set of variables
in F[x] that are set to one (zero, respectively). Since x is not metastable, only clauses
from Ra are unsatisfied by x and hence appear in F[x]. Moreover, each unsatisfied
clause ofRa contains exactly one true variable and exactly one false variable. It follows
that every variable in S appears exactly once in each clause of F[x] and every variable
in R appears in exactly one clause of F[x]. Thus we have

∑
i∈S

γi (x) = |F[x]| =
∑
i∈R

γi (x) ,
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and so in this case E(Δt | Ft−1) = 0. The remainder of the proof is then identical
to the proof of Theorem 5, and the bound on the expected time follows by setting
m = Θ(n) and applying the argument sequentially to each of the

√
n rings of Fpath

until they have all reached their ground state. 
�

We point out that the modified (1 + 1) EA is not necessarily a good practical
algorithm. First, as mentioned in the proof of Theorem 5, the selection step is not even
necessary since disimproving offspring technically cannot be created. Furthermore,
the bound on the runtime is a factor of

√
m worse than the Papadimitriou–McDiarmid

conflict-directed random walk algorithm for 2-SAT. This factor arises because the
probability of flipping a bit depends now on m so the variance of each mutation
operation can no longer be bounded below by a positive constant. However, the goal
of this section was simply to demonstrate that a slight modification to an evolutionary
algorithm that allows it to use a small amount of domain knowledge can mean the
difference between polynomial and superpolynomial performance.

5 Conclusion

Understanding the influence of problem structure on algorithm performance is impor-
tant to the design and analysis of algorithms. In this paper, we have rigorously studied
the performance of the (1+ 1) EA on three combinatorial problems that are known to
be solvable in polynomial time. For each problem, we identified structural aspects that
make it difficult to solve by the (1+ 1) EA. We showed there are problem instances in
which simple symmetries lead to metastable states that lie in large basins of attraction
for the dynamics of the algorithm. The trajectory of the (1 + 1) EA is very likely to
enter these basins, but unlikely to escape them in reasonable time. Consequently, on
such instances, with probability 1 − o(1), the evolutionary algorithm needs at least a
superpolynomial number of iterations to find any optimal solution. We then showed
how to modify the (1+ 1) EA to guarantee expected polynomial-time behavior on all
of the presented problems.
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