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Abstract. Population-based methods are often considered superior on multi-
modal functions because they tend to explore more of the fitness landscape before
they converge. We show that the effectiveness of this strategy is highly dependent
on a function’s global structure. When the local optima are not structured in a
predictable way, exploration can misguide search into sub-optimal regions. Lim-
iting exploration can result in a better non-intuitive global search strategy.
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Many artificial test functions have a “big valley” topology, where a decrease in fitness
implies that, on average, search is getting closer to the global optimum. Although the
search space is highly multi-modal, the local optima are structured such that there exists
a global trend toward the best solution. Problems that exhibit this characteristic are
sometimes referred to as single-funnel landscapes.

There are several real-world applications that do not have this simple structure. Wales
[7] suggests that many optimization problems in computational biology are difficult
because local optima often form in distinct, spatially separate clusters within the search
space. Problems of this type have multiple funnels, resulting in a landscape that has a
less predictable underlying global structure.

The way that global structure impacts evolutionary search is not well understood, in
part, because many of the test functions used for evaluation have single-funnel land-
scapes. There are also a few test functions that have multiple funnels, but the number of
funnels increases with dimensionality. This complexity makes it difficult to understand
search behavior in high dimensions.

We have several objectives in this paper. First, we describe a method for creating
landscapes that contain exactly two funnels, regardless of the problem size. Then, we
empirically show that several evolution algorithms have an extremely low probability
of success when the global optima is located in a proportionally smaller funnel. Finally,
we demonstrate that limiting exploration can result in a performance gain.

1 Motivation and Background

The degree to which an algorithm will perform well on an application partly depends
on how well the algorithm can deal with the features that make the problem difficult.
Researchers within the computational chemistry community have started to pay atten-
tion to how global structure affects problem difficulty [4]. Much of their attention has
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been devoted to studying Lennard-Jones clusters, which are a class of configuration op-
timization problems where the goal is to find the spatial positions for a set of atoms that
has the smallest potential energy.

The energy surface of the Lennard-Jones potential is highly multimodal, and the most
difficult instances have a double-funnel landscape. Assuming that a search algorithm
can escape local optima, the underlying global structure of a problem may have a greater
impact on problem difficulty than the number of local optima [6].

The Rastrigin function is a classic single-funnel landscape. Kern et al. [3] point out
that there are two potential strategies for solving this highly multimodal problem. The
first is to exploit separability, which reduces its difficulty to N one-dimensional lines
searches, where N is the number of parameters. The other strategy is to exploit the
problems global structure; CMA-ES [2] and Basin-Hopping [8] avoid local optima by
exploiting an underlying structure. The main question we are exploring in this paper is:
how does this underlying structure impact evolutionary search?

2 Creating Double-Funnel Landscapes

The relative merit in any empirical study is limited by how well we understand the
characteristics that make realistic parameter optimization problems difficult, and by
our ability to embed these features into benchmark test functions. In this section, we
describe two double-funnel test problems. First, we create a simple surface comprised
of only two quadratic spheres. Then, we take this simple surface and add local optima
to it. This creates a multi-funnel surface similar to Rastrigin’s function.

2.1 The Double-Sphere

The landscape structure of our simple double-sphere test function is the minimum of
two quadratic functions, where each sphere creates a single funnel in the search space.
The placement of each sphere is critical because the barrier that divides them will be
inconsequential if they are too close. We also want this barrier height to scale with
dimensionality.

To address these concerns, we place each quadratic sphere along the positive diago-
nal of the search space, which is bounded on the interval [−5, 5]N . The optimal sphere
is located in the middle of the positive quadrant of the search space, at μ1 = 2.5 in
each dimension. The sub-optimal sphere is centered at μ2 = −2.5 across all dimen-
sions. The distance between each funnel increases proportionally with dimensionality,
and this construction creates an underlying surface that is globally non-separable.

Lennard-Jones double-funnel problems are difficult when 1) the sub-optimal funnels
is nearly as deep as the optima funnel, and 2) the basin of attraction to the optimal
funnel is small. We simulate this by increasing the height of the sub-optimal funnel
by a value of d. That way, the value of the optimal funnel is unchanged. In order to
change the relative size of each funnel, we scaled the sub-optimal funnel by a constant
factor, denoted s. This way, the optimal funnel retains it shape regardless of scaling,
and therefore, has a more consistent level of difficulty. Multiplying the sub-optimal
funnel by a number greater than one will create a more narrow sub-optimal funnel. The
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Fig. 1. The impact of d and s on the double-sphere function. Increasing d creates more distinction
between the funnels (left). When s = 0 (middle), the two funnels are the same size. Decreasing
s creates a larger sub-optimal funnel (right).

opposite is true when s is less than one. The overall form of our multi-funnel sphere
function is:

fdouble-sphere(x) = min

(
N∑

i=1

(xi − μ1)2, d · N + s ·
N∑

i=1

(xi − μ2)2
)

In order to make s the primary control characteristic for the size of each basin of
attraction, we shifted the mean of the sub-optimal sphere such that the barrier between
them, which is the point at which they intersect, is always located at the origin of the
search space. This configuration requires μ2 = −

√
(μ2

1 − d)/s.
Values s and d control the size and depth of the sub-optimal funnel. The leftmost

graph in Figure 1 is a diagonal slice showing how the different values of d impact
the depth of the sub-optimal funnel. The middle and right-most contour plots illustrate
the impact of s. The two funnels are the same size in the middle graph (e.g. s = 1.0),
but the right-most graph creates a larger sub-optimal funnel (white) using s = 0.7.
We use the quadratic penalty term described by Hansen and Kern [2] to enforce strong
boundaries.

2.2 The Double-Rastrigin

We wanted a double-funnel test problem with properties similar to Rastrigin’s func-
tion because it would isolate global structure as the main difference impacting problem
difficulty on a problem that is well-understood. We create a double-funnel version of
Rastrigin’s function by adding local optima to the double-sphere function. We translate
the cosine term used in Rastrigin’s function by μ1 so that the minimum of the local
optima component is centered at the bottom of the optimal funnel. The overall form of
the double-Rastrigin function is

fdouble-Rastrigin(x) = fdouble-Sphere(x) + 10
N∑

i=1

(1 − cos 2π(xi − μ1))
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3 Understanding the Impact of Global Structure

In this section, we explore how the characteristics of the double-sphere, which we mea-
sure in terms of s and d, impact search. We compare a simple evolution strategy using
Cumulative Step-length Adaptation (CSA-ES) [5,3], the Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES)[2], and the CHC genetic algorithm [1]. Please see
citations for descriptions and parameter settings.

We measure performance in terms of success rate, which we denote as ω, and define
as the probability that an algorithm will converge to the global optimum. In each exper-
iment, we estimate ω by running 1000 trials of each algorithm and counting the number
of instances that find the global optimum.

Our results show that population-based methods are vulnerable to the size of each
funnel, as controlled by s, when the depth of the two funnels are relatively close. That
is, there exists some funnel characteristics where the exploration process will misguide
search into the biggest funnel, not the deepest.

This section is organized in the following way. First, we measure the performance
of local search in order to get a rough estimate of the size of each basin of attraction
over a range of s and d values. Then we investigate how CMA-ES and CHC perform
on the double-sphere. Although this problem only has two local optima, we still find
both algorithms can fail even when the size of the optimal basin of attraction is fairly
large. Finally, we discuss why this is important from a global optimization perspective
by evaluating CMA-ES and CSA-ES on the double-Rastrigin function.

3.1 Local Search Properties of the Double-Sphere

As a baseline, we use the success rate of a local search method, where the probability
of finding the global solution is proportional to the size of the basin of attraction to the
optimum. We start by considering the double-sphere with dimension N = 30. We vary
s between [0.2, 1.4] by increments of 0.1, and evaluate different sub-optimal depths of
d = 1, 2, and 3.

When we estimate ω̂ for local search, we find a positive and approximately linear
relationship between ω̂LS and s. That is, as we decrease s, we also decrease the prob-
ability of finding the global optimum using local search. This makes sense because a
small s value increases the size of the sub-optimal funnel, making the optimal funnel
proportionally smaller (e.g. the basin of attraction to the optimum is smaller). The left
graph in Figure 2 shows the relationship between ω̂LS and s. Notice that when s = 1,
each funnel occupies ≈ 50% of the search space (black dot).

We use this estimate of the size of each basin of attraction as a baseline for inter-
preting our results. That is, instead of graphing ω̂ for each algorithm as a function of s,
we plot the ω̂ values as a function of ω̂LS, the estimate size of basin of attraction to the
global optimum. This makes it easier to observe when the evolutionary search is under-
or over-performing with respect to what we would expect from local search.

For example, Figure 2 also shows the success rates of CMA-ES using the default
population size of λ = 14 (for N = 30). Since CMA-ES is always above the gray line,
we can observe that the success rates for CMA-ES are greater than that of local search.
However, there is still a strong linear relationship between ω̂ and the size of the optimal
funnel.
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Fig. 2. Local search on the double-sphere: There is an approximately linear relationship between
the size of the optimal funnel and success rate of local search, ω̂LS (left). Notice that the depth of
the sub-optimal funnel does not greatly impact ω̂LS. The right plot shows success rate for CMA-
ES using the default population size. The success rates for CMA-ES are greater than that of local
search, but still strongly tied to the size of the optimal funnel (≈ ω̂LS).

3.2 Global Search Properties of the Double-Sphere

Most evolutionary algorithms perform better on multimodal surfaces when they use a
larger population size. This is especially true for CMA-ES [2,3] and CSA-ES [3]. CHC
is probably the exception, as it was designed to use smaller populations [9].

In this section, we would like to understand how the double-sphere impacts global
search. In the next section we will consider a range of population sizes for CSA-ES and
CMA-ES, but for now, we fix the population size of CMA-ES to λ = 500. For CHC
we use the default of population size of 50 with 10-bits of precision. Our results did not
change dramatically with increased population sizes for CMA-ES or CHC. Changing
the precision on CHC to 20−bits also had little impact. A maximum of 100, 000 eval-
uations were allocated and no random restarts were used (expect for the soft-restarts
used by CHC). We discuss the role of restarts in the next section.

We observe a similar probability distribution for each algorithm. Instead of a lin-
ear trend, as observed for the local search methods, the distribution is pulled into a
sigmoid. When the optimal funnel is proportionally larger than the sub-optimal fun-
nel, success rates are extremely high. However, when the optimal funnel is propor-
tionally smaller, the success rates for CMA-ES and CHC drop dramatically. Figure 3
show the probability of success for CMA-ES and CHC as a function of the basin of
attraction size.

Consider the extreme cases. When the relative size of the optimal funnel is ≈ 70%,
evolutionary search is highly successful (ω̂ ≈ 100%). This means that when local
search finds the optimal solution ≈ 70% of the time, CMA-ES and CHC will almost al-
ways find the optimal solution. On the other hand, when the relative size of the optimal
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Fig. 3. CMA-ES and CHC on the double-sphere: The probability of success as a function of the
size of the basin of attraction to the optimal funnel, as estimated with local search (ω̂LS ). The
gray line indicates the success probability of local search. For each algorithm, the trend is similar;
when the optimal funnel is relatively large, the success rates for evolutionary algorithms are high.
When the relative size of the optimal funnel is low, evolutionary search is more likely to fail.

funnel is only ≈ 10%, CMA-ES and CHC fail to find the global optimum. This is true
for all the d values we considered.

As we increase d, we increase the height of the sub-optimal funnel. Figure 3 show
that larger values of d shift the ω̂ distribution to the left, meaning that a smaller s value,
and therefore, a smaller basin of attraction to the global optimal, is required to observe
failure. The hardest problems for CHC and CMA-ES are those where the depths of
the two funnels are close (d = 1) and the basin of attraction to the optimal funnel is
comparatively small (s is small).

The black dots in Figure 3 represent a success rate of 10% for each algorithm when
d = 1. This means that CMA-ES will succeed less than 10% of the time even when
the relative size of the optimal funnel is ≈ 33%. A similar problem occurs with CHC.
Even when the basin of attraction to the global optima is ≈ 35%, the success rate for
CHC is about 10%. In general, when local search finds the optimal solution ≈ 1/3 of
the time, the evolutionary algorithms we tested are likely to fail when the depths of the
two funnels are relatively close.

The key observation we make in this section is this: when the depths of two funnels
are close (e.g. d = 1, about 17% different from the barrier that divides them), the global
search parameter settings employed by the evolutionary algorithms we tested are likely
to cause failure, even when the optimal basin of attraction is relatively large,≈ 30%. As
we increase the depth of the sub-optimal funnel, evolutionary search is more successful.

3.3 Implications for Global Search: Double-Rastrigin

Considering that CMA-ES using the default population size has probabilities of success
that are similar to, or even better than, that of local search, why should we care about the
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Fig. 4. Increasing the population size (λ) increases the probability that each evolution strategy will
find the optimal solution on Rastrigin’s’ function (left), but decreases the probability of success
on the double-Sphere function

bias of larger populations? The main reason this matters is that if an algorithm cannot
cope with the simple structure of the double-sphere, it will also not be successful on
more complex multimodal surfaces, like the double-Rastrigin, where the double-sphere
dictates the underlying global structure.

We consider three 30-dimensional functions: Rastrigin, double-sphere, and double-
Rastrigin. For the double-sphere and the double-Rastrigin, we created instances that
are intentionally difficult for CMA-ES by choosing d = 1 and s = 0.7, which corre-
sponds to an ω̂LS ≈ 30%. We only consider CSA-ES and CMA-ES because they have
strong termination criteria and can solve the 30-dimensional Rastrigin function with
large populations. This simplifies the interpretation of our results.

The leftmost graph in Figure 4 shows the estimated success rates for the ES algo-
rithms, without restarts, on Rastrigin’s function as the population varies from [100, 1000]
by increments of 100. We have also included the default population size of λ = 14. These
results are consistent with previously reported success rates [2,3]. The noticeable trend
is that larger populations are more able to exploit the underlying sphere structure of the
Rastrigin function and locate the best solution. Smaller population sizes tend to get stuck
in one of the many local optima. For example, CMA-ES with a population of λ = 14
never finds the global solution. Using a population size of λ = 100, CMA-ES only finds
the optimal about 10 out of 1000 times.

As we vary the population size for the ES algorithms on the double-sphere, we find
the opposite is true. High success rates are realized with low population sizes, but larger
values of λ cause CSA-ES and CMA-ES to exhibit extremely low success rates. The
right-most graph in Figure 4 shows these results.

This presents an interesting trade-off for the double-Rastrigin function: find a pop-
ulation size that balances the difficult characteristics of both the modality of the Ras-
trigin function and the structure of the double-sphere. Unfortunately, this balance is
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disappointing. When we run both algorithms on the double-Rastrigin function, we find
that the success rates are lower than 3%, regardless of population size. This is because
the success rates for the double-Rastrigin function can be decomposed into the success
rates of its components. That is, the probability that an algorithm will be successful on
the double-Rastrigin is approximately the joint probability that it is successful on the
Rastrigin function and the probability that it will succeed on the double-sphere.

This is also an incomplete picture because the results presented so far have not used
random restarts. From a practical point of view, restarts can increase performance be-
cause the success probabilities will add. That is, each restart represents an independent
event. So, we are not just forced to find a population that balances the characteristics of
both the Rastrigin and double-sphere function, we also need to account for the general
observation that smaller populations will use fewer evaluations and restart more often.

When we include restarts and allow each algorithm to use 1e7 evaluations, we still
observe low success rates. For example, CSA-ES peaks at ω̂ ≈ 11% with a population
of λ = 400. CMA-ES operating with λ = 300 yields an expected best of ω̂ ≈ 5%.

The results of this section reinforce the notion that an algorithm’s success or failure
largely depends on its ability to cope with the features of a function. A population size
suitable for Rastrigin’s function is a poor choice for the double-sphere and vise-versa.

4 Limiting Exploration with Dynamic Populations in CSA-ES

On the double-sphere function, larger populations in CSA-ES (and CMA-ES) tend to
pull the mean towards the funnel with the most samples. When the funnels are close
in depth, a larger sub-optimal funnel is more likely to have more samples. Smaller
populations are less vulnerable to this because less information being sampled. On the
double-Rastrigin, we need the best of both worlds: a small population size to drop into
a funnel without being pulled towards a larger basin of attraction, and then a large
population size to exploit the underlying structure of that particular funnel.

As a proof of concept, we implemented CSA-ES with a dynamic population size that
increased as the global step-size decreased. A decrease in step-size indicates a higher
level of exploitation. When search is first exploring, it is utilizing a small population
size. As it begins to exploit a promising region, increasing the population size will help
exploit the underlying funnel structure. The algorithm is identical to CSA-ES in every
way except at the end of each generation, we compute a new population size based on
a function of the global step-size σ, the initial step-size σ0, and an upper bound of the
population size, λMAX.

λ = λMAX

(
σ

σ0
− 1

)2

We ensure that λ never falls below the default population size, λd = 14, or exceeds the
maximum λMAX, which is an input parameter.

We ran this strategy, which we denote D-CSA-ES, on the 30-dimensional Rastrigin,
double-sphere, and double-Rastrigin functions for the same values of λ used in the
previous section, except that D-CSA-ES interprets this value as λMAX. The resulting
search strategy is less effective on the Rastrigin function, but operates at a consistent
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Fig. 5. D-CSA-ES on the double-sphere (left) and on the double-Rastrigin (right). The relation-
ship between success rate and the size of the optimal funnel remains linear. This results in a much
higher success rate on the double-Rastrigin function.

level on the double-sphere function that is proportional to the size of the optimal funnel,
regardless of the population size. The left graph in Figure 5 shows D-CSA-ES on the
double-sphere as a function of optimal funnel size for d = 1, 2, and 3 using λMAX =
500. The most striking feature is the approximately linear relationship between the size
of the optimal funnel and the success rate of D-CSA-ES. This resembles the relationship
of CMA-ES using a default population size on the double-sphere, but with a setting for
λ that is more appropriate for global optimization.

What does this mean for the double-Rastrigin function? The right graph in Figure 5
show D-CSA-ES on the double-Rastrigin function for s = 0.7 and d = 1 as a function
of population size. Without restarts (dash), D-CSA-ES has a success rate the is about
10 times higher than either CMA-ES or CSA-ES. When D-CSA-ES runs with restarts
(solid line) until 1e7 evaluations, it success rates are as high as ≈ 60%.

The dotted line in this graph represents the predicted performance obtained by multi-
plying the ω̂ from Rastrigin with ω̂ from the double-sphere. The prediction is very close
to the empirical results and reinforces the notion that successful search must cope with
both modality and global structure.

5 Summary

Global structure can clearly impact the performance of evolutionary optimization. When
the optimal funnel is proportionally smaller, the success rates for CHC and CMA-ES de-
crease dramatically on the double-sphere, especially when the depths of the two funnels
are close. Exploration is not able to distinguish between funnel quality, and is pulled
into the larger funnel. We believe these results generalize to other algorithms.

This presents a problem for CMA-ES and CSA-ES on the double-Rastrigin func-
tion because, although larger population sizes are necessary to exploit the underlying
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structure of the Rastrigin, they are also more bias towards funnel size. The population
size that is best for Rastrigin is the least effective on the double-sphere. A compromise
that works on both is disappointing.

By dynamically adapting the population size, D-CSA-ES is less biased toward funnel
size while exploring the search space. However, as it descends into a particular funnel,
and it begins to exploit the search space, increasing the population size aids D-CSA-
ES in detecting the underlying structure of the funnel and avoiding local optima. This
results in a strategy whose success rate is dependent on funnel size; when the optimal
funnel is large, the success rates for D-CSA-ES are not a good as CHC or CMA-ES.
But when the optimal funnel is small, D-CSA-ES will still find the global solution with
a probability proportional to relative funnel size. The highs are not as high, but the lows
are still acceptable.

Exploring the search space to gain a global perspective before exploiting a particular
region may be an effective strategy for “big valley”, single-funnel problems. But on
multi-funnel landscapes, the effectiveness of exploration comes into question as a global
search strategy. This work supports an ongoing awareness that, if an algorithm is going
to be successful, then it must be able to deal with the features in the landscape.
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