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ABSTRACT
The landscape formalism unites a finite candidate solution
set to a neighborhood topology and an objective function.
This construct can be used to model the behavior of lo-
cal search on combinatorial optimization problems. A land-
scape is elementary when it possesses a unique property that
results in a relative smoothness and decomposability to its
structure.

In this paper we explain elementary landscapes in terms of
the expected value of solution components which are trans-
formed in the process of moving from an incumbent solu-
tion to a neighboring solution. We introduce new results
about the properties of elementary landscapes and discuss
the practical implications for search algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory

Keywords
Combinatorial Optimization, Local Search

1. INTRODUCTION
Grover [9] originally made the observation that the behav-

ior of local search on some NP-Hard problems could be mod-
eled using a difference equation: a discrete analogue of the
continuous wave equation that describes wave propagation
in physics. This discrete wave equation can be expressed as
an eigendecomposition of the neighborhood transition ma-
trix under a particular local search operator for a certain
class of problems.

Stadler [12] named this class of problems “elementary
landscapes” and energetically explored properties of these
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landscapes. Except for several notable examples, little re-
search and exploration has been conducted for some time on
this class. There is also a perception that elementary land-
scapes are in fact quite complex, or at least that the tools
needed to understand elementary landscapes are recondite.

This paper has two goals. One goal is to explain and un-
derstand elementary landscapes from a simpler perspective.
In practice, the wave equation discovered by Grover is a con-
sequence of the decomposability of components that make
up a solution. In many cases, constraints in the relation-
ships among these components within the neighborhood of
an incumbent solution force Grover’s equation to hold.

The other goal of this paper is to show that this simplified
view permits new insights and intuitions about elementary
landscapes. We illustrate this by introducing several new
proofs about properties of elementary landscapes.

The remainder of the paper is organized as follows. In
the next section, we explain the relationship between ob-
jective function components that hold on many well-studied
problems that cause the wave equation to be obeyed. We
introduce this relationship in terms of expected value of the
evaluation of solutions selected uniformly at random from
the neighborhood of a fixed point. We derive the wave equa-
tion for symmetric TSP using 2-opt.

In Section 3, we discuss some scalability implications of
the wave equation and show that the expected change in
value can always be bounded. In Section 4 we prove some
properties about plateaus and local optima on elementary
landscapes and discuss the implications for search algorithms.
In Section 5 we conclude the paper.

2. ELEMENTARY LANDSCAPES
We introduce the wave equation in terms of the expected

value of the objective function evaluation at a solution drawn
randomly from the local search neighborhood.

For a given instance to a combinatorial problem, we have
a set of all possible solutions X which we will refer to as the
set of “candidate solutions.” The nature of the candidate
solution set is dependent on the problem to solve. We define
the objective function f as a map f : X 7→ R and without
loss of generality assume we must find the element of X that
minimizes f .

We define a neighborhood operator as a function N that
maps elements of X to elements of its power set N : X 7→
P(X). The neighborhood operator is determined by the
heuristic search method in question. We will only examine
neighborhood operators that apply to search processes that
keep a single candidate solution. Population based searches



that allow recombination, i.e. sharing partial components of
solutions, admit more complex structures [14].

In this paper we shall concern ourselves only with neigh-
borhoods that are symmetric (i.e. y ∈ N(x) ⇐⇒ x ∈
N(y)) and regular (i.e. d = |N(x)| for all x and some
constant d). Barnes et al. [2] have extended the notion
of elementary landscapes to non-symmetric and non-regular
neighborhoods.

The landscape for a combinatorial problem instance is de-
fined by a triple (X, N, f): its candidate solution set, the
neighborhood operator which imposes a connective struc-
ture on the candidate solution points, and the objective
function that assigns a value to each point.

This landscape formalism was originally introduced by
Wright [16] in the context of evolutionary dynamics but can
be extended to any function over a discrete domain with a
corresponding “neighborhood”: the context in which we are
interested here. A landscape is elementary when the objec-
tive function f is an eigenfunction of the Laplacian of the
graph induced by the neighborhood operator [9, 12].

This property can be expressed more concretely as an
equation relating the expected value of the objective func-
tion at a uniformly drawn random element from a candidate
solution’s set of neighbors. Throughout this paper, we will
denote x as some fixed but arbitrary element of X and y as
a element of N(x) drawn uniformly at random. We will also
denote as f̄ the mean value of f over all solutions in X. On
an elementary landscape we have

E[f(y)] = f(x) +
k

d
(f̄ − f(x)) (1)

for some k which is fixed for the entire landscape. Since y
is drawn uniformly at random, we also have

E[f(y)] =
1

d

X

z∈N(x)

f(z) (2)

In other words, the expected value of the objective function
evaluation of a neighbor y is always equal to the average
value of the evaluation over all solutions z in the neighbor-
hood.

2.1 Intracomponents and intercomponents
Several interesting consequences arise from Equation (1).

First, we investigate what relationships exist in practice that
allow this wave equation to hold.

In most practical elementary landscapes studied, the ob-
jective function for a particular candidate solution can be
written as a linear combination of a subset of a collection
of components. Examples of solution components are edge
weights in graph problems such as TSP or Min-Cut parti-
tioning, or collisions in constraint satisfaction problems such
as graph coloring. In such problems, a candidate solution
x ∈ X specifies this subset for inclusion in the sum. Let
C be a set of real valued components (|C| is polynomial in
problem size). Then there exists Cx ⊂ C such that

f(x) =
X

c∈Cx

c

We refer to the set Cx as the intracomponents of a solution
x, and the set C − Cx as the intercomponents of x.

When a local search algorithm “moves” from an incum-
bent solution x to a neighboring solution y ∈ N(x), an ex-
change of these components is made. In particular, a subset

of the intracomponents cout ⊂ Cx is removed and a subset
of the intercomponents cin ⊂ C − Cx is added. In other
words

f(y) = f(x)−
X

c∈cout

c +
X

c∈cin

c

If we fix x arbitrary and let y be a uniform random “move” or
“mutation” obtained by one application of the neighborhood
operator acting on x, we can compute an expected value for
the objective function f(y) at y.

E[f(y)] = E

"
f(x)−

X
c∈cout

c +
X

c∈cin

c

#

= f(x)− E
" X

c∈cout

c

#
+ E

" X
c∈cin

c

#

We compute the expected value by uniformly sampling all
the intracomponents for potential removal and all the inter-
components for potential addition. A landscape thus satis-
fies Equation (1) when the following relationship holds for
all x ∈ X.

E

" X
c∈cin

c

#
− E

" X
c∈cout

c

#
=

k

d
(f̄ − f(x))

The existence of components that satisfy this relationship is
a sufficient but not necessary condition for a landscape to
be elementary.

2.2 Case study: TSP under 2-opt
A number of NP-hard optimization problems have been

shown to satisfy Grover’s wave equation. As with local
search, the move operator is critical. The following is an
inexhaustive list of elementary landscapes.

1. The symmetric Traveling Salesman Problem under 2-
exchange [9], 2-opt and 3-exchange, [5].

2. The antisymmetric Traveling Salesman Problem under
2-opt and 2-exchange [13] and the weakly-symmetric
Traveling Salesman Problem [11], and variants of the
multiple Traveling Salesman Problem [6].

3. The Min-Cut Graph Partitioning problem with a sim-
ple exchange of two vertices across the cut [9].

4. Graph Coloring with the neighborhood being a change
in color at any vertex in the graph [9].

5. Weight Partitioning over N objects. Each object is
assigned a sign Si ∈ (−1, 1) with the neighborhood
being a change in sign [9].

We will derive the expected value wave equation for the
TSP under 2-opt and examine some of the consequences.
Suppose G(V, E) is a complete weighted undirected graph
on n vertices (cities). Every vertex pair vi, vj ∈ V has
an edge ei,j ∈ E. Let wi,j be the weight (or cost or dis-
tance) associated with edge ei,j . The solution space X thus
is comprised of all valid Hamiltonian cycles in G. In par-
ticular a given x ∈ X specifies a permutation on n − 1
points (x1, x2, . . . , xn−1). Without loss of generality we fix
the “home” city at n.

f(x) =

 
n−2X
i=1

wxi,xi+1

!
+ wxn−1,n + wn,x1
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Figure 1: A candidate tour (left) and one of its 2-opt
neighbors (right) obtained by deleting edges (1, 2)
and (3, 4) and adding edges (1, 3) and (2, 4). The cor-
responding permutation representation is shown be-
low each graph.

This means that the evaluation function is decomposable
into the costs associated with every possible edge. The com-
ponent set C is exactly the set of real-valued edge weights
wi,j . The intracomponents of a solution x are those edge
weights used in the calculation of f(x); the intercomponents
are the edge weights not in the tour specified by x.

In Figure 1 a 6 city TSP is shown. The tour x = (1 2 3 4 5
6) is shown on the left and the tour y = (1 3 2 4 5 6) is shown
on the right. The edges {e1,2, e2,3, e3,4, e4,5, e5,6, e6,1} are
the intracomponents of x. All possible edges that are not
intracomponents of x are by definition intercomponents of
x. These are the lighter interior dashed lines in the figure.

To compute f̄ , the average over all possible solutions, we
also need to know the probability of each edge occurring
in any particular solution. In this case, that probability is
uniform. Since a tour length is n and there are n(n − 2)/2
possible edges it follows that

f̄ =
X

ei,j∈E

wi,j
n

n(n− 1)/2

and by simple algebra

f̄ =
2

n− 1

X
ei,j∈E

wi,j

Now, given an incumbent solution x we need to compute
the expected cost over all of the neighbors of x. The deletion
of intracomponents of x and the addition of intercomponents
of x in effect “connect” x to all of its neighborhood.

To calculate the expected value of a neighbor of x we ex-
amine the subset of intracomponents that must be removed
(cout) and the subset of intercomponents that must be added
(cin). All intracomponents of x are uniformly removed when
constructing the set of neighbors of x; all of the intercom-
ponents of x are then uniformly added in when constructing
the set of neighbors of x.

Under 2-opt, exactly two edges change in each neighbor.
The construction of each neighbor of x therefore requires
deleting two edges from x. Thus, components (edges) are
deleted with probability 2/n. Note that the sum of all the
intracomponents is simply the tour length which is given by
f(x). Then the expected value of the sum of intracomponents

removed is

E

" X
c∈cout

c

#
=

2

n
f(x)

The entire cost matrix has n(n− 1)/2 components and x
has n components. This means that the number of inter-
components is given by

(n(n− 1)/2)− n = n(n− 3)/2

Furthermore, the sum of all the intercomponents is simply
the sum of all the edges in the graph G minus the sum of
all the intracomponents f(x)

X
ei,j∈E

wi,j − f(x)

Since two intercomponents must be added, we have the ex-
pected value of the sum of intercomponents added

E

" X
c∈cin

c

#
=

2

n(n− 3)/2

0
@ X

ei,j∈E

wi,j − f(x)

1
A

So, fixing the incumbent solution at an arbitrary x, the
expected value of a randomly selected neighbor y ∈ N(x)
can be written as

E[f(y)] = f(x)− E
" X

c∈cout

c

#
+ E

" X
c∈cin

c

#
(3)

= f(x)− 2

n
f(x) +

2

n(n− 3)/2

0
@ X

ei,j∈E

wi,j − f(x)

1
A

Because the probabilities are uniform we can look at the
construction of each neighbor as an independent random
event. Thus, two edges are deleted from x and two edges
are inserted to create a neighbor y. In reality, the edges
that are deleted determine the edges that are inserted, but
this can be ignored by looking at the neighborhood as an
aggregate.

Now we derive Equation (1). Note that

X
ei,j∈E

wi,j =
n− 1

2
f̄

and therefore rewriting Equation (3):

E[f(y)] = f(x)− 2

n
f(x) +

2

n(n− 3)/2

0
@ X

ei,j∈E

wi,j − f(x)

1
A

= f(x)− 2

n
f(x) +

2

n(n− 3)/2

„
n− 1

2
f̄ − f(x)

«

= f(x)− 2

n
f(x) +

n− 1

n(n− 3)/2
f̄ − 2

n(n− 3)/2
f(x)

= f(x)− 2(n− 3)/2 + 2

n(n− 3)/2
f(x) +

n− 1

n(n− 3)/2
f̄

= f(x)− n− 1

n(n− 3)/2
f(x) +

n− 1

n(n− 3)/2
f̄

= f(x) +
n− 1

n(n− 3)/2
(f̄ − f(x))

= f(x) +
k

d
(f̄ − f(x))



Thus we have Equation (1) with k = n − 1 and d = n(n −
3)/2. Here d is, of course, by definition the neighborhood
size for classic 2-opt.

Note that when f(x) < f̄ , the second term is always pos-
itive and E[f(y)] is always greater than f(x). On the other
hand, when f(x) > f̄ the second term becomes negative and
the expected value of a random neighbor is less than f(x).

3. SCALABILITY
Since we can exactly compute E[f(y)] for a randomly se-

lected neighbor y of x we can also ask a fundamental ques-
tion about scalability. How does the difference between f(x)
and E[f(y)] scale with problem size? We can prove using
simple algebra that the difference scales in a linear fashion.
This is intuitive: for large problems, f(x) and E[f(y)] are
closer to each other relative to f̄ and the change decreases
linearly as a function of problem size. In any one problem,
the difference between f(x) and E[f(y)] grows smaller as we
approach f̄ and increases as we move away from f̄ .

To understand this better, assume that a TSP instance
with n vertices is normalized by f̄/n. In effect, this normal-
ization is such that the average edge length is 1. Thus, the

normalized average solution is f̄
f̄/n

= n. This also lets us

compute bounds on f(x) and E[f(y)] relative to a normal-
ized edge length of 1.

Assuming we are looking for the best (minimal) solutions,
consider the case where

f(x) < E[f(y)] < f̄

To better understand the difference E[f(y)] − f(x) we will
use a normalization of the cost matrix such that

f̄ = n =
X

ei,j∈E

wi,j
n

n(n− 1)/2
⇐⇒

P
ei,j∈E wi,j

n(n− 1)/2
= 1

Or more concisely,

f̄ = n ⇐⇒ wi,j = 1

We can then compute the difference between E[f(y)] −
f(x) and obtain the following bound.

E[f(y)]− f(x) = f(x) +
n− 1

n(n− 3)/2
(f̄ − f(x))− f(x)

=
n− 1

n(n− 3)/2
(n− f(x))

=
n− 1

n(n− 3)/2
n− n− 1

n(n− 3)/2
f(x)

=
n− 1

(n− 3)/2
− n− 1

(n− 3)/2

f(x)

n

= 2

„
n− 1

n− 3

«„
1− f(x)

n

«

As f(x) approaches zero relative to f̄ = n the quantity

E[f(y)] − f(x) is bounded by 2
“

n−1
n−3

”
(which for large n

is approximately 2.0); there are of course real limits on
how small f(x) can be. Around f(x) = n/2, the nor-
malized quantity E[f(y)] − f(x) is approximately 1.0. As
f(x) approaches the value f̄ = n the difference between
E[f(y)]− f(x) approaches 0.

Tables 1 and 2 report numerical calculations of f(x) and
E[f(y)] and their differences varying both f(x) and n ac-
cording to Equation (1).

n f(x) E[f(y)] E[f(y)]− f(x)
10000 50 51.990398 1.99039811
10000 500 501.90038 1.90038011
10000 5001 5002.00000 1.00000002
10000 9000 9000.20004 0.20004001
10000 9900 9900.02000 0.02000400
10000 9990 9990.00200 0.00200040
10000 9999 9999.00020 0.00020004

Table 1: Calculations for E[f(y)] and f(x) < n varying
f(x).

n f(x) = 0.3f̄ E[f(y)] E[f(y)]− f(x)
100 30 31.428865 1.42886597

1000 300 301.40280 1.40280842
10000 3000 3001.4002 1.40028008

100000 30000 30001.400 1.40002800
1000000 300000 300001.40 1.40000280

10000000 3000000 3000001.4 1.40000028

Table 2: Calculations for E[f(y)] and f(x) < n varying
n.

To illustrate the effect using real data, we sampled solu-
tions from symmetric instances obtained from the TSPLIB
library maintained by Gerhard Reinelt at Heidelberg Uni-
versity1. On each instance we computed a normalization
factor q as follows.

q =
n(n− 1)

2
P

ei,j∈E wi,j

We define the normalized objective function as the weighted
tour length sum multiplied by the normalization factor q.
Clearly, the mean value of the normalized instances is n.
On each normalized instance we sampled 1000 points below
f̄ and calculated the objective function value of the sampled
point, the theoretical expected value as given by Equation
(1) and exactly one uniform random sample of the neighbor-
hood of each sampled point. We report the scatter plot of
the theoretical prediction vs. the actual sampled neighbor
value for five selected instances in Figure 2. Each selected
instance has a different size n. In Figure 3 we report the
expected difference vs. the sampled difference on these five
instances. Figure 4 shows this difference plot for every (nor-
malized) symmetric TSP instance in the TSPLIB with 100
points sampled per instance. The expected value of solution
difference is bounded below by zero and above by 2 (in the
limit as n → ∞). This is marked on the plots by dotted
lines.

In these experiments, we are observing a sampling pro-
cess from a distribution that follows the theoretical expected
value given by Equation (1). The plots show us the variance
in the random variables we are sampling.

4. DISCUSSION
There are a number of interesting observations about this

class of landscapes that impact local search. In our TSP

case study, we saw that 0 < k
d

= (n−1)
n(n−1)/2

< 1. Does this

1http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/
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Figure 4: Expected difference vs. sampled differ-
ence of sub-mean points and neighbors on all nor-
malized instances in TSPLIB. Dotted lines repre-
sent bounds on expected value. Expected value is
bounded above by 2 and below by 0.

hold in general for other problem classes? Barnes et al. [2]
define two families of elementary landscapes with respect to
constraints on the possible eigenvalues of the graph Lapla-
cian. Smooth elementary landscapes obey the above con-
straint such that the value k

d
lies between 0 and 1. On the

other hand, on rugged elementary landscapes the value of
k
d

are not constrained to the unit interval, and some rather
surprising results are a consequence. We are unaware of any
well-studied neighborhood operator and problem class in the
NP-hard set that corresponds to a rugged landscape. Thus
our results apply only to smooth landscapes.

4.1 Plateaus and local optima
The following observations were made by Codenotti and

Margara [5].

1. If f(x) < f̄ then f(x) < E[f(y)] < f̄

2. If f(x) = E[f(y)] then f(x) = f̄ = f(y)

3. If f(x) > f̄ then f(x) > E[f(y)] > f̄

These results underscore Grover’s [9] observation that all
local minima lie below the average function value of the
search space. Furthermore, the results state that certain
types of plateaus cannot exist on elementary landscapes.

A plateau is a set P of candidate solutions in X such
that for all a, b ∈ P , f(a) = f(b) and there is a path (a =
x1, x2, . . . , xk = b) such that xi+1 ∈ N(xi). Plateaus (also
known as neutral networks) are structural features that arise
in many combinatorial problems [8, 10, 1, 3]. Plateaus pose
an interesting challenge to local search since they preclude
“gradient” information about improving movement.



As Codenotti and Margara [5] originally pointed out, on
an elementary landscape, if all neighbors of a candidate so-
lution share the evaluation of that solution, then we say the
landscape is flat : every candidate solution belongs to the
same plateau (condition 2 above). However, the wave equa-
tion imposes some constraints on plateaus in non-degenerate
cases as well.

Consider a solution x that belongs to a plateau P . Then
every solution on P will have the same neighborhood ex-
pected value. This is easy to see since all solutions in P
have an objective function evaluation equal to f(x) and obey
Equation (1).

Lemma 1. For a plateau P on a (non-flat) elementary
landscape, if x ∈ P has only equal and disimproving neigh-
bors, then there cannot exist a solution z ∈ P with only equal
and improving neighbors.

Proof. Let x, z ∈ P for some plateau P . Suppose for
contradiction that x has only (both) equal and disimprov-
ing neighbors and z has only (both) equal and improving
neighbors.

Let yx and yz be neighbors drawn uniformly at random
from the neighborhood of x and z respectively. Since f(x) =
f(z) (by definition of plateau), we must have E[f(yx)] =
E[f(yz)] since Equation (1) holds. If we assume minimiza-
tion, the average value of the neighbors of x must be strictly
greater than than the average value of the neighbors of z
which contradicts the expected value of a uniform random
selection is equal for both neighborhoods.

Note that Lemma 1 does not prevent a solution on the
same plateau as x from having both improving and disim-
proving neighbors. However, in this case, the evaluation of
these neighbors must have the same expected value as those
in the neighborhood of x.

We define a local minimum as a solution xmin such that
f(y) ≥ f(xmin) for all y ∈ N(xmin). A local maximum is
defined analogously. It is important to point out that this
definition is distinct from other definitions of local extrema
in landscapes that contain plateaus (e.g. Frank et al. [8]).
Grover [9] showed that, on elementary landscapes, if xmin

is a local minimum and xmax is a local maximum, then
f(xmin) ≤ f̄ ≤ f(xmax).

We assume that, for all x ∈ X, all f(x) > 0. If this does
not hold, the values of the objective function can be shifted
by a constant value without violating Equation (1).

Let xmin be a local minimum. If we sample y ∈ N(xmin)
uniformly at random, we can express the expected value of
y in terms of an average over the elements of N(xmin)

E[f(y)] =
1

d
(Seq + Sgr) (4)

where Seq is the sum of the value of equal or neutral moves:
those y ∈ N(xmin) such that f(y) = f(xmin). Sgr is the
sum of the value of the neighbors of xmin that are strictly
greater in objective evaluation: those y ∈ N(xmin) such
that f(y) > f(x).

Lemma 2. Let a and b be two solutions on a plateau P
with no improving neighbors. Let neq(a) and neq(b) denote
the number of equal neighbors of a and b respectively. With-
out loss of generality, suppose neq(a) ≥ neq(b). Then, as-
suming minimization, the sum of all disimproving moves in
the neighborhood of b is greater than or equal to the sum of
all disimproving moves in the neighborhood of a.

Proof. We first derive an expression for the number of
equal moves in an arbitrary solution xmin. Note that at
xmin, Seq = neq(xmin)f(xmin). By Equations (1) and (4)
we have

1

d
(Seq + Sgr) = f(xmin) +

k

d
(f̄ − f(xmin))

Seq + Sgr = df(xmin) + k(f̄ − f(xmin))

neq(xmin)f(xmin) + Sgr = df(xmin) + k(f̄ − f(xmin))

neq(xmin) = d +
k(f̄ − f(xmin))

f(xmin)
− Sgr

f(xmin)

Now consider the difference of neutral moves among a and
b.

neq(a)− neq(b) =

»
d +

k(f̄ − f(a))

f(a)
− Sa

gr

f(a)

–
−

"
d +

k(f̄ − f(b))

f(b)
− Sb

gr

f(b)

#

=
Sb

gr − Sa
gr

f(a)

Where Sa
gr and Sb

gr denote the sum over all neighbors with
strictly greater objective evaluation for a and b respectively.
Since we assumed that f(x) for all x ∈ X is positive and
that neq(a)− neq(b) is non-negative, we have

Sb
gr ≥ Sa

gr

and this proves the result.

A similar result holds for all local maxima on plateaus.

4.2 Implications for search
An interesting consequence of the expected value version

of the wave equation is that a local search algorithm on an el-
ementary landscape can always compute the expected value
of a random solution in its neighborhood without expanding
a single solution in this neighborhood.

Furthermore, we can expand a partial neighborhood and
predict the expected value of the remaining neighborhood.
Suppose M ⊆ N(x) is a subset of the neighborhood of a
point x. Then the expected value of a point r uniformly
drawn from the remaining neighbors in N(x) can be written
as

E[f(r)] =
1

d− |M |

0
@ X
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X
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1
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=
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by Equations (2) and (1). Let the expected improvement be

D(r; x) = E[f(r)]− f(x)

=
1

d− |M |

 
d

„
f(x) +

k

d
(f̄ − f(x))
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−
X
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−f(x)

This is the expected difference in value if we move (or mu-
tate) at uniform random to an element in the remaining
neighbor set N(x)−M .

Now suppose x1 and x2 are two solutions in X. Fur-
thermore, suppose M1 and M2 are two partial expansions
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Figure 5: A stylized sketch of partial and whole
neighborhood relationships for two solutions x1 and
x2. The average evaluation of the partial neighbor-
hood of x1 is worse than x2; the expected evalua-
tion of remaining neighbors of x1 are better than
those of x2. Numerical data were generated us-
ing two random solutions from (normalized) 17-city
TSP gr17.tsp instance.

of the neighborhoods of x1 and x2. If r1 and r2 are ran-
domly drawn elements from the remaining neighborhoods
N(x1) − M1 and N(x2) − M2, then we can compute the
expected values of r1 and r2 above and the expected im-
provement D(r1; x1) and D(r2; x2) for each.

It is clearly more promising to continue expanding the
neighborhood corresponding to the better of the two ex-
pected improvements (i.e. smallest, if we are minimizing):
this is more likely to yield a better change in value. This idea
is illustrated in Figure 5 where the partial neighborhood that
results in an average value worse than the expected value of
the entire neighborhood yields a better expected value over
the remaining neighborhood.

On an elementary landscape, neighborhoods can be con-
sidered rather localized. From the component point of view,
neighbors are very similar in structure to the current incum-
bent solution. Neighbors also have similar objective function
values (on average). The neighborhood does not support any
mechanism that allows sampling in more distant parts of the
search space. This makes local search on these landscapes
fundamentally myopic. It should be pointed out this is not
true of all forms of local search. The neighborhoods used by
Gray- and binary-coded representation of parameter opti-
mization problems do a better job of systematically globally
sampling in distant parts of the search space. These neigh-
bors are used by many forms of genetic algorithms. Pattern
Search is also better at systematically globally sampling in
distance parts of the search space.

Stadler [13] showed that a landscape (with a symmetric
neighborhood operator) is elementary if and only the time
series generated by a random walk on the landscape us-
ing transitions defined by the neighborhood operator is an

AR(1) process: an observation that was later generalized
by Dimova et al. [7]. This observation, along with Grover’s
results about local extrema lying above or below the mean
solution value, imply that elementary landscapes describe a
class of relatively smooth and structured problems.

When compared to other conventional combinatorial prob-
lems, the TSP will be comparatively well-behaved. As Equa-
tion (1) predicts, candidate solutions in the TSP will have a
constant relationship with the average neighborhood value
(with respect to the mean). This is not necessarily a perva-
sive feature in commonly studied combinatorial problems.

Consider the mean-centered ratio between the evaluation
of an arbitrary solution x and its average neighborhood
value.

R(x) =
f(x)− f̄

(1/d)
P

y∈N(x) f(y)− f̄
(5)

Suppose x lies on an elementary landscape. Equations (1)
and (2) give us

Relem(x) =
f(x)− f̄

f(x) + k
d
(f̄ − f(x))− f̄

=
d

d− k

Thus the ratio is constant for landscapes that obey Equation
(1).

To contrast this relationship empirically with other com-
binatorial problems, we selected an instance of the permu-
tation flowshop scheduling problem (FSP) under the shift
neighborhood [15], and the asymmetric (ATSP) under the
exchange neighborhood. On each landscape, we generated
100 random solutions and calculated the value of R(x), Equa-
tion (5), for each solution x. The values are plotted in Figure
6 for car3.fsp: a 12 × 5 flowshop problem instance origi-
nally published by Carlier [4] and contained in the online
OR-LIBRARY2. the pr152.tsp and ali535.tsp (symmet-
ric) TSP instances and the ft53.atsp ATSP instance from
TSPLIB. The ratio is constant for the TSP problems, but
varies dramatically for the ATSP and FSP problems.

We can therefore assume that search algorithms that per-
form competitively on TSP are likely to be exploiting the
partial decomposability of the landscape. On the one hand,
this implies that such an algorithm may easily be adaptable
to other well known elementary problems. On the other
hand, search algorithms that are benchmarked on elemen-
tary problem classes may not generalize well to composite,
non-elementary landscapes.

5. CONCLUSION
The elementary property of certain landscapes introduces

several interesting constraints on the behavior of local search
algorithms. Landscapes with this property tend to be rela-
tively smooth when contrasted to other combinatorial opti-
mization problems with well-studied local move operators.

In this paper we have explained the elementary property
in terms of neighborhood sampling and observed some of
its consequences on real world instances. The constraints
imposed by the wave equation precludes the existence of
certain plateau structures, and forces certain relationships
between local optima with the same evaluation. The ele-

2http://people.brunel.ac.uk/~mastjjb/jeb/info.html



0 20 40 60 80 100

0
.
6

0
.
8

1
.
0

1
.
2

1
.
4

samples

R
(x

)

pr152.tsp
ali535.tsp
ft53.atsp
car3.fsp

Figure 6: Ratio R(x) of mean-centered objective and
mean-centered average of neighborhood objective
for 100 random solutions each on two elementary
TSP instances, an ATSP instance, and a flowshop
scheduling instance.

mentary property also allows us to make predictions about
the value of partial or full neighborhoods during search.

The Traveling Salesman Problem is widely used as a bench-
mark to testing new heuristic search algorithms. But, there
are many properties of TSP that make it unlike many other
combinatorial optimization problems. The wave equation
and the associated characterization by constituent solution
components presented in this paper make it clear that the
TSP is in some sense partially decomposable. This allows
for the partial update of the cost function. It also means
that near optimal solutions can be found by methods that
exploit the partial decomposability of the problem. Any
method that heuristically exploits information about the in-
dividual components of the cost matrix may be a risk of
over specialization. The results may not generalize well be-
yond the TSP, or at least beyond the family of elementary
landscapes.
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