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Abstract. Recently, there has been an interest in studying non-uniform random
k-satisfiability (k-SAT) models in order to address the non-uniformity of for-
mulas arising from real-world applications. While uniform random k-SAT has
been extensively studied from both a theoretical and experimental perspective,
understanding the algorithmic complexity of heterogeneous distributions is still
an open challenge. When a sufficiently dense formula is guaranteed to be sat-
isfiable by conditioning or a planted assignment, it is well-known that uniform
random k-SAT is easy on average. We generalize this result to the broad class of
non-uniform random k-SAT models that are characterized only by an ensemble
of distributions over variables with a mild balancing condition. This balancing
condition rules out extremely skewed distributions in which nearly half the vari-
ables occur less frequently than a small constant fraction of the most frequent
variables, but generalizes recently studied non-uniform k-SAT distributions such
as power-law and geometric formulas. We show that for all formulas generated
from this model of at least logarithmic densities, a simple greedy algorithm can
find a solution with high probability.

As a side result we show that the total variation distance between planted and
filtered (conditioned on satisfiability) models is o(1) once the planted model pro-
duces formulas with a unique solution with probability 1 — o(1). This holds for
all random k-SAT models where the signs of variables are drawn uniformly and
independently at random.

Keywords: random k-SAT - planted k-SAT - non-uniform variable distribution -
greedy algorithm - local search.

1 Introduction

Propositional satisfiability is one of the most intensively studied topics in theoretical
computer science and artificial intelligence. Motivated by the desire to understand the
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hardness of typical propositional formulas, random satisfiability models were devel-
oped [23]. The archetype of these random structures is uniform random k-SAT: a fam-
ily of distributions over formulas, parameterized by length, in conjunctive normal form
with k literals in each clause. A vast number of compelling algorithmic hardness results
both theoretical [13—16] and experimental [32,35] has developed from this field.

Despite bringing our understanding of the working principles of SAT solvers into
sharper focus, a major drawback of the uniform random model is that it does not typ-
ically produce formulas that are similar to ones that come from applications. Thus it
is not always clear how hardness results on the uniform random model might translate
to other distributions. Recently, an effort has emerged to bridge this gap between the
homogeneity of uniform random formulas and heterogeneous models of random satis-
fiability [2,9,10,17,34]. Moreover, specific properties of industrial instances have been
identified, and non-uniform distributions have been subsequently introduced to produce
such structures. Notable examples include the community attachment model [27] to ad-
dress modularity, and the popularity-similarity model [28] to address locality.

Ansoétegui et al. [5] studied the constraint graphs of industrial propositional for-
mulas, and found that many reveal a power law degree distribution, while the variable
degrees of formulas drawn from the uniform random k-SAT model are distributed bi-
nomially. To address this, they introduced a non-uniform random power law model
that induces power law degree distributions. Other researcher have also noted that real-
world formulas (especially those derived from bounded model checking) exhibit such
heavy-tailed degree distributions [9]. Moreover, empirical results suggest that solvers
specialized for industrial instances tend to perform better on formulas drawn from a
power law model than on formulas drawn from a uniform model [3-6, 8]. Non-uniform
random k-SAT models for which the degree distribution follows a geometric law have
also been introduced [6].

It is often difficult to understand how algorithmic results on uniform distributions
translate to non-uniform models. We use a general variable distribution framework:
random k-SAT models are described by an arbitrary ensemble of variable distributions
(Pn)nen and the clauses are constructed by drawing variables from p),. This framework
has recently gained interest in the SAT community. For example, it was shown that
under some mild conditions on p,,, the well-known sharpness result of Friedgut [24]
generalizes to the non-planted version of this framework [26]. This line of work can help
us understand if k-SAT instances with non-uniform variable distributions are easier to
solve. If so, which distributions make them easier and why? If not, which other features
of industrial instances are important to make them easily solvable?

Results In this paper, we show that a result for uniform planted SAT models, in which
a satisfying assignment is hidden, generalizes to a planted version of the non-uniform
framework described earlier. In particular, we generalize an early result of Koutsoupias
and Papadimitriou [30] to non-uniform planted SAT distributions. We also improve their
lower bound on the density threshold by an n/ log n factor. Distributions for which our
results hold include recently introduced non-uniform random satisfiability models such
as those with power law degree distributions and geometric degree distributions [6].
For those two models in particular only {2 (nlogn) clauses suffice to find a satisfying
assignment with a simple greedy algorithm with high probability.
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Furthermore, we investigate the relation between planted and filtered models. Here,
filtered means any random SAT model, where we condition on the generated formulas to
be satisfiable. We show a result for all k-SAT models in which the signs of variables are
chosen uniformly and independently at random for each clause. This result states that,
if the planted model asymptotically almost surely* generates formulas with a unique
solution (the planted solution) at some constraint density m/n, then the total variation
distance between the planted and the filtered model at that density is o(1). This means,
our results for non-uniform planted SAT transfer to the corresponding filtered models.

1.1 Planted k-SAT

Planted distributions are a common modification to average-case problem distributions
for combinatorial problems in which instances are generated together with a solution.
A motivation for studying planted distributions is that if no efficient algorithms exist for
solving an instance, then the instance-solution pairs comprise a one-way function [22],
which has important implications for cryptography.

The planted 3-SAT model has been studied in the context of the warning propaga-
tion algorithm, and noted for its similarity to low-density parity check codes [19]. The
authors show that warning propagation can solve planted 3-SAT formulas with constant
constraint density. Berthet [7] considers the problem of detecting whether a formula is
drawn from the uniform or the planted distribution in the context of hypothesis testing.

Achlioptas, Jia, and Moore [1] analyze a 2-planted model, where two satisfying as-
signments are hidden at maximum distance from each other. They experimentally show
that in their setting the runtime of local search algorithms is comparable to the runtime
on completely random instances. Hu, Luo, and Wang introduce a planted version of
community attachement [29] and study it experimentally. Feldman, Perkins, and Vem-
pala [20] study planted k-SAT with different distributions on the signs of clauses.

We consider the greedy algorithm (Algorithm 1) originally introduced by Koutsou-
pias and Papadimitriou [30] who proved its success on uniform planted formulas with
at least linear constraint density, i.e., the ratio of clauses to variables is 2(n). Bulatov
and Skvortsov [11] proved a phase transition in the uniform model for this algorithm. In
particular, for constraint densities above % In n, Algorithm 1 succeeds with high proba-
bility. On the other hand, the algorithm fails w.h.p. on formulas with uniformly positive
constraint densities below this threshold. More sophisticated algorithms based on spec-
tral techniques have been shown to be successful down to constant densities with high
probability [21] and in expected polynomial time [31] on the uniform planted model.

2 Non-Uniform Planted k-SAT

In this section we will introduce our model and relevant notation formally. We denote
the Boolean variables by =1, . .., x,, . A k-clause is a disjunction of k literals ¢, V. . .\V/y,
where each literal is a variable or its negation. For a literal ¢; let |¢;| denote the index

* We say that an event & holds asymptotically almost surely (a. a.s.) if, over a sequence of sets,
Pr(€) = 1. In the context of this paper, this means Pr (£) =1 — o(1).
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Algorithm 1: Greedy algorithm [30]

1 « < an assignment chosen uniformly at random;
2 while 34 € [n] such that changing «; increases the number of satisfied clauses do
3 L ali] + 1 — afi];

4 return o

of its variable. A formula ¢ in conjunctive normal form is a conjunction of clauses
Ci1 A ...\ C,,. We interpret a clause C both as a Boolean formula and as a set of
literals. We say that @ is satisfiable if there exists an assignment of its variables such
that the formula evaluates to 1.

Definition 1 (Non-Uniform Random k-SAT). Let (7, )ncn be a set of probability dis-
tributions where p,, = (p1,D2,-..,Pn) is a probability distribution over n Boolean
variables with Pr(X = x;) = p;. The random model D(n, m, pp, k) can be described
as follows.

1. for j < 1tom:
(a) Sample k variables from the distribution p,, without repetition.
(b) Choose one of the 2F negation patterns uniformly at random.

Definition 2 (Non-Uniform Planted k-SAT). Let (py, )new be a set of probability dis-
tributions where p,, = (p1,D2,...,pn) is a probability distribution over n Boolean
variables with Pr(X = x;) = p;. The random planted model F(n, m, p,, k) can be
described as follows.

1. Select a planted assignment o* € {0, 1}" uniformly at random
2. for j + 1tom:
(a) Sample k variables from the distribution p,, without repetition.
(b) Choose one of the 2F — 1 negation patterns that force the resulting j-th clause
to evaluate to true under o uniformly at random.

We will show in Section 3 that the greedy algorithm is successful on non-uniform
planted k-SAT if the clause-variable ratio is high enough and if the variable probability
distribution is well-behaved in some sense. Moreover, we will relate the two models
in Section 4, which allows us to conclude that the greedy algorithm also succeeds on
satisfiable instances of non-uniform random k-SAT. Our results in Section 4 hold for
more general versions of those models, which are defined as follows.

Definition 3 (Random k-SAT with Independent Signs). Let N denote any random
k-SAT model where m clauses are drawn and the signs of variables for each clause are
drawn independently and uniformly at random among the 2F possibilities. Let F ~ N
denote a random formula F' drawn in the model N. This means the probability to draw
a certain k-CNF f is

_ _ . o—km
Pr (P =) =pp 2k,

where py denotes the probability to draw the sets of variables that the clauses of f
consist of. We call such a model a random k-SAT model with independent signs.
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Definition 4 (Corresponding Planted Model). Let N be a random k SAT model with
independent signs. Now let ‘P be the following planted model: First draw a planted
assignment with probability 2=, then we draw m clauses in the same way as in N,
and draw the signs of variables for each clause independently and uniformly at random
among the 2% — 1 possibilities that make the planted assignment satisfy the clause. If
X (f) denotes the number of satisfying assignments of a k-CNF f, then the probability

to draw f is
X(f) 1 "
Flil;J( ) =ps- 2n .(Z’f—1> '

We call P the corresponding planted model of V.

Note that the definition of a random k-SAT model with independent signs is very
general. It encompasses random k-SAT models where formulas with m clauses over
n variables are drawn according to any distribution, as long as the sign of each literal
is drawn independently at random with probability 1/2. This includes the community
attachment model by Girdldez-Cru and Levy [27] and the approach with given variable
degrees of Omelchenko and Bulatov [33] and Levy [12]. Furthermore, it is easy to see
that non-uniform random k-SAT is a random k-SAT model with independent signs and
that non-uniform planted k-SAT is its corresponding planted model.

Throughout the paper, we will assume that £ > 3 is a constant. Note that according
to our models clauses can be drawn repeatedly. Furthermore, to simplify the proofs,
we assume the variables are sampled with replacement. However, we remark that for %
constant and p,, bounded away from 1 by a constant, this changes the clause probabili-

ties by at most a constant factor (see, e.g., [25]). In this setting, the probability to draw
k

alegal clause C = (¢1 V...V {)is 2kk7ll Ti=1piey-

We denote [n] := [1,n]NIN. For a discrete probability distribution 9= (p1,...,Dn)
we assume p; < pg < -+ < p,. For a particular F(n, m, p,,, k), we define the param-
eter y(¢) = Pr(i < (1/2 —¢) -n — (k — 1)). Here, ¢ is a random variable with
Pr(i = j) = p; for j € [n]. We will denote the Hamming distance between two
assignments a, 3 € {0,1}" by d(«, 3) and simply refer to it as the “distance”.

3 The Greedy Algorithm on non-uniform planted k-SAT

In this section, we will show that for sufficiently high constraint densities Algorithm 1
asymptotically almost surely finds a satisfying assignment of non-uniform planted k-
SAT if a condition on the probability distribution of the model is fulfilled. The condition
that has to be satisfied is that there are constants ¢ € (0,1/2) and &’ € (0,¢) such that

Pri<(1/2—-¢)n—(k—1))>c+Pr(i>(1/2+¢) n) (1)

1/2k

for some ¢ = {2 ((n -p1 - y(e)3*1 /Inn) ) If a probability distribution p’satis-

fies this condition, we call it "well-behaved”. Formally, we show the following.

Theorem 11. For a formula F' drawn from F(m,n,p, k) with a well-behaved proba-
bility distribution p with parameters ¢ and €', and m > ﬁ, where k > 3 is a
constant and C' > 0 is some sufficiently large constant, Algorithm 1 succeeds with high

probability.
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Fig. 1. Sketch of the assignment space with the planted assignment o and the properties we
show. (2) Lemma 8: All assignments within distance (1/2 4 ¢) - n of o* are good, (3) Lemma 9:
The random starting assignment is at distance at most (1/2+¢") - n from o*, (4) Lemma 10: any
assignment at distance (1/2+¢") - n from o* satisfies at least as many clauses as any assignment
at distance (1/2 + ¢) - n from o™

Note that the choice of ¢ in the well-behavedness condition influences the value of
~(&) in the number of clauses necessary for the algorithm to succeed. It generally holds
that the more uniform the probability distribution is, the smaller we can choose ¢ and a
smaller € results in a smaller lower bound on the number of clauses.

We call an assignment o € {0,1}" good if it satisfies all clauses or if there is
an assignment 8 with |[{i : «; # B;}| = 1 and § satisfies strictly more clauses than
a. We will show that a.a.s. all assignments that Algorithm 1 finds are good. Thus,
the assignment it returns must be satisfying. To this end we consider assignments at
distances (1/2 4+ €’) - n and (1/2 + ¢) - n from the planted assignment o*. Here, &’
and ¢ are the parameters of the well-behavedness condition with 0 < &’ < & < 1/2.
There are five ingredients to the proof: (1) two technical lemmas, Lemmas 6 and 7, (2)
Lemma 8, which states that all assignments within distance (1/2+¢)-n of o* are good,
(3) Lemma 9, which states that the random starting assignment is at distance at most
(1/2 + €') - n from «*, (4) Lemma 10, which states that any assignment at distance
(1/2 + ¢’) - n from o* satisfies at least as many clauses as any assignment at distance
(1/2 +¢€) - n from o*, and (5) Theorem 11, which puts these ingredients together.

The argument now works as follows. Since the local search algorithm always picks
an assignment that strictly increases the number of satisfied clauses, (4) implies that
from an assignment at distance (1/2 +¢’) - n, it will never reach one at distance (1/2 +
e) - n. Due to (3) the algorithm starts with an assignment within distance (1/2 + ¢’) -
n of a*. Thus, all assignments found by the algorithm must remain within distance
(1/2 4 €) - n of *. Since all assignments within that distance to a* are good due to
(2), all assignments found by the algorithm are good and the final assignment must be
satisfying. Figure 1 visualizes the idea of the proof. Furthermore, Corollary 12 shows
that some natural probability distributions are well-behaved for certain constants e, ',
which result in a constant 7y(¢). For instances of non-uniform planted k-SAT with these
input distributions Algorithm 1 already works for logarithmic densities.

The efficiency of the greedy algorithm depends on the probability of sampling
clauses over certain subsets of variables. We capture the probability of sampling a cer-
tain subset of variables in the following definition.
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Definition 5. Given any index set I C [n], let P;(I) = {J C I : |J| = l} denote the
cardinality-l elements of the power set of I and define Q;(I) := ZJEP[(I) [Liespjto
be the probability of selecting | elements of I over p.

Q:(I) is the probability of choosing [ variables with indices only from I. Note that
Qi(I) > Qu(I) for I < I'. We want to lower-bound the probability @,;(I) for |I| >
(1/2 —¢) - n. In the uniform planted model a lower bound would be roughly (1/2 —¢),
where 0 < € < 1/2 is a constant. However, in our setting, where variable probabilities
are non-uniform, (); (/) depends on the total probability mass of the (1/2—¢)-n— (I —
1) least probable variables. We underestimate and capture this probability mass in the
parameter v(¢) = Pr(i < (1/2—¢) -n — (k —1)). The following lemma now provides
us with a lower bound on @Q;(I) depending on v(g).

Lemma 6. If v(¢) > 0 for some constant 0 < € < 1/2, then for any index set I with
L
|[I| > (1/2 — ¢€) - n and any natural number | < k, we have Q;(I) > A’(Z—E,)

Proof. We can express Q);(I) as the following nested sum

an-1y Y Y IIn

1€l ioel\{i1} i €I\{i1,...,5g—1} J=1

:%Zpil Z Pig - - Z Di; -

el igel\{i1} €I\ {i1,.yir_1}

This sum essentially captures the choices of elements we have for each term in Q;(I),
where i is the j-th chosen element. Since we only forbid repetitions of elements, the
j-th element can be anything from I \ {1, 42,...,4;-1}. Since |I| > (1/2 —¢) - n, we
can always choose from at least (1/2 — ) - n — (I — 1) many elements. It holds that

(1/2—e)-n—(1—-1) !

1 1 1(e)!
Ql(I)Zﬂ Z Di zﬂPr(z§(1/2—5)-n—(1—1))l2 T
i=1
as we assume the p; to be in ascending order. a

The following technical lemma bounds the probability of making a random clause
satisfied or unsatisfied by decreasing the Hamming distance to the planted solution.
These bounds especially hold if the distance is decreased by only one, i.e. we flip the
assignment of a single variable. The statements of this lemma will be used in order to
show that assignments close to the planted solution are good.

Lemma 7. Fix an assignment a € {0, 1}™ at Hamming distance d(o, o) < (1/2+¢)-
n from the planted solution. For any assignment S with {i : o; = o} C{i: B; = o},
denote o as the probability over F(n, m, P, k) that a clause is false under o and true
under [3. Analogously, we let T3, denote the probability that a clause is false under [3
and true under o.. With I = {i : o; # B; A\ B; = ' } it holds that

1. mgq < (1— "’((%;,1) T, and
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k- E=171].
2 > BTl

Proof. In addition to I, we will denote the set J := {i : a; = «f}. Note that |I| =
d(a, B) < d(a, @*) and that d(o, ) = n — |J|. A clause changes from false to true
between « and g if it (1) contains any variable indexed in I, and (2) the literals in the
clause are set such that it evaluates to false under x. Note that the first condition implies
a # B and a # o*. This is necessary in order for a clause to evaluate to false under «
and to evaluate differently under 3. The probability for these events to occur is

k
R = g Q1) Qe elln]\ )
=1

We have the same for 7g,. Again, the clause must contain a variable from I for «
and [ to be different and this time the literals must evaluate to false under 8. Addition-
ally, we must take care that clauses that are false under a* are not allowed. In particular,
if a clause contains only variables from I U J, i.e. only variables where 5 and o* do
not differ, then the clause cannot evaluate to false under 3. Thus, we must exclude such
clauses from the probability mass. In particular,

k
i = gr g 2 QD) (@e-al\ D) Q)

k k
< S QUM D) — 5 > QD) Qu—(n] \ Qo)
(=1

— /=1
k—1
:
< _—_— .
= (1 = 1>!> g

The final inequality comes from Lemma 6 and the fact that |J| = n — d(o,@*) >
k—1
(1/2 — ¢) - n, which allows us to bound Q_¢(J) > Qr_1(J) > V(S,il)! .
The second statement holds since

Mas 2 5 QD) Qe \ D) = g Yo @l \ D

icl
kU] py k(@11
> ————  Qr_ I)> .
> 7 @]\ D) = ok 1
The final inequality comes from Lemma 6 and the fact that |[n] \ I| = n — d(a, 8) >
(1/2—¢€)-n. 0

We will now show that w. h. p. assignments close to the planted assignment o* are
good. This is the second ingredient of our argument. Remember that we call an assign-
ment o € {0, 1}™ good if it satisfies all clauses or if there is an assignment £ at distance
one which satisfies strictly more clauses.

Lemma 8. Let F' be a formula drawn from F(m,n,p, k), let e € (0,1/2) be a con-
stant, and let m > ﬁ, where k > 3 is a constant and C' > 0 is some suf-
ficiently large constant. Then all assignments o within distance (1/2 + €) - n of the

planted assignment o are good with high probability.
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Proof. Fix an assignment o with d(a, a*) < (1/2+¢€) - n. Denote the random variable
X;; that indicates that the j-th clause is false under o, but becomes true by flipping
the i-th variable. Similarly, denote as Y;; the random variable that indicates that the
7-th clause is true under « but becomes false by flipping the i-th variable. Define X =

Ei:aﬁéa.* Z;nzl XZJ and Y = Ei:ai;éa.* Z;nzl Y;J By Lemma 7’ E[XU} = Tap and

E[Y;;] = 734, where a and 3 differ only on I = {i}. Thus, E[Y] < (1— ”(Sjj’“l)f )E[X].

We want to use Chernoff bounds to show that the values of X and Y are con-
centrated around their expected values. First, we argue why Chernoff bounds can be
applied. X and Y only consider assignments 3 that differ from « in one variable and
are closer to . Let X; = 32, sor Xij and Y = 37, . Vij. X denotes the
number of those assignments, which make a clause true that is false under o, while Y
denotes the number of those assignments that make a clause false that is true under a.
It holds that Y; < 1. If a clause is false under one assignment /3, it must be true under
all assignments that differ on that clause’s variables. We know that the clause is true
under « and since all other assignments 3’ # (3 we consider differ from « in exactly
one variable, as soon as they differ from « on one of the clause’s variables, they must
also differ from (3 on the clause’s variables. Thus, the clause must be satisfiable on all
assignments (3 75 B’ we consider. Y; < 1 implies that we can use a Chernoff bound
onY = Z ", Y;, since the Y; are independent random variables with values in [0, 1].
Similarly, X < k because if a clause is false under «, then all assignments that differ
on that clause s variables will make the clause true. Thus, this holds for all assignments
S that differ on one of the clause’s variables. However, since we only consider those
assignments [ that differ from « by at most one variable, there are at most & such as-
signments, one for each variable of the k-clause. X; < k implies that we can use a
Chernoff bound after resizing the variables X; with a factor of 1/k. This yields random
variables whose values are independently distributed in [0, 1]. However, it means that
the expected value in the exponent also has to be multiplied with 1/k.

Applying the Chernoff bounds as stated, for any § € (0,1), we have Pr(X <
(1-9)E[X ]) < ¢=9”EIXI/(2:%) For Y we choose ' such that (1+ 5') ElY] =01+
81— 7((,5) o) B[X]. Then, ¢’ > §and &' - E[Y] > 6 - (1 — 7((;)1) )E[X]. We can
now apply a Chernoff bound to get

Pr(Y > (14 8)E[Y]) < e FYV@H) < =025 BLX)/24)

Taking a union bound, the probability of event {X < (1 — §)E[X]}U{Y > (1 +
5) (1 - %) E[X]} is at most exp( 52 (1 - %) E[X]/(k-((2+6))+1n2).

Setting § = k/(2 — k) with k = 2" the event {X > Y} occurs with probability

(k— 1)"
at least
(1—k)-rK2

1— _
eXp( k- (2—r)(4—r)
Remember that X only considers assignments which differ from « in one variable
o; # af. Hence, = 1 for o and any such assignment /3. Thus, according to Lemma 7,

k:"y(a)kflopl o Klekepr
oy o medlead)

E[X] + In 2) . @)

E[X] > m-d(a,a*) -
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Substituting this into Equation (2) and using 0 < xk = % < ﬁ we get

WL > (1= 1/ = 1)) 5(e)%3/(2 (k= 1)) = (3(e)**~D). Thus, the

event {X > Y} occurs for assignment o with probability at least

1 —exp (7(2(7(5)3(1“1) -p1 - d(a, ) m)) .

This means the average count of clauses that go from false to true minus the count that
go from true to false by flipping assignments in {4 : «; # «} is positive, and we can
conclude that there exists at least one such flip that increases the total count of satisfied
clauses. Hence, o is good with the above probability.

Taking a simple union bound over all (7}) < n? assignments o at distance d =
d(a, a*), all assignments at this distance are good with probability at least

1—nexp (—9(7(5)3(k_1) p1-d- m)) > 1 —exp(—2(dlogn)) =1 —n~"

C-lnn
y(€)3k=1.py
A subsequent union bound over all such radius-d spheres yields that all assignments

within distance (1/2 + ¢) - n of the planted solution are good with probability at least
1- [5(211/2%)7” n~¢d>1-1/ (ncl — 1), i. e. with high probability. O

for some constant C’ by choosing m > with constant C' large enough.

Now we are going to show the third ingredient of our argument, i. e. that the random
starting assignment is close to the planted assignment with high probability.

Lemma 9. For any constant €' € (0,1/2) the random starting assignment is within
distance at most (1/2 + €') - n of the planted assignment o with high probability.

Proof. Since the starting assignment « = (a1, @a, ..., ) is generated uniformly at
random, each «; differs from o with probability 1/2 independently at random. Let X
denote the random variable indicating that o; # o and let X = Z:.L:l X;. We can see
that d(«, o*) = X. It holds that E[X]| = n/2 and

2~5/2~n

Pr(d(a,a*) > (1/2+€") -n) =Pr(X > (1+2-&')-E[X]) <e 22
due to a Chernoff bound. O

The last ingredient of our argument is to show that any assignment J at distance
(1/24¢€') -n from o* satisfies at least as many clauses as any assignment « at distance
(1/2 + ¢) - n from o*. In order to show this result, we require the variable probability
distribution of our random model to be well-behaved. For 3 and o well-behavedness
essentially states that it is more probable to randomly sample a variable on which o*
and [ agree than it is to sample a variable on which o* and « agree. For a uniform
probability distribution this is trivially true, since the number of those variables is much
larger in (3 than it is in « due to 8’s smaller Hamming distance to o*. However, for a
non-uniform probability distribution, the property must be ensured. We will later see in
Corollary 12 that uniform, power-law and geometric distributions are well-behaved.
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Lemma 10. Let k > 3 be a constant and let p be a probability distribution that is well-
behaved for constants € € (0,1/2) and €' € (0,¢). Further, let m > ’Y(Eg(lﬁfor
a sufficiently large constant C > 0, and let F be a formula drawn from F(m,n,p, k).
Then with high probability any assignment o with d(o, o*) = (1/2 + €) - n satisfies at
most as many clauses of F as any assignment 8 with d(8,a*) = (1/2+¢&') - n.

Proof Sketch. The idea of the proof is to lower-bound the difference 7,3 — 734, Where
Tqg is the probability that a random clause is not satisfied by o and satisfied by /3. This
difference depends on the probabilites of variables in I, the set of variables on which
« and S differ. More precisely, it depends on the difference between the probability of
sampling a variable from I for which o and o* disagree and the probability of sampling
a variable from I for which a and o* agree. In the worst case the prior set of variables
are those of minimal probabilities, while the latter are those of maximal probabilities
according to the probability distribution p. If we pessimistically assume this, the differ-
ence is minimized if I is of maximum size. Then, there are (1/2 — ¢’) - n variables in I
on which « and o* disagree and (1/2 —¢) - n variables on which the assignments agree.
However, the difference of the probabilites to sample those variables is lower bounded
by c= 2 ((n -p1-y(e)**=D /1n n)l/zk) by the well-behavedness of p (equation 1).

By using a Chernoff bound, we can now show that the probability that « satisfies
at least as many clauses as 3 is upper bounded by ~ exp(—m - c¢?¥) ~ 2= Via a
union bound we get that the probability is still exponentially small in n for all pairs of
assignments « and 3 if C'is sufficiently large. ad

We can now put the ingredients of our argument together to get our main theorem.

Theorem 11. For a formula F' drawn from F(m,n,p, k) with a well-behaved proba-
bility distribution p with parameters ¢ and €', and m > ﬁ, where k > 3 is a
constant and C' > 0 is some sufficiently large constant, Algorithm 1 succeeds with high

probability.

Proof. All statements in the proof hold with high probability. Lemma 9 tells us that the
random starting assignment is within distance (1/2+¢")-n of the planted assignment o*.
The local search algorithm now considers assignments within Hamming distance one
of the currently best assignment found. Furthermore, the algorithm only accepts a new
best assignment if it satisfies strictly more clauses than the previous best assignment.
Thus, to reach an assignment « at distance (1/2+¢) -n from «o*, it first has to accept an
assignment 3 at distance (1/2+¢")-n from o* and « has to satisfy strictly more clauses
than 8. However, Lemma 10 tells us that this is not possible. Therefore, any assignment
found by the algorithm has to be within distance (1/2 + ¢) - n of a*. Lemma 8 states
that all those assignments are good. Thus, all assignments found by the algorithm are
good and the final assignment must be satisfying. a

The ~y(g) term in our proofs is a penalty incurred from having a potentially patho-
logically “light” tail in the variable distribution. If y(¢) = o(1), this means that most
of the probability mass is concentrated around the (1/2 + ¢) - n most frequent vari-
ables, and the tail vanishes very quickly. In some sense, if the tail is at least as heavy as
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the uniform distribution, then v = ©(1). This is the case for most proposed classes of
non-uniform variable distributions, as we formalize in Corollary 12.

The well-behavedness of the variable distribution intuitively states something simi-
lar. It also requires that not too much probability mass is concentrated around the most
frequent variables. Note that ¢ denotes the same value in both requirements. We can see
that increasing ¢ and decreasing ¢’ makes it easier to satisfy this prerequisite. However,
increasing ¢ decreases y(¢) and thus increases the lower bound on the clause-variable
ratio for which our main theorem holds.

Theorem 11 implies that the greedy algorithm already works at some logarithmic
density if the variables of the planted model follow three well-known probability distri-
butions: uniform, power-law, or geometric. We show this in the following corollary.

Corollary 12. The greedy algorithm is successful over a 1 — o(1) fraction of planted

1. uniform random k-SAT formulas,
2. power-law random k-SAT formulas with power-law exponent 8 > 2,
3. geometric random k-SAT formulas® with a base b > 1,

with " > C'Inn, for constant k > 3 and a sufficiently large constant C.

Proof. The statement follows by application of Theorem 11, so it suffices to verify the
minimum variable probability p;, the v term, and the well-behavedness of the distribu-
tion for each of the stated models.

1. Uniform: In the uniform k-SAT distribution, p; = p; = 1/n for all i € [n]. There-
fore, v(e) = (1/2—¢) = (k—1)/n=06(1) and
Pri<(1/2—-¢) n—(k—-1)=(1/2-¢)—(k—1)/n
>c+(1/2—e)=c+Pr(i>(1/2+¢) n)

forc = ¢ — ¢ — (k — 1)/n. Thus, Algorithm 1 succeeds w. h. p. for clause-variable
ratios 7 > C'- % = C - Inn for some sufficiently large constant C' > 0.
_1
2. Power law: For the power-law distribution, p1 = (1/ 31", (%)77) = 2(1/n
and p, = O(n~B=2/(B=1) Thus, y(e) = Pr(i < (1/2 —¢)-n— (k—1)) =6
since Pr(i < (1/2—¢) - n—(k—=1)) > (1/2—¢) - n-p1 — (k—1) - p, = 2(1)
In order to validate the well-behavedness of the distribution, we can estimate Pr(i >
(1/2+¢)-n) < (1/2 — )B=2/(B=1) and, equivalently
Pri<(1/2—€) n—(k—1)=1-Pr(i > (1/2—¢) - n—(k—1))
>1—(1/24¢ + (k—1)/n)B-2/(B-1),

~—

Thus, for any &’ € (0, 1/2) we can choose £ > max (¢/, £g), where ¢ is the solution of
1—(1/2+¢& + (k- 1)/n)(ﬁf2)/(671) =(1/2— 5)(ﬁf2)/(671)_

Note that this lower bound on ¢ is always in (0, 1/2) and thus satisfies our requirements.
As in the uniform case, this results in a lower bound of % > (' - Inn for some suffi-
ciently large constant C' > 0 in order for Algorithm 1 to succeed with high probability.

5 We refer to the geometric degree-distribution model introduced by Ansétegui et al. [6].
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3. Geometric: In geometric random k-SAT, p; = lfbb__ll/n - bi/™_ It now holds that
(1/2—&)n _pl/2—e g _ pl/2me—(k=1)/n_q
Yoih pi = 24— and thus y(¢) = *————— = O(1). Furthermore,

pi/m -1 e®/n g S 1+In()/n—1 Ink) 1

== T Ty T b—1 Th—1

For the requirement from equation 1, we get

bl/2+5 -1

Pr(i > (1/24¢) n)=1-Pr(i < (1/2+¢) - n)=1-— —)

. 1/2—e’ —(k=1)/n_ 1/24e_ .
This means, we need to ensure bb_—ll >1-20 =T L or, equivalently,

pl/2te > p 4 1 — pt/2='~(k=1)/n_ Note that bt/2~<'~(k=1)/n - ] Thus, the right-
hand side is a constant smaller than b. If we make € € (0, 1/2) sufficiently large, we can
make the left-hand side by a constant bigger than the right-hand side. This is sufficient
for the requirement from inequality 1. Again, we get that the greedy algorithm succeeds
w.h.p. for 2 > C' - Inn and C' > 0 sufficiently large. O

4 Relationship between planted and filtered instances

One interesting question is if the behavior of the greedy algorithm is an artifact of the
instances being planted or if the same behavior emerges for satisfiable instances of
the corresponding non-planted model. Thus, we now look at random k-SAT models
with independent signs and their corresponding planted models. We show the following
theorem, which is a generalization of a result by Doerr, Neumann, and Sutton [18].

Theorem 13. Let P = F(n,m, py, k) be a non-uniform planted k-SAT model and let

N be a non-uniform random k-SAT model on the same input parameters. Then for
k

m > At =D) 1y with any constant € > 0 and for any event £ it holds that

Prron (€ | X(F) > 1) = Prpp (€) £ o(1).

Proof Sketch. The proof follows the same lines as the one in [18]. We first show that
for a random k-SAT model with independent signs and its planted equivalent the condi-
tional probability to sample a certain formula is the same in both models if we condition
on there being exactly one satisfying assignment. Then, we show that the probability
to have exactly one satisfying assignment in the filtered model (conditioned on formu-
las being satisfiable) is at least as high as in the planted model. These two statements
already imply a total variation distance that tends to zero as soon as the probability to
have a unique satisfying assignment tends to one in the planted model. The last step of
the proof consists of finding a number of clauses m for which formulas generated with

non-uniform planted k-SAT a.a.s. only have one satisfying assignment. A first oder
(1+¢)-(2F-1)

bound shows that this is case if m > -

- Inn for any constant € > 0. a

Theorem 13 asserts that Theorem 11 also holds for the filtered non-uniform random
k-SAT model. That means, for satisfiable formulas drawn from the non-uniform random
k-SAT model the greedy algorithm also succeeds with probability 1 — o(1).
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Fig. 2. Fraction of formulas solved by Algorithm 1 on the planted uniform 3-SAT distribution as
a function of constraint density m /n for various n.

5 Experiments

We performed a number of experiments for the example distributions we consider in
Corollary 12 to argue that the logarithmic lower bound in constraint density for Algo-
rithm 1 is likely to be tight asymptotically, and that the leading constants are small. For
the uniform planted 3-SAT model, we sampled formulas at n € {100, 200, 500} with
densities 1 < m/n < n?/2. For each n and m, we sampled 100 formulas and deter-
mined whether they could be solved by the greedy algorithm. We report the results as
the fraction of formulas solved depending on the constraint density in Figure 2.

As expected, above constraint densities of roughly ©(logn), the proportion of for-
mulas solved by Algorithm 1 quickly goes to one. We see success rates of 70-90%
already at (5/2) Inn for each n, but a more detailed analysis would be needed to get an
accurate estimate for the true leading constant.

Non-uniform distributions typically have more parameters, and we are interested in
the influence of these parameters on the success of the greedy algorithm. In particular,
other than the minimum variable probability p;, and the « term for tail lightness, no
other distribution parameter appears in our bound. To quantify the effect of constraint
density and distribution parameter on geometric random 3-SAT and power-law random
3-SAT, we sampled 100 formulas for each value of the parameters across a range. We
measured the proportion of these formulas that were solved by the greedy algorithm,
and display the results in heat maps in Figure 3. On the left, the fraction solved is
shown as a function of density and base parameter b for the geometric distribution. On
the right, the fraction solved is shown as a function of density and power law exponent
B for power-law formulas. As reflected in our theoretical bounds, for the most part there
is little influence of the distribution parameters b and 3 on the constraint density above
which Algorithm 1 is successful. In the power law model, there appears to be a regime
of the power law exponent [ near 2 that seems to be influencing the lower bound. This
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Fig. 3. Fraction of formulas solved by Algorithm 1 on geometric 3-SAT distribution as a function
of constraint density m/n and base parameter b (left) and power law 3-SAT distribution as a
function of constraint density m/n and power law exponent /3 (right) for n = 200 variables.

might be due to hidden constant factors which depend on the power law exponent [3.
However, it is not clear how or whether this effect scales with n, and this is an avenue for
future work. Of course, we cannot claim that our lower bound on the constraint density
is tight for all possible well-behaved distributions. As we stated before, our lower bound
only considers the smallest variable probability p;, and the + term, whereas the actual
bound might have a more intricate relation to other distribution parameters.

6 Conclusions

Non-uniform k-SAT models have gained increased attention in recent years. With this
paper, we contribute to the theoretical understanding of SAT problems with such non-
uniform distributions by studying a greedy local search algorithm. We have shown that
this algorithm is highly effective on planted SAT formulas drawn from k-SAT models
realized by choosing variables from an arbitrary variable distribution, provided that the
clauses are generated independently and that the variable distribution is not too skewed.
Models with these properties include geometric and power-law random k-SAT [6].

Our experimental results reveal that for geometric and power-law distributions the
exact parameters of the variable degree distribution have little influence on the success
of the local search algorithm, at least in the planted setting. Moreover, our rigorous
lower bounds on the clause-variable ratio necessary for the algorithm to succeed with
high probability are asymptotically the same as for uniform planted k-SAT. This is
somewhat surprising, as for state-of-the-art SAT solvers it is typically assumed that the
non-uniform distributions we consider make instances easier to solve [5].

We also show that there is a correspondence between non-uniform planted k-SAT
distributions and their filfered analogues, i.e., the non-planted distribution conditioned
on satisfiability. We show that for large enough clause-variable ratios the total variation
distance for events in filtered and their corresponding planted models vanishes in the
limit. This result actually holds for all random k-SAT models, where the signs of literals
are chosen independently at random without bias. It allows us to transfer our results for
the greedy local search algorithm to filtered non-uniform models.
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