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Abstract There are hundreds of online social networks with altogether billions of
users. Many such networks publicly release structural information, with all personal
information removed. Empirical studies have shown, however, that this provides a
false sense of privacy—it is possible to identify almost all users that appear in two
such anonymized network as long as a few initial mappings are known. We analyze
this problem theoretically by reconciling two versions of an artificial power-law net-
work arising from independent subsampling of vertices and edges. We present a new
algorithm that identifies most vertices and makes no wrong identifications with high
probability. The number of vertices matched is shown to be asymptotically optimal.
For an n-vertex graph, our algorithm uses nε seed nodes (for an arbitrarily small ε)
and runs in quasilinear time. This improves previous theoretical results which need
�(n) seed nodes and have runtimes of order n1+�(1). Additionally, the applicability
of our algorithm is studied experimentally on different networks.
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1 Introduction

Imagine owning a large social network G1 (like Facebook or Google+), and that
a competitor publishes an anonymized version of its own social network G2, i.e.
the graph structure without any additional labeling. This can happen on purpose or
indirectly by APIs which are permitted to access the competitor’s network; or e.g.
through special access granted to advertising partners. If we identify vertices that are
the same in both networks, we effectively deanonymize G2 and gain new information,
as there are connections in G2 that do not exist in our social network G1. This is
valuable information for e.g. suggesting friends who are not yet connected in one of
the networks. In this paper, we approach this social network reconciliation problem
from an algorithm theory point of view.

1.1 Model

We model the above situation by assuming the existence of an underlying “real”
social network G = (V, E), which encodes whether two people know each other in
the real world. Empirical studies showed that many social networks have a power law
or log normal degree sequence [21,24]. Since both of these distributions are closely
related [21], we focus on the power law case by modeling G as an n-vertex Chung–Lu
random graph [1,2,9–11]. Then, we assume the online social networks G1 and G2 to
be subsets of G. Every node of G exists in Gi independently with probability σi , and
every edge of G[V (Gi )] exists in Gi independently with probability ρi . Additionally,
we randomly permute the vertices of the graphs G1 and G2, i.e., we forget the vertex
labels and permute the order of the vertices in the input description.1 We assume that
there is a set of high-degree seed nodes VI ⊆ V which are known to match between
G1 and G2 because, for example, the person concerned generates high public interest.
The algorithmic problem now is to identify as many vertices as possible from the given
graphs G1 and G2 without making any wrong identifications (with high probability).
We call a vertex identifiable if it survives in both graphs G1 and G2.

This setup is similar to [18], only that instead of the Preferential Attachment
graphs [7] we use Chung–Lu random graphs. These are typically more accessible to
probabilistic analysis, yet it has been shown that both models exhibit similar behavior
[28].

1.2 Theoretical Results

Wepresent an algorithmwith the following guarantees. Here we let δ be the (expected)
average degree of the graph G. See Sect. 2 for the technical assumptions about the

1 As our graphs are given by adjacency lists, thismeans that for each graphGi wepick a randompermutation
πi . Then the j th adjacency list becomes the πi ( j)th adjacency list, each entry 	 of an adjacency list is
replaced by πi (	), and finally we sort each adjacency list to obtain a proper description of the permuted
graph.
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parameters of the Chung–Lu random graph G and the parameters of the subsampling
process.

Theorem 1 Assume we are given the nε identifiable vertices with largest degrees as
seed nodes for an arbitrary constant ε > 0. There is an algorithm that with high
probability2 makes no wrong identifications and successfully matches a fraction of
1−exp(−�(ρ1ρ2σ1σ2δ)) of the identifiable vertices.3 The algorithm runs in expected
quasilinear runtime O(δn log(n)/min{ρ1, ρ2}O(1/ε)).

We also show that this fraction of identified vertices is asymptotically optimal, since,
roughly speaking, we show that an exp(−O(ρ1ρ2σ1σ2δ)) fraction of the vertices does
not have any common neighbors in the two social networks and thus cannot be identi-
fied. For constant ρ1, ρ2, σ1, σ2, the runtime isO(δn log(n)), which is within a factor
log(n) of the expected number of edges �(δn) of G. Thus, our algorithm is the first
with quasilinear runtime. This is crucial for handling large graphs. The best previous
algorithms have a runtime of order O(δn 
2) [22] or O(δn 
 log(
)) [18], where

 is the maximum degree, which is typically of order n�(1).

1.3 Seeds

Our approach uses only the nε largest degree nodes as seeds—previous algorithms
with proven runtime and quality use at least �(n) uniformly sampled seeds [18].
In practice, it is often easier to find an initial matching of nodes with large degrees.
For example, high-degree nodes in social networks typically correspond to public
figures4 which can be easily identified in both instances G1,G2. Let us also remark
that our analysis goes through even when only a linear fraction of the largest nε nodes
is given as seeds. This essentially corresponds to increasing the rate of subsampled
nodes σ1, σ2 by a constant factor in the bootstrapping phase. Thus, our assumptions
are strictly weaker than knowing a linear fraction of all nodes as seeds which was
required in [18]. Finally, our algorithm is also successful with only O(log(n)/ρ1ρ2)

seed nodes, but runs in quadratic time in this case.

1.4 Empirical Results

Even though theChung–Lu randomgraph is a popularmodel for scale-free networks, it
does not reflect all properties observed in real world graphs. Most prominently, these
graphs have a large clustering coefficient, whereas the Chung–Lu model assumes

2 Throughout the paper, we say that a bound holds with high probability (w.h.p.) if it holds with probability
at least 1 − n−c for some c > 0.
3 In the whole paper O(·) and �(·) hide any dependency on the power law exponent β of G. We always
assume 2 < β < 3.
4 A realistic application of deanonymization algorithms such as ours could be to manually identify a few
high degree nodes, corresponding to public figures, and to run the algorithm to identify the remaining nodes.
For the manual step, one may exploit additional metadata—such high-profile vertices are typically public
and share lots of information. The algorithm itself does not rely on any such information and only uses
graph structure.
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independent edges and therefore has small clustering. To check our approach for
robustness, we thus implemented a variant of our algorithm and applied it to different
sets of networks.

We identify ≥ 89% of the vertices in Chung–Lu graphs, preferential attachment
graphs (PA), affiliationnetworks, and also subsampled real-world networks (Facebook,
Orkut). All runs took less than 60minutes on a single core, where previous results used
compute clusters for an unreported amount of time [18]. In all cases, we need≤ 0.03%
seed nodes to bootstrap our algorithm. This indicates that our approach translates to a
wide variety of scale-free networks, even thoughwe formally prove it on theChung–Lu
model.

1.5 Algorithm Description

Starting with the seed nodes, we identify the remaining vertices by their signatures,
i.e., their neighbors among the identified vertices, an idea used in many algorithms for
graph isomorphism. However, we have to cope with the additional complexity of the
neighborhoods of identical vertices not being equal. We identify vertices when their
signatures are strongly overlapping, and show an easy criterion for deciding whether
two signatures stem from identical vertices. Using this criterion we make no errors
with high probability and identify a large constant fraction of the vertices. We achieve
a quasilinear runtime by locality sensitive hashing [16], which reduces the number of
comparisons.

1.6 Applications

Anonymous copies of some social networks are available online. Several experimental
papers describe how to find mappings between two online social networks [6,22,30,
31]. While some use the network structure alone [22], most of them exploit meta-
data like browser history [30], group memberships [32], writing style [26], semantic
features of user aliases [25], or artificially added subgraphs [6]. The only theoreti-
cal result on this subject is by [18]. They identify 97% of the nodes on subsampled
(ρ1, ρ2 ≥ √

22/δ, σ1 = σ2 = 1) preferential attachment graphs [7], but need sub-
stantially more computing resources and a linear amount of uniformly sampled seed
nodes.

1.7 Related Work

The studied problem is a variant of the Graph Isomorphism (GI) problem, a famous
problem in graph theory. GI is one of the rare computational problems which is neither
known to be polynomial-time tractable nor NP-Complete. Closest to our interest is the
optimization version Max-GI, aiming at maximizing the number of mapped edges.
Arvind et al. [5] showed that it is NP-hard to approximate this beyond a factor of
1.06. They further proved that also minimizing the number of mismatches is NP-hard
to approximate for any constant factor. Max-GI restricted to trees is still NP-hard to
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approximate within a factor of 1 + �(1/ log n) [29]. On the other hand, Max-GI
on dense graphs can be (1 + ε)-approximated in time nO(log n/ε2) [5]. Newman and
Sohler [23] proved for any graph family defined by a set of forbidden minors that the
property of two graphs being ε-far from isomorphic is efficiently testable. The main
difference between GI and our question stems from the subsampling. This implies that
a vertex does not have the same neighbors in both graphs and that we only want to
identify a large fraction of the vertices, not all.

Orthogonally to our work, a well-studied technique for releasing provably privacy-
preserving statistics is differential privacy [13]. It protects privacy by adding calibrated
noise to the data. Differentially-private graphmodels were studied in [27]. Differential
privacy is even harder to achieve in distributed settings with more than one party [20].
We note that our results give one possible theoretical explanation of why differential
privacy techniques are necessary and simple anonymization (such as removing vertex
labels) does not suffice in the social network context.

The family of random graphs we consider was introduced by Chung and Lu [10,11]
as a model for generating graphs with a power law degree sequence. Their graph
properties have been studied extensively. For example, with high probability, there is
a giant connected component that contains a linear fraction of the nodes [9] and the
average distance isO(log log n) [11,12]. Algorithmically, they have been examined in
the context of information dissemination [14], bootstrap percolation [4], and finding
cliques [15]. For a thorough survey on power-law graphs, we refer to [28].

1.8 Organization

Section 2 introduces the graph model and our notations. In Sect. 3, we show how
to compute upper and lower bounds for the weights of the graph model. In Sect. 4
we present our algorithm. Finally, Sect. 5 demonstrates how to achieve a quasilinear
runtime by locality sensitive hashing and Sect. 6 proves that the number of identified
vertices is asymptotically optimal. In Sect. 7 we experimentally evaluate the perfor-
mance of our algorithm.

2 Preliminaries

Throughout the paper, we say that a bound holds with high probability (w.h.p.) if it
holds with probability at least 1 − n−c for some c > 0.

2.1 Graph Model

The model has two adjustable parameters: the exponent of the scale-free network β

and the average degree δ, both chosen independently of n. Depending on these two
parameters, each node i has a weight wi . For n ∈ N and weight distribution w =
(w1, . . . , wn) ∈ R

n≥0 the Chung–Lu graph Chung–Lu(n,w) is a graph on vertex
set V = [n] that contains each edge {u, v}, u �= v ∈ V , with probability pu,v :=
min{wuwv/W, 1}, where W :=∑v∈V wv .
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In order to simplify the presentation, we use a simple explicit weight distribution
wi = δ(n/ i)1/(β−1). Then W = (1 + o(1)) β−1

β−2δn = �(δn), the expected average

degree is (1 + o(1)) 2(β−1)
β−2 δ = �(δ), and we get a power law with exponent β [28].

We note that most of our results generalize to other weight distributions and even to
weights drawn at random from “nice” distributions. We assume a constant 2 < β < 3,
as this holds for most real-world social networks [24].Moreover, we require δ ≤ no(1),
ρ1, ρ2 ≥ n−o(1), and σ1, σ2 = �(1). We also assume that we know a lower bound for
σ1, σ2, so thatwe know a constant factor approximation of n. For the sake of readability
we even assume that we know n exactly. Finally, we require that ρ1ρ2σ1σ2δ is at least
a sufficiently large constant (depending only on β).

2.2 De-anonymization

Let an underlying graph G = Chung–Lu(n,w) be given. This graph is subsampled
twice to generate two subgraphs. This means we put each node v ∈ V := V (G) into
V1 independently with probability σ1. Then we put each edge e ∈ E ∩ (V12

)
into E1

independently with probability ρ1 to form a graph G1 = (V1, E1). Now we randomly
permute the nodes ofG1 to obtain a graph G̃1.We repeat this process with independent
choices (and probabilities σ2, ρ2) to form G2 and G̃2.

We call two nodes ṽi in G̃i , i ∈ {1, 2} identical, if they stem from the same node
v ∈ V . The identifiable nodes are V∩ := V1 ∩ V2.

The input for the de-anonymization problem is (G̃1, G̃2) and the task is to report
pairs of vertices (“identified vertices”) such that with high probability every identified
pair is identical. We want to maximize the number of identified pairs. Note that the
algorithm gets the randomly permuted graphs G̃i , but in the analysis we usually talk
about the graphs Gi for the sake of readability. We write degi (v) for the degree of
vertex v ∈ Vi in Gi and Ni (v) for its neighborhood in graph Gi , i ∈ {1, 2}.

2.3 Chernoff Bound

We use the following standard concentration inequality.

Lemma 1 (Chernoff bound, see [3]) Let X1, . . . , Xn be independent random variates
taking values in {0, 1}. Let X := X1 + · · · + Xn and μ := E[X ]. Then for any t ≥ 0
we have

Pr [|X − μ| > t] ≤ exp
(
−t2/(2μ + t/3)

)
.

Slightly stronger, for any λ > μ we have

Pr [X > λ] ≤
(eμ

λ

)λ

.
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Our default variant of Chernoff is the first bound. We will often simplify the error
probability to exp(−�(t2/μ)) if t = O(μ), and to exp(−�(t)) if t = �(μ). Applied
to the concentration of node degrees, it directly follows

Pr
[| degi (v) − μ| > t | v ∈ Vi

] ≤ exp
(
−t2/(2μ + t/3)

)
.

2.4 Expected Degrees in Chung–Lu Graphs

We will make use of the following standard technical facts about Chung–Lu random
graphs.

Lemma 2 1. For any z > 0 we have
∑

u∈V, wu>z wu/z = O(n(δ/z)β−1).

2. For any vertex v, we have wv ≥ E[deg(v)] ≥ wv − O(w2
v/W + n2−βw

β−1
v ).

3. We have W ≥ ∑
v∈V E[deg(v)] ≥ W − O(δn(3−β)/(β−1) + δβ−1n3−β log n) =

W (1 − o(1)).

Proof For (1), we define f (x) = δ(n/x)1/(β−1) and thus f −1(z) = n(δ/z)β−1.
Approximating the sum by an integral, we obtain

∑

u∈V, wu>z

wu ≤
∫ f −1(z)

0
f (x)dx .

Inspecting f (x) we see that its integral is β−1
β−2 · x · f (x). This yields

∑

u∈V, wu>z

wu ≤
[

β−1
β−2 · x · f (x)

] f −1(z)

0
= β−1

β−2 · f −1(z) · f ( f −1(z)),

which evaluates to β−1
β−2n

(
δ
z

)β−1 · z. Dividing both sides by z yields (1).
For (2), note that

E[deg(v)] =
∑

u �=v

min{wuwv/W, 1} ≤
∑

u∈V
wuwv/W = wv.

For the other direction, note that the above inequality only loses at the terms with
u = v and with u such that wuwv/W > 1. We thus have

wv − E[deg(v)] ≤ w2
v/W +

∑

u∈V, wu>W/wv

wuwv/W.

Observing that this sum is of the same form as in (1) with z = W/wv = �(δn/wv),
we obtain

wv − E[deg(v)] ≤ O
(
w2

v/W + n(wv/n)β−1
)

= O
(
w2

v/W + n2−βwβ−1
v

)
.
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Finally, for (3) we sum up (2) over all vertices v to obtain

W ≥
∑

v∈V
E[deg(v)] ≥ W − O

(
∑

v∈V

(
w2

v/W + n2−βwβ−1
v

)
)

.

We further bound this error term by replacing sums by integrals as above. This yields

∑

v∈V
w2

v ≤ f (1)2 +
∫ n

1
f (x)2dx = f (1)2 +

[
β−1
β−3 x f (x)

2
]n

1
= O( f (1)2),

where we used 2 < β < 3. Using f (1) = δn1/(β−1) we thus obtain

∑

v∈V
w2

v/W = O(δ2n2/(β−1)/(δn)) = O(δn(3−β)/(β−1)).

We similarly bound

∑

v∈V
n2−βwβ−1

v = δβ−1n3−β
n∑

v=1

v−1 = O(δβ−1n3−β log n).

Hence, the total error is bounded by O(δn(3−β)/(β−1) + δβ−1n3−β log n). In our
regime β < 3 and δ = no(1), this evaluates to o(n) = o(W ), and thus we even
have

∑
v∈V E[deg(v)] ≥ W (1 − o(1)). 	


3 Estimating Weights and Edge Probabilities

In this section, we show how to compute upper and lower bounds for the weight wv

of any vertex v based on the degree degi (v), i ∈ {1, 2}. This is crucial for the
deanonymization algorithm, as it uses vertex weights to judge the information given
by an edge. Intuitively, an edge to an identified high weight vertex is less useful (since
the vertex is likely to be connected to many other nodes) than an edge to an identified
low weight vertex (since this narrows down possible candidates for matching).

Our bounds on vertex weights also yield bounds for the edge probabilities pu,v for
any vertices u and v. These bounds hold with high probability. Then, we argue that
our subsequent de-anonymization algorithms can use these computed bounds and still
assume that all edges ofGi andG were sampled independently as if these graphs were
not looked at before (where we used Gi as a short term for both graphs Gi , i ∈ {1, 2}).

For the sake of readability we assume that the parameters n, β, ρ1, and ρ2 are known
to the algorithm. However, it would be easy to also estimate these parameters with
small error, and run our subsequent algorithmswith these approximations. For a sketch
of this, we note that we can estimate β from the degree distributions in Gi , similar to
what we do for individual weights in this section. Moreover, we can estimate ρ2 (and
ρ1, respectively) by dividing the number of edges that appear in G1[VI ] ∩ G2[VI ] by
the number of edges in G2[VI ] (G1[VI ]).
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Afterwardswe can run themethodpresented in this section to estimate the individual
weights wv and W . Additionally, one could estimate δ (e.g. from W and β) and the
quotient σ1/σ2 (e.g. from |V1|/|V2|), but our algorithms do not need them. Note that
in our model it is hard to estimate the parameters σ1, σ2.

The degree of each vertex v in Gi is composed of a random decision for each other
node u, namely whether it is connected to v in the original graph G and a random
decision whether this edge is present in the subsampled graph. In total,

degi (v) ∼
∑

u∈V \{v}
Ber

(
ρiσi · min

{wvwu

W
, 1
})

,

if node v survives in Gi . Chernoff bound shows that this degree is concentrated. This
allows us to compute intervals for the weights wv for all nodes v in Gi .

Lemma 3 Let i ∈ {1, 2}. Given degi (v) (and ρi and an approximation of n) we can
compute 0 ≤ wv,i ≤ w̄v,i such that w.h.p. for all v ∈ V we have

1. wv,i ≤ σiwv ≤ w̄v,i ,

2. w̄v,i = O(σiwv + 1
ρi
log n

)
, and

3. wv,i = �(σiwv) − O( 1
ρi
log n

)
.

Proof Let

μ := E[degi (v) | v ∈ Vi ] = ρiσiE[deg(v)].

By Chernoff bound (Lemma 1) we obtain

Pr
[| degi (v) − μ| > t | v ∈ Vi

] ≤ exp(−t2/(2μ + t/3)).

Solving a quadratic equation shows that this probability bound is n−c at

t = c log(n)/6 +
√

(c log(n)/6)2 + 2μc log n ≤ 2c log n + 1
3μ,

where the second step follows from A+√
A(A + B) ≤ 12A+B/36 for any A, B ≥ 0.

From Lemma 2(2) we obtain μ ≤ ρiσiwv , which yields w.h.p.

| degi (v) − μ| ≤ 2c log n + 1
3μ ≤ 2c log n + 1

3ρiσiwv.

Moreover, from Lemma 2(2) we see thatμ = ρiσiE[deg(v)] differs from ρiσiwv only
by ρiσi ·O(w2

v/W + n2−βw
β−1
v ) = ρiσiwv ·O(wv

W + (wv

n )β−2) = o(ρiσiwv), since
the maximum weight is w1 = δn1/(β−1) = o(n) = o(W ). By triangle inequality, we
obtain

| degi (v)/ρi − σiwv| ≤ 2c
ρi
log n + ( 13 + o(1)

)
σiwv.
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Note that for A, B,C ≥ 0 the inequality |A−B| ≤ C+( 13 +o(1))B implies |A−B| ≤
(1+o(1))( 32C+ 1

2 A). This follows since for B = xC wehave A ≥ (1− 1
x − 1

3−o(1))B
so that 32C+ 1

2 A ≥ ( 3
2x + 1

2 (1− 1
x − 1

3−o(1)))B ≥ ( 1x + 1
3−o(1))B = C+( 13−o(1))B.

Hence,

| degi (v)/ρi − σiwv| ≤ (1 + o(1))
(
3c
ρi
log n + 1

2 degi (v)/ρi

)
.

This yields a bound w̄v,i for σiwv that we can compute with the given data and that
holds with probability at least 1 − n−c, namely

w̄v,i = (1 + o(1))
(
3
2 degi (v)/ρi + 3c

ρi
log n

)
.

Note that from this bound we have w̄v,i ≥ σiwv and w̄v,i = O( 1
ρi
log n + σiwv).

Similarly, we get a lower bound wv,i ≤ σiwv with wv,i = �(σiwv) −O( 1
ρi
log n). 	


In a similar fashion, we can compute a bound on σ 2
i · W .

Lemma 4 Let i ∈ {1, 2}. Given Gi , we can compute Wi such that W i ≤ σ 2
i W ≤

(1 + o(1))Wi holds with high probability.

Proof LetWi = 1
ρi

∑
u∈Vi degi (u). Let Xu = 1 if node u survives in Gi , 0 otherwise.

Similarly, let Yuv = 1 if edge {u, v} is present in G and it would survive in Gi (if both
u and v survive), 0 otherwise, so that Pr[Yuv = 1] = ρi · pu,v . Then we obtain

Wi = 1
ρi

∑

u �=v∈V
Xu XvYuv.

It is easy to see that E[Wi ] = σ 2
i E[∑v∈V deg(v)], and thus σ 2

i W ≥ E[Wi ] ≥
σ 2
i W (1 − o(1)) by Lemma 2(3). To obtain a tight tail bound for Wi , we apply a con-

centration bound on multivariate polynomials [17]. Let S = {Xu | u ∈ V } ∪ {Yuv |
u, v ∈ V } be the set of variables in the polynomialWi . Let

∂Wi
∂A be the partial derivative

of Wi with respect to the variables in A and define

E j (Wi ) = maxA⊆S : |A|= j E

[
∂Wi

∂A

]

.

Intuitively, E j (Wi ) yields the “average effect” a group of j variables has on Wi . For
a more thorough explanation, we refer the reader to [17]. Computing E0(Wi ) =
E[Wi ] ≤ σ 2

i W , E1(Wi ) ≤ σiw1 = σiδn
1

β−1 , E2(Wi ) ≤ 1 and E3(Wi ) = 1, we obtain
the bound

Pr

[

|Wi − E[Wi ]| > c
(
σ 3
i Wδn

1
β−1

)1/2
λ3
]

= O(exp(−λ + 2 log n)),
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for some constant c. This bound becomes n−c′
at λ = �(log n), which implies that

w.h.p. we have

|Wi − E[Wi ]| = O
(

δσ
3/2
i (log n)3n

β
2β−2

)

= n1−�(1) = o
(
σ 2
i W
)

.

Choosing Wi = (1 − o(1))Wi gives the desired result. 	


Plugging the estimated weights into the edge probability formula allows us to com-
pute bounds on the edge probabilities. It is worth noting that although the estimations
on w̄v,i and Wi give a result depending on σi , the computed upper bound p̄u,v,i on
the edge probabilities is oblivious to σi .

Corollary 1 Let i ∈ {1, 2}. For any pair of nodes u, v ∈ Vi , we can compute bounds
on the edge probability p̄u,v,i := min{w̄u,i w̄v,i/Wi , 1} such that w.h.p. we have

pu,v ≤ p̄u,v,i = O
(
pu,v

(
1 + log n

ρiσiwu

)(
1 + log n

ρiσiwv

))
.

In particular, for wu, wv = �
(

1
ρiσi

log n
)
we have p̄u,v,i = O(pu,v).

Corollary 1 allows computing estimations for all edge probabilities with certain
guarantees that hold with high probability. We want to use these estimations in the
subsequent algorithms without losing the independence of the edges, i.e., in the subse-
quent algorithmswewant to assume that the (edges of the) graphsGi were not revealed
yet, although we already computed bounds on the weights based on the degrees in Gi .
In order to see that this might be a problem, assume that throughout a proof we reveal
edges of a node v. However, once we have seen degi (v) edges, we know that there can
be no other edge anymore, which violates our intuition of having independent edges.

To solve this technical problem, we model our weight estimation method as an
adaptive adversary, which knows the parameters ρ1, ρ2, σ1, σ2, w1, . . . , wn , G1 and
G2, and reports estimations p̄u,v,i for all u, v ∈ V and i ∈ {1, 2} that fulfill the
guarantees in Corollary 1 w.h.p. (over the randomness of the instance generation). The
subsequent de-anonymization algorithms are then designed such that they assume to
get edge probability estimations by our above method (or an adversary) that fulfill
the said guarantees but are otherwise arbitrary. Then they may still assume that the
random graphs Gi are not revealed.

To argue formally that this is possible, let the random variable X be the (set of) edge
probability bounds computed by the above method, and denote by A(̃p) the event that
our de-anonymization algorithm has a certain quality (like making no wrong iden-
tifications and identifying a constant fraction of the vertices) given edge probability
estimations p̃. Let P̃ be the set of edge probability bounds satisfying the guaran-
tees in Corollary 1. We assume that for any (adversarially chosen) weight bounds
p̃ ∈ P̃ we have Pr[¬A(̃p)] = n−�(1). Then plugging our estimation method into our
de-anonymization algorithm yields
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Pr[¬A(X)] =
∑

p̃

Pr[X = p̃] · Pr[¬A(̃p) | X = p̃].

Now, since our weight estimation method X can be seen as an adversary, we have
Pr[¬A(̃p) | X = p̃, p̃ ∈ P̃] = n−�(1). Hence, we have

Pr[¬A(X)] = n−�(1) + Pr[X /∈ P̃] = n−�(1),

where the second step uses that our estimation method X satisfies the guarantees P̃
with high probability.

4 Matching Phase

In the matching phase we assume that we know the identity of some vertices VI ⊆ V
containing the h = �(log(n)/ρ1ρ2) highest weight identifiable nodes, and show how
to identify most of the remaining vertices based on these initial nodes. Observe that
the adaptive adversary model allows us to assume that all edges are independently
present with their respective probability pu,v .

4.1 The Y -Test

Fix a set VI of thus far identified vertices. Then for every unidentified vertex v inGi we
consider its signature Sv

i := Ni (v)∩VI . Unlike in the Graph Isomorphism problem, in
our case signatures of identical vertices are not equal. However, for identical vertices
the signatures Sv

1 , S
v
2 should be similar sets, while for non-identical vertices u �= v

the signatures Su1 , Sv
2 should have small intersection. One contribution of our work

is the test presented in this section, which allows us to check whether two nodes are
identical based on their signatures. W.h.p. the test does not identify two non-identical
vertices and it identifies most vertices once sufficiently many of their neighbors are
identified.

Let v1, v2 ∈ V \VI and u ∈ VI . Consider all possibilities of the edges {v1, u} ∈ E1
and {v2, u} ∈ E2 being present or not. We denote by Au the event that both of these
edges are present, by Bi

u the events that exactly one edge is present in Gi , and by Cu

the event that no edge is present. Based on these cases we now define

Yu = Y v1,v2
u :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 p̄v1,u,1

, if u ∈ Sv1
1 ∩ Sv2

2 (Au)

1 − ρ2
2 , if u ∈ Sv1

1 and u /∈ Sv2
2 (B1

u )

1 − ρ1
2 , if u /∈ Sv1

1 and u ∈ Sv2
2 (B2

u )

1, otherwise (Cu).

and

Y := Y v1,v2 :=
∏

u∈VI

Y v1,v2
u .
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Intuitively, log(Yu) encodes the evidence of v1 = v2 given the connections to the
identified node u; a common neighbor (Au) has a positive evidence, log(Yu) > 0,
while a node u connected to only one of the two (B1

u , B
2
u ) has a negative evidence,

log(Yu) < 0. Note that when v1 = v2 we have p̄v1,u,1 ≈ p̄v2,u,2, so in the case (Au)

having one of the estimates turns out to be sufficient. The technical factor 1/2 is needed
later for some tail bounds.

We claim that Y is typically small for non-identical v1 �= v2 and can be large (if
VI contains sufficiently many neighbors of v1) if v1 = v2. In particular, we can test
whether v1 = v2 by testing Y > nc for some appropriate constant c > 0. We call
this the Y -test. We prove this intuition in the remainder of this section. First we show
that Y is not too large if v1 �= v2 (w.h.p.). To this end, we verify E[Yu] ≤ 1, then the
statement follows from independence of the edges and Markov’s inequality.

Lemma 5 For any v1 �= v2 ∈ V \VI and t > 0 we have Pr[Y > t] ≤ 1/t .

Proof For any v1 �= v2 by considering the process that yields G1 and G2 we can
compute

Pr[Au] = ρ1 pv1,u · ρ2 pv2,u,

Pr[B1
u ] = ρ1 pv1,u (1 − ρ2 pv2,u)

Pr[B2
u ] = ρ2 pv2,u (1 − ρ1 pv1,u).

Note that

E[Yu] = 1
2 p̄v1,u,1

Pr[Au] + (1 − ρ2
2 )Pr[B1

u ] + (1 − ρ1
2 )Pr[B2

u ] + Pr[Cu]
= 1 + ( 1

2 p̄v1,u,1
− 1
)
Pr[Au] − ρ2

2 Pr[B1
u ] − ρ1

2 Pr[B2
u ].

Plugging in Pr[Au] and Pr[Bu], using pv1,u ≤ p̄v1,u,1 and ρi , pvi ,u ≤ 1 yields

E[Yu] ≤ 1 + 1
2ρ1ρ2(pv2,u − 2pv1,u pv2,u − pv1,u − pv2,u + (ρ1 + ρ2)pv1,u pv2,u)

≤ 1 + 1
2ρ1ρ2(−2pv1,u pv2,u − pv1,u + 2pv1,u pv2,u)

≤ 1.

By independence of the edgeswehaveE[Y ] =∏u∈VI
E[Yu] ≤ 1.Markov’s inequality

now yields the desired bound Pr[Y > t] ≤ 1/t . 	

The next lemma can be used to show that our test allows identifying the two copies

of v if we have already identified enough low-degree neighbors of v. We call the high-
degree neighbors u “bad nodes” as they result in an estimated connection probability
of p̄v,u,1 = �(1), which can be close to 1. These bad nodes do not provide sufficient
independence for different nodes, as two indicator random variables with expectation
close to 1 are very correlated. Thus, they do not help in separating different vertices.
The requirement of the lemma essentially means that the expected number of neigh-
bors is by �(log n) more than the number of bad nodes, and thus we have �(log n)
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neighbors that each give us an “independent bit” for identifying a node, which is
enough information to be correct (w.h.p.).

Lemma 6 Let VI be any set of identified vertices, and consider an unidentified v ∈
V∩\VI . Let B ⊆ VI (“bad nodes”) be the vertices u with pu,v ≥ b > 0, b being a
sufficiently small constant. Assume that for c > 0 we have

∑

u∈VI

pu,v = �
( 1

ρ1ρ2
c log n + |B|)

with a sufficiently large hidden constant. Then, Pr[Y v,v > nc] ≥ 1 − n−c.

Proof Let Y = Y v,v . We use Markov’s inequality and independence to show

Pr[Y ≤ nc] = Pr[Y−1/2 ≥ n−c/2] ≤ nc/2E[Y−1/2] = nc/2
∏

u∈VI

E[Y−1/2
u ].

It remains to show
∏

u∈VI
E[Y−1/2

u ] ≤ n−3c/2 to prove the claim. Similarly to the
proof of Lemma 5 we compute the probability that one of the events Au, B1

u or B2
u

occurs. As opposed to Lemma 5, we consider the Y -value for the vertex with the same
ID. Therefore, we only have to take into account the probability that the edge {u, v}
occurs once.

Pr[Au] = ρ1ρ2 pv,u, Pr[B1
u ] = ρ1(1 − ρ2)pv,u, Pr[B2

u ] = ρ2(1 − ρ1)pv,u .

Plugging this into the definition of E[Y−1/2
u ], we obtain

E[Y−1/2
u ] = (

2 p̄v,u,1
)1/2 Pr[Au] + (1 − ρ2

2

)−1/2 Pr[B1
u ]

+ (1 − ρ1
2

)−1/2 Pr[B2
u ] + Pr[Cu]

= 1 + ρ1ρ2 pv,u

((√
2 p̄v,u,1−1

)

+ 1−ρ2
ρ2

((
1 − ρ2

2

)−1/2−1
)

+ 1−ρ1
ρ1

((
1 − ρ1

2

)−1/2−1
))

.

Bounding 1−x
x

(
(1 − x

2 )−1/2 − 1
) ≤ 1

4 − x
8 for 0 ≤ x ≤ 1, we obtain

E[Y−1/2
u ] ≤ 1 + ρ1ρ2 pv,u

(
(2 p̄v,u,1)

1/2 − 1 + 1
2 − (ρ1 + ρ2)/8

)

≤ 1 + ρ1ρ2 pv,u
(
(2 p̄v,u,1)

1/2 − 1
2

)
.

If p̄v,u,1 is less than a sufficiently small constant (which happens if and only if pu,v is
less than a sufficiently small constant) then we have

E[Y−1/2
u ] ≤ 1 − �(ρ1ρ2 pv,u) = exp(−�(ρ1ρ2 pv,u)).
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For nodes u with larger pu,v , i.e. the nodes in B, using pu,v, p̄u,v,1 ≤ 1 we obtain the
weaker bound

E[Y−1/2
u ] ≤ exp(ρ1ρ2 − �(ρ1ρ2 pv,u)).

Hence,

∏

u∈VI

E[Y−1/2
u ] ≤ exp

(
ρ1ρ2

(
|B| − �

( ∑

u∈VI

pu,v

))
.

The assumption now yields the desired bound
∏

u∈VI
E[Y−1/2

u ] ≤ n−3c/2. 	

The requirement of the above lemma can only hold if the expected degree is

�(log n). Hence, we need a different lemma for small-weight vertices. In this case,
we have to take a closer look at Y v,v . In the following lemma, the neighbors that
yield identifying bits are the neighbors in the set T . The error probability is essentially
exponentially small in the expected number μ of neighbors in T .

Lemma 7 Let c > 0 and consider an unidentified vertex v ∈ V∩\VI withwv ≤ no(1).
Let T ⊆ VI be a set of identified vertices with pu,v = �(ε) for all u ∈ T and some
ε > 0. Assume that μ := ρ1ρ2ε|T | is at least a sufficiently large constant (depending
only on c and β). Then we have

Pr[Y v,v > nc] ≥ 1 − n−c − exp(−�(μ)).

Proof Note that wv ≤ no(1) implies pu,v = n−�(1) for any u ∈ V . In particular, we
have no bad nodes (in the sense of Lemma 6).

First, consider the nodes in VI \T and let Y ′ :=∏u∈VI \T Y v,v
u . Similar to the proof

of Lemma 6, we can show thatE[Y−1/2
u ] = 1−�(ρ1ρ2 pv,u) ≤ 1 so that byMarkov’s

inequality and independence

Pr[Y ′ ≤ n−2c] = Pr[(Y ′)−1/2 ≥ nc] ≤ n−c
E[(Y ′)−1/2] = n−c

∏

u∈VI \T
E[Y−1/2

u ],

which is bounded by n−c. Hence, the contribution of the vertices in VI \T to Y is a
factor of at least n−2c with probability 1 − n−c.

It remains to show that for YT := ∏
u∈T Y v,v

u we have Pr[YT > n3c] ≥ 1 −
exp(−�(μ)), then in total we obtain Pr[Y > nc] ≥ 1 − n−c − exp(−�(μ)).

Let the randomvariable X denote the number of vertices in T that are adjacent to v in
bothG1 andG2, X := |T∩(N1(v)∩N2(v))|. Similarly, let X1 := |T∩(N1(v)\N2(v))|
and X2 := |T ∩ (N2(v)\N1(v))|. Note that X1 � Bin

(|T |,O(ρ1ε)
)
and X2 �

Bin
(|T |,O(ρ2ε)

)
. The Chernoff bound now yields Xi = O(|T |ρiε) with probability

at least 1−exp(−�(|T |ρiε)) = 1−exp(−�(μ)). In this case, we obtain for i ∈ {1, 2}

(1 − ρ3−i
2 )Xi ≥ exp(−O(ρ1ρ2|T |ε)) = exp(−O(μ)).
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Similarly, we have X � Bin
(|T |,�(ρ1ρ2ε)

)
. Since Bin(n, p) = �(np) holds with

probability at least 1 − exp(−�(np)), we have X = �(μ) with probability at least
1 − exp(−�(μ)). In total, we obtain with probability at least 1 − exp(−�(μ))

YT = n�(1)·X (1 − ρ2
2 )X1(1 − ρ1

2 )X2 ≥ n�(μ)e−O(μ) ≥ n3c,

since μ is at least a sufficiently large constant (and for n large enough). 	


4.2 The Algorithm

We use the test developed in the last section as follows. As we build an algorithm
that w.h.p. never identifies non-identical vertices, we can again write this algorithm in
terms of the graphs G1,G2, but it can easily be translated to the randomly permuted
graphs G̃1, G̃2.

Our algorithm gets as input the graphs G1,G2 and an initial set VI of identified
vertices containing the h highest weight identifiable vertices. Then in every round the
algorithm compares all pairs v1, v2 of unidentified vertices. One comparison consists
of a Y -test, i.e., we compute Y v1,v2 and test whether it is at least nc, where c > 0 is a
constant. If this is the case, then we identify v1 and v2. The algorithm terminates after
the first round in which no new vertex is identified.

Algorithm 1 De-anonymization using Y-tests
Input: graphs G1,G2, identified vertices VI containing the h highest weight identifiable vertices
for r = 1, 2, . . . ,O(log n) do

for all v1, v2 ∈ V \VI do
compute Y v1,v2

if Y v1,v2 > nc then
VI := VI ∪ {v1, v2}. � We identified v1 = v2

Note that this algorithm is oblivious to the node subsampling probabilities σi ’s, as
it only considers edges to nodes that are already identified, and thus survive in both
subsampled graphs.

We will see that it suffices to run this algorithm for O(log n) rounds to identify
most of the vertices. As Y v1,v2 can be computed in timeO(deg1(v1) + deg2(v2)), the
immediate runtime of this algorithm is

O
(

log n
∑

v1,v2

(deg1(v1) + deg2(v2))

)

= O(nm log n),

where m is the total number of edges in G1 and G2, which isO(δn) with high proba-
bility. We will see in Sect. 5 how to decrease this to quasilinear runtime.

Using Lemma 5 it is easy to see that Algorithm 1 never identifies any non-identical
vertices. Note that choosing c > 2 yields error probability o(1).
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Lemma 8 Algorithm 1 does not identify any two non-identical vertices with proba-
bility more than 1 − O(n2−c log n).

Proof Fix two non-identical vertices v1 �= v2, v1 ∈ V1, v2 ∈ V2. Then the probability
of identifying them in round r , i.e., the probability of Y v1,v2 > nc, is at most n−c

by Lemma 5. Thus, the probability of identifying v1 and v2 in any round is at most
∑O(log n)

r=1 n−c = O(n−c log n). The claim now follows from a union bound over all
pairs of non-identical vertices v1 ∈ V1, v2 ∈ V2.

Note that here we use independence between the event of a node u, v1 �= u �= v2,
being already identified and the edges among v1, v2, u being present, in order to apply
Lemma 5. This independence holds because the decision of identifying u is made
purely by looking at its edges to the already identified vertices, not at the ones to
v1, v2. 	


4.3 Quality Analysis

It remains to show that the algorithm identifies most vertices. We do this by exam-
ining the propagation of identified vertices in the graphs. For this, we define L j :=
{2 j−1, . . . , 2 j − 1}, j = 1, . . . , log n as the j th layer of vertices. Note that this splits
the nodes according to their weight. Indeed, from the definition of the weights wv we
see that all nodes in layer L j have weight �(δ(n/2 j )1/(β−1)). Thus, the sizes of the
layers are exponentially increasing with j , while the weights of all nodes in a layer
are roughly the same and exponentially decreasing with j . Moreover, let L̃ j ⊆ L j be
the set of vertices from layer j that survive in both graphs. If |L j | = �(log n), then
w.h.p. by Chernoff bound we have |L̃ j | = �(σ1σ2|L j |).

We proceed in three steps. First, we show that given the seed nodes, there is some
layer k that gets identified with high probability. We choose k such that the estimated
edge probability p̄v,h,i of every vertex v ∈ Lk with the hth highest weight identifiable
vertex, for any i ∈ {1, 2}, is at most a sufficiently small constant, and k is minimal with
this property. We show that this specific layer k satisfies |Lk | ≥ n3−β−o(1), which in
particular implies |L̃k | = �(σ1σ2|Lk |). In the first step of the analysis of our algorithm
we show that after round 1 layer L̃k is identified with high probability.

In the second step, we show that from there on we identify one more layer each
round, i.e., after round r we have identified layer L̃k+r−1. This, however, cannot
hold w.h.p. once the weights drop below O(polylog n). Instead, each vertex v ∈ L̃ j ,
j > k is identified after round j − k + 1 with probability at least 1 − α j ≥ 1 −
exp(−�(ρ1ρ2σ1σ2δ)). This holds independent of the other vertices in L j and of the
edges from vertices above layer L j to vertices below layer L j or layer L j itself. This
way we identify most of the vertices in the layers above k in at most log(n) − k + 1
rounds.We note that these vertices could already be identified earlier, but we claim that
they are identified at the latest after round j − k + 1 (with the mentioned probability).

In the third step, we show that after round log(n)− k+2 all high-degree vertices in
layers below L̃k are identified with high probability. As the number of such vertices
is small, this third step is not necessary for the conclusion that the algorithm identifies
a large fraction of all identifiable vertices — it proves, however, the intuition that this

123



3414 Algorithmica (2018) 80:3397–3427

algorithm identifies all vertices with sufficiently high weight (log�(1)(n)) with high
probability.

4.4 First Step

Initially we know the identity of a set VI of vertices containing the h highest weight
nodes that survive in both graphs. We let h = γ 2 1

ρ1ρ2
log n where γ is a sufficiently

large constant, and let h∗ be the hth highest weight identifiable vertex. W.h.p. we have
h∗ = �( h

σ1σ2
). Let 	 := γ 1

σ1σ2ρ1ρ2
log n. Choose a layer Lk such that for any v ∈ Lk

we have pv,	 ≤ b, where b = �(1) is the constant from Lemma 6, so that w.h.p. we
have |B| = O(σ1σ2	) = O(γ 1

ρ1ρ2
log n) bad nodes. For any v ∈ Lk , for our weight

distributions one can show that

pv,h∗ = pv,	 · (	/h∗)1/(β−1) = �
(
γ −1/(β−1)

)
.

Hence, any node 1 ≤ u ≤ h∗ has pv,u ≥ pv,h∗ = �(γ −1/(β−1)). Summing up over
all h = |VI | given seed nodes, we have

∑

u∈VI

pv,u ≥ �
(
γ 2−1/(β−1) 1

ρ1ρ2
log n

)

Since γ 2−1/(β−1) = γ 1+�(1) and γ is sufficiently large, for any arbitrarily large hidden
constant we have

∑

u∈VI

pv,u = �
(
(γ + c) 1

ρ1ρ2
log n

)
= �

(
1

ρ1ρ2
c log n + |B|

)
,

which proves that the assumption of Lemma 6 is fulfilled and we identify v in the first
round with high probability.

4.5 Second Step

Consider any following level k < j ≤ log n − �(log log n) (with sufficiently
large hidden constant) and let v ∈ L̃ j . We prove by induction that v is identified
in round j − k + 1 with high probability. By induction hypothesis, every vertex
u ∈ L̃ j−1 is identified after round j − k with high probability. The probability
of v to connect to a vertex u ∈ L j−1 is pu,v = min{wvwu/W, 1}. Plugging in
wv,wu = �(δ(n/2 j )1/(β−1)) yields pu,v = �(ε) for ε := δn(3−β)/(β−1) 2−2 j/(β−1)

and p̄u,v,1 = O(pu,v + 1
δn log

2 n
)
. Note that since j ≤ log n − �(log log n) we

have wv = log�(1) n so that p̄u,v,1 = O(pu,v). We can apply Lemma 6 with
|B| ≤ O( 1

ρ1ρ2
log n) (since the number of bad vertices is at most the number of

bad vertices for layer Lk). Considering only the edges to VI ∩ L̃ j−1 and using
|L̃ j−1| = �(σ1σ22 j ) we obtain
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∑

u∈VI

pu,v ≥ �
(
σ1σ22

jδn(3−β)/(β−1) 2−2 j/(β−1)) = �
(
σ1σ2δ log

�(1) n
)
,

which is larger than �( 1
ρ1ρ2

log n) since ρ1ρ2σ1σ2δ is at least a sufficiently large con-

stant. Hence, Lemma 6 implies that we identify all vertices in L̃ j with high probability.
For log n − o(log n) ≤ j ≤ log n, so that wv = no(1), we instead use Lemma 7 to

show that any vertex v ∈ L̃ j is identified after round j − k + 1 with a probability of
at least 1 − α j ≥ 1 − exp(−�(ρ1ρ2σ1σ2δ)). We again consider the edges of v into
T := VI ∩ L̃ j−1 and obtain

μ := ρ1ρ2ε|T | = �
(
ρ1ρ2σ1σ22

jδn(3−β)/(β−1) 2−2 j/(β−1)) = �(ρ1ρ2σ1σ2δ).

Hence, the assumption of Lemma 7 amounts to ρ1ρ2σ1σ2δ being at least a sufficiently
large constant, and we identify each vertex in L̃ j with probability at least 1 − α j :=
1 − exp(−�(μ)) − n−c ≥ 1 − exp(−�(ρ1ρ2σ1σ2δ)).

4.6 Third Step

Nowwe identifiedmost vertices in layers L̃ j , j ≥ kwithin thefirst log(n)−k+1 rounds
with high probability. It remains to show that we identify any vertex v ∈ L̃ j , j < k, at
the latest in round log(n)−k+2with high probability. Such a vertex v has a probability
to connect to any vertex u ∈ L̃ ′ := L̃ log n of �(wv/n) = �(δn(2−β)/(β−1)2− j/(β−1)),
and there are �(σ1σ2n) identified vertices in L̃ ′ with high probability. Summing up
over these vertices, we get

∑

u∈VI

pu,v = �(σ1σ2wv) = �
(
σ1σ2δn

1/(β−1)2− j/(β−1)
)

= �
(
(n/2 j )1/(β−1)

)
,

where the last step follows from ρ1ρ2σ1σ2δ ≤ σ1σ2δ being at least a sufficiently large
constant.Moreover, any vertex u having probability larger than a constant to connect to
v (i.e. a bad vertex) has weight at least wu = �(W/wv) = �(n(β−2)/(β−1) 2 j/(β−1)).
The number of such vertices is

|B| = O
(
δβ−1 n3−β 2− j

)
.

Since 3−β < 1/(β −1) < 1 for 2 < β < 3, we have
∑

u∈VI
pu,v � |B|+ 1

ρ1ρ2
log n

so that can apply Lemma 6 and thereby identify layer L̃ j with high probability.
This finishes the analysis of the algorithm. We proved that for all layers L̃ j

each vertex v ∈ L̃ j is identified in O(log n) rounds with probability at least
1 − α j ≥ 1 − exp(−�(ρ1ρ2σ1σ2δ)). Moreover, w.h.p. we identify at least a
1 − exp(−�(ρ1ρ2σ1σ2δ)) fraction of the identifiable vertices.

In total, we showed the following.
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Theorem 2 Assume we are given the identity of a set VI of vertices containing the
h highest weight identifiable nodes, where h = �( 1

ρ1ρ2
log n) with sufficiently large

hidden constant. Then Algorithm 1 w.h.p. makes no wrong identifications and suc-
cessfully matches a fraction of 1 − exp(−�(ρ1ρ2σ1σ2δ)) of the identifiable vertices.
It runs in time O(nm log n).

In the next section we show how to decrease the running time to quasilinear, at the
cost of increasing the number of highest-weight seed nodes to nε.

5 Quasilinear Runtime

Algorithm 1 in its pure form takes quadratic time, as we have seen in the last section. In
this section we show how to decrease its runtime to quasilinear using locality sensitive
hashing [16]. We assume to have identified the h = n2ε highest weight identifiable
vertices for any constant ε > 0. We first ignore the issue of weights being estimated
by an adaptive adversary (and just assume that we are given upper and lower bounds
for all weights as in Lemma 3 without revealing any edges), later we sketch how to
make our algorithm formally correct in the adaptive adversary case.

The basic idea for speeding up the algorithm is to reduce the number of tested
pairs v1, v2. To this end, in every round we choose a random permutation π of VI .
For a vertex v ∈ V \VI in Gi consider the vertices in VI that have a small estimated
probability to connect to v,

Tv,i := {u ∈ VI | p̄v,u,i ≤ n−ε}.

Wecompute the firstC/ε vertices (u1, . . . , uC/ε) =: Mi
v in Ni (v)∩Tv,i with respect to

the order π (for some constantC ≥ 2 to be fixed later). Note that Mi
v can be computed

in constant time, if we permute the graphs G1[VI ] and G2[VI ] with respect to π (and
store a version containing only the edges in

⋃
v Tv,i ), so that the first neighbor of v

is simply the first entry of its adjacency list. In the analysis we show that for a good
(see Eq. 1 in Sect. 5.2 for a definition) vertex v ∈ V∩ the sets M1

v , M
2
v are equal with

probability �((ρ1 + ρ2)
�(1/ε)), while for non-identical vertices v1 �= v2 these sets

are equal with probability at most 1/n. Thus, we may hash v at Mi
v (with a perfect

hash function that produces collisions only if the corresponding hash values are equal)
and test vertices v1, v2 only if they form a hash collision. Then in expectation we test
O(n) pairs of vertices per round. More precisely, one can show that these tests take
expected time O(m) per round, where m is the total number of edges in G1 and G2.
Everything else we do in one round also runs in time O(m). Note that in expectation
we have m = O((ρ1 + ρ2)δn) = O(δn).

As we will see in Sect. 5.2, roughly the same quality analysis as in the
last section goes through, with the necessary number of rounds growing to
�((min{ρ1, ρ2})−�(1/ε) log n). As ε > 0 is a constant, this evaluates to O
(min{ρ1, ρ2}−O(1) log n). Furthermore, by the same arguments as in the last section,
Algorithm 2 makes no wrong identifications w.h.p. (intuitively, it only does a subset
of the Y -tests of Algorithm 1, but since we let it run for a few more rounds the error
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Algorithm 2 Fast de-anonymization using Y-tests

Input: graphs G1,G2, identified vertices VI containing the n2ε highest weight identifiable vertices
for r = 1, 2, . . . , �((ρ1 + ρ2)

−�(1/ε)) log n do
choose a random permutation π of VI
for all v ∈ V \VI and i ∈ {1, 2} do

if |Ni (v) ∩ Tv,i | ≥ C/ε then
compute Mi

v , i.e., the first C/ε vertices in Ni (v) ∩ Tv,i w.r.t. π
hash (v, i) at Mi

v

for all hash collisions of the form (v1, 1) and (v2, 2) do
compute Y v1,v2

if Y v1,v2 > nc then
VI := VI ∪ {v1, v2}. � We identified v1 = v2

probability grows to O(n2−c min{ρ1, ρ2}−O(1) log n)). In total we get an expected
runtime of O(min{ρ1, ρ2}−O(1)δn log n).

5.1 Analysis of Hash Collisions

Lemma 9 In any round of the above algorithm, consider vertices v1 �= v2. A hash
collision of the form (v1, 1) and (v2, 2) happens with probability:

Pr
[
M1

v1
= M2

v2

]
= O(1/n).

In other words, the negative case of a hash collision between different vertices
v1 �= v2 always has small probability. This directly yields that the expected cost of
Y -tests performed in one round is at most

∑

v1 �=v2
vi∈Vi

O ( 1n
)
(deg1(v1) + deg2(v2)) +

∑

v∈V∩
O(deg1(v) + deg2(v)) = O(m).

Proof Let us analyze the probability of v1 �= v2 forming a hash collision. Let Ni :=
Ni (vi ) ∩ Tvi ,i . Since Mi

vi
consists of the first C/ε vertices in Ni with respect to the

random order π , we have

Pr[M1
v1

= M2
v2

] =
C/ε−1∏

k=0

|N1 ∩ N2| − k

|N1 ∪ N2| − k
,

in particular this probability is 0 if |N1 ∩ N2| < C/ε. In the following we ignore the
fact that w̄v,i (and thus the sets Tvi ,i ) are chosen by an adaptive adversary. Doing so
allows us to assume that any u ∈ Tvi ,i is connected to vi independentlywith probability
pvi ,u ≤ n−ε. See Sect. 5.3 for the details on how to handle this subtle issue.
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First let v1 �= v2, without loss of generality we can assume v1 < v2. Note that

|N1 ∩ N2| ∼
∑

u∈Tv1,1∩Tv2,2

Bin(ρ1 pv1,u · ρ2 pv2,u) �
∑

u∈Tv1,1

Bin(ρ1 pv1,u · n−ε) =: X

|N1 ∪ N2| � |N1| ∼
∑

u∈Tv1,1

Bin(ρ1 pv1,u) =: X ′.

This allows us to show that Pr[M1
v1

= M2
v2

] = O( 1n ) for C ≥ 2 as follows. We do a
case distinction on the expected size of X . If E[X ] ≤ n−ε/2, then by Chernoff bound
(specifically the second bound from Lemma 1) we have

Pr[X > C/ε] ≤
(eE[X ]

C/ε

)C/ε = O(n−C/2) = O( 1n ).

Hence, for such v1 < v2 the probability of having at all C/ε common neighbors
is O( 1n ). If, on the other hand, E[X ] > n−ε/2, then in particular E[X ′] > nε/2,
so by Chernoff bound we observe that X ′ is well concentrated and we have X ′ =
�(E[X ′]) = �(nε

E[X ]) with high probability. Moreover, again by Chernoff (specif-
ically the second bound from Lemma 1) we have

Pr[X > C
ε
nε/2

E[X ]] ≤
( εe

Cnε/2

)C
ε
nε/2

E[X ] =
(O(1)

nε/2

)C/ε = O(n−C
2 ) = O( 1n ).

Thus, with probability 1 − O( 1n ) we have X/X ′ = O(n−ε/2), so that

Pr[M1
v1

= M2
v2

] ≤
C/ε−1∏

k=0

X − k

X ′ − k
≤
( X

X ′
)C/ε = O( 1n ).

In total we obtain Pr[M1
v1

= M2
v2

] = O( 1n ). 	

Lemma 10 In any round of the above algorithm, consider a vertex v and let Ni :=
Ni (v) ∩ Tv,i for i ∈ {1, 2}. We say that v is good if

|N1 ∩ N2| ≥ 2C/ε and
|N1 ∩ N2|
|N1 ∪ N2| = �(min{ρ1, ρ2}). (1)

If v is identifiable and good, a hash collision of the form (v, 1) and (v, 2) happens
with probability:

Pr[M1
v = M2

v ] = �((min{ρ1, ρ2})C/ε).

Note that this positive case of a hash collision between equal vertices v1 = v2 = v

does not always have large probability, but needs the additional technical assumption
that the vertex is good.
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Proof Let v1 = v2 = v be identifiable and good. Then the probability of (v1, 1) and
(v2, 2) forming a hash collision is

Pr[M1
v1

= M2
v2

] =
C/ε−1∏

k=0

|N1 ∩ N2| − k

|N1 ∪ N2| − k

≥
C/ε−1∏

k=0

|N1 ∩ N2|
2|N1 ∪ N2|

= �((min{ρ1, ρ2})C/ε).

	

In order to see that the number of good vertices is high in expectation, we again first

ignore the issue that we do not know the edge probabilities pv,u exactly, but only have
upper bounds p̄v,u,1, p̄v,u,2 given by an adaptive adversary. For details on how to cope
with this issue, see Sect. 5.3. Thus, assume for now that p̄v,u,1 = p̄v,u,2 = pv,u for
all vertices u, v, in particular Tv,1 = Tv,2. If v has an expected number of k neighbors
in Tv,1 = Tv,2, then E[|N1 ∩ N2|] = ρ1ρ2k and E[|N1 ∪ N2|] = (1 − (1 − ρ1)(1 −
ρ2))k = O((ρ1 + ρ2)k). If ρ1ρ2k � C/ε, by Chernoff with probability at least
1 − exp(−�(ρ1ρ2k)) the vertex v is good. In particular, if a constant fraction of the
layer below v is identified, then we have k = �(δ), so that v is good with probability
1 − exp(−�(ρ1ρ2δ)) (assuming that ρ1ρ2δ is sufficiently large). Thus, identifying
only good vertices does not change the amount of identified vertices asymptotically.

5.2 Quality Analysis

In this section we sketch an analysis of the expected number of vertices identified by
our algorithm. We again split up the analysis into three steps.

In the first step we start with at least the n2ε highest weight identifiable vertices
being identified. We choose k such that every vertex v in layer L̃k satisfies

v = �(δβ−1n3−β+ε(β−2)),

with a sufficiently large hidden constant. It is easy to check that all but the nε highest
weight identifiable vertices have probability less than n−ε to connect to v. Moreover,
there are no vertices having at least constant probability to connect to v, and the last
n2ε/2 of the highest weight identifiable vertices have probability �(n−εβ/(β−1)) �
n−2ε to connect to v. Thus, v has an expected number of nε′

neighbors in Tv,i for some
ε′ > 0 and any i ∈ {1, 2}, specifically we have w.h.p. |Ni (v) ∩ Tv,i | > nε′′

for some
ε′′ > 0. This shows that every vertex v ∈ Lk indeed gets hashed and is good. This also
allows us to apply Lemma 6 meaning that any vertex in Lk whose two copies have a
hash collision gets identified with high probability. Finally, note that every vertex in
Lk has a hash collision with its copy within the first �((min{ρ1, ρ2})−�(1/ε) log n)

rounds with high probability by Lemma 10. This shows that we identify all vertices
in Lk w.h.p. within the first �((min{ρ1, ρ2})−�(1/ε) log n) rounds.
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In the second step we assume that we have identified a constant fraction of some
layer L j , j ≥ k. Then by Lemma 10 in �((min{ρ1, ρ2})−�(1/ε)) rounds we pos-
itively test a constant fraction of the vertices in the next layer L j+1, so that after
�((min{ρ1, ρ2})−�(1/ε) log n) rounds we have identified a constant fraction of all
layers L j , j > k. After another�((min{ρ1, ρ2})−�(1/ε) log n) rounds, for every good
vertex v ∈ L j we tested its two copies in G1 and G2 (w.h.p.), implying that we iden-
tified all good vertices with a probability of at least 1 − exp(−�(ρ1ρ2δ)). As only a
small fraction of the vertices is not good, this yields the same asymptotic guarantee
on the number of identified vertices as from Algorithm 1.

The third step is again that all layers L j , j < k, will be identified w.h.p. once we
know a constant fraction of the vertices with constant expected degree. By the same
argument as in the second step, after�((min{ρ1, ρ2})−�(1/ε) log n) rounds, a constant
fraction of the vertices in L log n is identified. Since we hash each vertex with its copy
w.h.p. in the second �((min{ρ1, ρ2})−�(1/ε) log n) rounds, we therefore identify all
vertices in layer j w.h.p. by the same argument as in Sect. 4.3.

5.3 Adaptive Adversary

Our sketched algorithm has one major technical difficulty. For analyzing the (random)
sequence Mi

v in Ni (v) ∩ Tv,i we would like to assume that v has u ∈ Tv,i as neighbor
independentlywith probability pu,v ≤ n−ε. However, the edge probability estimations
(and, thus, the sets Tv,i ) are chosen by an adaptive adversary. One could even imagine
that among the vertices with pu,v ≈ n−ε the ones with p̄u,v,1 > n−ε all have no edges
to v and the remaining ones all have an edge to v, making them highly dependent. As
wewill see, this effect is insignificant to our algorithm as long as the number vertices u
with pu,v � n−ε is sufficiently large (intuitively since then the random sequence Mi

v

does not contain too many vertices with pu,v ≈ n−ε). We have to adjust the algorithm
slightly as follows.

Recall that we defined Tv,i := {u ∈ VI | p̄u,v,i ≤ n−ε}. As ε is a sufficiently small
constant one can show that around n−ε the estimate p̄u,v,i is a constant approximation
to pu,v . In particular we have Rv ⊆ Tv,i ⊆ Rv for

Rv := {u ∈ VI | pu,v ≤ n−ε},
Rv := {u ∈ VI | pu,v ≤ c−1n−ε},

for some constant c ≥ 1. Similarly we obtain

T v,i ⊆ Rv ⊆ Tv,i ⊆ Rv ⊆ T v,i ,

where

T v,i := {u ∈ VI | p̄u,v,i ≤ c′n−ε},
T v,i := {u ∈ VI | p̄u,v,i ≤ c′−1n−ε},

123



Algorithmica (2018) 80:3397–3427 3421

for some c′ ≥ 1. We set

sv,i :=
∑

u∈T v,i

p̄u,v,i , sv,i :=
∑

u∈T v,i

p̄u,v,i .

Now we change Algorithm 2 such that we hash vertex v ∈ Vi only if

sv,i ≥ nε(sv,i − sv,i ). (2)

To implement this check efficiently, we always store VI and V \VI in two sorted orders,
with respect to w̄u,1 and w̄u,2, e.g., in balanced search trees that also allow computing
partial sums of w̄u,1 and w̄u,2. Then we can quickly determine sv,i , sv,i , as this simply
amounts to searching for the largest u ∈ VI with p̄v,ui = w̄v,i w̄u,i/Wi ≤ n−ε,
computing the partial sum over w̄u,i up to this point and multiplying by w̄v,i/Wi . In
fact, determining sv,i , sv,i for all v can be done in time O(n).

In the following we sketch how the analysis of hash collisions changes. Consider
a vertex v in Gi . The algorithm computes the first C/ε vertices Mi

v in Ni (v) ∩ Tv,i .
We want to show that most vertices in Mi

v are contained in Rv . As this set does not
use the weight estimations and does not reveal edges, the neighbors of v in Rv are
nicely independently distributed. By condition (2), the expected number of neighbors
of v in Rv is much larger than its expected number of neighbors in Rv\Rv . Similar
to the hash collision analysis in Sect. 5.1, one can show that with probability at least
1 − O( 1n ) we have

|Ni (v) ∩ (Rv\Rv)| ≤ 2/ε or |Ni (v) ∩ Rv| = �(nε/2) · |Ni (v) ∩ (Rv\Rv)|

(depending onE[|Ni (v)∩(Rv\Rv)|] being smaller or larger than n−ε/2). In both cases,
the first C/ε = 4/ε vertices in Ni (v) ∩ Tv,i with respect to π contain at most 2/ε
vertices in Tv,i\Rv with probability 1 − O( 1n ). The remaining vertices, at least 2/ε,
are randomly sampled from Ni (v) ∩ Rv , which are nicely independently distributed
vertices on which we can do the analysis from Sect. 5.1. Repeating this analysis shows
that for v1 �= v2 the probability of a hash collision is at most O( 1n ).

For v1 = v2 = v we note that as long as

|Ni (v) ∩ Rv| ≥ 5/ε, (3)

the whole sequence Mi
v is contained in Rv with probability �(1)4/ε = �(1). In this

case we can again repeat the analysis from Sect. 5.1 showing that v1 = v2 form a hash
collision with a probability of at least �(min{ρ1, ρ2})−�(1/ε). Moreover, note that if
a constant fraction of the layer below v is identified and ρ1ρ2δ is sufficiently large,
then condition (3) holds with a probability of at least 1 − exp(−�(ρ1ρ2δ)). Thus,
adding (3) to the definition of a good vertex suffices.
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6 Lower Bound

In this section we show that our algorithm identifies an asymptotically optimal fraction
of the vertices.

Theorem 3 Consider a de-anonymization algorithm A that w.h.p. makes no wrong
identifications. Then there is a constant c > 0 such that A identifies no more than a
fraction of 1 − exp(−cρ1ρ2σ1σ2δ) identifiable vertices in expectation.

Proof Weprove this statement by case distinction. Recall that V∩ := V1∩V2 describes
the identifiable vertices.

If ρ1ρ2σ1σ2 ≥ 1
2 , we compute the expected number of isolated vertices in the

original graph G. These vertices cannot be matched. Consider the vertices Vs :=
{ n2 + 1, . . . , n} and Ṽs := Vs ∩ V∩. Observe that w.h.p. |Ṽs | = �(|V∩|). Using
Lemma 11(1) below, a node v ∈ Ṽs is isolated with probability at least exp(−�(wv)).
Together with the fact that wv = O(δ) for v ∈ Vs , and the case assumption that
ρ1, ρ2, σ1, σ2 are constant, a node v ∈ Ṽs is isolated with probability at least

exp(−�(wv)) = exp(−�(δ)) = exp(−�(ρ1ρ2σ1σ2δ)).

Hence, there are at least n ·exp(−�(ρ1ρ2σ1σ2δ)) isolated vertices inG in expectation,
which are impossible to distinguish.

If ρ1ρ2σ1σ2 < 1
2 , we compute the number of vertices that leave no common edge

in the subsampled graphs. Consider the set of identifiable nodes among the n/2 lowest
weight vertices, i.e. Ṽs = V∩ ∩ Vs . We claim that there exist �(|V∩|) nodes u, v ∈ Ṽs
such that u, v are consecutive (i.e. there is no w ∈ Ṽs such that u < w < v) and
|u − v| = O( 1

σ1σ2
). To see this, observe that |Ṽs | ≥ �(σ1σ2n) w.h.p. by the Chernoff

bound. Now, a simple counting argument shows that the number of consecutive nodes
u, v with distance |u − v| ≥ c

σ1σ2
can at most be n/(c/σ1σ2) = c−1σ1σ2n. Note that

theweights of two such vertices u, v are�(δ) and they differ by atmostO(δ/(σ1σ2n)).
Assume that u has no common neighbor with v in G, which happens at least with

probability 1 − o(wuwv) = 1 − o(1) by Lemma 11(2) below. Now we assume that
u, v have O(δ) neighbors in G which happens at least with constant probability, as
we assumed δ = �(1). Then, the chance that u (and v, respectively) has no edge that
stays in both G1,G2 is (1 − ρ1ρ2σ1σ2)

O(δ) = exp(−O(ρ1ρ2σ1σ2δ)).
Overall, these assumptions hold with probability at least exp(−O(ρ1ρ2σ1σ2δ)).

Intuitively, in this case it is impossible to distinguish u and v (at least this is not
possible with a high probability guarantee), meaning that both u and v cannot be
identified by any algorithm. To make this formal, let Nu

1 be the neighbors of u in G1,
and similarly define Nu

2 , N v
1 , N v

2 . Then, under the assumptions we have made, the
probability of observing neighbor sets (Nu

1 , Nu
2 , N v

1 , N v
2 ) is approximately the same

as the probability of observing (Nu
1 , N v

2 , N v
1 , Nu

2 ), namely their quotient is

∏

i∈U2

pu,i

pv,i
·
∏

i∈V2

pv,i

pu,i
=(1 ± O(δ/(σ1σ2n))

)|U2|+|V2| =1 ± O(δ2/(σ1σ2n))=1±o(1).
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Hence, if we swap the neighborhoods of u and v inG2 to obtainG ′
2, then the probabili-

ties of the instances (G1,G2) and (G1,G ′
2) are approximately equal. Let A(G1,G2, u)

be any algorithm that outputs a match for node u, and assume the above conditions
hold. Then

Pr[A(G1,G2, u) = u] = (1 ± o(1))Pr[A(G1,G
′
2, u) = v],

as G2 and G ′
2 are isomorphic. This implies that A matches correctly at most with

probability 1/2 + o(1), and therefore not with high probability.
As u and v were two arbitrary consecutive identifiable vertices with small weight,

we observe that an expected fraction of exp(−O(ρ1ρ2σ1σ2δ)) of the vertices cannot
be identified, proving the claim. 	


Assume that u has no common neighbor with v in G, which happens at least with
probability

1 −
∑

i∈V \{u,v}
pu,i pv,i =1 − �

⎛

⎝
∑

i∈V \{u,v}
w2
i /n

2

⎞

⎠=1−�

(

δn− 2β−4
β−1

)

=1−o(1).

Lemma 11 Consider a Chung–Lu graph G = (V, E). (1) Any node v is isolated with
probability at least exp(−�(wv)). (2) Vertices u �= v have no common neighbor with
probability at least 1 − o(wuwv).

Proof For (1), a node v is isolated with probability at least

∏

u∈V

(
1 − O

(wuwv

W

))
≥ exp

(
− �

(∑

u∈V

wuwv

W

))
≥ exp(−�(wv)).

For (2), vertices u �= v have no common neighbor with probability

1 −
∑

i∈V \{u,v}
pu,i pv,i = 1 − �

(
wuwv

∑

i∈V \{u,v}
w2
i /n

2
)

= 1 − �

(

wuwvδn
− 2β−4

β−1

)

,

which is 1 − o(wuwv). 	


7 Experiments

The focus of this paper lies on theoretical algorithm analysis. To check our theory for
robustness, however, we conducted an empirical study. We implemented a variant of
the fast algorithm single threaded in C++. The source code is available upon request.
The experiments were run on a single computer with Dual Xeon CPU E5-2670 and
128GB RAM.

We evaluated the algorithm on Chung–Lu graphs. The results are shown in Fig. 1.
We choose as seeds the nodes with the highest degree in the graph. The plots indicate
that our quality bounds hold up well in practice, as we identify 95% of the nodes with
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Fig. 1 Algorithm performance on Chung–Lu graphs with β = 2.5, δ = 30 and subsampling probabilities
pi = 0.5, qi = 0.85. The left plot shows recall vs. iterations for 30 different runs with n = 106 nodes. The
precision is 1− 10−5 for all runs. The right plot shows the runtime needed to identify a certain fraction of
the nodes (see legend)

as little as 0.008% seeds (80 nodes). Similarly, the runtime plot follows our asymptotic
bounds which allows for deanonymizing large graphs (2 million nodes) on a single
core, whereas previous approaches would typically require a computing cluster, due
to their polynomial runtime of n1+�(1).

Finally, we investigated the robustness of our algorithmwith respect to the underly-
ing graphmodel.We ran it on different random graphmodels (Preferential Attachment
[7],AffiliationNetworks5 [19]) and even subsampled real graphs (Facebook,6 Orkut7).
The results are presented in Table 1. Note that the purpose of these experiments is to
demonstrate robustness to the underlying graph model, however, since the subsam-
pling procedure still strictly follows our model, they have limited significance for
real-world instances of the deanonymization problem.

We further point out that the Facebook network seems to be a particularly chal-
lenging instance for deanonymization, as evidenced by [18], who also performed
experiments on Facebook and Affiliation Networks. Similar to us, they achieve a
recall of 0.6 and 0.9, respectively. However, subtracting the substantial amount of
seed nodes used in their approach (10% of the identifiable nodes) and only counting
node pairs actually identified by the algorithm, we find that our approach ultimately
identifies equally or more additional node pairs. They do not report on their runtimes
and machines.

In all cases, our algorithm was able to extend the small set of identified seed nodes
to a linear fraction of the entire graph; while making comparatively few errors. This
indicates that even though our proofs rely on the topology of the Chung–Lu model

5 In this model, a bipartite graph of users and interests is constructed; and two users are connected if they
share an interest. To create two subsampled graphs, each interest is deleted independently with probability
0.25 in both graphs.
6 http://socialnetworks.mpi-sws.org/datasets.html.
7 http://snap.stanford.edu/data/.
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Table 1 Performance of our de-anonymization algorithm on various graphs

Graph model

Name n m ρ1 ·ρ2 σ1 ·σ2 Seeds Recall Prec. Runtime

Chung–Lu 2M 80M 0.25 0.72 80 0.95 1 29 min

Pref. attachment 1M 20M 0.25 1 200 0.95 1 9min

Affiliation network 60K 8M – 1 50 0.83 0.99 56s

Facebook 63K 1.5M 0.58 1 50 0.50 0.95 6s

Orkut 3M 117M 0.56 0.81 1000 0.89 0.88 54min

Recall is defined as the fraction of identified nodes out of the |V1 ∩ V2| identifiable nodes. Precision is the
fraction of correctly identified pairs over all identified pairs

(e.g. independent edge probabilities), the algorithm performs reasonably well also for
other graph topologies.

8 Conclusion

We present a new method for de-anonymizing scale-free networks with two crucial
improvements in comparison to previous work: (i) faster runtime and (ii) less required
a-priori knowledge.

While all previous algorithms have a runtime of �(n
), our new algorithm runs
in quasilinear time. This improvement is not only asymptotic. Whereas recent experi-
ments by Korula and Lattanzi [18] required large compute clusters, our algorithm can
handle graphs with millions of vertices in less than an hour on a single machine. The
quasilinear runtime is achieved by a variant of locality sensitive hashing. We believe
that this technique can be used in future work to speed up other matching and graph
isomorphism algorithms.

Our second contribution is a rigorous proof that much fewer seed nodes suffice for
de-anonymizing subsamples of a commonmodel of scale-free networks. Our approach
needs only nε highest-weight seed nodes, while all previous algorithms with proven
runtime and quality use �(n) random seed nodes. The analysis is based on a new
weight estimation scheme relative to an adaptive adversary, which appears to be useful
also for analyzing other algorithms on Chung–Lu graphs. Our result shows that de-
anonymization is possiblewith few seed nodes, which is important for practical attacks
on anonymized networks.
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