
Connected k-partition of k-connected graphs and
c-claw-free graphs
Ralf Borndörfer !

Zuse Institute Berlin, Berlin

Katrin Casel !

Hasso Plattner Institute, University of Potsdam, Germany

Davis Issac !

Hasso Plattner Institute, University of Potsdam, Germany

Aikaterini Niklanovits !

Hasso Plattner Institute, University of Potsdam, Germany

Stephan Schwartz !

Zuse Institute Berlin, Berlin

Ziena Zeif !

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
A connected partition is a partition of the vertices of a graph into sets that induce connected

subgraphs. Such partitions naturally occur in many application areas such as road networks, and
image processing. In these settings, it is often desirable to partition into a fixed number of parts
of roughly of the same size or weight. The resulting computational problem is called Balanced
Connected Partition (BCP). The two classical objectives for BCP are to maximize the weight of
the smallest, or minimize the weight of the largest component. We study BCP on c-claw-free
graphs, the class of graphs that do not have K1,c as an induced subgraph, and present efficient
(c − 1)-approximation algorithms for both objectives. In particular, for 3-claw-free graphs, also
simply known as claw-free graphs, we obtain a 2-approximation. Due to the claw-freeness of line
graphs, this also implies a 2-approximation for the edge-partition version of BCP in general graphs.

A harder connected partition problem arises from demanding a connected partition into k parts
that have (possibly) heterogeneous target weights w1, . . . , wk. In the 1970s Győri and Lovász showed
that if G is k-connected and the target weights sum to the total size of G, such a partition exists.
However, to this day no polynomial algorithm to compute such partitions exists for k > 4. Towards
finding such a partition T1, . . . , Tk in k-connected graphs for general k, we show how to efficiently
compute connected partitions that at least approximately meet the target weights, subject to the
mild assumption that each wi is greater than the weight of the heaviest vertex. In particular, we
give a 3-approximation for both the lower and the upper bounded version i.e. we guarantee that
each Ti has weight at least wi

3 or that each Ti has weight most 3wi, respectively. Also, we present
a both-side bounded version that produces a connected partition where each Ti has size at least
wi
3 and at most max({r, 3})wi, where r ≥ 1 is the ratio between the largest and smallest value in

w1, . . . , wk. In particular for the balanced version, i.e. w1 = w2 =, . . . , = wk, this gives a partition
with 1

3 wi ≤ w(Ti) ≤ 3wi.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases connected partition, Győri-Lovász, balanced partition, approximation al-
gorithms

1 Introduction

Partitioning a graph into connected subgraphs is a problem that arises in many application
areas such as parallel processing, road network decomposition, image processing, districting
problems, and robotics [34, 35, 4, 1, 39]. Often in these applications, it is required to find

ar
X

iv
:2

10
7.

04
83

7v
1

 [
m

at
h.

C
O

]
 1

0
Ju

l 2
02

1

mailto:borndoerfer@zib.de
https://orcid.org/0000-0001-7223-9174
mailto:Katrin.Casel@hpi.de
https://orcid.org/0000-0001-6146-8684
mailto:Davis.Issac@hpi.de
https://orcid.org/0000-0001-5559-7471
mailto:Aikaterini.Niklanovits@hpi.de
https://orcid.org/0000-0002-4911-4493
mailto:schwartz@zib.de
https://orcid.org/0000-0003-2901-5065
mailto:Ziena.Zeif@hpi.de
https://orcid.org/0000-0003-0378-1458

2 Connected k-part. of k-conn. & c-claw-free graphs

a partition into a specified number k of connected subgraphs. For instance, in the parallel
processing applications, the number of processors is restricted, and in robotics applications,
the number of robots available is restricted. Formally, we call a partition T1, T2, · · · , Tk of
the vertex set of graph, a connected (k-)partition, if the subgraph induced by the vertices in
Ti is connected for each 1 ≤ i ≤ k.

The typical modeling objective in such connected partition problems is to balance sizes
among the k parts. Sometimes one needs to consider a vertex-weighted generalization
e.g. weights representing the required amount of work at the entity corresponding to the
vertex. The two classical balancing objectives for such k-partitions are to maximize the total
weight of the lightest part, or to minimize the weight of the heaviest part. These objectives
yield the following two versions of the balanced connected partition problem (BCP).

Input: A vertex-weighted graph G = (V, E, w) where w : V → N, and k ∈ N.
Task: Find a connected k-partition T1, . . . , Tk of G maximizing mini∈[k] w(Ti)

(minimizing maxi∈[k] w(Ti) resp.).

Max-Min BCP (Min-Max BCP)

On general graphs, both variants of BCP are NP-hard [5], and hence the problems have
been mostly studied from the viewpoint of approximation algorithms [6, 8, 9, 11, 12]. Most
of the known results are for small values of k, and there are some results also for special
classes like grid graphs or graphs of bounded treewidth (see related work section for further
details). The currently best known polynomial-time approximation for general graphs for
any k is a 3-approximation for both Max-Min and Min-Max BCP by Casel et. al. [6].

Intuitively, an obstacle for getting a balanced connected partition is a large induced star,
i.e. a tree with one internal node and c leaves, denoted by K1,c. We say a graph is c-claw-free
or K1,c-free if it does not contain an induced K1,c as subgraph. For such graphs, we give a
very efficient (c − 1)-approximation algorithm for both the min-max and max-min objective.
In particular by setting c = 3, we get a 2-approximation on K1,3-free graphs, better known
as claw-free graphs.

Claw free graphs have been widely studied by Seymour and Chudnovsky in a series of
seven papers under the name Claw-free graphs I-VII ([14]-[20]), who also provide a structure
theorem for these graphs [21]. Some interesting examples of such graphs are line graphs,
proper circular interval graphs and de-Brujin graphs [22]. Apart from their structural
properties, claw-free graphs have been studied in the context of obtaining efficient algorithms
for several interesting problems, see e.g. [27, 24, 23].

Although, for c > 3 our algorithm gives a worse guarantee than the algorithm by Casel
et. al. [6], we note that their algorithm runs in O(log(X∗)k2|V ||E|) time for Max-Min BCP
and in O

(
log (X∗) |V | |E|

(
log log X∗ log (|V |wmax) + k2))

time for Min-Max BCP, where
X∗ denotes the optimum value and wmax := maxv∈V w(v) the maximum weight of a vertex,
whereas our algorithms give an O(log(X∗)|E|) runtime for Max-Min BCP and an O(|E|)
runtime for Min-Max BCP. Moreover, our algorithms are less technical and hence much
easier to implement. We prove the following statements.

▶ Theorem 1. Given a vertex-weighted K1,c-free graph G = (V, E, w) and k ∈ N, a (c − 1)-
approximation for Min-Max BCP can be computed in O(|E|) time.

▶ Theorem 2. Given a vertex-weighted K1,c-free graph G = (V, E, w) and k ∈ N, a (c − 1)-
approximation for Max-Min BCP can be computed in time O(log(X∗)|E|), where X∗ is the
optimum value.

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 3

Since line graphs are K1,3-free, these results directly imply efficient approximations for
the following edge-partition versions of BCP. A k-partition of the edges of a graph, is called a
connected edge k-partition, if the subgraph induced by the edges in each part is connected. In
the problem Min-Max (Max-Min) balanced connected edge partition (BCEP), one searches
for a connected edge k-partition of an edge-weighted graph minimizing the maximum (resp.
maximimzing the minimum) weight of the parts. This problem is equivalent to finding a
connected k-partition of the vertices in the line graph of the input graph. The best known
approximation for BCEP is for graphs with no edge weight larger than w(G)/2k. For such
graphs, [13] give an algorithm that finds a connected edge k-partition, such that the weight of
the heaviest subgraph is at most twice as large as the weight of the lightest subgraph, implying
a 2-approximation for Min-Max and Max-Min BCEP. In comparison, our algorithms
achieve the same approximation guarantee without restrictions on the edge weights.

▶ Corollary 3. Min-Max BCEP and Max-Min BCEP have 2-approximations in polynomial
time.

An extension of BCP is demanding for fixed (possibly heterogeneous) size targets for
each of the k parts. More precisely, given a graph G and w1, . . . , wk with

∑k
i=1 wi = n, the

task is to find a partition T1, · · · , Tk where each Ti has size wi and induces a connected
subgraph. Such a connected k-partition with the fixed target weights exists for G only if G

meets certain structural properties; a K1,3 for example has no connected 2-partition T1, T2
with |T1| = |T2| = 2. A characterization of when such a connected partition always exists was
independently proved by Győri [26] and Lovász [32]: They showed that in any k-connected
graph a connected k-partition satisfying the target weights always exists. This result is the
famous Győri-Lovász Theorem (GL theorem, for short):

▶ Theorem 4 (Győri-Lovász Theorem [26, 32]). Given a k-connected graph G = (V, E, w),
n1, . . . , nk ∈ N such that

∑k
i=1 ni = |V |, and k terminal vertices t1, · · · , tk ∈ V , there exists

a connected k-partition T1, · · · , Tk of V such that for each i ∈ [k], |Ti| = wi and ti ∈ Ti.

Recently, the theorem was generalized to vertex-weighted graphs as:

▶ Theorem 5 (Weighted Győri-Lovász Theorem [7, 10, 28]). Given a vertex-weighted k-
connected graph G = (V, E, w), w1, . . . , wk ∈ N such that

∑k
i=1 wi = w(V), and k terminal

vertices t1, · · · , tk, there exists a connected k-partition T1, · · · , Tk of V such that wi −wmax <

w(Ti) < wi + wmax, and ti ∈ Ti for each i ∈ [k], where wmax is the largest vertex weight.

We will refer to the partition guaranteed by the (weighted) GL theorem as GL partition. We
will however not consider the terminal vertices in the GL partitions in this work.

The GL theorem has found some applications in the field of algorithms. Chen et. al. [10]
use it for proving the existence of low-congestion confluent flows in k-connected graphs.
Further, Löwenstein et. al. [33] and Chandran et. al. [7] use it for finding spanning trees with
low spanning tree congestion. Perhaps, the reason why such a strong combinatorial statement
has not found further applications is that we do not know how to efficiently compute GL
partitions. About five decades after the discovery of the GL theorem, polynomial time
algorithms for finding a GL partition (even in the unweighted case without terminals) are
only known for k ≤ 4 [37, 38, 28]. The fastest algorithm for general k takes Ω(2n) time [7, 29].
Neither there are any impossibility results to exclude efficient computability of such partitions.
Even when k is part of the input, a polynomial time algorithm is not ruled out.

The absence of efficient algorithms for finding exact GL partitions motivates finding
GL-style partitions that approximately satisfy the weight targets. In this paper we present

4 Connected k-part. of k-conn. & c-claw-free graphs

polynomial time algorithms that does this. First we give an algorithm for a “half-bounded”
GL partition, in the sense that we can guarantee an approximate upper or lower bound on
the weight of the parts.

▶ Theorem 6. Let G = (V, E, w) be a k-connected vertex-weighted graph and w1, . . . , wk ∈ N
with

∑k
i=1 wi = w(G), and mini∈[k] wi ≥ maxv∈V w(v). A connected k-partition T1, . . . , Tk

of V such that either w(Ti) ≥ 1
3 wi for every i ∈ [k] (lower-bound version) or w(Ti) ≤ 3wi

for every i ∈ [k] (upper-bound version) can be computed in time O(k|V |2|E|).

We then extend this result to a lower and upper bounded partition.

▶ Theorem 7. Let G = (V, E, w) be a k-connected vertex-weighted graph and w1, . . . , wk ∈ N
with

∑k
i=1 wi = w(G), and mini∈[k] wi ≥ maxv∈V w(v), and r := maxi∈[k] wi

minj∈[k] wj
. Then, a

connected k-partition T1, . . . , Tk of V such that 1
3 wi ≤ w(Ti) ≤ max{r, 3}wi for every i ∈ [k]

can be found in time O(k|V |2|E|).

In particular, Theorem 7 implies the following approximately balanced partition of
k-connected graphs.

▶ Corollary 8. Let G = (V, E, w) be a k-connected vertex-weighted graph such that w(G) ≥
k maxv∈V w(v). Then, a connected k-partition T1, . . . , Tk of V such that 1

3

⌊
w(G)

k

⌋
≤ w(Ti) ≤

3
⌈

w(G)
k

⌉
for every i ∈ [k] can be found in time O(k|V |2|E|).

To the best of our knowledge, these are the first polynomial time algorithms that
approximate the GL theorem. We believe that such an efficient approximation will result in
the theorem being used for developing algorithms in the future. Especially, we are hopeful
that the both-side approximation for balanced connected partition of k-connected graphs
will find applications. We remark, however that for the above mentioned applications of
confluent flows and spanning tree congestion, the terminal vertices are essential and hence
our algorithms cannot be used. An interesting future direction would be to extend our results
to the setting with terminals.

Observe that Corollary 8 in some sense yields a 3-approximation simultaneously for
Min-Max and Max-Min BCP in k-connected graphs. In this regard, it is interesting to
note that the +/−wmax slack given in the weighted GL theorem is enough to retain hardness
in the following sense: even for k = 2, Min-Max BCP and Max-Min BCP remain strongly
NP-hard when restricted to 2-connected graphs; and the corresponding hardness-proof given
in [8] also constructs an instance with w(G) ≥ k maxv∈V w(v). This hardness can be extended
to k-connected graphs for any fixed k ≥ 2 (see [8][Theorem 3] for more details).

1.1 Related work
Both variants of BCP were first introduced for trees [36, 31]. Under this restriction, a linear
time algorithm was provided for both variants in [25]. This is particularly important since
different heuristics transform the original instance to a tree to efficiently solve the problem,
see [13, 39]. For both variants of BCP, a 3-approximation is given in [6], which is the best
known approximation in polynomial time. With respect to lower bounds, it is known that
there exists no approximation for Max-Min BCP with a ratio below 6/5, unless P ̸= NP [8].
For the unweighted case, a k

2 -approximation for Min-Max BCP with k ≥ 3, is given in [11].
Balanced connected partitions for fixed small values of k, denoted BCPk, have also been

studied extensively. The restriction BCP2, i.e. balanced connected bipartition, is already
NP-hard [5]. On the positive side, a 4

3 -approximation for Max-Min BCP2 is given in [12],

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 5

and in [11] this result is used to derive a 5
4 -approximation for Min-Max BCP2. Considering

tripartitions, Max-Min BCP3 and Min-Max BCP3 can be approximated with ratios 5
3

and 3
2 , respectively [9].

Regarding special graph classes, BCP has been investigated in grid graphs and series-
parallel graphs. While it was shown that BCP is NP-hard for arbitrary grid graphs [3],
the Max-Min BCP can be solved in polynomial time for ladders, i.e., grid graphs with
two rows [2]. For the class of series-parallel graphs, Ito et. al. [30] observed that BCP
remains weakly NP-hard (by a simple reduction from the Partition problem) and gave a
pseudo-polynomial-time algorithm for both variants of BCP. They also showed that their
algorithm can be extended to graphs with bounded tree-width.

The GL Theorem was independently proved by Győri [26] and Lovász [32]. Győri used an
elementary graph theoretic approach while Lovász used ideas from topology. Lovász’s proof
also works for directed graphs. The Győri-Lovász Theorem is extended to weighted directed
graphs by Chen et. al. [10] and Győri’s original proof was generalized to weighted undirected
graphs by Chandran et. al. [7]. Both papers only gave upper bounds of wi + wmax on the
weight of partition Ti and did not provide any lower bounds. Later Hoyer [28] showed that
the method of Chandran et. al. [7] can be also extended to give the lower bound wi − wmax,
even for directed graphs. Polynomial algorithms to also compute GL partitions are only
known for the particular cases k = 2, 3, 4 [37, 38, 28] and all k ≥ 5 are still open.

2 Preliminaries

By N we denote the natural numbers without zero. We use [k] to denote the set {1, . . . , k}.
All the graphs that we refer to in this paper are simple, finite and connected. Consider

a graph G = (V, E). We denote by V (G) and E(G) the set of vertices and edges of G

respectively, and if the graph we refer to is clear, we may simply write V and E. For a set of
vertex sets S ⊆ 2V we use V (S) to denote

⋃
S∈S S. We denote an edge e = {u, v} ∈ E(G)

by uv and the neighborhood of a vertex v ∈ V in G by NG (v) = {u ∈ V | uv ∈ E(G)}.
Similarly we denote the neighborhood of a vertex set V ′ ⊆ V in G by NG (V ′), that is⋃

v∈V ′ NG (v) \ V ′. We may omit the subscript G when the graph is clear from the context.
We use ∆(G) to denote the maximum degree of G.

We denote a vertex-weighted graph by G = (V, E, w) where w is a function assigning
integer weights to vertices w : V → N, and V and E are vertex and edge sets. We denote
by wmin and by wmax, minv∈V w (v) and maxv∈V w (v), respectively. For any V ′ ⊆ V , we use
w(V ′) to denote the sum of weights of the vertices in V ′. For a subgraph H of G we use
w (H) to denote w(V (H)), and refer to it as the weight of the subgraph H. For a rooted tree
T and a vertex x in T , we use Tx to denote the rooted subtree of T rooted at x.

For V ′ ⊆ V we denote by G[V ′] the graph induced by V ′, i.e. G[V ′] = (V ′, E′) with
E′ = E ∩(V ′ ×V ′). For vertex-weighted graphs, induced subgraphs inherit the vertex-weights
given by w. For V ′ ⊆ V we also use G − V ′ to denote the subgraph G[V \ V ′]. Similarly, if
V ′ is a singleton {v} we also write G − v. For graphs G1 and G2, we use G1 ∪ G2 to denote
the graph on vertices V (G1) ∪ V (G2) with edge set E(G1) ∪ E(G2).

Let U = {U1, . . . , Ur} be such that each Ui ⊆ V . We call U a connected packing of V if
each G[Ui] is connected, and the sets in U are pairwise disjoint. A connected packing U is
called connected vertex partition (CVP) of V , if also ∪r

i=1Ui = V (G). We denote a CVP
that has k vertex sets as CVPk. For any U ′ ⊆ U , we define V (U ′) :=

⋃
U ′∈U ′ U ′, and the

weight w (U ′) := w (V (U ′)). Let I be an interval. If U is a CVP and w (Ui) ∈ I for all
i ∈ [r], then we say that U is an I-connected vertex (r-)partition (I-CVPk or just I-CVP)

6 Connected k-part. of k-conn. & c-claw-free graphs

of V . If U is a connected-packing and w (Ui) ∈ I for all i ∈ [r], then we say that U is a
I-connected packing of V .

3 Approximation for BCP on c-claw-free graphs

In this section we give an idea of how to prove Theorems 1 and 2 by giving a (c − 1)-
approximation for Max-Min BCP and Min-Max BCP on K1,c-free graphs, full proofs of
these results can be found in Appendix A. We assume c ≥ 3 as c ≤ 2 gives trivial graph
classes. We first show that a connected partition for K1,c-free graphs with parts of size in
[λ, (c−1)λ) for some fixed λ can be found in linear time. For Max-Min BCP, this algorithm
has to be called many times while doing a binary search for the optimum value. We point
out that it is not difficult to adapt these algorithms to unconnected graphs achieving the
same approximation results.

Exploiting that each vertex in any DFS-tree of a K1,c-free graph has at most c − 1
children, we can carefully extract connected components of a fixed size while also maintaining
a DFS-tree for the remaining graph. Also, this can be done very efficiently, as stated in the
following result.

▶ Lemma 9. Given a K1,c-free graph G and a DFS-tree of G. For any w(G) ≥ λ ≥ wmax,
there is an algorithm that finds a connected vertex set S such that λ ≤ w(S) < (c − 1)λ and
G − S is connected, in O(|V |) time. Furthermore, the algorithm finds a DFS-tree of G − S.

We use BalancedPartition to denote the algorithm that exhaustively applies Lemma 9.
Observe that BalancedPartition produces a connected partition S1, . . . , Sm where w(Si) ∈
[λ, (c − 1)λ) for every i ∈ [m − 1] and w(Sm) < (c − 1)λ in linear time, where the achieved
runtime follows by saving already processed subtrees.
Theorem 1 now follows from running BalancedPartition with λ = max{wmax, w(G)

k }. Note
that this choice of λ is a trivial lower bound for the optimum value.

As already mentioned, to prove Theorem 2, we first need to find an input parameter λ

for Algorithm BalancedPartition that provides the desired (c − 1)-approximation.
Let (G, k) be an instance of Max-Min BCP, where G is a K1,c-free graph. Let X∗

be the optimal value for the instance (G, k). For any given X ≤ w(G)/k, we design an
algorithm that either gives a [⌊X/(c − 1)⌋, ∞)-CVPk, or reports that X > X∗. Note that
X∗ ≤ w(G)/k. Once we have this procedure in hand, a binary search for the largest X in
the interval (0, ⌈w(G)/k⌉] for which we find a [⌊X/(c − 1)⌋, ∞)-CVPk can be used to obtain
an approximate solution for Max-Min BCP.

Algorithm MaxMinApx: First remove all vertices of weight more than λ = ⌊X/(c − 1)⌋
and save them in H. Then save the connected components of weight less than λ in Q.
Let V = {V1, . . . , Vℓ} be the connected components of G − (H ∪ V (Q)). Apply algorithm
BalancedPartition on each G[Vi] with λ as input parameter to obtain Si = {Si

1, . . . , Si
mi

}
for every i ∈ [ℓ]. If for some i ∈ [ℓ] the weight w(Smi

) is less than λ, then merge this
vertex set with Smi−1 and accordingly update Si. Further, compute a (λ, ∞)-CVP|H| SH

of G[H ∪ V (Q)] as follows: for each h ∈ H, we will have a set Sh ∈ SH with h ∈ Sh; we add
each Q ∈ Q to some Sh such that h ∈ N(Q). Let S = SH ∪

⋃ℓ
i=1 Si. If |S| ≥ k, then merge

connected sets arbitrarily in S until |S| = k and return S. If |S| < k, report that X > X∗.

We point out that a [λ, ∞)-CVPj with j > k, can easily be transformed to a [λ, ∞)-
CVPk, since the input graph is connected. It is not hard to see that if algorithm MaxMinApx

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 7

returns S then this is a [λ, ∞)-CVPk of V . The most complicated part of proving that
MaxMinApx works correctly is showing that if it terminates with |S| < k and reports X > X∗

that this is indeed true.

▶ Lemma 10. If Algorithm MaxMinApx terminates with |S| < k, then X > X∗.

Proof. Let H, Q, V = {V1, . . . , Vℓ} be the computed vertices and connected vertex sets in
the algorithm for λ = ⌊X/(c − 1)⌋, respectively. Recall that w(Vi) ≥ λ for every Vi ∈ V and
w(Q) < λ for every Q ∈ Q. Let S∗ = {S∗

1 , . . . , S∗
k} be an optimal solution of (G, k), i.e.,

S∗ is an [X∗, ∞)-CVPk of V . Consider the sets VH∪Q := {S∗
i ∈ S∗|S∗

i ∩ (H ∪ V (Q)) ̸= ∅},
V1 := {S∗

i ∈ S∗|S∗
i ∩ V1 ̸= ∅} \ VH∪Q, . . . , Vℓ := {S∗

i ∈ S∗|S∗
i ∩ Vℓ ̸= ∅} \ VH∪Q. We claim

that these sets are a partition of S∗. This follows directly from the fact that H separates
all Vi ∈ V and all Q ∈ Q from each other. That is, for an i ∈ [k] and j ∈ [ℓ] the connected
vertex set S∗

i with S∗
i ∩ Vj ̸= ∅ and S∗

i ∩ V \ Vj ̸= ∅ contains at least one h ∈ H and hence
S∗

i ∈ VH∪Q. Otherwise, if S∗
i ⊆ Vj , then S∗

i ∈ Vj .
Suppose MaxMinApx terminates with |S| < k although X ≤ X∗. We show that

∣∣VH∪Q
∣∣ ≤

|H| and
∣∣Vi

∣∣ ≤ |Si| for every i ∈ [ℓ], implying that |S∗| ≤ |H| +
∑ℓ

i=1 |Si| = |S| < k, which
contradicts |S∗| = k.

First, we show
∣∣SH∪Q

∣∣ ≤ |H|. For this, it is sufficient to prove that S∗
i ∩ H ̸= ∅ for

each S∗
i ∈ VH∪Q as S∗ is a partition of V . We prove this by contradiction. Suppose

there is an S∗
i ∈ VH∪Q, such that S∗

i ∩ H = ∅. This implies that S∗
i ⊆ Q for some

Q ∈ Q, since H separates every Q ∈ Q from every other Q′ ∈ Q \ {Q} and from the
vertices V \ (H ∪ V (Q)). Thus, w(S∗

i) ≤ w(Q) < λ by the definition of Q and therefore
w(S∗

i) < λ = ⌊X/(c − 1)⌋ ≤ ⌊X∗/(c − 1)⌋, contradicting mini∈[k] w(S∗
i) = X∗.

It remains to show that
∣∣Vi

∣∣ ≤ |Si| for every i ∈ [ℓ]. Fix an i ∈ [ℓ] and let G[Vi] with λ

be the input when calling algorithm BalancedPartition. Observe that the input is valid,
since G[Vi] is connected by definition and w(G[Vi]) ≥ λ ≥ maxv∈Vi

w(v) as H contains all
vertices that have weight more than λ. Algorithm BalancedPartition provides a CVP
Si = {Si

1, . . . , Si
mi

} of Vi with w(Si
j) ∈ [λ, (c−1)λ) for every j ∈ [mi−1] and w(Si

mi
) < (c−1)λ.

Consider Si before merging, i.e. we do not merge Si
mi

to Si
mi−1 in the algorithm MaxMinApx

if w(Smi
) < λ. That is, w(Sm) < λ is possible, and we need to show

∣∣Vi
∣∣ ≤ mi − 1 = |Si| − 1.

Observe for S∗ ∈ Vi that S∗ ⊆ Vi, i.e.
∑mi

j=1 w(Si
j) ≥

∑
S∗∈Vi w(S∗). As a result, we have

|Si|X ≥ |Si|(c − 1)λ >
∑mi

j=1 w(Si
j) ≥

∑
S∗∈Vi w(S∗) ≥ |Vi|X∗. Consequently, by X ≤ X∗

we obtain |Vi| < |Si|, which leads to |Vi| ≤ |Si| − 1. ◀

4 Approximation of the Győri-Lovász Theorem for k-connected
Graphs

Our algorithms for the approximate GL theorems are based mainly on the following com-
binatorial lemma concerning certain vertex separators, that leads to useful structures in
k-connected graphs. Let G = (V, E, w) be a connected vertex-weighted graph and let λ be
an integer. We say s ∈ V is a λ-separator if all connected components of G − {s} weigh less
than λ. We say G is λ-dividable if there is a [λ, ∞)-CVP2 of V .

▶ Lemma 11 ([6]). Let G = (V, E, w) be a connected vertex-weighted graph and let λ > wmax
be an integer. If w(G) > 3(λ − 1), then either G is λ-dividable or there is a λ-separator.
Furthermore, finding the connected vertex sets in case G is λ-dividable and finding the
λ-separator in the other case can be done in O(|V | |E|) time.

8 Connected k-part. of k-conn. & c-claw-free graphs

4.1 Bounded Partition for k-connected Graphs
In this section, we give an algorithm for computing approximate GL partitions with one-side
approximation bound (either lower bound or upper bound), thus proving Theorem 6. For
this, we first prove the following theorem, from which Theorem 6 follows as below.

▶ Theorem 12. Let G = (V, E, w) be a k-connected vertex-weighted graph and let w1, . . . , wk ∈
N with

∑k
i=1 wi = w(G), and mini∈[k] wi ≥ maxv∈V w(v). A set of connected vertex sets

T = {T1, . . . , Tℓ} with ℓ ≤ k and αwi ≤ w(Ti) ≤ 3αwi for every i ∈ [ℓ] can be computed in
time O(k|V |2|E|). Moreover, if ℓ < k, then T is also a CVP of V .

By Theorem 12 we can derive Theorem 6 using α = 1/3 and α = 1 for the lower bound
and upper bounded version, respectively. Appendix B.2 gives a detailed proof.

In the following we always assume that w1, . . . , wk is sorted in descending order. To
now give the algorithm proving Theorem 12, we make use of Lemma 11. For this, we first
need to ensure that wmax < αwk. Therefore, we perform a preprocessing step until we reach
an instance that satisfies wmax < αwk. We give this preprocessing step in Appendix B.1.
After this step, we can assume that we have a k-connected graph G = (V, E, w) and natural
numbers w1, . . . , wk sorted in descending order, where

∑k
i=1 wi ≤ w(G) and wmax < αwk.

On such a graph G we then gradually build a packing T with the help of Lemma 11.
During our algorithm to build T we ensure that at each step T = {T1, T2, . . . , Ti−1} where
each Tj ∈ T is a connected vertex set with weight in [αwj , 3αwj] for each j ∈ [i − 1]. We
then search in the remaining graph for the next set Ti and always use G to denote the
graph G \ V (T). We say a connected subgraph is i-small if it has weight less than αwi

and i-big otherwise. In case we reach a situation, where G has no connected component
that is i-big, we have to alter the already built sets T1, T2, . . . , Ti−1 to build Ti. For this,
we use Ta to denote the set of all Tj ∈ T that have no (αwj)-separator, and Tb to denote
the set of all Tj ∈ T that have an (αwj)-separator. For Tj ∈ Tb with an (αwj)-separator s

we use C(Tj) to denote the connected components of G[Tj \ {s}] (if there is more than one
(αwj)-separator, fix one of them arbitrarily). The following Algorithm BoundedGL formally
explains our routine to build T .

Algorithm BoundedGL

1. Initialize T := ∅ as container for the desired connected-vertex-packing T1, . . . , Tk of G

and initialize i := 1 as an increment-variable.
2. While G = G \ V (T) is not the empty graph: //main loop

2.1. Find a connected vertex set Ti having weight in [αwi, 3αwi], add Ti to T , and increment
i by one. If i = k + 1 then terminate the algorithm.
// See Lemma 22 for correctness of this step

2.2. While G is not empty and has no i-big connected component: //inner loop
Pick an i-small connected component Q of G. Pick a Tj ∈ T such that either Tj ∈ Ta

and Q has an edge to Tj (Case 1), or Tj ∈ Tb and Q has an edge to some component
Q′ ∈ C(Tj) (Case 2). // The occurrence of at least one of these cases is
shown in Lemma 21.
If w(Tj ∪ Q) ≤ 3αwj then update Tj to Tj ∪ Q. Otherwise:

2.2.1. Case 1 (Tj ∈ Ta): Apply the following Divide-routine on Tj ∪ Q: Use Lemma 11
to compute a [αwj , ∞)-CVP2 V1, V2 of Tj ∪ Q. Set Tj = V2 (i.e. V1 goes to G).

2.2.2. Case 2 (Tj ∈ Tb): remove Q′ from Tj (i.e. Q′ goes back to G) if Tj ∪ Q is not
αwj-dividable. Otherwise, apply divide routine on Tj ∪ Q.

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 9

To prove the correctness of the algorithm, we show that the following invariant is maintained.

▶ Lemma 13. Algorithm BoundedGL maintains a packing T = {T1, T2, . . . , Ti−1} where each
Tj ∈ T is a connected vertex set having weight in [αwj , 3αwj].

Proof. We increment i only in Step 2.1. Before incrementing i, we add Ti to T while ensuring
that w(Ti) ∈ [αwi, 3αwi] and G[Ti] is connected. In Lemma 22, we prove that whenever
the divide routine is about to be executed, there is an i-big component in G, ensuring the
existence of such a Ti. Once a Tj is added to T , it is then modified only in Step 2.2. So let us
look into how it gets modified in Step 2.2. If the condition w(Tj ∪ Q) ≤ 3αwi is satisfied then
it is clear that the new Tj = Tj ∪ Q also satisfies the weight constraints. Since Q has an edge
to Tj and Tj and Q each were connected, it is also clear that the new Tj remains connected.
So now consider the case when w(Tj ∪ Q) > 3αwi. In Case 1 (Tj ∈ Ta), we call the divide
routine and the new Tj is the set V2 returned by the routine. The set V2 is connected due
to the property of the divide routine. To see that it also satisfies the weight constraints,
observe that w(V1 ∪ V2) is at most 4αwj as w(Tj) was at most 3αwj and w(Q) < αwi ≤ αwj .
Since w(V1), w(V2) ≥ αwj , we then have w(V2) ∈ [αwj , 3αwj]. So it only remains to consider
Case 2 (Tj ∈ Tb). The case when Tj ∪ Q is αwj-dividable is analog to Case 1. We know
w(Q′) < αwj by definition. Also, since w(Tj ∪ Q) was more than 3αwj and w(Q) < αwj , we
have that w(Tj) was at least 2αwj . Thus the new Tj = Tj \ Q′ has weight in [αwj , 3αwj].
Also, the new Tj is connected by the definition of Q′. ◀

It is clear from the algorithm that termination occurs only if G is empty or i = k+1. Then
using Lemma 13, it is clear that T contains the required packing as claimed in Theorem 12,
provided that Step 2.2 runs correctly and terminates, which we prove below.

▶ Lemma 14. The inner loop runs correctly and terminates after at most |V |2 iterations.

The idea for the proof of Lemma 14 is that if the divide routine is executed in the inner loop
then an i-big component is created, terminating the inner loop, and in the other case either a
connected component is deleted from G or new vertices are added to a connected component
in G. A full proof and the runtime analysis are given in Appendix B.2 and B.3, respectively.

It is tempting to think that one could use Theorem 12 to derive a CVP T = {T1, . . . , Tk}
such that αwi ≤ w(Ti) ≤ 3αwi for each i ∈ [k]. If Algorithm BoundedGL terminates with
ℓ < k, then T is a partition of the vertices in G, and we only have trouble with the lower
bound on Tj for ℓ < j ≤ k. Otherwise, if it terminates with ℓ = k, then T satisfies all lower
bounds, but might not be a partition. Assigning the remaining vertices in G to turn T into
a CVP in this case might yield violations of the upper bound. Since α = 1 yields the first,
and α = 1

3 the second case, one might think that choosing the correct α in between would
result in a CVP with ℓ = k. Unfortunately, Algorithm BoundedGL does not have a monotone
behaviour w.r.t. α ∈ (1

3 , 1) in the sense that for two values 1
3 < α1 < α2 < 1, the case ℓ = k

for α1 does not imply ℓ = k for α2. Thus, even if we could prove the existence of an optimal
value for α, we have no way to search for it.

4.2 Both-side Bounded Partition for k-connected Graphs
In this section, we prove Theorem 7 by giving a both-side bounded approximate GL partition.
The full correctness and runtime proofs of the algorithm can be found in Appendix C.

For achieving a simultaneous lower and upper bounded partition, as a starting point, we
apply Theorem 12 with α = 1

3 obtaining a lower and upper bounded packing T = {T1, . . . , Tk}

10 Connected k-part. of k-conn. & c-claw-free graphs

with 1
3 wi ≤ w(Ti) ≤ wi for every i ∈ [k]. As long as T is not a CVP of V yet, we transfer a

subset of the remaining vertices V \ V (T) through a path in an auxiliary graph to elements
in T , while making sure that for each i, 1

3 wi ≤ w(Ti) ≤ max{r, 3}w(Ti). We call one such
transfer a transferring-iteration. We define T ∗ := {T1, T2, . . . , Tj} where j is the smallest
number such that w(Ti) ≥ wi for i ∈ [j] and w(Tj+1) < wj+1. In case of wa = wb and
w(Ta) ≥ wa, but w(Tb) < wb we assume that a < b. Note that this is easily realizable by
a relabeling of indices. Observe that T ∗ = ∅ if w(T1) < w1. As a measure of progress,
we guarantee in each transferring-iteration that either the cardinality of T ∗ increases, or
the number of vertices in V (T) increases. Also, the cardinality of T ∗ is non-decreasing
throughout the algorithm. Note that if Ti ∈ T ∗ for all i, then it follows that w(Ti) = wi for
all i and moreover, T is a CVP.

Let T = {T1, . . . , Tk} be a connected packing of V in G with w(Ti) ≤ max{r, 3}wi for
every i ∈ [k]. We use Q to denote the vertex sets forming the connected components of
G[V \ V (T)]. We define T + := {Ti ∈ T | w(Ti) ≥ wi} and T − := T \ T +. Note that
T ∗ ⊆ T +. Analogous to section 4.1, we define T +

a as the set of Ti ∈ T + that do not have a
wi-separator vertex and T +

b to be the ones in T + having a wi-separator. For Ti ∈ T +
b , we

use s(Ti) to denote its wi-separator (if there are multiple we fix one arbitrarily) and C(Ti)
to denote the vertex sets forming the connected components of G[Ti \ {s(Ti)}]. We say a
vertex v ∈ V or a vertex set V ′ ⊆ V is T -assigned if v ∈ V (T) or V ′ ⊆ V (T), respectively.
That is, the set of T -assigned vertices is V (T) and V (Q) is the set of not T -assigned vertices.
We say T is pack-satisfied if |T | = k, each Tj ∈ T is connected, w(Tj) ∈ [1

3 wj , max{r, 3}wj],
and the vertex sets in T are pairwise disjoint.

We define the transfer-graph H = (VH , EH) as VH := (
⋃

T ∈T +
b

C(T)) ∪ T +
a ∪ T − ∪ Q and

EH := {(V1, V2) ∈
(VH

2
)

| NG(V1) ∩ V2 ̸= ∅}.

Algorithm DoubleBoundedGL

1. Apply Theorem 12 with α = 1
3 on G to obtain a connected packing T = {T1, . . . , Tk}

with w(Ti) ≥ 1
3 wi for every i ∈ [k].

2. While Q ≠ ∅:

2.1. Find a minimal path in H from Q to T −. Let this path be P Ti

Q where Q ∈ Q and
Ti ∈ T −.
// Note that all vertices in P Ti

Q except the start and end vertex are in
T +

a ∪
⋃

T ∈T +
b

C(T) by minimality of the path. The existence of a path
from Q to T − is shown in Lemma 26.

2.2. Execute the TransferVertices routine given below, which augments vertices through
the path P Ti

Q such that T stays pack-satisfied, and either |T ∗| increases, or |T ∗| remains
the same and the number of T -assigned vertices increases.

We need some more notations for describing the TransferVertices routine. For V ′
H ⊆ VH

and T ′ ⊆ T we define T ′(V ′
H) as the set {Ti ∈ T ′ | V (Ti) ∩ V (V ′

H) ̸= ∅}. For H ′ ⊆ H we
define T ′(H ′) := T ′(VH(H ′)), and V (H ′) := V (VH(H ′)). With |P Ti

Q | we denote the length
of the path P Ti

Q , i.e. the number of edges in P Ti

Q . We define P ℓ
Q as the vertex with distance ℓ

to Q in P Ti

Q , where P 0
Q = Q, and define T (P ℓ

Q) for ℓ ∈ [|P Ti

Q |] as the function which returns
Tj with P ℓ

Q ⊆ Tj . For T ′ ⊆ T we define I(T ′) := {i | Ti ∈ T ′}.
The TransferVertices routine transfers vertices through the path P Ti

Q . Our input is
a pack-satisfied T and a P Ti

Q path according to Step 2.2 in algorithm DoubleBoundedGL.
By the minimality of the path T Ti

Q , it is clear that VH(P Ti

Q) \ {Q, Ti} ⊆ T +
a ∪

⋃
T ∈T +

b
C(T).

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 11

That is, except for the destination Ti we run only through vertex sets from T + in T (P Ti

Q).
Roughly, our goal is to transfer vertices of V (P Ti

Q − Ti) to Ti, thereby changing the division
of the vertex sets T (P Ti

Q) and preserving the vertex sets in T ∗.
We often need to do a truncate operation on sets Tj with w(Tj) > max{r, 3}wj . We

mean by truncate Tj that we remove vertices from Tj until wj ≤ w(Tj) ≤ max{r, 3}wj such
that Tj remains connected. This can be done by removing a non-seperator vertex from Tj

until the weight drops below max{r, 3}w(Tj). Note that any connected graph has at least
one non-seperator vertex. Since wmax ≤ wj we know that the weight does not go below wj

during the last deletion.

Algorithm TransferVertices:

1. Initialize X := Q and let u = min(I(T −)).
2. For ℓ = 1 to |P Ti

Q | do:
2.1. Let Tj = T (P ℓ

Q).
2.2. If w(X) ≥ wu: set Tu = X. Truncate Tu if necessary and terminate the algorithm.
2.3. If w(X ∪ Tj) ≤ max{r, 3}wj : update Tj to X ∪ Tj and terminate the algorithm.
2.4. If Tj /∈ T ∗: Set T ′

j = Tj ∪ X, Tj = Tu and Tu = T ′
j . Truncate Tj and Tu if necessary

and terminate the algorithm.
2.5. If Tj ∈ T +

a : divide Tj ∪ X into connected vertex sets V1, V2 with w(V1), w(V2) ≥ wj

using the construction given by Lemma 11. Set Tj = V1 and Tu = V2. Truncate Tj

and Tu if necessary and terminate the algorithm.
2.6. We know Tj ∈ T +

b ∩ T ∗. Set X = X ∪ P ℓ
Q and remove P ℓ

Q from Tj .

References
1 Curtis A Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs a comparative

survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1:13–22, 1998.
2 R Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. A polynomial-time algorithm

for max-min partitioning of ladders. Theory of Computing Systems, 34(4):353–374, 2001.
3 Ronald Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. Max-min partitioning of

grid graphs into connected components. Networks: An International Journal, 32(2):115–125,
1998.

4 Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz. Recent
advances in graph partitioning. In Algorithm Engineering, pages 117–158. Springer, 2016.

5 Paolo M Camerini, Giulia Galbiati, and Francesco Maffioli. On the complexity of finding
multi-constrained spanning trees. Discrete Applied Mathematics, 5(1):39–50, 1983.

6 Katrin Casel, Tobias Friedrich, Davis Issac, Aikaterini Niklanovits, and Ziena Zeif. Balanced
crown decomposition for connectivity constraints. arXiv preprint arXiv:2011.04528, 2020.

7 L. Sunil Chandran, Yun Kuen Cheung, and Davis Issac. Spanning tree congestion and
computation of generalized györi-lovász partition. In 45th International Colloquium on
Automata, Languages, and Programming, volume 107 of LIPIcs, pages 32:1–32:14, 2018.

8 Frédéric Chataigner, Liliane Benning Salgado, and Yoshiko Wakabayashi. Approximation and
inapproximability results on balanced connected partitions of graphs. Discrete Mathematics
and Theoretical Computer Science, 9(1), 2007.

9 Guangting Chen, Yong Chen, Zhi-Zhong Chen, Guohui Lin, Tian Liu, and An Zhang. Approx-
imation algorithms for the maximally balanced connected graph tripartition problem. Journal
of Combinatorial Optimization, pages 1–21, 2020.

10 Jiangzhuo Chen, Robert D Kleinberg, László Lovász, Rajmohan Rajaraman, Ravi Sundaram,
and Adrian Vetta. (almost) tight bounds and existence theorems for single-commodity confluent
flows. Journal of the ACM (JACM), 54(4):16, 2007.

12 Connected k-part. of k-conn. & c-claw-free graphs

11 Yong Chen, Zhi-Zhong Chen, Guohui Lin, Yao Xu, and An Zhang. Approximation algorithms
for maximally balanced connected graph partition. In International Conference on Combinat-
orial Optimization and Applications, pages 130–141. Springer, 2019.

12 Janka Chlebíková. Approximating the maximally balanced connected partition problem in
graphs. Information Processing Letters, 60(5):225–230, 1996.

13 An-Chiang Chu, Bang Ye Wu, and Kun-Mao Chao. A linear-time algorithm for finding an edge-
partition with max-min ratio at most two. Discrete Applied Mathematics, 161(7-8):932–943,
2013.

14 Maria Chudnovsky and Paul Seymour. Claw-free graphs. i. orientable prismatic graphs.
Journal of Combinatorial Theory, Series B, 97(6):867–903, 2007.

15 Maria Chudnovsky and Paul Seymour. Claw-free graphs. ii. non-orientable prismatic graphs.
Journal of Combinatorial Theory, Series B, 98(2):249–290, 2008.

16 Maria Chudnovsky and Paul Seymour. Claw-free graphs. iii. circular interval graphs. Journal
of Combinatorial Theory, Series B, 98(4):812–834, 2008.

17 Maria Chudnovsky and Paul Seymour. Claw-free graphs. iv. decomposition theorem. Journal
of Combinatorial Theory, Series B, 98(5):839–938, 2008.

18 Maria Chudnovsky and Paul Seymour. Claw-free graphs. v. global structure. Journal of
Combinatorial Theory, Series B, 98(6):1373–1410, 2008.

19 Maria Chudnovsky and Paul Seymour. Claw-free graphs vi. colouring. Journal of Combinatorial
Theory, Series B, 100(6):560–572, 2010.

20 Maria Chudnovsky and Paul Seymour. Claw-free graphs. vii. quasi-line graphs. Journal of
Combinatorial Theory, Series B, 102(6):1267–1294, 2012.

21 Maria Chudnovsky and Paul D Seymour. The structure of claw-free graphs. Surveys in
combinatorics, 327:153–171, 2005.

22 Phillip EC Compeau, Pavel A Pevzner, and Glenn Tesler. How to apply de bruijn graphs to
genome assembly. Nature biotechnology, 29(11):987–991, 2011.

23 Marek Cygan, Geevarghese Philip, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry
Wojtaszczyk. Dominating set is fixed parameter tractable in claw-free graphs. Theoretical
Computer Science, 412(50):6982–7000, 2011.

24 Yuri Faenza, Gianpaolo Oriolo, and Gautier Stauffer. Solving the weighted stable set problem
in claw-free graphs via decomposition. Journal of the ACM (JACM), 61(4):1–41, 2014.

25 Greg N. Frederickson. Optimal algorithms for tree partitioning. In Proceedings of the Second
Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pages 168–177. ACM/SIAM,
1991.

26 E Gyori. On division of graphs to connected subgraphs, combinatorics. In Colloquia Mathem-
atica Societatis Janos Bolyai, 1976, 1976.

27 Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen. Parameterized complexity of
induced graph matching on claw-free graphs. Algorithmica, 70(3):513–560, 2014.

28 Alexander Hoyer. On the Independent Spanning Tree Conjectures and Related Problems. PhD
thesis, Georgia Institute of Technology, 2019.

29 Davis Issac. On some covering, partition and connectivity problems in graphs. 2019.
30 Takehiro Ito, Xiao Zhou, and Takao Nishizeki. Partitioning a graph of bounded tree-width

to connected subgraphs of almost uniform size. Journal of discrete algorithms, 4(1):142–154,
2006.

31 Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algorithm. SIAM Journal on
Computing, 6(1):151–154, 1977.

32 László Lovász. A homology theory for spanning tress of a graph. Acta Mathematica Academiae
Scientiarum Hungarica, 30(3-4):241–251, 1977.

33 Christian Löwenstein, Dieter Rautenbach, and Friedrich Regen. On spanning tree congestion.
Discrete mathematics, 309(13):4653–4655, 2009.

34 Mario Lucertini, Yehoshua Perl, and Bruno Simeone. Most uniform path partitioning and its
use in image processing. Discrete Applied Mathematics, 42(2-3):227–256, 1993.

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 13

35 Rolf H Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas Willhalm.
Partitioning graphs to speedup dijkstra’s algorithm. Journal of Experimental Algorithmics
(JEA), 11:2–8, 2007.

36 Yehoshua Perl and Stephen R Schach. Max-min tree partitioning. Journal of the ACM
(JACM), 28(1):5–15, 1981.

37 Hitoshi Suzuki, Naomi Takahashi, and Takao Nishizeki. A linear algorithm for bipartition of
biconnected graphs. Information Processing Letters, 33(5):227–231, 1990.

38 Koichi Wada and Kimio Kawaguchi. Efficient algorithms for tripartitioning triconnected
graphs and 3-edge-connected graphs. In International Workshop on Graph-Theoretic Concepts
in Computer Science, pages 132–143. Springer, 1993.

39 Xing Zhou, Huaimin Wang, Bo Ding, Tianjiang Hu, and Suning Shang. Balanced connected task
allocations for multi-robot systems: An exact flow-based integer program and an approximate
tree-based genetic algorithm. Expert Systems with Applications, 116:10–20, 2019.

A Missing details from Section 3

A.1 Full Proof of Theorem 1
Let G = (V, E, w) be a vertex-weighted K1,c-free graph. Consider DFS-tree Tr of G rooted
at r ∈ V (G). We state the following easy to see fact without proof.

▶ Lemma 15. In Tr, each vertex has at most c − 1 children.

Using this property, the following lemma finds a balanced connected vertex set, whose
removal does not disconnect the graph.

We now prove this slight reformulation of Lemma 9.

▶ Lemma 16. Given a K1,c-free graph G and a DFS-tree Tr of G. If w(G) ≥ λ ≥ wmax,
then there is an algorithm that finds a connected vertex set S such that λ ≤ w(S) < (c − 1)λ
and G − S is connected, in O(|V |) time. Furthermore, the algorithm also finds a DFS-tree of
G − S.

Proof. There exist a vertex v with children v1, . . . , vℓ such that w(Tv) ≥ λ, and that
w(Tvi) < λ for each i ∈ [ℓ]. Such a vertex can be easily found by a bottom up traversal from
the leaves in O(|Tv|) ⊆ O(|V |) time. If λ ≤ w(Tv) < (c − 1)λ, then we set S = V (Tv) and
Tr − S is a spanning DFS-tree in G − S, and we are done.

The remaining case is when w(Tv) ≥ (c − 1)λ and w(Tvi
) < λ for every i ∈ [ℓ]. By

Lemma 15, we obtain ℓ ≤ c − 1. In fact ℓ = c − 1 as otherwise w(v) needs to have more than
λ ≥ wmax weight in order for Tv to have (c − 1)λ weight, a contradiction.

If v = r, then we choose S = {r} ∪
⋃c−2

i=1 V (Tvi). S is a connected subgraph with
w(S) = w(v) +

∑c−2
i=1 w(Tvi

) < wmax + (c − 2)λ ≤ (c − 1)λ and w(S) = w(Tv) − w(Tc−1) ≥
(c − 1)λ − λ = (c − 2)λ ≥ λ. Moreover, Tvc−1 is a DFS-tree for G − S.

Now, consider v ̸= r. Let u be the parent of v in Tr. By ℓ = c − 1 we obtain that
Tr[{u} ∪ {v} ∪

⋃c−1
i=1 {vi}] is a K1,c. Consequently, there exists an edge uvj ∈ E \ E(Tr) for at

least one j ∈ [c − 1], since G is K1,c-free. We set S = {v} ∪
⋃

i∈[c−1]\{j} V (Tvi
) as connected

vertex set and obtain analogously to the case v = r the desired weight conditions for S.
Finally, we remove S from Tr and add the edge uvj to Tr to obtain a DFS-tree of G − S. ◀

We now give the algorithm BalancedPartition that takes as input a connected vertex-
weighted K1,c-free graph G(V, E, w) and an integer λ ≥ wmax.

14 Connected k-part. of k-conn. & c-claw-free graphs

Algorithm BalancedPartition: Compute a DFS-tree Tr rooted at r ∈ V in G and initialize
S ′ = ∅. Until w(Tr) < (c − 1)λ use Lemma 9 to remove a connected set S from G, add
it to S ′, and update Tr to be the DFS-tree of G − S given by Lemma 9. Finally, return
S = S ′ ∪ {V \ V (S ′)}.

The following lemma follows easily from the construction of Algorithm BalancedPartition
and Lemma 9.

▶ Lemma 17. Given G and λ ≥ wmax, algorithm BalancedPartition provides a CVP S =
{S1, . . . , Sm} of V such that w(Si) ∈ [λ, (c − 1)λ) for every i ∈ [m − 1] and w(Sm) < (c − 1)λ
in linear time.

Proof. Let w(G) ≥ (c − 1)λ. First of all, observe that the preconditions of Lemma 9 are
satisfied at the first application of it. Generally, if an iteration is executed, then we obtain a
connected subgraph S with w(S) ∈ [λ, (c − 1)λ), which we add to S ′, and a DFS-tree Tr in
G[V \ V (S ′)]. Thus, the preconditions of Lemma 9 are still maintained after an iteration if
the working tree Tr weighs at least λ.

We only remove vertices S from Tr and add S to S ′. Hence, the vertex sets in S ′

are pairwise disjoint. We apply Lemma 9 until w(Tr) is less than (c − 1)λ. Since Sm =
V \ V (S ′) = V (Tr), the vertex set Sm is a connected vertex set disjoint from the vertex sets
in S ′ and by the termination criteria Sm weighs less than (c − 1)λ. As a result, {S1, . . . , Sm}
is the desired CVP.

Lastly, we analyze the running time. Computing a DFS-tree Tr runs in time O(|V | + |E|).
By starting from the leaves and using suitable data structures we can find Tv according to
Lemma 9 in O(|Tv|). Note that in case we add an edge ux ∈ E as explained in the proof of
Lemma 9, where u is the parent of v and x a child of v in the modified Tr, we have already
the subtree Tx with its corresponding weight w(Tx) < λ in hand, i.e. we do not need to
proceed a second time through the vertices V (Tx). Thus, filling S ′ by the resulting vertex
sets from Lemma 9 can be performed in time O(|V |), since the vertex sets in S ′ are pairwise
disjoint and we see them once in the algorithm. As a result, the algorithm runs in time
O(|E|). ◀

We now prove Theorem 1 by appropriately choosing λ in algorithm BalancedPartition.

Proof of Theorem 1. Set λ = max{wmax, w(G)
k }. Let X∗ be the optimal value of Min-Max

BCPk on G. Observe that λ ≤ X∗. Now, apply algorithm BalancedPartition with λ as
input parameter to obtain a CVP S = {S1, . . . , Sm}, where w(Si) ∈ [λ, (c−1)λ) for i ∈ [m−1]
and w(Sm) < (c − 1)λ. By λ ≤ X∗ we obtain that maxi∈[m] w(Si) < (c − 1)λ ≤ (c − 1)X∗. It
remains to show that m ≤ k. We have w(G) = w(Sm) +

∑m−1
i=1 w(Si) ≥ w(Sm) + (m − 1)λ >

m−1
k w(G), which implies m ≤ k. ◀

A.2 Full Proof of Theorem 2
We also use the algorithm BalancedPartition for the max-min objective. The following
property is immediate but useful.

▶ Corollary 18. Let S be the output of algorithm BalancedPartition. For every j ∈ [|S|]
the subgraph G −

⋃j
i=1 Si is connected.

Let (G, k) be an instance of Max-Min BCP, where G is a K1,c-free graph. Let X∗

be the optimal value for the instance (G, k). For any given X ≤ w(G)/k, we design an
algorithm that either gives a [⌊X/(c − 1)⌋, ∞)-CVPk, or reports that X > X∗. Note that

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 15

X∗ ≤ w(G)/k. Once we have this procedure in hand, a binary search for the largest X in
the interval (0, ⌈w(G)/k⌉] for which we find a [⌊X/(c − 1)⌋, ∞)-CVPk can be used to obtain
an approximate solution for Max-Min BCP.
Algorithm MaxMinApx: First remove all vertices of weight more than λ = ⌊X/(c − 1)⌋
and save them in H. Then save the connected components of weight less than λ in Q.
Let V = {V1, . . . , Vℓ} be the connected components of G − (H ∪ V (Q)). Apply algorithm
BalancedPartition on each G[Vi] with λ as input parameter to obtain Si = {Si

1, . . . , Si
mi

}
for every i ∈ [ℓ]. If for some i ∈ [ℓ] the weight w(Smi) is less than λ, then merge this
vertex set with Smi−1 and accordingly update Si. Further, compute a (λ, ∞)-CVP|H| SH

of G[H ∪ V (Q)] as follows: for each h ∈ H, we will have a set Sh ∈ SH with h ∈ Sh; we add
each Q ∈ Q to some Sh such that h ∈ N(Q). Let S = SH ∪

⋃ℓ
i=1 Si. If |S| ≥ k, then merge

connected sets arbitrarily in S until |S| = k and return S. If |S| < k, report that X > X∗.

We point out that a [λ, ∞)-CVPj with j > k, can easily be transformed to a [λ, ∞)-CVPk,
since the input graph is connected. To prove that the algorithm works correctly, we need to
show that MaxMinApx returns the desired [λ, ∞)-CVPk if |S| = k, where λ = ⌊X/(c − 1)⌋.
Furthermore, we need to show that if the algorithm terminates with |S| < k and reports
X > X∗ that this is indeed true. These facts will finally lead us to a successful application
of a binary search and in turn to an approximate solution.

▶ Lemma 19. If algorithm MaxMinApx returns S, then S is a [λ, ∞)-CVPk of V .

Proof. If algorithm MaxMinApx returns S, then we have |S| = k. Therefore, we only need to
show that w(S) ≥ λ and that every S ∈ S is connected. Consider S ∈ SH . By construction
S contains exactly one h ∈ H and some Q ∈ Q with h ∈ N(Q). Hence, S is connected.
Moreover, w(h) > λ for every h ∈ H by the choice of those vertices and hence w(S) > λ.

Let G[Vi] for i ∈ [ℓ] be a connected component of G − (H ∪ V (Q)) with w(Vi) ≥ λ.
We applied algorithm BalancedPartition for G[Vi] with λ as input and obtained a CVP
S = {S1, . . . , Sm} of Vi with w(Si) ∈ [λ, (c − 1)λ) for every i ∈ [m − 1] and w(Sm) < (c − 1)λ
(cf. Lemma 17). Thus, Si ∈ {S1, . . . , Sm−1} is connected and weighs at least λ. If w(Sm) < λ,
then we merge Sm−1 with Sm, where G[Sm ∪ Sm−1] is connected, which we derive from
Corollary 18 as G[Sm ∪ Sm−1] = G[Vi] −

⋃m−2
i=1 Si. ◀

For completeness, we repeat.

▶ Lemma 20. If Algorithm MaxMinApx terminates with |S| < k, then X > X∗.

Proof. Let H, Q, V = {V1, . . . , Vℓ} be the computed vertices and connected vertex sets in
the algorithm for λ = ⌊X/(c − 1)⌋, respectively. Recall that w(Vi) ≥ λ for every Vi ∈ V and
w(Q) < λ for every Q ∈ Q. Let S∗ = {S∗

1 , . . . , S∗
k} be an optimal solution of (G, k), i.e.,

S∗ is an [X∗, ∞)-CVPk of V . Consider the sets VH∪Q := {S∗
i ∈ S∗|S∗

i ∩ (H ∪ V (Q)) ̸= ∅},
V1 := {S∗

i ∈ S∗|S∗
i ∩ V1 ̸= ∅} \ VH∪Q, . . . , Vℓ := {S∗

i ∈ S∗|S∗
i ∩ Vℓ ̸= ∅} \ VH∪Q. We claim

that these sets are a partition of S∗. This follows directly from the fact that H separates
all Vi ∈ V and all Q ∈ Q from each other. That is, for an i ∈ [k] and j ∈ [ℓ] the connected
vertex set S∗

i with S∗
i ∩ Vj ̸= ∅ and S∗

i ∩ V \ Vj ̸= ∅ contains at least one h ∈ H and hence
S∗

i ∈ VH∪Q. Otherwise, if S∗
i ⊆ Vj , then S∗

i ∈ Vj .
Suppose MaxMinApx terminates with |S| < k although X ≤ X∗. We show that

∣∣VH∪Q
∣∣ ≤

|H| and
∣∣Vi

∣∣ ≤ |Si| for every i ∈ [ℓ], implying that |S∗| ≤ |H| +
∑ℓ

i=1 |Si| = |S| < k, which
contradicts |S∗| = k.

First, we show
∣∣SH∪Q

∣∣ ≤ |H|. For this, it is sufficient to prove that S∗
i ∩ H ̸= ∅ for

each S∗
i ∈ VH∪Q as S∗ is a partition of V . We prove this by contradiction. Suppose

16 Connected k-part. of k-conn. & c-claw-free graphs

there is an S∗
i ∈ VH∪Q, such that S∗

i ∩ H = ∅. This implies that S∗
i ⊆ Q for some

Q ∈ Q, since H separates every Q ∈ Q from every other Q′ ∈ Q \ {Q} and from the
vertices V \ (H ∪ V (Q)). Thus, w(S∗

i) ≤ w(Q) < λ by the definition of Q and therefore
w(S∗

i) < λ = ⌊X/(c − 1)⌋ ≤ ⌊X∗/(c − 1)⌋, contradicting mini∈[k] w(S∗
i) = X∗.

It remains to show that
∣∣Vi

∣∣ ≤ |Si| for every i ∈ [ℓ]. Fix an i ∈ [ℓ] and let G[Vi] with λ

be the input when calling algorithm BalancedPartition. Observe that the input is valid,
since G[Vi] is connected by definition and w(G[Vi]) ≥ λ ≥ maxv∈Vi

w(v) as H contains all
vertices that have weight more than λ. Algorithm BalancedPartition provides a CVP
Si = {Si

1, . . . , Si
mi

} of Vi with w(Si
j) ∈ [λ, (c−1)λ) for every j ∈ [mi−1] and w(Si

mi
) < (c−1)λ.

Consider Si before merging, i.e. we do not merge Si
mi

to Si
mi−1 in the algorithm MaxMinApx

if w(Smi
) < λ. That is, w(Sm) < λ is possible, and we need to show

∣∣Vi
∣∣ ≤ mi − 1 = |Si| − 1.

Observe for S∗ ∈ Vi that S∗ ⊆ Vi, i.e.
∑mi

j=1 w(Si
j) ≥

∑
S∗∈Vi w(S∗). As a result, we have

|Si|X ≥ |Si|(c − 1)λ >
∑mi

j=1 w(Si
j) ≥

∑
S∗∈Vi w(S∗) ≥ |Vi|X∗. Consequently, by X ≤ X∗

we obtain |Vi| < |Si|, which leads to |Vi| ≤ |Si| − 1. ◀

Running time:

Finding the heavy vertices H and computing the resulting connecting components V =
{V1, . . . , Vℓ} of G − H can be performed in time O(|E|). The algorithm BalancedPartition
runs in time O(|E(G[Vi])|) by Lemma 17 for every i ∈ [ℓ] and consequently, in O(|E|) in
total as the vertex sets in V are pairwise disjoint. Hence, algorithm MaxMinApx runs in time
O(|E|).

We modify slightly the binary search to optimize the total running time. Let g(ℓ) :=
2ℓ, N ∋ ℓ ≥ 1. We increase stepwise ℓ in g(ℓ) until we find an ℓ∗ with g(ℓ∗) < X∗ ≤
min (g (ℓ∗ + 1) , w(G)/k) =: X̂ ≤ 2X∗. Afterwards, we perform a binary search in the
interval X ∈

[
g(ℓ∗), X̂

]
. As a result, finding the (c − 1)-approximate solution S runs in

time O ((log X∗ + logX∗) |E|) and thus, we obtain a running time in O (log (X∗) |E|). This
completes the proof of Theorem 2.

B Missing details from Section 4.1

B.1 Preprocessing to get wmax < αwk

Suppose wmax ≥ αwℓ, where ℓ is the smallest index in [k] that satisfies this inequality.
We remove a vertex vmax with w(vmax) = wmax from G and wℓ from W. Further, we set
Tℓ = {vmax} and consider the set for index ℓ to be finished, i.e., we now aim to find a set
T = {T1, . . . , Tℓ−1, Tℓ+1, . . . , Tk} according to W = {w1, . . . , wℓ−1, wℓ+1, . . . , wk}. Observe
that since we only deleted one vertex, G now is at least (k − 1)-connected, and |W| = k − 1.
Note that since wmax ≤ wk ≤ wℓ ≤ 3αwℓ, we have w(Tℓ) ∈ [αwℓ, 3αwℓ] as required.
Also, we obtain w(G) ≥

∑
wj∈W wj after removing wℓ from W and vmax from G. After

this preprocessing step, we can assume that we have a k-connected graph G = (V, E, w)
and natural numbers w1, . . . , wk sorted in descending order, where

∑k
i=1 wi ≤ w(G) and

wmax < αwk.

B.2 Missing lemmas for correctness of BoundedGL

Proof of Theorem 6 given Theorem 12. First we prove the lower-bound version. Apply
Theorem 12 on G with α = 1

3 and let T = {T1, . . . , Tℓ} be the resulting vertex sets. For each
Ti ∈ T , we have that 1

3 wi ≤ w(Ti) ≤ wi. We claim that ℓ = k. Indeed, if ℓ < k, then since

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 17

w(Ti) ≤ wi for every i ∈ [ℓ], we have that
∑ℓ

i=1 w(Ti) <
∑k

i=1 wi = w(G), and hence T is
not a CVP, a contradiction to Theorem 12. Note that each Ti ∈ T already satisfies the
required lower bound of w(Ti) ≥ 1

3 wi. Now, we can obtain the desired CVP T ∗ by adding
each connected component Q of G \ V (T) to an arbitrary vertex set in T that has an edge
to Q.

Now, we prove the upper-bound version. Apply Theorem 12 on G with α = 1 and let T =
{T1, . . . , Tℓ} be the resulting vertex sets. For each Ti ∈ T , we have that wi ≤ w(Ti) ≤ 3wi.
We claim that T is a CVP of V . Indeed, by Theorem 12, if T is not a CVP, then ℓ = k but
then since w(Ti) ≥ wi for every i ∈ [ℓ], we get

∑ℓ
i=1 w(Ti) = w(G), a contradiction. Note

that each Ti ∈ T already satisfies the required upper bound of w(Ti) ≤ 3wi. If ℓ = k, then
w(Ti) = wi for every i ∈ [k] and we are done. In case ℓ < k we remove an arbitrary vertex v

from a vertex set T ∈ T with |T | ≥ 2 (at least one such set exists due to k-connectivity),
such that T is still a connected vertex set, and we add {v} as a new set to T . We repeat
this till |T | = k. Now, the resulting T is a CVP with the desired upper bound conditions,
since we only remove vertices from already existing sets in T and since wmax ≤ wk the new
singleton vertex sets in T satisfy the required upper bound conditions. Observe that this
last step does not work, if we do not require wmax ≤ wk. ◀

Proof of Lemma 14. The occurrence of one of the two cases in Step 2.2 is shown in Lemma 21.
For the correctness of Case 1, observe that we can use Lemma 11 to divide Tj ∪ Q, as Tj ∪ Q

cannot have an (αwj)-separator (this would give an (αwj)-separator for Tj implying that
Tj ∈ Tb). It remains to prove that the inner loop terminates as claimed. If Step 2.2.1 is
executed, then an i-big component is created in G as G now contains V1 returned by the
divide-routine, and hence the loop is terminated. The same yields if we apply the divide
routine in Step 2.2.2. So, suppose the inner loop never executes the divide routine. In the
other cases, either a connected component is deleted from G or new vertices are added to a
connected component in G. Also note that new connected components are not introduced to
G and vertices are not deleted from existing connected components (except when the whole
connected component is removed; also, two or more connected components may merge due
to the introduction of new vertices to G). Thus, after |V |2 iterations either there is an i-big
component or G is empty. ◀

▶ Lemma 21. In Step 2.2 at least Case 1 or Case 2 occurs.

Proof. Suppose Case 1 does not occur i.e., Q does not have an edge to any Tj ∈ Ta. For
Tj ∈ Tb, let sj denote the fixed (αwj)-seperator vertex. Since G is k-connected and |T | < k,
there is an edge from Q to at least one vertex in

⋃
Tj∈Tb

Tj \ {sj}. Thus, Case 2 occurs. ◀

▶ Lemma 22. Whenever the divide routine in algorithm BoundedGL is to be executed, there
is at least one i-big component in G.

Proof. When i = 1 i.e. in the first main loop iteration, this holds because G = G is connected
and αw1 ≤ w1 ≤

∑k
i=1 wi ≤ w(G). For the subsequent iterations, the divide routine is only

applied after the inner loop is terminated which only happens if either G is empty or has an
i-big component. In case G is empty, then the algorithm terminates. So, if the algorithm
applies the divide routine in the inner loop, then G has an i-big component. ◀

B.3 Runtime analysis of BoundedGL

▶ Lemma 23. The algorithm BoundedGL runs in O(k|V |2|E|) time.

18 Connected k-part. of k-conn. & c-claw-free graphs

Proof. Clearly, the main loop has at most k iterations and the inner loop has at most |V |2
iterations by Lemma 14.

We categorize only the elements in T that satisfy w(Tj) ≥ 2αwj into Ta and Tb. Note
that w(Q) < wi as Q is i-small. That is, at the point where some Tj ∈ T exceeds 2αwj , its
weight is less than 3αwj and the category of Tj can be computed. Consequently, reaching
Step 2.2.2 means that we have w(Tj) ≥ 2αwj . Otherwise, we have w(Tj ∪ Q) ≤ 3αwj and
would iterate with the next i-small connected component of G. Now, in case we remove
Q′ from Tj in Step 2.2.2 will show that the weight still satisfies w(Tj \ Q′) ≥ 2αwj to
avoid a re-categorization of Tj . This finally will ensure that we can bound the number of
categorizations of T ∈ T into Ta and Tb throughout the whole algorithm by 2k. Moreover,
that we can realize a check whether Tj ∪ Q is αwj-dividable in Step 2.2.2 in linear time.
Observe by Lemma 11 that a Tj ∈ Ta will never change its category except when we execute
the divide routine on Tj in Step 2.2.1. Now, we want to ensure the same for the elements in
Tb in Step 2.2.2.

▷ Claim 24. Let Tj ∈ Tb with w(Tj) ≥ 2αwj and w(Tj ∪ Q) ≥ 3αwj , where w(Q) < wj . If
G[V (C(Tj)) ∪ Q] contains a component R ⊂ Tj ∪ Q with weight at least αwj , then Tj ∪ Q is
αwj-dividable.

Proof. Clearly R contains Q as Tj ∈ Tb and Q connects some components in Q ⊆ C(Tj). As
long Q weigh less than αwj we add individual Q′′ ∈ Q to Q. By w(Q′′) < αwj we can ensure
that the resulting Q weighs less than 2αwj and thus w(Tj \ Q) ≥ αwj as w(Tj ∪ Q) ≥ 3αwj .
Since every component of C(Tj) is connected to sj , we produce with Q and Tj \ Q two
connected vertex sets each of weight at least αwj . ◀

▷ Claim 25. Let Tj ∈ Tb with w(Tj) ≥ 2αwj and w(Tj ∪ Q) ≥ 3αwj , where w(Q) < wj . If
G[V (C(Tj)) ∪ Q] contains no component with weight at least αwj , then in Step 2.2.2 we
have w(Tj \ Q′) ≥ 2αwj . Furthermore, after removing Q′ from Tj we have Tj ∈ Tb with the
same αwj-separator sj .

Proof. Q′ is connected to Q and w(Q∪Q′) < αwj as G[V (C(Tj))∪Q] contains no component
with weight of at least αwj . Thus, w(Tj \ Q′) < 2αwj contradicts w(Tj ∪ Q) ≥ 3αwj . The
second part of the claim is obviously true as we remove only Q′ from C(Tj). ◀

As a result, once a T ∈ T is categorized, then a re-categorization is only necessary if we
apply the divide routine on T . Since this can happen once in the outer loop and this loop is
executed at most k times, we get at most k additional re-categorizations and therefore in
total at most 2k categorizations. Hence, by Lemma 11 we may realize this in O(k|V ||E|).

It remains to analyze the steps in the inner loop. Applying the divide routine in Step 2.2.1
or in Step 2.2.2 can be performed in O(|V ||E|) by Lemma 11. This occurs at most once per
iteration of the outer loop as the inner loop terminates once a divide routine is executed;
note that the divide routine creates the i-big component V1 in G. All other individual steps
can be easily realized in time O(|E|), also the check, whether Tj ∪ Q is αwj-dividable in
Step 2.2.2 (cf. Claim 24). Thus the claimed runtime follows. ◀

C Missing details from Section 4.2

First we show the existence of the required path in Step 2.1 of DoubleBoundedGL.

▶ Lemma 26. In the algorithm DoubleBoundedGL, whenever Step 2.1 is reached, the sets Q
and T − are non-empty and there is a path from Q to T − in H.

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 19

Proof. We know that Q ̸= ∅ due to the while loop condition. Note that if |T +| = k, then
we have a perfect partition, i.e. w(Ti) = wi for every i ∈ [k] as

∑k
i=1 wi = w(G), and hence

Q = ∅. Thus, we have that |T +| < k and T − ̸= ∅. Since |s(T +)| < k, G − s(T +) is
connected. Hence, the transfer-graph H is connected by construction. Since Q, T − ̸= ∅,
there is a path from Q to T − in H. ◀

Now we show the correctness of TransferVertices.

▶ Lemma 27. After a call of algorithm TransferVertices, either |T ∗| increases, or |T ∗|
remains same and the number of T -assigned vertices increases. Furthermore, the resulting T
is still pack-satisfied.

Proof. Note that if the precondition of any of the steps 2.2 to 2.5 is satisfied then the
algorithm terminates. Suppose ℓ is the last iteration of the for loop. Then in all of the
iterations 1, 2, · · · , ℓ − 1, Step 2.6 was executed, and none of the Steps 2.2 to 2.5 are executed.
Let T0 be the T input to the TransferVertices routine. Let I∗

0 = I(T0). We show that
after the iteration p for each p ∈ [0, ℓ − 1], the following invariants are satisfied:

1. I(T ∗) = I∗
0 ,

2. T is pack-satisfied,
3. X ⊇ Q,
4. X ∩ V (T) = ∅ ,
5. V (T) ∪ X = V (T0) ∪ Q,
6. G[X] is connected.
7. X has an edge in G to P p+1

Q ,

We prove by induction on p. It is easy to see that all the invariants are satisfied for p = 0
(i.e. before the first iteration). Now, we do the induction step. In the iteration p, we remove
P p

Q from Tj . Since w(P p
Q) ≤ wj , and w(Tj ∪ X) ≥ 3wj (otherwise precondition of Step 2.3

would have been satisfied) and w(X) ≤ wu ≤ wj (if w(X) ≥ wu then precondition of Step 2.2
would have been satisfied; the inequality wu ≤ wj is because Tj ∈ T ∗), we have that Tj still
has at least wj weight after the iteration. Also, w(Tj) ≤ max{r, 3}wj after truncation. Thus
Tj ∈ T + and it follows that invariants 1, 2 are satisfied. Since we only add vertices to X,
invariant 3 is satisfied. Invariant 4 and 5 are satisfied because of the corresponding induction
assumptions and that the vertex set newly added to X is removed from Tj (and hence from
V (T)). Invariant 6 follows as X was connected before (by induction assumption), the newly
added set P p

Q is connected, and there is an edge from X to P p
Q (by induction assumption).

Since P p
Q has an edge to P p+1

Q , invariant 7 follows.
Now, we analyze the final iteration ℓ. In this iteration, clearly one of the steps 2.2 to 2.5

satisfies the precondition and the algorithm terminates after this step. Note that if ℓ = |P Ti

Q |,
then the precondition of Step 2.4 is satisfied (if that step is reached without termination).
We branch on which of the terminating steps is executed. For each of the steps 2.2 to 2.5 we
show that during the step:

(a) each Tj ∈ T ∗ remains in T +

(b) either Tu moves from T − to T + or the vertices that were in V (T) ∪ X before the step
ends up in V (T) after the step.

(c) T remains pack-satisfied.

The above three statements are sufficient to prove the lemma because: from (a) and (b),
we have that either |T ∗| increases or |T ∗| remains same and all the vertices in V (T) ∪ X

20 Connected k-part. of k-conn. & c-claw-free graphs

becomes T -assigned, during the terminating step. Recall that by invariant 1, we have that
T ∗ remains the same during previous iterations and that V (T) ∪ X = V (T0) ∪ Q before
the terminating step. Thus, we get that during the TransferVertices routine, either T ∗

increases, or |T ∗| remains same and the number of T -assigned vertices increase. From (c),
we get the pack-satisfiability of T .

It only remains to show that for each of the steps 2.2 to 2.5, (a), (b), and (c) are satisfied.

Step 2.2: We have w(X) ≥ wu. Hence, setting Tu = X and truncating Tu ensures that
wu ≤ Tu ≤ max{r, 3}wu. Since X is connected by invariant 6, we have that Tu is
connected. Thus Tu moves from T − to T +. Thus (b) is satisfied. Since the only set in T
that is modified is Tu, (a) and (c) are also satisfied.

Step 2.3: Observe that X has an edge to Tj by invariant 7, and hence X ∪ Tj is connected.
We have w(Tj ∪ X) ≤ max{r, 3}wi by the precondition of the step. Also, w(Tj ∪ X) ≥
w(Tj) ≥ wj where the latter inequality follows from that T was pack-satisfied. Since no
other set in T is modified, we have that (a) and (c) are satisfied. Also, (b) is satisfied as
all vertices that were in X are now T -assigned.

Step 2.4: Observe that X has an edge to Tj by invariant 7, and hence X∪Tj is connected. We
have w(T ′

j) = w(X ∪Tj) > max{r, 3}wj ≥ wu where the former inequality is by using that
precondition of Step 2.3 is not satisfied and the latter is because max{r, 3}wj ≥ w1 ≥ wu.
Thus w(Tu) after the step becomes greater than wu, thus moving Tu to T +. The only
other set in T that is modified is Tj . We know wj < wu as Tj was not in T ∗ (using the
definition of u and T ∗). Thus, before the step we had w(Tu) ≥ 1

3 wu ≥ 1
3 wj , where the

first inequality uses that T was pack-satisfied by invariant 2. This implies that after the
step w(Tj) ≥ 1

3 wj . Also, Tj is connected after the step as Tu was connected before the
step. Truncating Tj and Tu if necessary leads to T being pack-satisfied.

Step 2.5: Note that we have wj ≥ wu as Tj ∈ T ∗ (otherwise the Step 2.4 would have been
executed). The only sets of T that are modified in this step are Tj and Tu. Since V1
and V2 are connected and w(V1), w(V2) ≥ wj ≥ wu, we have that Tj and Tu are each
connected and has weight at least wj and wu respectively. Thus Tj remains in T + and Tu

moves to T +. Truncating Tj and Tu if necessary leads to T being still pack-satisfied. ◀

Now, we show the correctness of DoubleBoundedGL.

▶ Lemma 28. At the end of DoubleBoundedGL, the packing T is a CVPk with the weight
bounds as required by Theorem 7.

Proof. For this, first observe that after at most k|V | iterations of the while-loop V (T) = V (G).
This is because we guarantee that in each iteration, either |T ∗| increases, or |T ∗| remains
same and the number of T -assigned vertices increase. So, the while loop terminates after
k|V | iterations and hence the algorithm terminates with V (T) = V (G). Since we maintained
that T is pack-satisfied, we get that T satisfies the required conditions for the partition
required by Theorem 7. ◀

Finally, we analyze the total running time of algorithm DoubleBoundedGL.

Running time:

We show that the algorithm DoubleBoundedGL runs in time O(k|V |2|E|). Step 1 of algorithm
DoubleBoundedGL runs in time O(k|V |2|E|) by Theorem 6. The dominating steps in the
while loop of Step 2 are the categorization of sets in T into T +

a and T +
b (including finding

R. Borndörfer,K. Casel, D. Issac A. Niklanovits, S. Schwartz and Z. Zeif 21

the seperator s(Ti)) and the Step 2.2 that applies algorithm TransferVertices. The former
can be done in time O(|V ||E|) by Lemma 11.

In algorithm TransferVertices we invoke the divide algorithm of Lemma 11 at most
once as the algorithm terminates in that case (Step 2.5). This costs O(|V ||E|) time by 11. It
is easy to see that each of the other steps in the for loop of algorithm TransferVertices
needs only O(|E|) time. Since |P Ti

Q | ≤ |V |, the number of iterations of for loop is at most
|V |. Thus, algorithm TransferVertices runs in time O(|V ||E|).

The while-loop of DoubleBoundedGL iterates at most k|V | times by Lemma 28. As a
result, algorithm DoubleBoundedGL runs in time O(k|V |2|E|).

	1 Introduction
	1.1 Related work

	2 Preliminaries
	3 Approximation for BCP on c-claw-free graphs
	4 Approximation of the Győri-Lovász Theorem for k-connected Graphs
	4.1 Bounded Partition for k-connected Graphs
	4.2 Both-side Bounded Partition for k-connected Graphs

	A Missing details from section::BCP
	A.1 Full Proof of thm::MinMax
	A.2 Full Proof of thm::MaxMin

	B Missing details from section::GL
	B.1 Preprocessing to get wmax<wk
	B.2 Missing lemmas for correctness of BoundedGL
	B.3 Runtime analysis of BoundedGL

	C Missing details from sec:double-side

