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ABSTRACT
Network Design problems typically ask for a minimum cost sub-

network from a given host network. This classical point-of-view

assumes a central authority enforcing the optimum solution. But

how should networks be designed to cope with selfish agents that

own parts of the network? In this setting, minimum cost networks

may be very unstable in that agents will deviate from a proposed

solution if this decreases their individual cost. Hence, designed

networks should be both efficient in terms of total cost and stable

in terms of the agents’ willingness to accept the network.

We study this novel type of Network Design problem by investi-

gating the creation of (𝛽,𝛾)-networks, that are in 𝛽-approximate

Nash equilibrium and have a total cost of at most 𝛾 times the opti-

mal cost, for the recently proposed Euclidean Generalized Network

Creation Game by Bilò et al. [11]. There, 𝑛 agents corresponding to

points in Euclidean space create costly edges among themselves to

optimize their centrality in the created network. Our main result

is a simple O(𝑛2)-time algorithm that computes a (𝛽, 𝛽)-network
with low 𝛽 for any given set of points. Moreover, on integer grid

point sets or random point sets our algorithm achieves a low con-

stant 𝛽 . Besides these results for the Euclidean model, we discuss a

generalization of our algorithm to instances with arbitrary, even

non-metric, edge lengths. Moreover, in contrast to these algorith-

mic results, we show that no such positive results are possible

when focusing on either optimal networks, i.e., (𝛽, 1)-networks,
or perfectly stable networks, i.e., (1, 𝛾)-networks, as in both cases

NP-hard problems arise, there exist instances with very unstable

optimal networks, and there are instances for perfectly stable net-

works with high total cost. Along the way, we significantly improve

several results from Bilò et al. and we asymptotically resolve their

conjecture about the Price of Anarchy by providing a tight bound.

CCS CONCEPTS
• Theory of computation→ Network formation; Quality of
equilibria; Algorithmic game theory.

KEYWORDS
Geometric Network Design, Network Creation Games, Algorithmic

Game Theory, Price of Anarchy, Approximate Equilibrium

1 INTRODUCTION
Network Design is a classical and rich research area in Operations

Research and Theoretical Computer Science. Core questions in

the Network Design literature target how to construct networks

with favorable properties like low total cost, high robustness, and

good usability. Typically these questions have been addressed as

combinatorial optimization problems. Many special cases like the

Steiner Tree Problem [37], the Optimum Communication Spanning

Tree Problem (ND7 in [31]), the creation of Geometric Spanner

Networks [49] or variants of the Network Design Problem [36]

have been thoroughly studied [30, 33, 43].

However, almost all previous work on these problems simply

assumes that a central authority exists that enforces the optimal

network structure obtained by combinatorial optimization. This

approach is obviously infeasible for networks with no central gov-

erning authority. In such networks the cost of maintaining the

network is typically distributed among the network participants,

and it can happen that the network with the minimum total cost

is not stable, i.e., that selfish participants who own parts of the

network prefer to restructure their part. This may be favorable

for them individually, but not for the whole network, because this

might yield a network with significantly higher total cost. Hence,

stability corresponds to reaching an equilibrium in the strategic

game that models the interaction of the selfish participants. It can

happen that the total cost of any equilibrium of such a game is

much higher than the total cost of the optimum network.

Hence, ideally, in the realm of Network Design, we aim for net-

works that are efficient in terms of total cost and, at the same

time, are as stable as possible. This naturally corresponds to a bi-

criteria optimization problem, i.e., finding networks that are (𝛽,𝛾)-
approximate solutions, where 𝛽 is the approximation factor for the

cost of the individual agent compared to the induced cost by her

best possible strategy and 𝛾 is the total cost ratio with the minimum

possible total cost. Hence in a (𝛽,𝛾)-network no agent can improve
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her cost via a strategy change by more than a factor of 𝛽 , and the

total cost is at most 𝛾 times the cost of the social optimum state.

Extreme cases are (1, 𝛾)-networks, whose analysis yields bounds for
the Price of Anarchy (PoA) [39] or the Price of Stability (PoS) [7, 22],

and (𝛽, 1)-networks that indicate how tolerant the agents have to

be to accept the social optimum network [2].

In this work we set out to explore the design of (𝛽,𝛾)-networks
for a natural strategic Network Design setting, where a network

between nodes that correspond to points in Euclidean space must

be established. Each node represents a selfish agent that strives

for centrality in the created network and edges have a cost that is

proportional to the Euclidean distance between their endpoints.

1.1 Related Work
We will focus our discussion on game-theoretic network formation

models. For an overview over classical Network Design from com-

binatorial optimization, we refer to the surveys by Magnanti and

Wong [43] and Gupta and Könemann [33]. Also related to our work

are results about geometric spanners, in particular, Euclidean span-

ners, that recently have drawn much attention [18, 26, 28, 40]. For

a good overview over geometric spanners, we refer to the excellent

book by Narasimhan and Smid [49].

Game-theoretic models for network formation can be divided

into variants of the Network Design Game (NDG) as introduced by

Anshelevich et al.[7, 8] and variants of the Network Creation Game
(NCG) as introduced by Fabrikant et al. [27].

In the NDG a weighted host network is fixed, and agents want

to connect subsets of nodes, called terminals, from the network. To

do this, the agents decide on payments for the edges of the host

network. Thus, the agents buy a sub-network of the host network

such that all desired terminal connections are established. If agents

can buy arbitrary cost-shares of the edges [8], the PoA is 𝑛, where

𝑛 is the number of agents. Moreover, (3, 1)-networks exist, i.e.,
the cost of the social optimum network can be shared among the

agents to achieve a 3-approximate Nash equilibrium. Similar results

have been achieved for tailored cost-sharing protocols [20], for

the node weighted version [19], and for a version that guarantees

connectivity of the formed network [34]. For the NDGwith fair cost

sharing [7] the PoA is 𝑛, but the PoS is 𝐻𝑛 , i.e., the 𝑛-th harmonic

number, and the latter bound is tight for the version on directed host

networks. Also, Albers and Lenzner [2] showed that instances with

only (Ω(log𝑛), 1)-networks exist if all agents want to connect to the
same terminal. For the general case instances with only (Ω(𝑛), 1)-
networks exist. Hoefer and Krysta [35] analyzed a geometric version

of the NDG, where agents correspond to points in the Euclidean

plane. They find that the PoA is 𝑛 and that the PoS for two agents

with two terminals each is 1. Recently, also a variant with fair cost

sharing and topology dependent edge-cost was studied [12].

Much closer to our model is research on the NCG [27], where the

agents correspond to nodes of a network and any node can establish

undirected links to other agents for the cost of 𝛼 per link, where

𝛼 > 0 is a fixed parameter. The created network then consists

of the union of all links created by the agents. The goal of the

agents is to minimize the sum of their cost for creating edges and

their average distance to all other agents in the created network,

i.e., their closeness centrality [50]. A long line of research [1, 4–

6, 13, 23, 27, 44, 46] has established that the PoA of the NCG is

constant for almost all 𝛼 > 0 and it is conjectured that this holds

for all 𝛼 [3, 27, 44, 45]. Computing the best possible strategy of an

agent in the NCG was shown to be NP-hard [27] and this also holds

for many NCG variants [16, 17, 21, 45]. However, restricted variants

with efficient best response computation also exist [3, 9, 29, 42].

Regarding the dynamics, it has been shown [38, 41] that many

NCG variants do not have the finite improvement property (FIP) [47].
Thus, natural convergence protocols, such as iterated best response

dynamics, have no convergence guarantee.

There are only a few works that investigate NCG variants in a

geometric setting. Eidenbenz et al. [25] consider agents correspond-

ing to points in the Euclidean plane that strategically buy incident

edges to create a connected network. Another related geometric

game was proposed by Moscibroda et al. [48], where the agents

pay a fixed price 𝛼 > 0 for each edge and aim at minimizing their

total stretch, where the stretch is the ratio of the shortest path

length in the network and the geometric distance. Guylás et al. [32]

considered a NCG variant where agents correspond to uniformly

sampled points in the hyperbolic plane that strive for maximum

navigability. Bilò et al. [10] considered a variant with a dynamically

changing underlying geometry. Finally, and closest to our work,

Bilò et al. [11] recently introduced the Generalized Network Creation
Game (GNCG) with a given weighted host network. It generalizes

the NCG since edges can have weights, and the cost of an edge

is defined as 𝛼 times its weight, for 𝛼 > 0. Besides the version

with arbitrary edge weights, variants with arbitrary metric weights,

metric weights defined by a tree metric, and metric weights defined

by Euclidean distance were proposed. The latter of which is the

most natural setting for the creation of communication networks

and will be our main focus. The authors of [11] prove an upper

bound on the PoA of

(
𝛼+2
2

)
2

for the most general version and give

a better PoA upper bound of
𝛼+2
2

for metric weights that is con-

jectured to hold for the general case as well. For the version with

weights defined by a tree metric the bound of
𝛼+2
2

was shown to be

tight. For the Euclidean version using the 2-norm, the setting that

is at the heart of our paper, the shown results are far from being

tight: a constant lower bound on the PoA that is slightly above 3

was provided while the upper bound is
𝛼+2
2
. Furthermore, it was

shown that the PoA lower bound using the 1-norm approaches
𝛼+2
2

if the number of dimensions tends to infinity. Non-trivial bounds

on the PoS are given only for the tree metric variant where the

PoS is 1. Moreover, it was shown that computing the best possible

strategy for an agent is NP-hard for all versions. Regarding the

FIP, the status for the Euclidean version with 𝑝-norm for 𝑝 ≥ 2

was left open. For all the other variants, it was shown that the

FIP does not hold. Finally, concerning the existence of pure Nash

equilibria, it is shown that equilibria exist for weights induced by a

tree metric and for suitable 𝛼 values if all weights are either 1 or

2. For the other cases with metric weights, only the existence of

3(𝛼 + 1)-approximate equilibria is claimed.

Besides NCG variants where agents minimize edge costs and

distance costs, also models where the cost of an agent depends on

her local clustering coefficient [14] or on the edge-connectivity of

the created network [24] have been proposed.
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1.2 Model and Notation
We consider the recently introduced model by Bilò et al. [11] for

the distributed creation of a network by selfish agents with an un-

derlying geometry, called the Generalized Network Creation Game
(GNCG). Our main focus will be on the natural special case of the

GNCG where the underlying geometry is Euclidean, called the Eu-
clidean Generalized Network Creation Game (R𝑑–GNCG). In this

model, a set of 𝑛 points 𝑃 = {𝑝1, . . . , 𝑝𝑛} in the 𝑑-dimensional Eu-

clidean spaceR𝑑 is considered, where each point 𝑝𝑖 = (𝑝𝑖,1, . . . , 𝑝𝑖,𝑑 ),
for 1 ≤ 𝑖 ≤ 𝑛, corresponds to a selfish agent. As we will see,

all agents will jointly form an undirected weighted network 𝐺 =

(𝑃, 𝐸) among themselves, where 𝑃 is the set of nodes and 𝐸 is

the edge set of 𝐺 . Hence, we will use point, agent and node in-

terchangeably. Moreover, we will use the shorthand 𝑢𝑣 for denot-

ing the edge {𝑢, 𝑣} ∈ 𝐸. The weight of an edge 𝑢𝑣 is denoted by

∥𝑢, 𝑣 ∥ and it is defined as the metric induced by the 2-norm
1
, i.e.,

for any two points 𝑢 = (𝑢1, . . . , 𝑢𝑑 ), 𝑣 = (𝑣1, . . . , 𝑣𝑑 ), we have

∥𝑢, 𝑣 ∥ B ∥𝑢 − 𝑣 ∥
2
=

√︄(
𝑑∑
𝑘=1

(𝑢𝑘 − 𝑣𝑘 )2
)
. We will call ∥𝑢, 𝑣 ∥ the

length of the edge𝑢𝑣 . Let w𝑚𝑎𝑥 B max𝑝𝑖 ,𝑝 𝑗 ∈𝑃
𝑝𝑖 , 𝑝 𝑗  and w𝑚𝑖𝑛 B

min𝑝𝑖 ,𝑝 𝑗 ∈𝑃,𝑝𝑖≠𝑝 𝑗
𝑝𝑖 , 𝑝 𝑗  denote the longest and shortest distance

between any two points in the point set 𝑃 and let 𝑟 B w𝑚𝑎𝑥

w𝑚𝑖𝑛
be the

aspect ratio of 𝑃 . Furthermore for any network 𝐺 = (𝑃, 𝐸) and any

𝑢, 𝑣 ∈ 𝑃 , let 𝜋𝐺 (𝑢, 𝑣) ⊆ 𝐸 be a shortest path from 𝑢 to 𝑣 in 𝐺 .

Each agent strategically decides which incident edges to buy

in order to minimize her total distance to all other agents in the

created network. More precisely, the strategy of agent𝑢, denoted as

𝑆𝑢 , is a subset of nodes in 𝑃 \ {𝑢} to which agent 𝑢 wants to create

an undirected edge. For each 𝑣 ∈ 𝑆𝑢 , we say that 𝑢 is the owner of
the undirected edge 𝑢𝑣 . Edges are costly and we assume that the

edge cost is proportional to the Euclidean distance between the

endpoints of the respective edge. Formally, the price of an edge 𝑢𝑣

that must be paid by its owner is equal to 𝛼 · ∥𝑢, 𝑣 ∥, where 𝛼 > 0 is

a fixed parameter of the game.

Any vector s = (𝑆𝑝1 , . . . , 𝑆𝑝𝑛 ), is called a strategy profile. Every

strategy profile s uniquely determines a created network 𝐺 (s) =
(𝑃, 𝐸 (s)), where 𝐸 (s) = {𝑝𝑖𝑝 𝑗 | 𝑝𝑖 ∈ 𝑃, 𝑝 𝑗 ∈ 𝑆𝑝𝑖 }.2 We will omit

the reference to s when it is clear from the context.

Let 𝑑𝐺 (𝑢, 𝑣) denote the distance between two nodes 𝑢, 𝑣 in a net-

work 𝐺 , where 𝑑𝐺 (𝑢, 𝑣) is the sum of the edge lengths of the edges

in the shortest 𝑢-𝑣 path in 𝐺 , i.e., 𝑑𝐺 (𝑢, 𝑣) B
∑
𝑥𝑦∈𝜋𝐺 (𝑢,𝑣) ∥𝑥,𝑦∥.

If there is no 𝑢-𝑣 path in 𝐺 , then 𝑑𝐺 (𝑢, 𝑣) B +∞. We use 𝑑𝐺 (𝑢,𝑈 )
to denote the sum of distances from 𝑢 to all nodes in 𝑈 ⊆ 𝑃 in 𝐺 ,

and we use ∥𝑢,𝑈 ∥ to denote the sum of the lengths of the edges

between 𝑢 and 𝑈 . We call 𝑑𝐺 (𝑢, 𝑃) the distance cost and 𝛼 · ∥𝑢, 𝑆𝑢 ∥
the edge cost of agent 𝑢. Each agent 𝑢 aims at minimizing her cost

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)), that is the sum of the agent’s edge cost and her dis-

tance cost:

𝑐𝑜𝑠𝑡 (𝑢,𝐺 (s)) B 𝛼 · ∥𝑢, 𝑆𝑢 ∥ + 𝑑𝐺 (s) (𝑢, 𝑃) .
Note that the parameter 𝛼 expresses the agents’ relative importance

of edge costs versus distance costs.

1
Our results can be adapted to any 𝑝-norm. We focus on the 2-norm for the sake of

presentation.

2
Note that if both 𝑝𝑖 ∈ 𝑆𝑝𝑗 and 𝑝 𝑗 ∈ 𝑆𝑝𝑖 holds, then both agents 𝑝𝑖 and 𝑝 𝑗 would

pay 𝛼 ∥𝑢, 𝑣 ∥ for the edge 𝑢𝑣. As we will see, this cannot happen in any equilibrium.

We measure the efficiency of a network 𝐺 (s) by its social cost
SC(𝐺 (s)) B ∑

𝑢∈𝑃 cost (𝑢,𝐺 (s)). The strategy profile s∗ that min-

imizes 𝑆𝐶 (𝐺 (s∗)) for given points 𝑃 is called the social optimum.

We refer to the network 𝐺 (s∗) also as the social optimum network
for the point set 𝑃 , denoted as OPTP .

An improving move for an agent 𝑢 is a strategy change, that

decreases her cost. Agent 𝑢 plays her best response if agent 𝑢 has

no improving move. A strategy profile s is a pure Nash equilibrium
(NE) if all agents play a best response in 𝐺 (s). We say that s is a
𝛽-approximate NE (𝛽-NE), if no agent can change her strategy to

improve her cost by more than a factor of 𝛽 . Moreover, we call

strategy profile s a (𝛽,𝛾)-NE if SC(𝐺 (s)) ≤ 𝛾 · SC(OPTP ) and it

is a 𝛽-NE. Strategy profiles induce networks, thus we call 𝐺 (s) a
(𝛽,𝛾)-network if s is a (𝛽,𝛾)-NE. Moreover, if the edge ownership

of some network 𝐺 is not specified, then we assume arbitrary edge

ownership when calling 𝐺 a (𝛽,𝛾)-network.
We measure the loss of efficiency due to selfishness via the Price

of Anarchy (PoA) [39] and the Price of Stability (PoS) [7, 22]. Let
𝑤𝑜𝑟𝑠𝑡𝑃 (respectively 𝑏𝑒𝑠𝑡𝑃 ) be the highest (respectively the lowest)

social cost of any NE on the point set 𝑃 and let P be the set of

all possible finite point sets in R𝑑 . Then the PoA is defined as

sup𝑃 ∈P
𝑤𝑜𝑟𝑠𝑡𝑃

SC(OPTP ) and the PoS is sup𝑃 ∈P
𝑏𝑒𝑠𝑡𝑃

SC(OPTP ) .

1.3 Our Contribution
We explore the design of networks that at the same time should be

efficient in terms of total cost and stable in terms of local changes

to the network infrastructure by selfish agents. This very natural

focus on approximating both efficiency and stability seems to be

novel in the literature on variants of Network Creation Games.

Moreover, also in the wider Network Design literature, we are only

aware of the works on Network Design Games with cost-sharing

on the edges [2, 8, 19, 20, 34] that take a similar point-of-view.

We study the creation of (𝛽,𝛾)-networks for the R𝑑–GNCG [11]

using the 2-norm. Such networks are in 𝛽-approximate Nash equi-

librium and at the same time have a total cost that is at most 𝛾 times

the optimal total cost. See Table 1 for a result overview.

Our main result is a simple O(𝑛2) algorithm that computes a

(𝛽, 𝛽)-network for 𝛼 ≤ 𝑛𝑥 with 𝛽 ∈ O
(
𝛼1−

1

2𝑥 + 1
)
for 𝑥 ≥ 1 and

𝛽 ∈ O
(
𝛼

3𝑥−1
4𝑥 + 1

)
for 0 < 𝑥 < 1. See Figure 4 for a graphical

illustration of these bounds. For 𝛼 ≤ 3

√
𝑛, i.e., if edges are cheap

or for large networks, this implies that our algorithm constructs a

(O(1),O(1))-network. We further demonstrate the power of our

algorithm by investigating special instance types: grid point sets

and uniform random point sets. For them we obtain particularly

low constant values for 𝛽 and𝛾 . Additionally, we also provide (𝛽,𝛾)-
networks with an even simpler construction: we show that anyMST

on the point set 𝑃 is a (𝑛−1, 𝑛−1)-network. Using the better outcome

of either the MST or the network obtained by our algorithm then

yields a

(
O(𝛼

2

3 ),O(𝛼
2

3 )
)
-network for arbitrary 𝛼 . Moreover, we

show that the complete network on 𝑃 is a (𝛼 + 1, 𝛼
2
+ 1)-network.

This even holds for the GNCGwith arbitrary, even non-metric, edge

lengths and hence proves that (𝛼+1)-approximate NEs always exist.

This is an improvement over the claimed bound of 3(𝛼 + 1) in [11]

and it resolves an open problem from that paper as no bound for

the GNCG was provided.
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Table 1: Overview of our results on (𝛽,𝛾)-networks for the R𝑑–GNCG using the 2-norm.

Socially optimal Apx. optimal and apx. stable Perfectly stable

(𝛽, 1)-networks (𝛽,𝛾)-networks with 𝛽,𝛾 > 1 (1, 𝛾)-networks
efficiency stability
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Social optimum computation

NP-hard for metric instances

[Thm. 2.2]

Instances with only (Ω(
√
𝛼), 1)-

networks exist [Thm. 2.1]

Simple O(𝑛2) algorithm for computing

(𝛽, 𝛽)-networks [Thm. 3.7]:

𝛽 ∈ O(1) for 𝛼 ≤ 3

√
𝑛

𝛽 ∈ O
(
𝛼

2𝑥−1
2𝑥 + 1

)
for 𝛼 ≤ 𝑛𝑥 , 𝑥 ≥ 1

𝛽 ∈ O
(
𝛼

3𝑥−1
4𝑥 + 1

)
for 𝛼 ≤ 𝑛𝑥 , 𝑥 ≤ 1

MST is (𝑛 − 1, 𝑛 − 1)-network [Thm. 3.9]

(1 + 𝜀, 1 + 𝜀)-network, a.a.s., for random
points in [0, 1]2, 𝛼 ∈ 𝑜 (𝑛) [Thm. 3.12]

(2𝑑, 2𝑑)-networks for integer grid point

sets in R𝑑 [Thm. 3.13]

Stability check via computing

best responses NP-hard [11]

Existence of stable networks

open, no FIP [Thm. 3.1]

PoS > 1 [Thm. 4.4]

PoA ∈ Θ(𝛼), 𝑑 →∞ [Thm. 4.1]

PoA∈ Ω
(
𝛼

2

3

)
, 𝑑 ≥ 1 [Thm. 4.3]

GNCG PoA ∈ Θ(𝛼) [Cor. 5.5]

In contrast to these positive results, we provide negative results

for the extreme cases of (𝛽,𝛾)-networks, i.e., (𝛽, 1)-networks with
the optimal total cost and (1, 𝛾)-networks with perfect stability. For

both of these extremes, our results indicate that, unless P=NP, such

networks cannot be computed efficiently. In particular, we show

that computing a (𝛽, 1)-network is NP-hard for a generalization

of the model with metric edge lengths and that (1, 𝛾)-networks
cannot be found via improving response dynamics since the finite

improvement property does not hold. The latter was left open

in [11]. Also, there it was already shown that computing a best

possible strategy is NP-hard, which indicates that also deciding

stability is a hard problem.Moreover, we provide an instance having

very unstable networks with optimal total cost, i.e., only (Ω(
√
𝛼), 1)-

networks exist, and this instance also shows that the PoS is larger

than 1, i.e., (1, 1)-networks cannot exist in general. Moreover, we

show that (1, 𝛾)-networks with 𝛾 ∈ Ω(𝛼
2

3 ) exist for all 𝑑 ≥ 1,

i.e., a Ω(𝛼
2

3 ) lower bound for the PoA that significantly improves

over the known constant lower bound and which is close to the

known O(𝛼) upper bound. Additionally, we show that for𝑑 tending

to infinity the PoA is in Θ(𝛼). Besides these PoA results for the

Euclidean version, we also prove an upper bound of 2(𝛼 + 1) on the

PoA for the GNCG with arbitrary, even non-metric, edge lengths.

This asymptotically matches the lower bound of
𝛼+2
2

, and it proves

a conjecture from [11] up to constant factors.

2 SOCIAL OPTIMUM
We show that minimum cost networks can be rather unstable.

Theorem 2.1. There exists a set of points where in the unique
social optimum network an agent can improve by a factor of at least√
𝛼
3
, i.e., it is a

(√𝛼
3
, 1

)
-network. (See Figure 2 (left).)

Proofsketch. For simplification we allow co-located points.

Note that the result still holds asymptotically without co-location,

since we can place all co-located points arbitrarily close together.

Consider the three corners of an equilateral triangle with side

length 1, see Figure 2 (left). We place
𝑛
3
points on each corner.

Note that it is without cost to buy all the edges of length 0 and

that two length-1-edges need to be bought or the network will

be disconnected. We observe that buying all three length-1-edges

gives us a social optimum if 2 · 2 ·
(
𝑛
3

)
2

> 𝛼 + 2 ·
(
𝑛
3

)
2

, which is

equivalent to 𝛼 < 2 ·
(
𝑛
3

)
2

. Given this, we set 𝑛 = 3⌊
√
𝛼 + 1⌋ and

consider the social optimum where every agent buys at most one

length-1-edge. Finally, we compute the improvement factor for one

agent by selling a length-1-edge resulting in

𝛼 + 2𝑛
3

3
𝑛
3

≥ 𝛼 + 2
√
𝛼

3

√
𝛼 + 3

≥
√
𝛼

3

. □

Next, we show that computing the social optimum network is

NP-hard for any fixed 𝛼 in the more general metric version of

the GNCG (M-GNCG) [11]. There, agents are nodes of a given

complete weighted host network 𝐻 = (𝑉 , 𝐸 (𝐻 )) with edge weights

𝑤 : 𝑉 ×𝑉 → R+ satisfying the triangle inequality. Hence, the edge

price of 𝑢𝑣 ∈ 𝐸 (𝐻 ) is 𝛼 ·𝑤 (𝑢, 𝑣).

Theorem 2.2. For any 𝛼 > 0, computing a social optimum in the
M-GNCG is NP-hard.

Proof. We perform the reduction from the HittingSet(HS)

problem: Given a set of elements𝑈 = {𝑢1, · · · , 𝑢𝑛} and a collection
of setsS = {𝑆1, . . . , 𝑆𝑚} ⊆ P(𝑈 ), the problem is to find a minimum

hitting setH ⊆ 𝑈 , such that each set is hit, i.e., ∀𝑆 ∈ S : 𝑆 ∩H ≠ ∅.
Consider the corresponding instance of the social optimum prob-

lem. We define a host network 𝐻 = (𝑉 , 𝐸) such that each element

𝑢 ∈ 𝑈 corresponds to a one node in 𝑉 , and there is one node for
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Figure 1: Illustration of the reduction for 𝑐 = 2. Each node
𝑣 ∈ 𝑉 in the top network forms a starwith the corresponding
nodes 𝑣2, . . . 𝑣𝑞 as depicted on the bottom figure.

every set 𝑆 ∈ S. We connect set nodes with element nodes if their

corresponding set contains the corresponding element. We create

two other nodes 𝑠 and 𝑡 in 𝑉 that are adjacent to element nodes

(resp. set nodes). Hence, element nodes adjacent to 𝑠 indicates that

the corresponding elements are in the hitting set. To handle all

𝛼 , we duplicate set nodes 𝑐 times and connect each node to 𝑞 − 1
additional leafs 𝑣2, · · · , 𝑣𝑞 , i.e., inflate all nodes to stars, for some

integer 𝑐 and 𝑞. See Figure 1 for an illustration.

More formally, let 𝐻 = (𝑉 , 𝐸) be a complete host network such

that 𝑉 = 𝑉1 ∪𝑉2, 𝐸 = 𝐸1 ∪ 𝐸2, where

𝑉1 = {𝑠, 𝑡} ∪
𝑛⋃
𝑖=1

{𝑢𝑖 } ∪
𝑚⋃
𝑖=1

𝑐⋃
𝑗=1

{𝑠𝑖 𝑗 }, 𝑉2 =
⋃
𝑣∈𝑉1

𝑞⋃
𝑖=2

{𝑣𝑖 }

𝐸1 =

𝑛⋃
𝑖=1

{𝑠𝑢𝑖 }∪
𝑛⋃
𝑖=1

𝑐⋃
𝑗=1

{𝑢𝑖𝑠𝑝 𝑗 | 𝑢𝑖 ∈ 𝑆𝑝 }∪
𝑚⋃
𝑖=1

𝑐⋃
𝑗=1

{𝑠𝑖 𝑗 𝑡}∪
⋃
𝑣∈𝑉1

𝑞⋃
𝑖=2

{𝑣𝑣𝑖 }

𝐸2 = {𝑉 ×𝑉 } \ 𝐸1,
where 𝑝 is an index between 1 and𝑚, 𝑞 ∈ N the number of nodes

in each star, and 𝑐 ∈ N, the number of set nodes duplications, will

be specified later. We assume that the weight of each edge between

𝑠 and an element node 𝑢𝑖 is 𝑤 (𝑠,𝑢𝑖 ) = 𝑥 , while all other edges in
𝐸1 are of length 1. All edges in 𝐸2 are the metric closure for the

subnetwork (𝑉 , 𝐸1), i.e., for any 𝑥𝑦 ∈ 𝐸2, 𝑤 (𝑥,𝑦) = 𝑑 (𝑉 ,𝐸1) (𝑥,𝑦).
We choose 𝑞 = 1 +

⌈√𝛼
2

⌉
, 𝑥 = 2 + 4𝑞2

𝛼 and 𝑐 = 1 +
⌈
𝛼𝑥
4𝑞2

⌉
. In the

following, we show that the edges in the optimum network OPTV
incident to 𝑠 induce a minimal HS.

We start by proving that all edges of length 1 are in the optimum.

Note that OPTV does not contain any edges from 𝐸2 since it is

always beneficial to have edges from a shortest path rather than

one edge that is its metric closure. Hence, all star edges, i.e., edges

connecting𝑉1 and𝑉2, are in OPTV . For the other edges, we observe
that (𝑉 , 𝐸1) is bipartite. Hence, if some length-1-edge 𝑥𝑦 ∈ 𝑉1 ×𝑉1
is not in OPTV , then adding 𝑥𝑦 improves the distance between

2(𝑞 − 1) leafs adjacent to the star centers 𝑥 and 𝑦 by at least 2, i.e.,

the total distance in OPTV would increase by at least 4𝑞2. Since

4𝑞2 > 4
𝛼
4
= 𝛼 , the edge 𝑥𝑦 is in OPTV .

Next, we prove by contradiction that every set node will be hit.

This means, that for every set 𝑆𝑖 , network OPTV contains at least

one of the length-𝑥-edges (𝑠,𝑢 𝑗 ) such that 𝑢 𝑗 is an element of 𝑆𝑖 .

Let 𝑆𝑖 be a set, which is not hit and 𝑢 𝑗 ∈ 𝑆𝑖 is one of its elements.

Note that at least one set is hit, otherwise the network would not

be connected. Then adding 𝑠𝑢 𝑗 costs 𝛼 · 𝑥 but shortens the distance

between 2𝑐𝑞2 nodes by 2: between the (𝑞 − 1) leaf nodes adjacent
to 𝑠 and the 𝑐 · (𝑞 − 1) leafs adjacent to each node 𝑠𝑖1, . . . , 𝑠𝑖𝑐 , as

well as between the star centers. Since 𝛼𝑥 = 4𝑞2 𝛼𝑥
4𝑞2

< 4𝑐𝑞2, it is

beneficial to add the edge.

Finally, we need to show that the number of edges between 𝑠

and the element nodes is minimal, i.e., that OPTV corresponds to

the minimum hitting set. Denote the number of length-𝑥-edges in

OPTV as 𝑘 . We calculate the social cost of the optimum.

Let Δ be the sum of costs of all length-1-edges and the distances

between all nodes except the distances between 𝑠 , elements from𝑈 ,

and their corresponding leaf nodes. Note that all sets in S are hit

by the construction, and that a shortest path between two nodes

𝑥,𝑦 ∈ 𝑉 does not include node 𝑠 unless 𝑠 is one of the two nodes

𝑥 or 𝑦, since 𝑥 > 2. Thus, Δ depends only on the instance and not

on 𝑘 . The distance between 𝑠 and the element nodes is either 𝑥 + 2
or 𝑥 if nodes are directly connected. Thus, the social cost of the

network is

= 𝑘𝛼𝑥 + 2𝑘𝑞2𝑥 + 2(𝑛 − 𝑘)𝑞2 (𝑥 + 2) + Δ
= 𝛼𝑘𝑥 + 2𝑛𝑞2 (𝑥 + 2) − 4𝑘𝑞2 + Δ

= 𝛼𝑘

(
2 + 4𝑞2

𝛼

)
− 4𝑘𝑞2 + 2𝑛𝑞2 (𝑥 + 2) + 𝑦 = 2𝑘𝛼 + 2𝑛𝑞2 (𝑥 + 2) + Δ

Clearly, the social cost is minimal when 𝑘 , the size of the hitting

set, is minimal. □

Clearly, hardness for a problem on metric instances does not im-

ply hardness for Euclidean instances. However, given that many

variants of minimum weight Euclidean t-spanner problems are also

NP-hard (e.g., see [15] and the references therein), and since these

problems seem to be very close to computing a social optimum

network, we think it could be possible to either adapt our reduction

for the metric case via suitable gadgets or to reduce from hard mini-

mum weight t-spanner problems directly. Therefore, we conjecture

the following:

Conjecture 1. Computing a social optimum network in the R𝑑–
GNCG is NP-hard.
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Figure 2: Left: Sketch of the optimum network from Theo-
rem 2.1. In each corner there is a node-cluster of size 𝑛

3
ar-

bitrarily close together. The improving move removes the
dotted orange length-1-edge. Right: Best response cycle for
the R𝑑–GNCG for 𝑑 = 2 and 𝛼 = 1. In each step the marked
agent may buy edges (dashed green line) and/or sell edges
(dotted orange line). The network after step 3 is the same as
the initial network, but mirrored. Edge directions indicate
ownership. Edges point away from their owners.

3 NASH EQUILIBRIUM
We investigate the existence and the computation of (approximate)

NEs. We show that iteratively playing best responses is not guaran-

teed to lead to a NE and give sufficient conditions for their existence.

Then follows the main result of our paper: a simple and efficient

algorithm for computing a (O(𝛼2/3),O(𝛼2/3))-network.

3.1 Existence
An obvious way of finding a NE would be to iteratively play best

responses. However, the following theorem shows that doing so

does not necessarily lead to a NE.

Theorem 3.1. The R𝑑–GNCG with 𝑑 ≥ 2 does not have the finite
improvement property.

Proofsketch. We prove this statement by providing a best re-

sponse cycle, i.e., a cyclic sequence of networks obtained by itera-

tive strategy changes to best responses, in R2 for 𝛼 = 1. See Figure

2 (right) for illustrations of the steps of the cycle. □

As a first step towards showing that in some cases Nash equilibria

exist, we show that, if 𝛼 is large enough, any center sponsored star,

where the center buys all edges, is a NE.

Lemma 3.2. Let𝑇 be the star of a point set 𝑃 centered at the node𝑛0,
such that 𝑛0 owns all edges. If 𝛼 ≥ max𝑢,𝑣∈𝑃,𝑢≠𝑣

∥𝑢,𝑛0 ∥+∥𝑛0,𝑣 ∥
∥𝑢,𝑣 ∥ − 1,

then 𝑇 is a NE.

Proof. Since 𝑛0 owns all edges, she does not want to buy, sell,

or swap any additional edges. Therefore we only need to check,

whether any of the non-center nodes wants to buy an edge.

We consider the case, where node 𝑣 buys an edge towards node𝑢.

Due to the triangle inequality, this would only improve the distance

towards 𝑢 and it would not change any of the other distances.

However, since, by assumption, (𝛼 + 1) ∥𝑢, 𝑣 ∥ ≥ ∥𝑢, 𝑛0∥ + ∥𝑛0, 𝑣 ∥
buying this edge does not decrease the cost. Therefore𝑇 is a NE. □

Corollary 3.3. If 𝛼 ≥ 2𝑟 − 1, for aspect ratio 𝑟 , then every center
sponsored star is a NE.

Using this corollary we can now show that a uniform random point

set asymptotically almost surely has a Nash equilibrium if 𝛼 is

asymptotically larger than 𝑛.

Theorem 3.4. Let 𝑃𝑛 = {𝑣1, . . . , 𝑣𝑛} ⊆ [0, 1] × [0, 1] be 𝑛 points
chosen uniformly at random and let (𝛼𝑛)𝑛∈N be a sequence of positive
real numbers. If 𝛼𝑛 ∈ 𝜔 (𝑛), then 𝑃𝑛 asymptotically almost surely
(a.a.s.) has a NE for any 𝛼 ≥ 𝛼𝑛 .

Proof. By Corollary 3.3 it suffices to show that the aspect ratio

of 𝑃𝑛 is upper bounded by
𝛼+1
2
. Since the maximum possible dis-

tance is

√
2, it is enough to show that the closest pair of points are

at least
2

√
2

𝛼+1 C 𝑑𝛼 apart. For any 𝑖 = 1, . . . , 𝑛 we define the random

variables

𝑋𝑖 =

{
1, if min𝑣𝑗 ∈𝑃𝑛\{𝑣𝑖 }

𝑣𝑖 , 𝑣 𝑗  ≤ 𝑑𝛼
0, otherwise.

Also, let 𝑋 =
∑𝑛
𝑖=1 𝑋𝑖 .We thus want to show that a.a.s. 𝑋 = 0.

First, we observe that the probability of a single point falling

into the 𝑑𝛼 neighbourhood of 𝑣𝑖 is at most 𝜋𝑑2𝛼 . Thus, P[𝑋𝑖 = 0] ≥
(1 − 𝜋𝑑2𝛼 )𝑛 and E[𝑋𝑖 ] = P[𝑋𝑖 = 1] ≤ 1 − (1 − 𝜋𝑑2𝛼 )𝑛 .

Now we can apply Markov’s and Bernoulli’s inequalities to

bound the probability:

P[𝑋 ≠ 0] = P[𝑋 ≥ 1] ≤ E[𝑋 ] ≤ 𝑛(1 − (1 − 𝜋𝑑2𝛼 )𝑛)

≤ 𝑛2𝜋𝑑2𝛼 =
8𝜋𝑛2

(𝛼 + 1)2
.

Since 𝛼 ≥ 𝛼𝑛 and 𝛼𝑛 ∈ 𝜔 (𝑛), this probability approaches zero as 𝑛

tends to infinity. Therefore, 𝑃𝑛 asymptotically almost surely has a

Nash equilibrium. □

3.2 Approximation
We show how to construct (𝛽,𝛾)-networks for different values of 𝛼 .
First, we prove a general upper bound on the approximation factor.

Theorem 3.5. Let 𝑃 be a set of points in R𝑑 . Any complete network
𝐾 = (𝑃, 𝑃 × 𝑃) is a (𝛼 + 1, 𝛼

2
+ 1)-network in the R𝑑–GNCG.

Proof. Since 𝐾 is a complete network, every agent 𝑢 can im-

prove its strategy only by deleting its edges. Let 𝐾 ′ be a network
obtained after a strategy change. Since the deletion of edges in-

creases the distance cost, cost(𝑢, 𝐾 ′) ≥ d𝐾 ′ (𝑢, 𝑃) ≥ d𝐾 (𝑢, 𝑃). In the

worst case, 𝑢 owns all its incident edges in 𝐾 . Hence, cost(𝑢, 𝐾) ≤
𝛼 · 𝑑𝐾 (𝑢, 𝑃) + 𝑑𝐾 (𝑢, 𝑃), and we get

cost(𝑢, 𝐾)
cost(𝑢, 𝐾 ′) ≤

𝛼 · 𝑑𝐾 (𝑢, 𝑃) + 𝑑𝐾 (𝑢, 𝑃)
𝑑𝐾 (𝑢, 𝑃)

= 𝛼 + 1.

In a similar way we can prove that the social cost of 𝐾 is at most(
1

2
𝛼 + 1

)
times the social cost of OPTP . By the triangle inequal-

ity, for any edge 𝑢𝑣 in 𝐾 , ∥𝑢, 𝑣 ∥ ≤ 𝑑OPTP (𝑢, 𝑣). Hence, SC(𝐾) =
1

2
𝛼

∑
𝑢,𝑣∈𝑉

∥𝑢, 𝑣 ∥ + ∑
𝑢,𝑣∈𝑉

∥𝑢, 𝑣 ∥ ≤
(
1

2
𝛼 + 1

) ∑
𝑢∈𝑃

𝑑OPTP (𝑢, 𝑃), while

6
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the social cost of the social optimum is at least its distance cost∑
𝑢∈𝑃

𝑑OPTP (𝑢, 𝑃). Therefore, SC(𝐾) ≤
(
1

2
𝛼 + 1

)
SC(OPTP ). □

In the following we show that it is possible to construct a (𝛽,𝛾)-
network with 𝛽,𝛾 ∈ 𝑜 (𝛼). We call 𝑆 a 𝑘-degree 𝑡-spanner on 𝑃 if all

its nodes have degree at most 𝑘 and for any two points 𝑝1, 𝑝2 ∈ 𝑃 ,
𝑑𝑆 (𝑝1, 𝑝2) ≤ 𝑡 · ∥𝑝1, 𝑝2∥.3 Consider Algorithm 1. The idea of this

Algorithm 1: O(𝑛2) algorithm for computing a (𝛽, 𝛽)-
network in the R𝑑–GNCG.

input :𝑛 points 𝑃 in R𝑑 , parameters

𝑘 ∈ N, 𝑡 ∈ R>1, 𝑏 ∈ R≥1, 0 ≤ 𝑐 ≤ 𝑛 − 1
1 for 𝑣 ∈ 𝑃 do
2 𝐵𝑣 ← {𝑢 ∈ 𝑃 | ∥𝑢, 𝑣 ∥ ≤ w𝑚𝑎𝑥

𝑏
} and

𝐶𝑣 ← {𝑢 ∈ 𝑃 | ∥𝑢, 𝑣 ∥ ≤ 2
w𝑚𝑎𝑥

𝑏
};

3 if there is a node 𝑣 ∈ 𝑃 with |𝑃 \ 𝐵𝑣 | < 𝑐 then
4 construct a 𝑘-degree 𝑡-spanner 𝐺 on 𝐶𝑣 ;

5 assign the edge ownership such that each agent owns at

most 𝑘 edges in 𝐺 ;

6 for 𝑢 ∈ 𝑃 \𝐶𝑣 do
7 Find node 𝑢 ′ ∈ 𝐶𝑣 closest to 𝑢 and add 𝑢 ′ to the

strategy of agent 𝑢;

8 else
9 construct a 𝑘-degree 𝑡-spanner 𝐺 on 𝑃 ;

10 assign the edge ownership such that each agent owns at

most 𝑘 edges in 𝐺 ;

algorithm is simple: if 𝑃 has a large cluster of closely located points,

a spanner for the cluster points (set 𝐵𝑣 ) and all close points (set

𝐶𝑣 ) is built. The rest of the points is conneced with the shortest

edges to 𝐶𝑣 . (See Figure 3 (left).) If the set of points 𝑃 is sparsely

distributed, i.e., there is no cluster, a spanner for the entire set of

points is constructed. (See Figure 3 (right).)

We now prove our main results, i.e., the approximation bounds

achieved by constructing the network via Algorithm 1.

Theorem 3.6. Let 𝑏 ∈ R≥1, 0 ≤ 𝑐 ≤ 𝑛 − 1, and let 𝑘 ∈ N, 𝑡 ∈ R>1
be parameters such that we can construct a 𝑘-degree 𝑡-spanner for 𝑃 .
Algorithm 1 computes a 𝛽-NE with

𝛽 = max

{
𝑘𝑏

𝑐
𝛼 + 𝑡, 4𝑘

𝑏
𝛼 + 2𝑡 + 1, 2𝛼

𝑛 − 𝑐 + 2,
4𝑐 (𝑏 + 2𝑡)
𝑛 − 𝑐 + 6𝑡

}
.

Proof. We divide the proof into two parts corresponding to each

if-case of the algorithm. First, we prove that if all nodes have at least

𝑐 nodes at distance of at least
w𝑚𝑎𝑥

𝑏
, i.e., for all 𝑣 ∈ 𝑃 , |𝑃 \ 𝐵𝑣 | ≥ 𝑐 ,

then the 𝑘-degree 𝑡-spanner 𝐺 is a

(
𝑘𝑏𝛼
𝑐 + 𝑡

)
-NE.

Consider an agent 𝑢 ∈ 𝑃 playing a strategy 𝑆𝑢 in 𝐺 . We need to

evaluate the maximal improvement of the cost function that can be

made by𝑢 after changing its strategy from 𝑆𝑢 to 𝑆 ′𝑢 . Let𝐺
′ = (𝑃, 𝐸 ′)

be the network obtained after the improving move. Since 𝐺 is a

3
Algorithm 1 and all the following results hold for a more general setting. We call 𝑆 a

𝑘-distributable 𝑡 -spanner if it is possible to assign all edges of 𝑆 to agents such that

each agent owns at most 𝑘 edges. Then we can generalize Algorithm 1 by constructing

a 𝑘-distributable 𝑡 -spanner in step 4 and 9.

Cv

Bv
v

S S
2wmax

b

wmax
b

Figure 3: Illustration of the network computed by Algo-
rithm 1. Left: The network if there exists a node 𝑣 with at
most 𝑐 points with distance at least w𝑚𝑎𝑥

𝑏
. Right: a bounded

degree spanner produced by the algorithm in case all points
are sparsely distributed. Edges point away from their own-
ers. Undirected edges can be assigned arbitrarily as long as
every agent owns at most 𝑘 edges.

𝑡-spanner and 𝑢 owns at most 𝑘 edges of weight w𝑚𝑎𝑥 , the cost of
agent 𝑢 before the move is

cost(𝑢,𝐺) = 𝛼 · ∥𝑢, 𝑆𝑢 ∥ + d𝐺 (𝑢, 𝑃) ≤ 𝛼𝑘 · w𝑚𝑎𝑥 + 𝑡 · ∥𝑢, 𝑃 ∥
≤ 𝛼𝑘 · w𝑚𝑎𝑥 + 𝑡 · d𝐺′ (𝑢, 𝑃).

By construction, 𝑢 has at least 𝑐 nodes at distance at least
w𝑚𝑎𝑥

𝑏
.

Hence,
𝑏

𝑐 ·w𝑚𝑎𝑥
d𝐺′ (𝑢, 𝑃) ≥ 1. Combining with the inequality above,

we get cost(𝑢,𝐺) ≤ 𝛼𝑘𝑏
𝑐 · d𝐺′ (𝑢, 𝑃) + 𝑡 · d𝐺′ (𝑢, 𝑃). With this we can

evaluate the maximal improvement made by 𝑢:

cost(𝑢,𝐺)
cost(𝑢,𝐺 ′) ≤

𝛼𝑘𝑏
𝑐 · d𝐺′ (𝑢, 𝑃) + 𝑡 · d𝐺′ (𝑢, 𝑃)
𝛼 · ∥𝑢, 𝑆 ′𝑢 ∥ + d𝐺′ (𝑢, 𝑃)

≤

(
𝛼𝑘𝑏
𝑐 + 𝑡

)
· d𝐺′ (𝑢, 𝑃)

d𝐺′ (𝑢, 𝑃)
=
𝛼𝑘𝑏

𝑐
+ 𝑡 . (1)

Now we analyze the case when there is a point 𝑣 ∈ 𝑃 such that

|𝑃 \ 𝐵𝑣 | < 𝑐 . In this situation, the algorithm computes a network

𝐺 = (𝑃, 𝐸) that contains a spanner on 𝐶𝑣 with attached leaf nodes

from 𝑃 \𝐶𝑣 (see Figure 3 (left) for an illustration). In the following

part of the proof we show that the improvement factor of every

agent𝑢 ∈ 𝑃 is bounded as well. We distinguish two cases depending

on whether 𝑢 ∈ 𝐶𝑣 or 𝑢 ∈ 𝑃 \𝐶𝑣 .
If 𝑢 ∈ 𝐶𝑣 , we observe that, by construction, 𝑢 owns at most

𝑘 edges in 𝐺 . Let 𝑆𝑢 be the strategy of 𝑢 in 𝐺 , let 𝑆 ′𝑢 be the new

improving strategy, and let 𝐺 ′ be the network obtained after the

improving move. Since𝑢 only buys edges to the nodes from𝐶𝑣 in𝐺 ,

each of her edges has length of at most
4w𝑚𝑎𝑥

𝑏
. Then the total edge

cost of𝑢 is at most 4𝛼𝑘
w𝑚𝑎𝑥

𝑏
. Note that d𝐺′ (𝑢, 𝑃) ≥

∑
𝑤∈𝑃 ∥𝑢,𝑤 ∥ ≥

w𝑚𝑎𝑥 . Thus, the edge cost of 𝑢 is at most
4𝛼𝑘
𝑏
· d𝐺′ (𝑢, 𝑃).

The distance cost for 𝑢 is 𝑑𝐺 (𝑢, 𝑃) = d𝐺 (𝑢,𝐶𝑣) + d𝐺 (𝑢, 𝑃 \𝐶𝑣).
Clearly, d𝐺 (𝑢,𝐶𝑣) ≤ 𝑡 · ∥𝑢,𝐶𝑣 ∥ ≤ 𝑡 · d𝐺′ (𝑢,𝐶𝑣). To analyze the

second term d𝐺 (𝑢, 𝑃 \𝐶𝑣), consider a node 𝑥 ∈ 𝑃 \𝐶𝑣 . Let 𝑦 ∈ 𝐶𝑣
be a node to which 𝑥 buys an edge. The existence of 𝑦 follows

from the construction of 𝐺 . By the triangle inequality, d𝐺 (𝑢, 𝑥) ≤
d𝐺 (𝑢,𝑦) + ∥𝑦, 𝑥 ∥. Since 𝐺 is a 𝑡-spanner for 𝐶𝑣 , this implies that
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d𝐺 (𝑢,𝑦) ≤ 𝑡 · ∥𝑢,𝑦∥ ≤ 𝑡 (∥𝑢, 𝑥 ∥ + ∥𝑦, 𝑥 ∥) ≤ 2𝑡 · ∥𝑢, 𝑥 ∥, where the
last inequality holds since, by construction, ∥𝑥,𝑦∥ ≤ ∥𝑥,𝑢 ′∥ for any
𝑢 ′ ∈ 𝐶𝑣 . Therefore, d𝐺 (𝑢, 𝑥) ≤ 2𝑡 · ∥𝑢, 𝑥 ∥ + ∥𝑦, 𝑥 ∥ ≤ (2𝑡 + 1) · ∥𝑢, 𝑥 ∥.
Finally, we can evaluate the maximum improvement that can be

made by agent 𝑢:

cost(𝑢,𝐺)
cost(𝑢,𝐺 ′) ≤

𝛼 ∥𝑢, 𝑆𝑢 ∥ + d𝐺 (𝑢, 𝑃)
𝛼 ∥𝑢, 𝑆 ′𝑢 ∥ + d𝐺′ (𝑢, 𝑃)

≤
4𝛼𝑘
𝑏

d𝐺′ (𝑢, 𝑃) + (2𝑡 + 1)d𝐺′ (𝑢, 𝑃)
d𝐺′ (𝑢, 𝑃)

=
4𝛼𝑘

𝑏
+ 2𝑡 + 1. (2)

In case 𝑢 ∈ 𝑃 \𝐶𝑣 , consider the vertex 𝑦 ∈ 𝐶𝑣 to which 𝑢 buys its

only edge. Since the edge is the only one owned by 𝑢, the agent’s

edge cost in𝐺 is 𝛼 · ∥𝑢,𝑦∥. Next we evaluate the distance cost. Every
path from 𝑢 to a node 𝑥 ∈ 𝑃 goes over 𝑦 in 𝐺 . If 𝑥 ∈ 𝐵𝑣 , by the

triangle inequality and since 𝐺 is a 𝑡-spanner on 𝐶𝑣 ,

d𝐺 (𝑢, 𝑥) = ∥𝑢,𝑦∥ + d𝐺 (𝑦, 𝑥) ≤ ∥𝑢,𝑦∥ + 𝑡 · ∥𝑦, 𝑥 ∥

≤ ∥𝑢,𝑦∥ + 𝑡 · (∥𝑦, 𝑣 ∥ + ∥𝑣, 𝑥 ∥) ≤ ∥𝑢,𝑦∥ + 3𝑡 w𝑚𝑎𝑥
𝑏

.

If 𝑥 ∉ 𝐵𝑣 , the shortest 𝑢-𝑥 path goes over the 𝑡-spanner and

contains at most two edges to nodes outside of𝐶𝑣 . Since the length

of any shortest path in 𝐶𝑣 is at most 2 · 2w𝑚𝑎𝑥

𝑏
· 𝑡 , then d𝐺 (𝑢, 𝑥) ≤

2w𝑚𝑎𝑥 + 4𝑡 · w𝑚𝑎𝑥

𝑏
. So, we can evaluate the maximum improvement

for 𝑢 as follows:

cost(𝑢,𝐺)
cost(𝑢,𝐺 ′) ≤

𝛼 · ∥𝑢,𝑦∥ + d𝐺 (𝑢, 𝐵𝑣) + d𝐺 (𝑢, 𝑃 \ 𝐵𝑣)
𝛼 · ∥𝑢, 𝑆 ′𝑢 ∥ + d𝐺′ (𝑢, 𝑃)

≤
𝛼 · ∥𝑢,𝑦∥ + |𝐵𝑣 |

(
∥𝑢,𝑦∥ + 3𝑡w𝑚𝑎𝑥

𝑏

)
+ |𝑃 \ 𝐵𝑣 |

(
2w𝑚𝑎𝑥 + 4𝑡w𝑚𝑎𝑥

𝑏

)
d𝐺′ (𝑢, 𝐵𝑣)

In the denominator we observe that d𝐺′ (𝑢, 𝐵𝑣) ≥ |𝐵𝑣 | · 12 (∥𝑢,𝑦∥+w𝑚𝑎𝑥

𝑏
). Indeed, for any 𝑥 ∈ 𝐵𝑣 ⊆ 𝐶𝑣 , 𝑑𝐺′ (𝑢, 𝑥) ≥ ∥𝑢, 𝑥 ∥ ≥ ∥𝑢,𝑦∥

because 𝑦 is the closest node to 𝑢 in𝐶𝑣 . Also, 𝑢 has distance at least

w𝑚𝑎𝑥

𝑏
to all nodes in 𝐵𝑣 , since 𝑢 ∉ 𝐶𝑣 . This yields that the ratio

between cost(𝑢,𝐺) and cost(𝑢,𝐺 ′) is at most

𝛼 · ∥𝑢,𝑦∥ + |𝐵𝑣 |
(
∥𝑢,𝑦∥ + 3𝑡w𝑚𝑎𝑥

𝑏

)
+ |𝑃 \ 𝐵𝑣 |

(
2w𝑚𝑎𝑥 + 4𝑡w𝑚𝑎𝑥

𝑏

)
1

2
∥𝑢,𝑦∥ · |𝐵𝑣 | + w𝑚𝑎𝑥

2𝑏
· |𝐵𝑣 |

(3)

Since |𝐵𝑣 | > 𝑛 − 𝑐 , we obtain (𝛼+|𝐵𝑣 |) ∥𝑢,𝑦 ∥
1

2
∥𝑢,𝑦 ∥ |𝐵𝑣 |

≤ 2𝛼
𝑛−𝑐 + 2. For the

remaining part we get:

w𝑚𝑎𝑥
(
|𝑃 \ 𝐵𝑣 | (2 + 4𝑡

𝑏
) + |𝐵𝑣 | 3𝑡𝑏

)
w𝑚𝑎𝑥

2𝑏
· |𝐵𝑣 |

≤

(
2 + 4𝑡

𝑏

)
|𝑃 \ 𝐵𝑣 |

1

2𝑏
· |𝐵𝑣 |

+ 6𝑡

≤ 4𝑐 (𝑏 + 2𝑡)
𝑛 − 𝑐 + 6𝑡 . (4)

Combining the two inequalities above we obtain
4
an upper bound

for Inequality (3) equal to max

{
2𝛼
𝑛−𝑐 + 2,

4𝑐 (𝑏+2𝑡 )
𝑛−𝑐 + 6𝑡

}
. Together

with Inequality (1) and Inequality (2) we obtain the upper bound of

max

{
𝑘𝑏

𝑐
𝛼 + 𝑡, 4𝑘

𝑏
𝛼 + 2𝑡 + 1, 2𝛼

𝑛 − 𝑐 + 2,
4𝑐 (𝑏 + 2𝑡)
𝑛 − 𝑐 + 6𝑡

}
. □

4
The implication follows from the following observation: for any 𝑎,𝑏, 𝑐,𝑑 ∈ R>0 ,
𝑎+𝑏
𝑐+𝑑 ≤ max

{
𝑎
𝑐
, 𝑏
𝑑

}

The next result shows that the proof of Theorem 3.6 also provides

an upper bound for the social cost of the network computed by

Algorithm 1. This yields a (𝛽, 𝛽)-network.

Theorem 3.7. Let 𝑏 ∈ R≥1, 𝑘, 𝑡 ∈ R>1, 𝑐 ∈ {0, . . . , 𝑛 − 1}. Algo-
rithm 1 computes a (𝛽, 𝛽)-network with

𝛽 = max

{
𝑘𝑏

𝑐
𝛼 + 𝑡, 4𝑘

𝑏
𝛼 + 2𝑡 + 1, 2𝛼

𝑛 − 𝑐 + 2,
4𝑐 (𝑏 + 2𝑡)
𝑛 − 𝑐 + 6𝑡

}
.

Proof. Let𝐺 = 𝐺 (s) be the network corresponding to the strat-

egy profile computed by Algorithm 1. By Theorem 3.6,𝐺 is a 𝛽-NE.

To complete the proof we need to show that the social cost of 𝐺 is

at most 𝛽 times the social cost of OPTP . We evaluate the social cost

of 𝐺 with respect to the social cost of the social optimum network

𝐺∗. Clearly, SC(𝐺)
SC(𝐺∗) =

∑
𝑣∈𝑃 cost(𝑣,𝐺)∑
𝑣∈𝑃 cost(𝑣,𝐺∗) ≤ max

𝑣∈𝑃
cost(𝑣,𝐺)
cost(𝑣,𝐺∗) . Therefore,

we can repeat the analysis from the proof of Theorem 3.6. All upper

bounds for the worst-case agent’s improvement from the proof

of Theorem 3.6 provide the upper bounds for the ratio between

the cost of the agent in 𝐺 and 𝐺∗. It holds because we did not

assume for 𝐺 ′ that strategies of all other agents are the same as

in 𝐺 , i.e., we can replace 𝐺 ′ with 𝐺∗ in all inequalities. Hence,

max𝑣∈𝑃
cost(𝑣,𝐺)
cost(𝑣,𝐺∗) ≤ 𝛽 , and the statement follows. □

Corollary 3.8. Let 𝛼 ≤ 𝑛𝑥 for some 𝑥 ∈ R>0. Then we can

construct in O(𝑛2) time a (𝛽 , 𝛽)-network with 𝛽 ∈ O
(
𝛼1−

1

2𝑥 + 1
)
for

𝑥 ≥ 1 and 𝛽 ∈ O
(
𝛼

3𝑥−1
4𝑥 + 1

)
for 0 < 𝑥 < 1.

Proof. Consider a (𝛽 , 𝛽)-network constructed by Algorithm 1

with parameters 𝑏 ≤
√︁
2(𝑛 − 1) and 𝑐 = 𝑏2

2
, some real number 𝑡 > 1

and 𝑘 ∈ O
(
(𝑡 − 1)1−2𝑑

)
. A 𝑘-degree 𝑡-spanner can be constructed

in O(𝑛 log𝑛) time ([49], Section 10.1). Hence, our algorithm outputs

the (𝛽, 𝛽)-NE in O(𝑛2) time with

𝛽 = max

{
4𝑘

𝑏
𝛼 + 2𝑡 + 1, 2𝛼

𝑛 − 𝑏2

2

+ 2, 2𝑏
2 (𝑏 + 2𝑡)
𝑛 − 𝑏2

2

+ 6𝑡
}
.

We make a case distinction for 𝑥 when choosing 𝑏. If 𝑥 ≥ 1, we

choose 𝑏 = 𝛼
1

2𝑥 . Then we get
4𝑘
𝑏
𝛼 + 2𝑡 + 1 = 4𝑘𝛼1−

1

2𝑥 + 2𝑡 + 1 ∈
O(𝛼1−

1

2𝑥 ). Since 𝛼 ≤ 𝑛𝑥 , we have that 𝑛− 1

2
𝑏2 ≥ 𝛼

1

𝑥 − 1

2
𝛼

1

𝑥 ≥ 1

2
𝛼

1

𝑥 .

Therefore,max

{
2𝛼

𝑛− 1

2
𝑏2
+ 2, 2𝑏

2 (𝑏+2𝑡 )
𝑛− 1

2
𝑏2
+ 6𝑡

}
∈ O

(
max{𝛼1−

1

𝑥 , 𝛼
1

2𝑥 }
)
.

Since we assume 𝑥 ≥ 1, we get

𝛽 ∈ O
(
max{𝛼1−

1

𝑥 , 𝛼
1

2𝑥 , 𝛼1−
1

2𝑥 }
)
= O

(
𝛼1−

1

2𝑥

)
.

In case 0 < 𝑥 < 1, we choose 𝑏 = 𝛼
𝑥+1
4𝑥 . Then we get 𝑛 −

1

2
𝑏2 ≥ 𝛼

1

𝑥 − 1

2
𝛼

𝑥+1
2𝑥 ≥ 𝛼

1

𝑥

(
1 − 1

2
𝛼

𝑥−1
2𝑥

)
≥ 1

2
𝛼

1

𝑥 since 𝛼
𝑥−1
2𝑥 < 1 for

0 < 𝑥 < 1 < 𝛼 . Hence, we get for the approximation factor 𝛽 that

𝛽 ∈ O
(
max

{
𝛼1−

𝑥+1
4𝑥 , 𝛼1−

1

𝑥 , 𝛼
3(𝑥+1)
4𝑥
− 1

𝑥

}
+ 1

)
= O

(
𝛼

3𝑥−1
4𝑥 + 1

)
. □

Corollary 3.8 claims that for 1 ≤ 𝛼 ≤ 3

√
𝑛, there is a (𝛽, 𝛽)-NE with

constant 𝛽 , while for the other values of 𝛼 , the approximation is

better than the one obtained for a clique (see Theorem 3.5). However,

when 𝑥 tends to infinity, the value of 𝛽 approaches 𝛼 . For this

case we show that a minimum spanning tree provides a better

approximation.
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Theorem 3.9. Any minimum spanning tree𝑀𝑆𝑇 (𝑃) on a set of
points 𝑃 is a (𝑛 − 1, 𝑛 − 1)-network.

Proof. Let 𝑣,𝑤 ∈ 𝑃 , and let 𝑝 = (𝑣 = 𝑣1, . . . , 𝑣𝑘 = 𝑤) be the path
connecting them in the minimum spanning tree. Since𝑀𝑆𝑇 (𝑃) is a
minimum spanning tree, ∥𝑣,𝑤 ∥ ≥ ∥𝑣𝑖 , 𝑣𝑖+1∥ for any 𝑖 = 1, . . . , 𝑘 − 1.
Thus, we get

d𝑀𝑆𝑇 (𝑃 ) (𝑣,𝑤) =
𝑘−1∑︁
𝑖=1

∥𝑣𝑖 , 𝑣𝑖+1∥ ≤
𝑘−1∑︁
𝑖=1

∥𝑣,𝑤 ∥

= (𝑘 − 1) ∥𝑣,𝑤 ∥ ≤ (𝑛 − 1) ∥𝑣,𝑤 ∥
and therefore𝑀𝑆𝑇 (𝑃) is a (𝑛 − 1)-spanner.

Let 𝑆𝑣 be the strategy of agent 𝑣 in 𝑇 . Consider the network

𝐺 ′ = (𝑃, 𝐸 ′), where 𝑣 plays a better strategy 𝑆 ′𝑣 , i.e., any strategy

that decreases agent 𝑣 ’s cost. The edge cost for 𝑣 in 𝐺 ′ is at least
the same as in𝑀𝑆𝑇 (𝑃) since no agent can delete any edge without

buying new ones that are as expensive, due to 𝑀𝑆𝑇 (𝑃) being a

minimum spanning tree. Thus, we get

cost(𝑣,𝑀𝑆𝑇 (𝑃))
cost(𝑣,𝐺 ′) ≤ 𝛼 · ∥𝑣, 𝑆𝑣 ∥ + (𝑛 − 1) ∥𝑣, 𝑃 ∥

𝛼 · ∥𝑣, 𝑆𝑣 ∥ + ∥𝑣, 𝑃 ∥
≤ (𝑛 − 1) .

Finally, if 𝐺∗ = (𝑃, 𝐸∗) is a social optimum, then the total edge

cost in 𝐺∗ is at least 𝛼
∑
𝑢𝑣∈𝑀𝑆𝑇 (𝑃 ) ∥𝑢, 𝑣 ∥, while the distance cost

is at least

∑
𝑣∈𝑃 ∥𝑣, 𝑃 ∥. Since𝑀𝑆𝑇 (𝑃) is a (𝑛 − 1)-spanner, we get

SC(𝑀𝑆𝑇 (𝑃)) ≤ (𝑛−1) ·SC(𝐺∗), analogously to the first case. Hence,
𝑀𝑆𝑇 (𝑃) is a (𝑛 − 1, 𝑛 − 1)-network. □

Finally, we show that using the better of the networks obtained by

Algorithm 1 and the MST yields a (O(𝛼
2

3 ),O(𝛼
2

3 ))-network. See
Figure 4 for an illustration.

Corollary 3.10. A (𝛽 , 𝛽)-network with 𝛽 ∈ O(𝛼
2

3 ) can be con-
structed in O(𝑛2) time.

Proof. Let 𝑥 ∈ R+ such that 𝛼 = 𝑛𝑥 . Then 𝛼
1

𝑥 = 𝑛. Applying

Theorem 3.9 for 𝑥 ≥ 3

2
and Corollary 3.8 for 𝑥 < 3

2
yields the

result. □
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Corollary 3.8, case 𝑥 ≥ 1

Corollary 3.8, case 𝑥 < 1

Corollary 3.9

Figure 4: Approximation factor 𝛽 obtained by Corollary 3.8
and Theorem 3.9 dependent on the relation between 𝛼 and
𝑛. For 𝑥 ∈ R>0 such that 𝛼 = 𝑛𝑥 , we can construct a (𝛽 ,
𝛽)-network with 𝛽 ∈ O(𝛼𝑦).

We now use Algorithm 1 to obtain a (1+𝜀, 1+𝜀)-network for 𝜀 > 0 if

𝑃 is chosen uniformly at random from the unit square. We partition

the unit square into four quadrants 𝐶 = {𝑎, 𝑏, 𝑐, 𝑑} each containing

a length-
1

4
-square from 𝐶 ′ = {𝑎′, 𝑏 ′, 𝑐 ′, 𝑑 ′}, see Figure 5.

c′

b′ a′

d′

a b

cd1
4

1
4

Figure 5: Illustration of the partition of [0, 1]2 used in
Lemma 3.11 and Theorem 3.12.

The following Lemma shows that in this case with high proba-

bility the second case of Algorithm 1 occurs.

Lemma 3.11. Let 𝑃𝑛 = {𝑣1, . . . , 𝑣𝑛} ⊆ [0, 1]2 be 𝑛 points chosen
uniformly at random. Then

P
©«

⋃
𝜌′∈𝐶′

{
|𝑃𝑛 ∩ 𝜌 ′ | < (1 − 𝛿)

𝑛

16

}ª®¬ ≤ 4 exp

(
−𝛿

2𝑛

32

)
.

Proof. By the Union-Bound, showing that for all 𝜌 ′ ∈ 𝐶 ′

P
(
| (𝑃𝑛 ∩ 𝜌 ′ | < (1 − 𝛿)

𝑛

16

)
≤ exp

(
−𝛿

2𝑛

32

)
suffices to prove the statement.

Let 𝑋𝑖 = 1 if 𝑣𝑖 ∈ 𝜌 ′ and 𝑋𝑖 = 0, otherwise, for 1 ≤ 𝑖 ≤ 𝑛.

Obviously,

∑𝑛
𝑖=1 𝑋𝑖 = |𝑃𝑛 ∩ 𝜌 ′ |. Note that the area of each 𝜌 ′ ∈ 𝐶 ′

is
1

16
, and therefore E

[ ∑𝑛
𝑖=1 𝑋𝑖

]
= 𝑛

16
, by linearity of expectation.

Thus, by Chernoff’s inequality we get

P
(
|𝑃𝑛 ∩ 𝜌 ′ | < (1 − 𝛿)

𝑛

16

)
≤ exp

(
−𝛿

2𝑛

32

)
. □

By Theorem 10.1.3 from [49], for any 𝜀 > 0, there is a (1 + 𝜀)-
spanner with maximum degree only depending on 𝜀. We use this

construction to provide a (1 + 𝜀, 1 + 𝜀)-NE.
Theorem 3.12. Let 𝜀 > 0 and 𝑃𝑛 = {𝑣1, . . . , 𝑣𝑛} ⊆ [0, 1]2 be a

set of 𝑛 points chosen uniformly at random. Then if 𝛼𝑛 ∈ 𝑜 (𝑛), there
exists a (1 + 𝜀, 1 + 𝜀)-network for 𝑃𝑛 , for any 𝛼 < 𝛼𝑛 asymptotically
almost surely.

Proof. Consider a network computed by Algorithm 1 with pa-

rameters 𝑏 = 4, 𝑐 = 2𝑘𝜀𝑏
𝛼
𝜀 , and 𝑘𝜀 -degree

(
1 + 𝜀

2

)
-spanner as con-

structed in [49].

Because 𝛼𝑛 ∈ 𝑜 (𝑛), we can assume that 𝛼𝑛 ≤ 𝜀
16𝑘𝜀

𝑛
16
, because it

holds for all but finitely many 𝑛. Since

𝑐 = 2𝑘𝜀𝑏
𝛼

𝜀
≤ 2𝑘𝜀𝑏

1

𝜀
· 𝜀

16𝑘𝜀
· 𝑛
16

=

(
1 − 1

2

)
𝑛

16

,

then, by Lemma 3.11, each 𝜌 ′ ∈ 𝐶 ′ has at least 𝑐 points with proba-

bility 1−4 exp(− 𝑛
128
). Thus, for any point which is part of a quadrant

9
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𝜌 ∈ 𝐶 , there are at least 𝑐 points in 𝜌 ′ within the distance at least

w𝑚𝑎𝑥

𝑏
= 1

4
. Because we have a 𝑘𝜀 -degree

(
1 + 𝜀

2

)
-spanner, by Theo-

rem 3.6 and Theorem 3.7, we get, with probability 1 − 4 exp(− 𝑛
128
),

a (𝛽 , 𝛽)-network with

𝛽 =
𝑘𝜀𝑏

𝑐
𝛼 + 1 + 𝜀

2

= 𝑘𝜀𝑏
𝜀

2𝑘𝜀𝑏𝛼
𝛼 + 1 + 𝜀

2

= 1 + 𝜀. □

Finally, we study integer grids in R𝑑 and show that Algorithm 1

computes a (2𝑑, 2𝑑)-network, if the grid itself is selected as spanner.

Theorem 3.13. Let (𝑏1, · · · , 𝑏𝑑 ) ∈ N𝑑 and 𝐵 = [0, 𝑏1] × · · · ×
[0, 𝑏𝑑 ] the corresponding hyperrectangle. Let 𝑃 B Z𝑑 ∩𝐵. Then, there
exists a (2𝑑, 2𝑑)-network for the nodes in 𝑃 .

Proof. We now construct such a (2𝑑 , 2𝑑)-network for 𝑃 . Let 𝑁

be the set of all nearest neighbor edges along the grid and 𝐺 =

(𝑃, 𝑁 ) the corresponding network. This corresponds to choosing

𝑐 = 0 in Algorithm 1 and letting the algorithm choose the grid as a

spanner. In order to obtain better bounds, we redo the analysis for

this case. Since 𝐺 is bipartite, we can assign the edges, such that

one part 𝐿 of the bipartition buys all their edges to their respective

2𝑑 neighbors in partition 𝑅. First we prove that 𝐺 is a

√
𝑑-spanner.

Let 𝑝, 𝑞 ∈ 𝑃 , then using the Cauchy-Schwarz inequality we obtain

(
𝑑𝐺 (𝑝, 𝑞)
∥𝑝, 𝑞∥

)
2

=

©«
𝑑∑
𝑖=1
|𝑝𝑖 − 𝑞𝑖 |√︄

𝑑∑
𝑖=1
(𝑝𝑖 − 𝑞𝑖 )2

ª®®®®®®¬

2

≤
𝑑∑︁
𝑖=1

|𝑝𝑖 − 𝑞𝑖 |2

(𝑝𝑖 − 𝑞𝑖 )2
= 𝑑

and thus
𝑑𝐺 (𝑝,𝑞)
∥𝑝,𝑞 ∥ ≤

√
𝑑 . Now consider any agent 𝑝 ∈ 𝐿. Since 𝑝

buys all edges to her neighbors in the grid, she has edge cost of at

most 𝛼2𝑑 . In every improving move, 𝑝 must keep at least one edge,

since otherwise the network would get disconnected. Thus we get

an approximation factor 𝛽 ≤ 𝛼2𝑑+
√
𝑑 ∥𝑝,𝑃 ∥

𝛼+∥𝑝,𝑃 ∥ ≤ 2𝑑 .

If 𝑝 ∈ 𝑅, the agent does not buy any edges and we get 𝛽 ≤√
𝑑 ∥𝑝,𝑃 ∥
∥𝑝,𝑃 ∥ ≤

√
𝑑 . Thus, we have a 2𝑑-NE.

Analogously, for the social optimum approximation we get 𝛼 (𝑛−
1) +∑

𝑝∈𝑃 ∥𝑝, 𝑃 ∥ as a trivial lower bound for the social cost of the

optimum and thus,

𝛼𝑑𝑛+
√
𝑑

∑
𝑝∈𝑃 ∥𝑝,𝑃 ∥

𝛼 (𝑛−1)+∑𝑝∈𝑃 ∥𝑝,𝑃 ∥
≤ 2𝑑. □

4 PRICE OF ANARCHY AND PRICE OF
STABILITY

In this section wewill provide lower bounds on the Price of Anarchy

and on the Price of Stability in the Euclidean case. It was shown

that in the 1-norm space, the lower bound for the PoA approaches

the upper bound of
𝛼+2
2

when the dimension 𝑑 tends to infinity

[11]. We show that also in Euclidean space, there is an instance that

asymptotically almost meets the upper bound.

Theorem 4.1. The Price of Anarchy in the R𝑑–GNCG is at least
min

{
𝛼+1√
2

, 𝛼
2+2𝛼+2
2𝛼+2

}
as 𝑑 →∞.

Proof. To provide the lower bound for the PoA we consider the

following set of points. Let 𝑥 > 0, and 𝑛 = 2𝑑 . We define a set of

𝑛 points 𝑃 = {𝑚,𝑢} ∪𝑇 , where𝑚 B (0, . . . , 0) ∈ R𝑑 is the central

point, 𝑢 B (0, . . . , 0, 𝑥) ∈ R𝑑 , and 𝑇 B {(𝛿𝑖, 𝑗 )𝑑𝑗=1, (−𝛿𝑖, 𝑗 )
𝑑
𝑗=1
| 𝑖 ∈

{1, . . . , 𝑑 − 1}}, with 𝛿𝑖, 𝑗 = 1 if 𝑖 = 𝑗 , and 𝛿𝑖, 𝑗 = 0, otherwise. For an

illustration of 𝑃 , refer to Figure 6.

y

x

z

s1

m

u

s2

s3

s4

(0, 1, 0)

(0,−1, 0)

(0, 0, 0)

(1, 0, 0)(−1, 0, 0)

(0, 0, x)

Figure 6: Illustration of the construction in the proof of The-
orem 4.1.

Consider a star 𝑆𝑛 (𝑢) centered at 𝑢 and a star 𝑆𝑛 (𝑚) centered
at𝑚. First, we show that 𝑆𝑛 (𝑢) is a NE, when all edges are owned

by the central agent 𝑢. Since 𝑆𝑛 (𝑢) is a star, 𝑢 can neither buy nor

sell edges to improve her strategy. The agent 𝑚 can change her

strategy only by buying edges to the agents in 𝑇 . Note that buying

an edge to a node in 𝑇 does not change the distance to any other

node, hence we only have to show that it is not beneficial to buy

a single edge, say an edge𝑚𝑡 , where 𝑡 ∈ 𝑇 . Since ∥𝑚, 𝑡 ∥ = 1, and

the distance 𝑑𝑆𝑛 (𝑢) (𝑚, 𝑡) = ∥𝑚,𝑢∥ + ∥𝑢, 𝑡 ∥ = 𝑥 +
√
1 + 𝑥2, the cost

of𝑚 after buying the edge changes by 𝛼 + 1 − (
√
1 + 𝑥2 + 𝑥). Thus,

𝑚 has no improving move if 𝑥 ≤ 𝛼2+2𝛼
2𝛼+2 holds.

Analogously, any agent 𝑡 ∈ 𝑇 cannot improve her strategy by

buying the edge 𝑡𝑚 if the inequality above holds. It remains to exam-

ine the case when 𝑡 buys an edge to another node𝑤 ∈ 𝑇 . The length
of the edge is at least

√
2 and the distance between nodes in 𝑆𝑛 (𝑢) is

2

√
𝑥2 + 1. Thus, the cost changes by at least

√
2𝛼 +

√
2 − 2
√
𝑥2 + 1.

Therefore the edge is not bought if 𝑥 ≤
√︃

1

2
(𝛼2 + 2𝛼 − 1).

For 𝛼 ≥
√︁
1 +
√
2−1, we have

√︃
1

2
(𝛼2 + 2𝛼 − 1) ≥ 𝛼2+2𝛼

2𝛼+2 . In that

case, with 𝑥 = 𝛼2+2𝛼
2𝛼+2 the above inequalities that are necessary for

𝑆𝑛 (𝑢) be stable are satisfied, and the corresponding star 𝑆𝑛 (𝑢) is in
NE. In case 𝛼 <

√︁
1 +
√
2−1, 𝑆𝑛 (𝑢) is a NE for 𝑥 =

√︃
1

2
(𝛼2 + 2𝛼 − 1).

We proved that 𝑆𝑛 (𝑢) is in NE. Next, we evaluate its social cost.

The edge cost of the star 𝑆𝑛 (𝑢) equals 𝛼 ∥𝑢,𝑇 ∥ + 𝛼 ∥𝑚,𝑢∥ = (𝑛 −
2)𝛼
√
1 + 𝑥2 + 𝛼𝑥 , while the distance cost is (2𝑛 − 2)𝑥 + (2𝑛2 − 6𝑛 +

4)
√
1 + 𝑥2.
Since our final aim is to provide a lower bound for the PoA, we

need an upper bound for the social cost of the optimum network.

For this, we consider a star 𝑆𝑛 (𝑚) centered at the node𝑚.
5
The

5
It is easy to verify that the star 𝑆𝑛 (𝑚) is the social optimum for 𝛼 ≥ 1.

10
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social cost of 𝑆𝑛 (𝑚) is (𝑛 − 2)𝛼 + 𝛼𝑥 + (2𝑛 − 2)𝑥 + (2𝑛2 − 6𝑛 + 4).
Then we get:

cost(𝑆𝑛 (𝑢))
cost(𝑆𝑛 (𝑚))

=

√
1 + 𝑥2 ((𝑛 − 2)𝛼 + 2𝑛2 − 6𝑛 + 4) + (2𝑛 − 2 + 𝛼)𝑥
(𝑛 − 2)𝛼 + 2𝑛2 − 6𝑛 + 4 + (2𝑛 − 2 + 𝛼)𝑥

−−−−−→
𝑛→∞

√︁
1 + 𝑥2 .

In case 𝛼 ≥
√︁
1 +
√
2− 1, it was shown above that 𝑆𝑛 (𝑢) is a NE for

𝑥 = 𝛼2+2𝛼
2𝛼+2 , the last coordinate of the node 𝑢. Thus, for sufficiently

large 𝑛, the ratio between the social cost of the NE and the optimum

approaches
𝛼2+2𝛼+2
2𝛼+2 . In case 𝛼 <

√︁
1 +
√
2 − 1, 𝑆𝑛 (𝑢) is a NE for

𝑥 =

√︃
1

2
(𝛼2 + 2𝛼 − 1). Therefore, the ratio between cost(𝑆𝑛 (𝑢))

and cost(𝑆𝑛 (𝑚)) tends to 𝛼+1√
2

as 𝑛 tends to infinity. This completes

the proof. □

Next, we now show that the PoA is super-constant in 𝛼 , even when

the underlying space is the R1. For this we significantly improve

the analysis of a construction of Bilò et al. ([11], Theorem 3.27). We

start with technical lemma.

Lemma 4.2. Let 𝛼 > 0 and 𝑛 ∈ N+. Then

2𝑛 +
𝑛−1∑︁
𝑖=1

4

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 + 1) (𝑛 − 𝑖)

= (𝛼𝑛 − 𝛼2)
(
1 + 2

𝛼

)𝑛
+ 𝛼2 + 𝛼𝑛.

Proof. We proof the statement by induction over 𝑛. For 𝑛 = 1

the statement clearly holds.

Now let 𝑛 > 1 such that the statement holds. We show that the

statement also holds for 𝑛 + 1. We have

2(𝑛 + 1) +
𝑛∑︁
𝑖=1

4

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 + 1) (𝑛 + 1 − 𝑖)

=2𝑛 + 2 +
𝑛∑︁
𝑖=1

4

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 + 1) (𝑛 − 𝑖) +

𝑛∑︁
𝑖=1

4

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 + 1)

Applying the induction hypothesis, we have

2𝑛+
𝑛−1∑︁
𝑖=1

4

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 +1) (𝑛− 𝑖) = (𝛼𝑛−𝛼2)

(
1 + 2

𝛼

)𝑛
+𝛼2 +𝛼𝑛.

For the rest of the term we first split the sum to get

2 +
𝑛∑︁
𝑖=1

4

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 + 1)

=2 +
𝑛−1∑︁
𝑖=0

4

𝛼

(
1 + 2

𝛼

)𝑖
· 𝑖 + 2

𝑛−1∑︁
𝑖=0

4

𝛼

(
1 + 2

𝛼

)𝑖
.

Now by applying theorems for geometric series this equals

2+ 4
𝛼
·
(𝑛 − 1)

(
1 + 2

𝛼

)𝑛+1
− 𝑛

(
1 + 2

𝛼

)𝑛
+ 1 + 2

𝛼(
1 + 2

𝛼 − 1
)
2

+ 8
𝛼
·

(
1 + 2

𝛼

)𝑛
− 1

1 + 2

𝛼 − 1

and we can simplify this further to

2 + 𝛼
(
(𝑛 − 1)

(
1 + 2

𝛼

)𝑛+1
− 𝑛

(
1 + 2

𝛼

)𝑛
+ 1 + 2

𝛼

)
+ 4

(
1 + 2

𝛼

)𝑛
− 4

=𝛼

(
(𝑛 − 1)

(
1 + 2

𝛼

)𝑛
+ 2(𝑛 − 1)

𝛼

(
1 + 2

𝛼

)𝑛
− 𝑛

(
1 + 2

𝛼

)𝑛
+ 1 + 2

𝛼

)
+ 4

(
1 + 2

𝛼

)𝑛
− 2

=(𝛼 (𝑛 − 1) + 2(𝑛 − 1) − 𝛼𝑛 + 4)
(
1 + 2

𝛼

)𝑛
+ 𝛼 + 2 − 2

=(2𝑛 − 𝛼 + 2)
(
1 + 2

𝛼

)𝑛
+ 𝛼.

Together we yield

(𝛼𝑛 − 𝛼2)
(
1 + 2

𝛼

)𝑛
+ 𝛼2 + 𝛼𝑛 + (2𝑛 − 𝛼 + 2)

(
1 + 2

𝛼

)𝑛
+ 𝛼

=(𝛼𝑛 − 𝛼2 + 2𝑛 − 𝛼 + 2)
(
1 + 2

𝛼

)𝑛
+ 𝛼2 + 𝛼 (𝑛 + 1)

=(𝛼𝑛 + 𝛼 − 𝛼2)
(
1 + 2

𝛼

) (
1 + 2

𝛼

)𝑛
+ 𝛼2 + 𝛼 (𝑛 + 1)

=(𝛼 (𝑛 + 1) − 𝛼2)
(
1 + 2

𝛼

)𝑛+1
+ 𝛼2 + 𝛼 (𝑛 + 1).

Therefore the statement also holds for 𝑛 + 1 and the lemma follows

by induction. □

Theorem 4.3. The PoA in the R1 and thus in the R𝑑 is lower
bounded by 3

5
𝛼

2

3 ± 𝑜 (𝛼
2

3 ).

Proof. We construct a set of 𝑛 + 1 points 𝑃 = {𝑝0, . . . , 𝑝𝑛} in
the R1 with coordinates 𝑝0 = 0 and for 1 ≤ 𝑖 ≤ 𝑛 : 𝑝𝑖 =

(
1 + 2

𝛼

)𝑖−1
.

For an illustration of the construction, refer to Figure 7. We have

1 2
α

2
α

(
1 + 2

α

) · · ·
2
α

(
1 + 2

α

)n−2

1 + 2
α

(
1 + 2

α

)2 (
1 + 2

α

)n−1

p0 p1 p2 p3 pn

Figure 7: Illustration of the lower bound construction in the
R1-GNCG. The blue dashed edges are in NE, the red solid
edges are a social optimum.

∥𝑝1, 𝑝0∥ = 1 and for 2 ≤ 𝑖 ≤ 𝑛 we have ∥𝑝𝑖 , 𝑝𝑖−1∥ = 2

𝛼 ·
(
1 + 2

𝛼

)𝑖−2
.

Let s = ({𝑝1, . . . , 𝑝𝑛},∅, . . . ,∅) be the strategy-profile of the star
with 𝑝0 as the center node buying all edges. Let furthermore s∗ =
({𝑝1}, . . . , {𝑝𝑛},∅) be the strategy-profile where each point buys

only the edge to the next point. Bilo et al. showed, that𝐺 (s) is an NE
and 𝐺 (s∗) is a social optimum and that the social costs of 𝐺 (s) are
SC(𝐺 (s)) =

(
𝛼
2

(
1 + 2

𝛼

)𝑛
− 𝛼

2

)
(2𝑛+𝛼) = 𝛼

((
1 + 2

𝛼

)𝑛
− 1

) (
𝑛 + 𝛼

2

)
[11]. For the distance cost of 𝐺 (s∗) we count for each edge in how

11
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many shortest paths it contains. We get

2·
𝑛−1∑︁
𝑖=0

∥𝑝𝑖+1, 𝑝𝑖 ∥ (𝑖 + 1) (𝑛 − 𝑖)

=2𝑛 +
𝑛−1∑︁
𝑖=1

2

𝛼

(
1 + 2

𝛼

)𝑖−1
(𝑖 + 1) (𝑛 − 𝑖) · 2

=𝛼

(
(𝑛 − 𝛼)

(
1 + 2

𝛼

)𝑛
+ 𝛼 + 𝑛

)
.

The correctness of the last step can be verified by an induction

over 𝑛. See Lemma 4.2 for details. Adding the buying cost yields

SC(𝐺 (s∗)) = 𝛼
(
(𝑛 − 𝛼)

(
1 + 2

𝛼

)𝑛
+ 𝛼 + 𝑛 +

(
1 + 2

𝛼

)𝑛−1)
.

We now bound the PoA as

𝑃𝑜𝐴 ≥ SC(s)
SC(s∗) =

((
1 + 2

𝛼

)𝑛
− 1

) (
𝑛 + 𝛼

2

)
(𝑛 − 𝛼)

(
1 + 2

𝛼

)𝑛
+ 𝛼 + 𝑛 +

(
1 + 2

𝛼

)𝑛−1 . (5)

Next we choose 𝑛 = 𝛼
2

3 . Note that 𝑛 needs to be an integer. Since

the statement is asymptotic, we can assume it without spoiling the

result. With the Binomial Theorem, we obtain(
1 + 2

𝑛
3

2

)𝑛
=

𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
2
𝑖

𝑛
3𝑖
2

= 1 + 2𝑛

𝑛
3

2

+ 4𝑛(𝑛 − 1)
2𝑛3

+ 8𝑛(𝑛 − 1) (𝑛 − 2)
6𝑛

9

2

+
𝑛∑︁
𝑖=4

(
𝑛

𝑖

)
2
𝑖

𝑛
3𝑖
2

= 1 + 2

𝑛
1

2

+ 2

𝑛
+ 4

3𝑛
3

2

± O
(
1

𝑛2

)
= 1 + 2

𝛼
1

3

+ 2

𝛼
2

3

+ 4

3𝛼
± O

(
1

𝛼
4

3

)
.

We observe that lim

𝑛→∞

(
1 + 2

𝑛
3

2

)𝑛−1
= 1. Inserting into the denomi-

nator of (5) yields

(𝛼
2

3 − 𝛼)
(
1 + 2

𝑛
3

2

)𝑛
+ 𝛼 + 𝛼

2

3 +
(
1 + 2

𝑛
3

2

)𝑛−1
= (𝛼

2

3 − 𝛼)
(
1 + 2

𝛼
1

3

+ 2

𝛼
2

3

+ 4

3𝛼
± O

(
1

𝛼
4

3

))
+ 𝛼 + 𝛼

2

3 +
(
1 + 2

𝑛
3

2

)𝑛−1
= 𝛼

2

3 − 𝛼 + 2𝛼
1

3 − 2𝛼
2

3 + 2 − 2𝛼
1

3 − 4

3

± O
(
1

𝛼
1

3

)
+ 𝛼 + 𝛼

2

3 +
(
1 + 2

𝑛
3

2

)𝑛−1
= 2 − 4

3

± O
(
1

𝛼
1

3

)
+

(
1 + 2

𝑛
3

2

)𝑛−1
−−−−−→
𝛼→∞

5

3

.

For the numerator of (5), we get((
1 + 2

𝑛
3

2

)𝑛
− 1

) (
𝛼

2

3 + 𝛼
2

)
=

(
2

𝛼
1

3

+ 2

𝛼
2

3

+ 4

3𝛼
± O

(
1

𝛼
4

3

)) (
𝛼

2

3 + 𝛼
2

)
= 𝛼

2

3 ± O
(
𝛼

1

3

)
.

Together we get
3

5
𝛼

2

3 ± 𝑜 (𝛼
2

3 ) as a lower bound for the PoA. □

Finally, we show that the PoS is strictly larger than 1.

Theorem 4.4. The PoS in the R𝑑 with 𝑑 ≥ 2 is greater than 1 if
𝛼 > 2.

Proofsketch. Consider the construction from the proof of The-

orem 2.1. After connecting the nodes within each cluster there are

only two networks that connect the network; one with two length-

1-edges and one with three length-1-edges. We set 𝑛 = 3(⌈𝛼⌉ − 1)
and observe that buying all three length-1-edges results in a social

optimum network, as 2 · 2 ·
(
𝑛
3

)
2

> 𝛼 + 2 ·
(
𝑛
3

)
2

. Selling a length-1-

edge leads to a NE as 2 · 𝑛
3
< 𝛼 + 1 · 𝑛

3
. This means that the social

optimum network is not a NE, showing that PoS > 1. □

5 OUTLOOK: EFFICIENCY AND STABILITY
ON A HOST NETWORK

We consider a more general model, i.e., the Generalized Network
Creation Game (GNCG) by Bilò et al. [11], where a complete host

network 𝐻 = (𝑉 , 𝐸) with arbitrary edge weights𝑤 : 𝑉 ×𝑉 → R+
is given. The price of an edge 𝑢𝑣 ∈ 𝐸 then is 𝛼 ·𝑤 (𝑢, 𝑣). For an edge

subset 𝐸 ′ ⊆ 𝐸 (𝐻 ), we denote𝑤 (𝐸 ′) B ∑
𝑢𝑣∈𝐸′ 𝑤 (𝑢, 𝑣).

Ourmain contribution of this section indicates that the geometric

and non-geometric versions of the GNCG behave very similarly.

Clearly, the hardness results carry over from the special case to the

more general case. But we also extend the approximation results

for stable and optimum networks to the GNCG, and we show that

the PoA is linear in 𝛼 , as conjectured in [11]. Thus it matches the

bounds for the metric version.

5.1 Approximation
Theorem 3.5 and Theorem 3.9 can be directly generalized to the

case with arbitrary, even non-metric, edge weights if we consider

a spanning sub-network 𝐻 ′ of the host network 𝐻 such that each

edge in 𝐻 ′ participates in at least one shortest path.

Corollary 5.1. Let 𝐻 = (𝑉 , 𝐸) be a host network in the GNCG.
A spanning sub-network 𝐻 ′ = (𝑉 , 𝐸 ′) of 𝐻 , where 𝐸 ′ = {(𝑢, 𝑣) |
𝑤 (𝑢, 𝑣) = d𝐻 (𝑢, 𝑣)}, is a

(
𝛼 + 1, 𝛼

2
+ 1

)
-NE.

Corollary 5.2. Consider a host network 𝐻 = (𝑉 , 𝐸). Any mini-
mum spanning tree𝑀𝑆𝑇 (𝐻 ) of 𝐻 is a (𝑛 − 1, 𝑛 − 1)-network.

The key idea of the two results above is to remove long edges from

𝐻 to obtain an approximation similar to the case with metric edge

weights. We can extend this idea to make our Algorithm 1 work for

the GNCG with arbitrary edge weights as follows.

Consider a host network 𝐻 = (𝑉 , 𝐸). Update 𝐻 as follows: start-

ing from the longest edge 𝑢𝑣 ∈ 𝐸, if 𝑑𝐻 (𝑢, 𝑣) < 𝑤 (𝑢, 𝑣) remove 𝑢𝑣

from 𝐻 . Repeat the procedure until all edges are checked. Denote
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the final network as 𝐻𝑀 = (𝑉 , 𝐸𝑀 ). Note that 𝐻𝑀 is connected

and has metric edge weights, i.e., for any edge 𝑢𝑣 ∈ 𝐸𝑀 we have

𝑤 (𝑢, 𝑣) = 𝑑𝐻𝑀
(𝑢, 𝑣). Now we can apply Algorithm 1 to 𝐻𝑀 with

the only modification on step 7: connect node 𝑢 with the closest

node 𝑢 ′ ∈ 𝐶𝑣 by the shortest path 𝜋𝐻𝑀
(𝑢,𝑢 ′). We assume𝑤max is

the length of the longest shortest path in 𝐻𝑀 .

Corollary 5.3. Consider a host network 𝐻 = (𝑉 , 𝐸), and let
𝑏 ∈ R≥1, 𝑘, 𝑡 ∈ R>1, 𝑐 ∈ {0, . . . , 𝑛 − 1} such that a 𝑘-distributable
𝑡-spanner6 exists for 𝐻𝑀 . Algorithm 1 computes a (𝛽, 𝛽)-network for
𝐻 with

𝛽 = max

{
𝑘𝑏

𝑐
𝛼 + 𝑡, 4𝑘

𝑏
𝛼 + 2𝑡 + 1, 2𝛼

𝑛 − 𝑐 + 2,
4𝑐 (𝑏 + 2𝑡)
𝑛 − 𝑐 + 6𝑡

}
.

However, the above statement relies on the existence of a 𝑘-distri-

butable 𝑡-spanner for an incomplete weighted host network, which

is, to the best of our knowledge, still open. Hence, finding an effi-

cient algorithm that computes a 𝑘-distributable 𝑡-spanner with low

𝑘 and 𝑡 would enable Algorithm 1 to obtain (𝛽, 𝛽)-networks with
low 𝛽 for the GNCG.

5.2 Price of Anarchy
We show a O(𝛼) upper bound on the PoA. This asymptotically

matches the Ω(𝛼) lower bound from Bilò et al. [11].

Theorem 5.4. In the GNCG the PoA is at most 2(𝛼 + 1).

Proof. Consider a host network 𝐻 = (𝑉 , 𝐸 (𝐻 )), a stable net-

work 𝐺 = (𝑉 , 𝐸) and an optimum network 𝐺∗ = (𝑉 , 𝐸∗). Since
every NE is a (𝛼 + 1)-spanner (by Lemma 2.2 in [11]) the distance

cost of 𝐺 is∑︁
𝑢,𝑣∈𝑉

𝑑𝐺 (𝑢, 𝑣) ≤ (𝛼 + 1)
∑︁
𝑢,𝑣∈𝑉

𝑑𝐻 (𝑢, 𝑣) ≤ (𝛼 + 1)
∑︁
𝑢,𝑣∈𝑉

𝑑𝐺∗ (𝑢, 𝑣).

(6)

Now we evaluate the edge cost of 𝐺 . We partition the edges in 𝐸

concerning the edges in the optimum and analyze each set’s total

cost separately. Let 𝐵 B
⋃
𝑢𝑣∈𝐸∗ {𝜋𝐺 (𝑢, 𝑣)} be a set of edges in 𝐺

appearing in some shortest 𝑢-𝑣 path in 𝐺 for each 𝑢𝑣 ∈ 𝐸∗, i.e., for
every edge 𝑢𝑣 in the social optimum, 𝐵 contains all edges from a

shortest path between 𝑢 and 𝑣 in𝐺 . We denote the rest of the edges

in 𝐺 as 𝑅 B 𝐸 \ 𝐵.
Since 𝐺 is a (𝛼 + 1)-spanner, we can evaluate the cost of the

edges in 𝐵 as follows:

𝛼 ·𝑤 (𝐵) = 𝛼 ·𝑤
( ⋃
𝑢𝑣∈𝐸∗

𝜋𝐺 (𝑢, 𝑣)
)
≤ 𝛼

∑︁
𝑢𝑣∈𝐸∗

𝑑𝐺 (𝑢, 𝑣)

≤ 𝛼 (𝛼 + 1)
∑︁
𝑢𝑣∈𝐸∗

𝑑𝐻 (𝑢, 𝑣) ≤ 𝛼 (𝛼 + 1)𝑤 (𝐸∗). (7)

Next, we compute the cost of edges in 𝑅. Consider an agent

𝑢 ∈ 𝑉 . Let 𝑅𝑢 be a set of edges from 𝑅 that 𝑢 buys in 𝐺 . Since 𝐺 is

a NE, deleting all edges from 𝑅𝑢 is not an improving move for 𝑢.

Hence,

𝛼𝑤 (𝑅𝑢 ) +
∑︁
𝑣∈𝑉

𝑑𝐺 (𝑢, 𝑣) ≤
∑︁
𝑣∈𝑉

𝑑𝐺−𝑅𝑢 (𝑢, 𝑣),

6
See Footnote 3 for a definition of a 𝑘-distributable 𝑡 -spanner.

where 𝐺 − 𝑅𝑢 is the network obtained after the deletion. Thus,

𝛼𝑤 (𝑅𝑢 ) ≤
∑︁
𝑣∈𝑉

𝑑𝐺−𝑅𝑢 (𝑢, 𝑣)−𝑑𝐺 (𝑢, 𝑣) ≤ 𝑑𝐺−𝑅𝑢 (𝑢,𝑉 ) ≤ 𝑑𝐺−𝑅 (𝑢,𝑉 )

To evaluate the distance 𝑑𝐺−𝑅 (𝑢, 𝑣), note that it is equal to the

distance between 𝑢 and 𝑣 in the network 𝐺 restricted on the edge

set 𝐵. Consider a shortest path 𝜋𝐺∗ (𝑢, 𝑣) in the optimum network

𝐺∗. By definition, for each edge 𝑥𝑦 ∈ 𝜋𝐺∗ (𝑢, 𝑣), set 𝐵 contains a

shortest path 𝜋𝐺 (𝑥,𝑦) of length
𝑑𝐺−𝑅 (𝑥,𝑦) ≤ (𝛼 + 1)𝑑𝐻 (𝑥,𝑦) ≤ (𝛼 + 1)𝑑𝐺∗ (𝑥,𝑦) .

Thus,

𝑑𝐺−𝑅 (𝑢, 𝑣) ≤
∑︁

𝑥𝑦∈𝜋𝐺∗ (𝑢,𝑣)
𝑑𝐺−𝑅 (𝑥,𝑦)

≤ (𝛼 + 1) ·
∑︁

𝑥𝑦∈𝜋𝐺∗ (𝑢,𝑣)
𝑑𝐺∗ (𝑥,𝑦) = (𝛼 + 1)𝑑𝐺∗ (𝑢, 𝑣) .

The total cost of set 𝑅 then is

𝛼𝑤 (𝑅) = 𝛼
∑︁
𝑢∈𝑉

𝑤 (𝑅𝑢 ) ≤
∑︁
𝑢∈𝑉

𝑑𝐺−𝑅 (𝑢,𝑉 ) ≤ (𝛼 + 1)
∑︁
𝑢∈𝑉

𝑑𝐺∗ (𝑢,𝑉 ) .

In combination with Inequality (7) and the upper bound for the

distance cost in Inequality (6), we get

SC(𝐺)
SC(𝐺∗) =

𝛼𝑤 (𝐵) + 𝛼𝑤 (𝑅) +∑
𝑢∈𝑉 𝑑𝐺 (𝑢,𝑉 )

𝛼𝑤 (𝐸∗) +∑
𝑢∈𝑉 𝑑𝐺∗ (𝑢,𝑉 )

≤ 𝛼 (𝛼 + 1)𝑤 (𝐸
∗) + 2(𝛼 + 1)∑𝑢∈𝑉 𝑑𝐺∗ (𝑢,𝑉 )

𝛼𝑤 (𝐸∗) +∑
𝑢∈𝑉 𝑑𝐺∗ (𝑢,𝑉 )

≤ 2(𝛼 + 1) (𝛼𝑤 (𝐸∗) +∑
𝑢∈𝑉 𝑑𝐺∗ (𝑢,𝑉 ))

𝛼𝑤 (𝐸∗) +∑
𝑢∈𝑉 𝑑𝐺∗ (𝑢,𝑉 )

= 2(𝛼 + 1) . □

Corollary 5.5. 𝑃𝑜𝐴 ∈ Θ(𝛼) in the GNCG.

6 CONCLUSION
We studied the problem of designing networks that are both efficient

in terms of social cost and stable in terms of being close to a Nash

equilibrium state. For this, we focus on studying (𝛽,𝛾)-networks
that are in 𝛽-approximate Nash equilibrium and have a social cost

of at most 𝛾 times the cost of the social optimum. In particular, we

considered (𝛽,𝛾)-networks in the Euclidean version of the Gener-

alized Network Creation Game by Bilò et al. [11], where agents are

points in R𝑑 , and each agent aims to maximize her centrality by

creating costly edges. This version has the natural feature that the

cost of each edge is proportional to the Euclidean distance between

the endpoints. Hence, this model captures many real-world settings

for the decentralized creation of communication networks.

Our main contribution is a O(𝑛2) time algorithm for computing

(𝛽, 𝛽)-networks with low 𝛽 . First of all, this result is interesting

since it is one of the very few algorithmic results for constructing

(approximate) Nash equilibria in the realm of network creation

games. Such a centralized algorithm is valuable in a setting with

strategic agents since a central designer could propose a network

to the strategic agents which then may selfishly deviate from the

proposed solution. If this proposed network is (almost) stable, then

the agents have no (or only a very low) incentive for deviating. If

additionally the proposed network has other beneficial properties

like (almost) optimal social cost then this is another compelling

reason for accepting the centrally designed proposal.
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Second, our algorithm is simple but non-trivial and relies on

techniques from the well-studied 𝑡-spanner problem. Moreover, our

algorithm creates (O(1),O(1))-networks if 𝛼 ≤ 3

√
𝑛, i.e., for the

case where edges are comparably cheap or, even more realistic,

where the number of nodes in the network is large. The same holds

true for networks on random point sets or on grids, both of which

seem to be natural topologies.

In contrast to these positive results, we observed that none of

the extreme cases of (𝛽.𝛾)-networks could guarantee a constant

approximation. Namely, a social optimum network can be very

unstable and may be NP-hard to compute, while a Nash equilib-

rium can have a much higher social cost than the optimal network.

Moreover, we have shown that the finite improvement property

does not hold for our model and it was shown by Bilò et al. [11]

that computing best response strategies is NP-hard. This indicates

that there is no efficient way of finding an (almost) stable state in a

decentralized way. Hence, computing such a state via a centralized

algorithm and then proposing it to the agents could be a way to

circumvent this hard problem.

As another important result of the paper, we have shown that

the PoA depends only on the parameter 𝛼 and not on the dimen-

sion of the Euclidean space or on metric edge weights. Although

conjectured by Bilò et al. [11], this is surprising because it contra-

dicts the intuition that the PoA should be lower for the metric case,

especially for low dimensions.

We focused on three extreme cases of the bicriteria optimization,

i.e., when one of the approximation factors is 1 or both approxima-

tion factors are equal. Of course, it would be interesting to map the

whole Pareto frontier precisely. Another promising direction for fu-

ture work is to extend our approximation results for the non-metric

case. For example, any solution for a 𝑘-distributable 𝑡-spanner for

weighted networks would make our approximation algorithm work

even for the Generalized Network Creation Game.
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