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Abstract. Learning from positive and negative information, so-called
informants, being one of the models for human and machine learning
introduced by Gold [1967], is investigated. Particularly, naturally arising
questions about this learning setting, originating in results on learning
from solely positive information, are answered.

By a carefully arranged argument learners can be assumed to only change
their hypothesis in case it is inconsistent with the data (such a learning
behavior is called conservative). The deduced main theorem states the
relations between the most important delayable learning success criteria,
being the ones not ruined by a delayed in time hypothesis output.

Additionally, our investigations concerning the non-delayable require-
ment of consistent learning underpin the claim for delayability being the
right structural property to gain a deeper understanding concerning the
nature of learning success criteria.

In contrast to the vacillatory hierarchy for learning from solely positive
information, we observe a duality depending on whether infinitely many
vacillations between different (almost) correct hypotheses are still con-
sidered a successful learning behavior.

Keywords: language identification and approximation in the limit, informant
learning, positive and negative data, consistent learning, delayable learning re-
strictions

1 Introduction

Research in the area of inductive inference aims at investigating the learning
of formal languages and has connections to computability theory, complexity
theory, cognitive science, machine learning, and more generally artificial intel-
ligence. Setting up a classification program for deciding whether a given word
belongs to a certain language can be seen as a problem in supervised machine
learning, where the machine experiences labeled data about the target language.
The label is 1 if the datum is contained in the language and 0 otherwise. The
machine’s task is to infer some rule in order to generate words in the language
of interest and thereby generalize from the training samples.
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According to Gold [1967] the learner is modelled by a computable function, suc-
cessively receiving sequences incorporating more and more data. The source of
labeled data is called an informant, which is supposed to be complete in the limit,
i.e., every word in the language must occur at least once. Thereby, the learner
possibly updates the current description of the target language (its hypothesis).
Learning is considered successful, if after some finite time the learners’ hypothe-
ses yield good enough approximations to the target language. The original and
most common learning success criterion is called Ex-learning and additionally
requires that the learner eventually settles on exactly one correct hypothesis,
which precisely captures the words in the language to be learned. As a single
language can easily be learned, the interesting question is whether there is a
learner successful on all languages in a fixed collection of languages.

Example. Consider L “ tNzX | X Ď N finite u, the collection of all co-finite sets
of natural numbers. Clearly, there is a computable function p mapping finite
subsets X Ď N to ppXq, such that ppXq encodes a program which stops if and
only if the input is not in X. We call ppXq an index for NzX. The learner is
successful if for every finite X Ď N it infers ppXq from a possibly very large but
finite number of samples labeled according to NzX.
Regarding this example, let us assume the first two samples are p60, 1q and
p2, 0q. The first datum still leaves all options with 60 R X. As the second datum
tells us that 2 P X, we may make the learner guess ppt2uq until possibly more
negative data is available. Thus, the collection of all co-finite sets of natural
numbers is Ex-learnable from informants, simply by making the learner guess
the complement of all negative information obtained so far. Since after finitely
many steps all elements of the finite complement of the target language have
been observed, the learner will be correct from that point onward.
It is well-known that this collection of languages cannot be learned from purely
positive information. Intuitively, at any time the learner cannot distinguish the
whole set of natural numbers from all other co-finite sets which contain all nat-
ural numbers presented to the learner until this point.

Learning from solely positive information, so-called texts, has been studied ex-
tensively, including many learning success criteria and other variations. Some
results are summed up in Jain, Osherson, Royer, and Sharma [1999] and Case
[2016]. We address the naturally arising question what difference it makes to
learn from positive and negative information.

1.1 Our Contributions

For learning from texts there are entire maps displaying the pairwise relations
of different well-known learning success criteria, see Kötzing and Palenta [2014],
Kötzing and Schirneck [2016] and Jain, Kötzing, Ma, and Stephan [2016]. We
give an equally informative map for Ex-learning from informants.
The most important requirements on the learning process when learning from in-
formants are conservativeness (Conv), where only inconsistent hypotheses are
allowed to be changed; strong decisiveness (SDec), forbidding to ever return
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semantically to a withdrawn hypothesis; strong monotonicity (SMon), requir-
ing that in every step the hypothesis incorporates the former one; monotonicity
(Mon), fulfilled if in every step the set of correctly inferred words incorporates
the formerly correctly guessed; cautiousness (Caut), for which never a strict
subset of earlier conjectures is guessed. Lange, Zeugmann, and Kapur [1996]
observed that requiring monotonicity is restrictive and that under the assump-
tion of strong monotonicity even fewer collections of languages can be learned
from informants. We complete the picture by answering the following questions
regarding Ex-learning from informants positively:

1. Is every learnable collection of languages also learnable in a conservatively
and strongly decisively way?

2. Are monotonic and cautious learning incomparable?

From positively answering the second question follow the above mentioned ob-
servations by Lange, Zeugmann, and Kapur [1996].

A diagram incorporating the resulting map is depicted in Figure 1. The complete
map can be found in Figure 2.

Answering the first question builds on providing the two normal forms of (1)
requiring learning success only on the information presented in the canonical
order and (2) assuming the learner to be defined on all input sequences. Further,
a regularity property borrowed from text learning plays a crucial role in the proof.

Requiring all of the learners guesses to be consistent with the positive and the
negative information being presented to it so far makes learning harder. Next
to this we also observe that the above normal forms cannot be assumed when
the learner is required to act consistently. On the one hand, it is easier to find
a learner for a collection of languages that consistently learns each of them only
from the canonical presentation than finding one consistently learning them from
arbitrary informants. On the other hand finding a total learner consistently Ex-
learning a collection of languages is harder than finding a partial one.
We further transfer the concept of a learning success criterion to be invariant
under time-delayed outputs of the hypotheses, introduced for learning from text
in Kötzing and Palenta [2016] and generalized in Kötzing, Schirneck, and Seidel
[2017], to the setting of learning from informants. Consistency is not delayable
since a hypothesis which is consistent now might be inconsistent later due to
new data. As this is the only requirement not being delayable, the results men-
tioned in the last paragraph justify the conjecture of delayability being the right
property to proof more results that at once apply to all learning success criteria
but consistency.

While the work of Lange and Zeugmann [1994] considers variously restricted
learning of collections of recursive languages with a uniform decision procedure,
the above mentioned results also apply to arbitrary collections of recursively
enumerable sets. Further, our results are as strong as possible, meaning that
negative results are stated for indexable families, if possible, and positive results
for all collections of languages.
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Fig. 1. Relations between delayable learning restrictions in Ex-learning from infor-
mants. Implications are represented as black lines from bottom to top. Two learning
settings are equivalent if and only if they lie in the same grey outlined zone.

In this spirit we add to a careful investigation on how informant and text learning
relate to each other by Lange and Zeugmann [1993]. We show that even for
the most restrictive delayable learning success criterion when Ex-learning from
informants there is a collection of recursive languages learnable in this setting
that is not Ex-learnable from texts.

Case [1999] observed the vacillatory hierarchy for learning from texts. Thereby
in the limit a vacillation between b many (almost) correct descriptions is allowed,
where b P Ną0 Y t8u. In contrast we observe a duality by showing that, when
learning from informants, requiring the learner to eventually output exactly one
correct enumeration procedure is as powerful as allowing any finite number of
correct descriptions in the limit. Furthermore, even facing all appropriate learn-
ing restrictions at hand gives us more learning power for b “ 8, known as
behaviorally correct (Bc) learning. In particular, we obtain for all b P Ną0

rInfExs “ . . . “ rInfExbs “ rInfExb`1s “ . . . Ĺ rInfBcs.

1.2 More Connections to Prior Research

In contrast to our observations, Angluin [1980] showed that requiring a conser-
vative learning process is a restriction when learning from texts. Further, this is
equivalent to cautious learning by Kötzing and Palenta [2016]. That monotonic
learning is restrictive and incomparable to both of them in the text learning
setting follows from Lange, Zeugmann, and Kapur [1996], Kinber and Stephan
[1995], Jain and Sharma [1998] and Kötzing and Palenta [2016]. Further, when
learning from texts, strong monotonicity is again the most restrictive assump-
tion by Lange, Zeugmann, and Kapur [1996]. Strong decisiveness is restrictive by
Baliga, Case, Merkle, Stephan, and Wiehagen [2008] and further is restricted by
cautiousness/conservativeness on the one hand and monotonicity on the other
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hand by Kötzing and Palenta [2016]. By the latter visualizations and a detailed
discussion are provided.

When the learner does not have access to the order of presentation but knows
the number of samples, the map remains the same as observed by Kötzing and
Schirneck [2016].

In case the learner makes its decisions only based on the set of presented sam-
ples and ignores any information about the way it is presented, it is called set-
driven (Sd). For such set-driven learners, when learning from texts, conservative,
strongly decisive and cautious learning are no longer restrictive and the situation
with monotonic and strong monotonic learning remains unchanged by Kinber
and Stephan [1995] and Kötzing and Palenta [2016].

We observe that for delayable informant learning all three kinds of learners yield
the same map. Thus, our results imply that negative information compensates
for the lack of information set-driven learners have to deal with.

Gold [1967] was already interested in the above mentioned normal forms and
proved that they can be assumed without loss of generality in the basic setting
of pure Ex-learning, whereas our results apply to all delayable learning success
criteria.

The name “delayability” refers to tricks in order to delay mind changes of the
learner which were used to obtain polynomial computation times for the learners
hypothesis updates as discussed by Pitt [1989] and Case and Kötzing [2009].
Moreover, it should not be confused with the notion of δ-delay by Akama and
Zeugmann [2008], which allows satisfaction of the considered learning restriction
δ steps later than in the un-δ-delayed version.

Osherson, Stob, and Weinstein [1986] analyze several restrictions for learning
from informants and mention that cautious learning is a restriction to learning
power; we extend this statement with our Proposition 22 in which we give one
half of the answer to the second question above by providing a family of languages
not cautiously but monotonically Ex-learnable from informants.

Furthermore, Osherson, Stob, and Weinstein [1986] consider a version of conser-
vativeness where mind changes are only allowed if there is positive data contra-
dicting the current hypothesis, which they claim to restrict learning power. In
this paper, we stick to the more common definition of Blum and Blum [1975]
and Bārzdiņš [1977], according to which mind changes are allowed also when
there is negative data contradicting the current hypothesis.

1.3 Outline

In Section 2 the setting of learning from informants is formally introduced by
transferring fundamental definitions and —as far as possible— observations from
the setting of learning from texts. In Section 3 in order to derive the entire map of
pairwise relations between delayable Ex-learning success criteria, normal forms
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and a regularity property for such learning from informants are provided. Fur-
ther, consistent learning is being investigated. In Section 4 we answer the ques-
tions above and present all pairwise relations of learning criteria in Theorem 24.
In Section 5 we generalize the result by Gold [1967], we already gave a proof-
sketch for, namely Ex-learning from texts to be harder than Ex-learning from
informants. In Section 6 we provide the aforementioned anomalous hierarchy
and vacillatory duality.

We kept every section as self-contained as possible. Unavoidably, all sections
build on Section 2. Additionally, Section 4 builds on Section 3.

2 Informant Learning

We formally introduce the notion of an informant and transfer concepts and
fundamental results from the setting of learning from text to learning from in-
formant. This includes the learner itself, convergence criteria, locking sequences,
learning restrictions and success criteria as well as a compact notation for com-
paring different learning settings. In the last subsection delayability as the central
property of learning restrictions and learning success criteria is formally intro-
duced.

As far as possible, notation and terminology on the learning theoretic side fol-
low Jain, Osherson, Royer, and Sharma [1999], whereas on the computability
theoretic side we refer to Odifreddi [1999].

We let N denote the natural numbers including 0 and write 8 for an infinite
cardinality. Moreover, for a function f we write dompfq for its domain and
ranpfq for its range. If we deal with (a subset of) a cartesian product, we are
going to refer to the projection functions to the first or second coordinate by pr1
and pr2, respectively. For sets X,Y and a P N we write X “a Y , if X equals Y
with a anomalies, i.e., |pXzY q Y pY zXq| ď a, where |.| denotes the cardinality
function. In this spirit we write X “˚ Y , if there exists some a P N such that
X “a Y . Further, Xăω denotes the finite sequences over X and Xω stands
for the countably infinite sequences over X. Additionally, Xďω :“ Xăω Y Xω

denotes the set of all countably finite or infinite sequences over X. For every
f P Xďω and t P N, we let f rts :“ tps, fpsqq | s ă tu denote the restriction of
f to t. Finally, for sequences σ, τ P Xăω their concatenation is denoted by σaτ
and we write σ Ď τ , if σ is an initial segment of τ , i.e., there is some t P N such
that σ “ τ rts. In our setting, we typically have X “ Nˆt0, 1u. We denote by P
and R the set of all partial functions f : dompfq Ď Nˆt0, 1uăω Ñ N and total
functions f : Nˆt0, 1uăω Ñ N, respectively.

Let L Ď N. If L is recursively enumerable, we call L a language. In case its
characteristic function is computable, we say it is a recursive language. Moreover,
we call L Ď PowpNq a collection of (recursive) languages, if every L P L is a
(recursive) language. In case there exists an enumeration tLξ | ξ P Ξu of L,
where Ξ Ď N is recursive and a computable function f with ranpfq Ď t0, 1u such
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that x P Lξ ô fpx, ξq “ 1 for all ξ P Ξ and x P N, we say L is an indexable
family of recursive languages. By definition indexable families are collections of
recursive languages with a uniform decision procedure.
Further, we fix a programming system ϕ as introduced in Royer and Case [1994].
Briefly, in the ϕ-system, for a natural number p, we denote by ϕp the partial com-
putable function with program code p. We call p an index for Wp :“ dompϕpq.
For a finite set X Ď N we denote by indpXq a canonical index for X. In reference
to a Blum complexity measure, for all p, t P N, we denote by W t

p ĎWp the recur-
sive set of all natural numbers less or equal to t, on which the machine executing
p halts in at most t steps. Moreover, by s-m-n we refer to a well-known recursion
theoretic observation, which gives nice finite and infinite recursion theorems, like
Case’s Operator Recursion Theorem ORT. Finally, we let H “ t p P N | ϕpppqÓ u
denote the halting problem.

2.1 Informants and Learners

Intuitively, for any natural number x an informant for a language L answers
the question whether x P L in finite time. More precisely, for every natural
number x the informant I has either px, 1q or px, 0q in its range, where the first
is interpreted as x P L and the second as x R L, respectively.

Definition 1. (i) Let f P pNˆt0, 1uqďω. We denote by

pospfq :“ ty P N | Dx P N : pr1pfpxqq “ y ^ pr2pfpxqq “ 1u,

negpfq :“ ty P N | Dx P N : pr1pfpxqq “ y ^ pr2pfpxqq “ 0u

the sets of all natural numbers, about which f gives some positive or negative
information, respectively.

(ii) Let L be a language. We call every function I : N Ñ Nˆt0, 1u such that
pospIq Y negpIq “ N and pospIq X negpIq “ ∅ an informant. Further, we
denote by Inf the set of all informants and the set of all informants for the
language L is defined as

InfpLq :“ tI P Inf | pospIq “ Lu.

(iii) Let I be an informant. If for every time t P N reveals information about t
itself, for short pr1pIptqq “ t, we call I a canonical informant.

It is immediate, that negpIq “ NzL for every I P InfpLq. Gold [1967] referred to
a canonical informant as methodical informant.

We employ Turings model for human computers which is the foundation of all
modern computers to model the processes in human and machine learning.

Definition 2. A learner is a (partial) computable function

M : dompMq Ď pNˆt0, 1uqăω Ñ N.

The set of all partial computable functions M : dompMq Ď Nˆt0, 1uăω Ñ N
and total computable functions M : Nˆt0, 1uăω Ñ N are denoted by P and R,
respectively.



8 Martin Aschenbach, Timo Kötzing, and Karen Seidel

2.2 Convergence Criteria and Locking Sequences

Convergence criteria tell us what quality of the approximation and syntactic
accuracy of the learners’ eventual hypotheses are necessary to call learning suc-
cessful. Further, we proof that learning success implies the existence of sequences
on which the learner is locked in a way corresponding to the convergence crite-
rion. We will use locking sequences to show that a collection of languages cannot
be learned in a certain way.

Definition 3. Let M be a learner and L a collection of languages. Further, let
a P NY t˚u and b P Ną0 Y t˚,8u.

(i) Let L P L be a language and I P InfpLq an informant for L presented to M .
(a) We call h “ phtqtPN P Nω, where ht :“MpIrtsq for all t P N, the learning

sequence of M on I.
(b) M learns L from I with a anomalies and vacillation number b in the

limit, for short M Exab -learns L from I or Exab pM, Iq, if there is a time
t0 P N such that | tht | t ě t0 u | ď b and for all t ě t0 we have Wht “

a L.
(ii) M learns L with a anomalies and vacillation number b in the limit, for short

M Exab -learns L, if Exab pM, Iq for every L P L and every I P InfpLq.

The intuition behind (i)(b) is that, sensing I, M eventually only vacillates be-
tween at most b-many hypotheses, where the case b “ ˚ stands for eventually
finitely many different hypotheses. In convenience with the literature, we omit
the superscript 0 and the subscript 1.

Ex-learning, also known as explanatory learning, is the most common definition
for successful learning and corresponds to the notion of identifiability in the limit
by Gold [1967], where the learner eventually decides on one correct hypothesis.
On the other end of the hierarchy of convergence criteria is behaviorally correct
learning, for short Bc- or Ex8-learning, which only requires the learner to be
eventually correct, but allows infinitely many syntactically different hypothe-
ses in the limit. Behaviorally correct learning was introduced by Osherson and
Weinstein [1982]. The general definition of Exab -learning for a P N Y t˚u and
b P Ną0 Y t˚u was first mentioned by Case [1999].
In our setting, we also allow b “ 8 and subsume all Exab under the notion of a
convergence criterion, since they determine in which semi-topological sense the
learning sequence needs to have L as its limit, in order to succeed in learning L.

In the following we transfer an often employed observation by Blum and Blum
[1975] to the setting of learning from informants and generalize it to all conver-
gence criteria introduced in Definition 3.

Definition 4. Let M be a learner, L a language and a P N Y t˚u as well as
b P Ną0 Y t˚,8u. We call σ P pNˆt0, 1uqăω a Exab -locking sequence for M on
L, if Conspσ, Lq and

DD Ď N p |D| ď b ^ @τ P pNˆt0, 1uqăω
`

Conspτ, Lq ñ
`

MpσaτqÓ ^WMpσaτq “
a L^Mpσaτq P D

˘˘ ˘

Further, a locking sequence for M on L is a Ex-locking sequence for M on L.
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Intuitively, the learner M is locked by the sequence σ onto the language L in the
sense that no presentation consistent with L can circumvent M guessing admis-
sible approximations to L and additionally all guesses based on an extension of
σ are captured by a finite set of size at most b.

Note that the definition implies MpσqÓ, WMpσq “
a L and Mpσq P D.

Lemma 5. Let M be a learner, a P NYt˚u, b P Ną0Yt˚,8u and L a language
Exab -identified by M . Then there is a Exab -locking sequence for M on L.

Proof. This is a contradictory argument. Without loss of generality M is defined
on ∅. Assume towards a contradiction for every σ with Conspσ, Lq, MpσqÓ and
WMpσq “

a L and for every finite D Ď N with at most b elements there exists a

sequence τDσ P pNˆt0, 1uqăω with

ConspτDσ , Lq ^
`

MpσaτDσ qÒ _ WMpσaτDσ q
“a L_MpσaτDσ q R D

˘

.

Let IL denote the canonical informant for L. We obtain an informant for L on
which M does not Exab -converge by letting

I :“
ď

nPN

σn, with

σ0 :“ ILr1s,

σn`1 :“ σa
n τ

Dn
σn

aILpn` 1q

for all n P N, where in Dn :“ tMpσ´i q | maxt0, n ´ b ` 1u ď i ď n u we collect
M ’s at most b-many last relevant hypotheses. Since I is an informant for L by
having interlaced the canonical informant for L, the learner M Exab -converges
on I. Therefore, let n0 be such that for all t with σ´n0

Ď Irts we have htÓ and
Wht “

a L. Then certainly tMpσ´i q | n0 ď i ď n0 ` b u has cardinality b ` 1, a
contradiction. ‚

Obviously, an appropriate version also holds when learning from text is consid-
ered.

2.3 Learning Success Criteria

We list the most common requirements that combined with a convergence cri-
terion define when a learning process is considered successful. For this we first
recall the notion of consistency of a sequence with a set according to Blum and
Blum [1975] and Bārzdiņš [1977].

Definition 6. Let f P pNˆt0, 1uqďω and A Ď N. We define

Conspf,Aq :ô pospfq Ď A ^ negpfq Ď NzA

and say f is consistent with A.
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The choice of learning restrictions in the following definition is justified by prior
investigations of the corresponding criteria, when learning from texts, by Kötzing
and Palenta [2016], Kötzing and Schirneck [2016] and Jain, Kötzing, Ma, and
Stephan [2016].

Definition 7. Let M be a learner, I P Inf an informant and h “ phtqtPN P Nω

the learning sequence of M on I. We write

(i) ConspM, Iq (Angluin [1980]), if M is consistent on I, i.e., for all t

ConspIrts,Whtq.

(ii) ConvpM, Iq (Angluin [1980]), if M is conservative on I, i.e., for all s, t
with s ď t

ConspIrts,Whsq ñ hs “ ht.

(iii) DecpM, Iq (Osherson, Stob, and Weinstein [1982]), if M is decisive on I,
i.e., for all r, s, t with r ď s ď t

Whr “Wht ñ Whr “Whs .

(iv) CautpM, Iq (Osherson, Stob, and Weinstein [1986]), if M is cautious on I,
i.e., for all s, t with s ď t

 Wht ĹWhs .

(v) WMonpM, Iq (Jantke [1991],Wiehagen [1991]), if M is weakly monotonic
on I, i.e., for all s, t with s ď t

ConspIrts,Whsq ñ Whs ĎWht .

(vi) MonpM, Iq (Jantke [1991],Wiehagen [1991]), if M is monotonic on I, i.e.,
for all s, t with s ď t

Whs X pospIq ĎWht X pospIq.

(vii) SMonpM, Iq (Jantke [1991],Wiehagen [1991]), if M is strongly monotonic
on I, i.e., for all s, t with s ď t

Whs ĎWht .

(viii) NUpM, Iq (Baliga, Case, Merkle, Stephan, and Wiehagen [2008]), if M is
non-U-shaped on I, i.e., for all r, s, t with r ď s ď t

Whr “Wht “ pospIq ñ Whr “Whs .

(ix) SNUpM, Iq (Case and Moelius [2011]), if M is strongly non-U-shaped on
I, i.e., for all r, s, t with r ď s ď t

Whr “Wht “ pospIq ñ hr “ hs.
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(x) SDecpM, Iq (Kötzing and Palenta [2016]), if M is strongly decisive on I,
i.e., for all r, s, t with r ď s ď t

Whr “Wht ñ hr “ hs.

The following lemma states the implications between almost all of the above
defined learning restrictions, which form the foundation of our research. Fig-
ure 2 includes the resulting backbone, which is slightly different from the one for
learning from texts, since WMon does not necessarily imply NU in the context
of learning from informants.

Lemma 8. Let M be a learner and I P Inf an informant. Then

(i) ConvpM, Iq implies SNUpM, Iq and WMonpM, Iq.

(ii) SDecpM, Iq implies DecpM, Iq and SNUpM, Iq.

(iii) SMonpM, Iq implies CautpM, Iq,DecpM, Iq,MonpM, Iq, WMonpM, Iq.

(iv) DecpM, Iq and SNUpM, Iq imply NUpM, Iq.

(v) WMonpM, Iq does not imply NUpM, Iq.

Proof. Verifying the claimed implications is straightforward. In order to verify
(v), consider L “ 2N. Fix p, q P N such that Wp “ 2N Y t1u and Wq “ 2N and
define the learner M for all σ P Nˆt0, 1uăω by

Mpσq “

#

p, if 1 P negpσq ^ 2 R pospσq;

q, otherwise.

In order to prove WMonpM, Iq for every I P InfpLq, let I be an informant for
L and sIpxq :“ mintt P N | pr1pIptqq “ xu, i.e., sIp1q and sIp2q denote the first
occurance of p1, 0q and p2, 1q in ranpIq, respectively. Then we have for all t P N

Wht “

#

2NY t1u, if sIp1q ă t ď sIp2q;

2N, otherwise.

We have Whs “ WMpIrssq “ 2N Y t1u as well as 1 P negpIrtsq for all s, t P N
with sIp1q ă s ď sIp2q and t ą sIp2q. Therefore,  ConspIrts,Whsq because
of negpIrtsq Ę NzWhs . We obtain WMonpM, Iq since whenever s ď t in N
are such that ConspIrts,Whsq, we know that Whs “ 2N Y t1u can only hold if
likewise sIp1q ă t ď sIp2q and hence Wht “ 2NY t1u, which yields Whs Ď Wht .
Furthermore, if Whs “ 2N all options for Wht satisfy Whs ĎWht . Otherwise, in
case M observes the canonical informant I for L, we have Wh0 “ Wh1 “ 2N,
Wh2

“ 2NY t1u and Wht “ 2N for all t ą 2, which shows  NUpM, Iq. ‚

By the next definition, in order to characterize what successful learning means,
we choose a convergence criterion from Definition 3 and may pose additional
learning restrictions from Definition 7.
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Definition 9. Let T :“ PˆInf denote the whole set of pairs of possible learners
and informants. We denote by

∆ :“ tCaut,Cons,Conv,Dec,SDec,WMon,Mon,SMon,NU,SNU,T u

the set of admissible learning restrictions and by

Γ :“ tExab | a P NY t˚u ^ b P Ną0 Y t˚,8u u

the set of convergence criteria. Further, if

β P t
n
č

i“0

δi X γ | n P N,@i ď n pδi P ∆q and γ P Γ u Ď Pˆ Inf ,

we say that β is a learning success criterion.

Note that every convergence criterion is indeed a learning success criterion by
letting n “ 0 and δ0 “ T, where the latter stands for no restriction.

We refer to all δ P tCaut,Cons,Dec,Mon,SMon,WMon,NU,Tu also as
semantic learning restrictions, as they allow for proper semantic convergence.

2.4 Comparing the Learning Power of Learning Settings

In order to state observations about how two ways of defining learning success
relate to each other, the learning power of the different settings is encapsulated
in notions rαInfβs defined as follows.

Definition 10. Let α Ď P be a property of partial computable functions from the
set pNˆt0, 1uqăω to N and β a learning success criterion. We denote by rαInfβs
the set of all collections of languages that are β-learnable from informants by a
learner M with the property α.
In case the learner only needs to succeed on canonical informants, we denote the
corresponding set of collections of languages by rαInf canβs.

In the learning success criterion at position β, the learning restrictions to meet
are denoted in alphabetic order, followed by a convergence criterion.
At position α, we restrict the set of admissible learners by requiring for example
totality. The properties stated at position α are independent of learning success.

For example, a collection of languages L lies in rRInf canConvSDecExs if and
only if there is a total learner M conservatively, strongly decisively Ex-learning
every L P L from canonical informants. The latter means that for every canonical
informant I for some L P L we have ConvpM, Iq, SDecpM, Iq and ExpM, Iq.

Note that it is also conventional to require M ’s hypothesis sequence to fulfill
certain learning restrictions, not asking for the success of the learning process.
For instance, we are going to show that there is a collection of languages L such
that:



Learning from Informants: Relations between Learning Success Criteria 13

˝ there is a learner which behaves consistently on all L P L and Ex-learns all
of them, for short L P rInfConsExs.

˝ there is no learner which Ex-learns every L P L and behaves consistently on
all languages, for short L R rConsInfExs.

The existence of L is implicit when writing rConsInfExs Ĺ rInfConsExs.

This notation makes it also possible to distinguish the mode of information
presentation. If the learner observes the language as solely positive information,
we write rαTxtβs for the collections of languages β-learnable by a learner with
property α from texts. Of course for α and β the original definitions for the
setting of learning from texts have to be used.

2.5 Delayability

We now introduce a property of learning restrictions and learning success criteria,
which allows general observations, not bound to the setting of Ex-learning, since
it applies to all of the learning restrictions introduced in Definition 7 except
consistency.

Definition 11. Denote the set of all unbounded and non-decreasing functions by
S, i.e., S :“ t s : N Ñ N | @x P N Dt P N : sptq ě x and @t P N : spt` 1q ě sptq u.
Then every s P S is a so called admissible simulating function.

A predicate β Ď P ˆ Inf is delayable, if for all s P S, all I, I 1 P Inf and all
partial functions M,M 1 P P holds: Whenever we have pospI 1rtsq Ě pospIrsptqsq,
negpI 1rtsq Ě negpIrsptqsq and M 1pI 1rtsq “MpIrsptqsq for all t P N, from βpM, Iq
we can conclude βpM 1, I 1q.

The unboundedness of the simulating function guarantees pospIq “ pospI 1q and
negpIq “ negpI 1q.

In order to give an intuition for delayability, think of β as a learning restriction or
learning success criterion and imagine M to be a learner. Then β is delayable if
and only if it carries over from M together with an informant I to all learners M 1

and informants I 1 representing a delayed version of M on I. More concretely, as
long as the learner M 1 conjectures hsptq “MpIrsptqsq at time t and has, in form
of I 1rts, at least as much data available as was used by M for this hypothesis,
M 1 with I 1 is considered a delayed version of M with I.

The next result guarantees that arguing with the just defined properties covers
all of the considered learning restrictions but consistency.

Lemma 12. (i) Let δ P ∆ be a learning restriction. Then δ is delayable if and
only if δ ‰ Cons.

(ii) Every convergence criterion γ P Γ is delayable.
(iii) The intersection of finitely many delayable predicates on P ˆ Inf is again

delayable. Especially, every learning success criterion β “
Şn
i“0 δi X γ with

δi P ∆ztConsu for all i ď n and γ P Γ , β is delayable.
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Proof. We approach piq by showing, that Cons is not delayable. To do so, con-
sider s P S with sptq :“ t t2 u, I, I

1 P Inf defined by Ipxq :“ ptx2 u,12Npt
x
2 uqq

and I 1pxq :“ px, 12Npxqq, where 12N stands for the characteristic function of all
even natural numbers. By s-m-n there are learners M and M 1 such that for all
σ P pNˆt0, 1uqăω

WMpσq “ tx P N | px even ^ x ď t
|σ|

2
uq _ px odd ^ x ą t

|σ|

2
uqu

WM 1pσq “ tx P N | px even ^ x ď t
|σ|

4
uq _ px odd ^ x ą t

|σ|

4
uqu.

Further, ConspM, Iq is easily verified since for all t P N

pospIrtsq “ tx P N | x even ^ x ď t
t´ 1

2
uu ĎWMpIrtsq

negpIrtsq “ tx P N | x odd ^ x ď t
t´ 1

2
uqu Ď NzWMpIrtsq

but on the other hand  ConspM 1, I 1q since for all t ą 2

pospI 1rtsq “ tx P N | x even ^ x ă tu

Ę tx P N | px even ^ x ď t
t

4
uq _ px odd ^ x ą t

t

4
uqu “WM 1pI1rtsq.

The remaining proofs for piq and piiq are straightforward. Basically, for Dec,
SDec, SMon and Caut, the simulating function s being non-decreasing and
M 1pI 1rtsq “ MpIrsptqsq for all t P N would suffice, while for NU,SNU and
Mon one further needs that the informants I and I 1 satisfy pospIq “ pospI 1q.
The proof for WMon and Conv to be delayable, requires all assumptions, but
s’s unboundedness. Last but not least, in order to prove that every convergence
criterion γ “ Exab , for some a P N Y t˚u and b P Ną0 Y t˚,8u, carries over to
delayed variants, one essentially needs both characterizing properties of s and of
course M 1pI 1rtsq “MpIrsptqsq. Finally, piiiq is obvious. ‚

3 Delayability vs. Consistency: Canonical Informants and
Totality

In order to facilitate smooth proofs later on, we discuss normal forms for learning
from informants. First, we consider the notion of set-drivenness. In Lemma 14 we
show for delayable learning success criteria, that every collection of languages
that is learnable from canonical informants is also learnable by a set-driven
learner from arbitrary informants. By Proposition 15 this does not hold for
consistent Ex-learning. This also implies that consistency is a restriction when
learning from informants. Moreover, in Lemma 17 we observe that only consid-
ering total learners does not alter the learnability of a collection of languages in
case of a delayable learning success criterion. This does not hold for consistent
Ex-learning by Proposition 18.



Learning from Informants: Relations between Learning Success Criteria 15

3.1 Set-driven Learners and Canonical Informants

We start by formally capturing the intuition for a learner being set-driven, given
in the introduction.

Definition 13 (Wexler and Culicover [1980]). A learner M is set-driven,
for short SdpMq, if for all σ, τ P Nˆt0, 1uăω

ppospσq “ pospτq ^ negpσq “ negpτq q ñ Mpσq “Mpτq.

Schäfer-Richter [1984] and Fulk [1985] showed that set-drivenness is a restriction
when learning only from positive information and also the relation between the
learning restrictions differ as observed by Kötzing and Palenta [2016].

In the next Lemma we observe that, by contrast, set-drivenness is not a re-
striction in the setting of learning from informants. Concurrently, we generalize
Gold [1967]’s observation, stating that considering solely canonical informants
to determine learning success does not give more learning power, to arbitrary
delayable learning success criteria.

Lemma 14. Let β be a delayable learning success criterion. Then

rInf canβs “ rSdInfβs.

Proof. Clearly, we have rInf canβs Ě rSdInfβs. For the other inclusion, let L be
β-learnable by a learner M from canonical informants. We proceed by formally
showing that rearranging the input on the initial segment of N, we already have
complete information about at that time, is an admissible simulation in the sense
of Definition 11. Let L P L and I 1 P InfpLq. For every f P pNˆt0, 1uqďω, thus
especially for I 1 and all its initial segments, we define sf P S for all t for which
f rts is defined, by

sf ptq “ suptx P N | @w ă x : w P pospf rtsq Y negpf rtsqu,

i.e., the largest natural number x such that for all w ă x we know, whether
w P pospfq. In the following f will either be I 1 or one of its initial segments,
which in any case ensures pospf rtsq Ď L for all appropriate t. By construction, sf
is non-decreasing and if we consider an informant I, since pospIqYnegpIq “ N, sI
is also unbounded. In order to employ the delayability of β, we define an operator
Σ : pNˆt0, 1uqďω Ñ pNˆt0, 1uqďω such that for every f P pNˆt0, 1uqďω in
form of Σpfq we obtain a canonically sound version of f . Σpfq is defined on all
t ă sf p|f |q in case f is finite and on every t P N otherwise by

Σpfqptq :“

#

pt, 0q, if pt, 0q P ranpfq;

pt, 1q, otherwise.

Intuitively, in Σpfq we sortedly and without repetitions sum up all information
contained in f up to the largest initial segment of N, f without interruption
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informs us about. For a finite sequence σ the canonical version Σpσq has length
sσp|σ|q. Now consider the learner M 1 defined by

M 1pσq “MpΣpσqq.

Since I :“ ΣpI 1q is a canonical informant for L, we have βpM, Iq. Moreover, for
all t P N holds pospIrsI1ptqsq Ď pospI 1rtsq and negpIrsI1ptqsq Ď negpI 1rtsq by the
definitions of sI1 and of I using Σ. Finally,

M 1pI 1rtsq “MpΣpI 1rtsqq “MpΣpI 1qrsI1ptqsq “MpIrsI1ptqsq

and the delayability of β yields βpM 1, I 1q. ‚

Therefore, while considering delayable learning from informants, looking only at
canonical informants already yields the full picture also for set-driven learners.
Clearly, the picture is also the same for so-called partially set-driven learners
that base their hypotheses only on the set and the number of samples.

The next proposition answers the arising question, whether Lemma 14 also holds,
when requiring the non-delayable learning restriction of consistency, negatively.

H denotes the halting problem.

Proposition 15. For L :“ t2H Y 2pH Y txuq ` 1 | x P Nu holds

L P rRInf canConsConvSDecSMonExszrInfConsExs.

Particularly, rInfConsExs Ĺ rInf canConsExs.

Proof. Let p : N Ñ N be computable such that Wppxq “ 2H Y 2pH Ytxuq` 1 for
every x P N and let h be an index for 2H Y 2H ` 1. Consider the total learner
M defined by

Mpσq “

#

ppxq, if x with 2x P negpσq and 2x` 1 P pospσq exists;

h, otherwise

for every σ P pNˆt0, 1uqăω. Clearly, M conservatively, strongly decisively and
strongly monotonically Ex-learns L from informants and on canonical infor-
mants for languages in L it is consistent.

Now, assume there is a learner M such that L P InfConsExpMq. By Lemma 5
there is a locking sequence σ for 2H Y 2H ` 1. By s-m-n there is a computable
function

χpxq “

#

1, if Mpσq “Mpσap2x` 1, 1qq;

0, otherwise.

By the consistency of M on L, we immediately obtain that χ is the characteristic
function for H, a contradiction. ‚
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Note, that there must not be an indexable family witnessing the difference stated
in the previous proposition, since every indexable family is consistently and
conservatively Ex-learnable by enumeration.

Gold [1967] further introduces request informants for M and L. As the name
already suggests, there is an interaction between the learner and the informant
in the sense that the learner decides, about which natural number the informant
should inform it next. His observation rInfExs “ rInf canExs “ rInf reqExs
seems to hold true when facing arbitrary delayable learning success criteria, but
fails in the context of the non-delayable learning restriction of consistency.

Since L in Proposition 15 lies in rInf canExs, which by Lemma 14 equals rInfExs,
we gain that for learning from informants consistent Ex-learning is weaker than
Ex-learning, i.e., rInfConsExs Ĺ rInfExs.

We now show that, as observed for learning from texts by Jain, Osherson, Royer,
and Sharma [1999], a consistent behavior regardless learning success cannot be
assumed in general, when learning from informants.

Proposition 16. For L :“ tN, H u holds

L P rRInfConsConvSDecExszrConsInfExs.

In particular, rConsInfExs Ĺ rInfConsExs.

Proof. Fix an index h for H and an index p for N. The total learner M with

Mpσq “

#

p, if negpσq “ ∅;

h, otherwise

for every σ P pNˆt0, 1uqăω clearly consistently, conservatively and strongly de-
cisively Ex-learns L.

Aiming at the claimed proper inclusion, assume there is a consistent learner
M for L from informants. Since M learns H, by Lemma 5, we gain a locking
sequence σ P pNˆt0, 1uqăω for M on H, which means Conspσ,Hq, WMpσq “ H

and for all τ P pNˆt0, 1uqăω with Conspτ,Hq holds MpσaτqÓ“Mpσq. By letting

χpxq :“

#

1, if Mpσapx, 1qq “Mpσq;

0, otherwise

for all x P N, we can decide H by the global consistency of M , a contradiction. ‚

3.2 Total Learners

Similar to full-information learning from text we show that for delayable learning
restrictions totality is not a restrictive assumption.
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Lemma 17. Let β be a delayable learning success criterion. Then

rInfβs “ rRInfβs.

Proof. Let L P rInfβs and M be a learner witnessing this. Without loss of
generality we may assume that ∅ P dompMq. We define the total learner M 1 by
letting sM : pNˆt0, 1uqăω Ñ N,

σ ÞÑ supts P N | s ď |σ| and M halts on σrss after at most |σ| stepsu

and

M 1pσq :“MpσrsM pσqsq.

The convention supp∅q “ 0 yields that sM is total and it is computable, since for
M only the first |σ|-many steps have to be evaluated on σ’s finitely many initial
segments. One could also employ a Blum complexity measure here. Hence, M 1

is a total computable function.
In order to observe that M 1 Infβ-learns L, let L P L and I be an informant for
L. By letting sptq :“ sM pIrtsq, we clearly obtain an unbounded non-decreasing
function, hence s P S. Moreover, for all t P N from sptq ď t immediately follows

pospIrsptqsq Ď pospIrtsq, negpIrsptqsq Ď negpIrtsq as well as

M 1pIrtsq “MpIrsM pIrtsqsq “MpIrsptqsq.

By the delayability of β and with I 1 “ I, we finally obtain βpM 1, Iq. ‚

By the next proposition also for learning from informants requiring the learner
to be total is a restrictive assumption for the non-delayable learning restric-
tion of consistency. For learning from texts this was observed by Wiehagen and
Zeugmann [1995] and generalized to δ-delayed consistent learning from texts by
Akama and Zeugmann [2008].

Proposition 18. There is a collection of decidable languages witnessing

rRInfConsExs Ĺ rInfConsExs.

Proof. Let o be an index for ∅ and define for all σ P pNˆt0, 1uqăω the learner
M by

Mpσq :“

#

o, if pospσq “ ∅;

ϕmaxppospσqqpxσyq, otherwise.

We argue that L :“ tL Ď N | L is decidable and L P InfConsExpMq u is
not consistently learnable by a total learner from informants. Assume towards
a contradiction M 1 is such a learner. For a sequence σ of natural numbers we
denote by σ the corresponding canonical finite informant sequence, ending with
the highest value σ takes. Further, for a natural number x we denote by seqpxq
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the unique element of pNˆt0, 1uqăω with xseqpxqy “ x. Then by padded ORT
there are e, z P N and functions a, b : Năω Ñ N, such that

@σ, τ P Năω pσ Ĺ τ ñ maxtapσq, bpσqu ă mintapτq, bpτqu q, (1)

with the property that for all σ P Năω and all i P N

σ0 “ ∅;

σi`1 “ σi
a

#

apσiq, if M 1pσiaapσiqq ‰M 1pσiq;

bpσiq, otherwise;
(2)

ϕzpyq “

#

1, if y P pospσyq;

0, otherwise;

We “
ď

iPN

pospσiq;

ϕapσqpxq “

$

’

’

’

&

’

’

’

%

e, if M 1pσaapσqq ‰M 1pσq and

@y P pospseqpxqq ϕzpyq “ 1^

@y P negpseqpxqq ϕzpyq “ 0;

indppospseqpxqqq, otherwise;

ϕbpσqpxq “

$

’

&

’

%

e, if @y P pospseqpxqq ϕzpyq “ 1^

@y P negpseqpxqq ϕzpyq “ 0;

indppospseqpxqqq, otherwise;

Note that ϕz witnesses We’s decidability by (1) and with this whether ϕapσq
and ϕbpσq output e or stick to p depends on Conspseqpxq,Weq. Clearly, we have
We P L and thus M 1 also InfConsEx-learns We. By the Ex-convergence there
are e1, j P N, where j is minimal, such that We1 “ We and for all i ě j we have
M 1pσiq “ e1 and hence M 1pσiaapσiqq “M 1pσiq by (2).

We now argue that L :“ pospσjqY tapσjqu P L. Let I be an informant for L and
t P N. By (2) we observe that M is consistent on I as

MpIrtsq “ ϕmaxppospIrtsqqpxIrtsyq “

#

e, if ConspIrts,Weq;

indppospIrtsqq, otherwise.

Further, by the choice of j as well as (1) and (2) we have

apσjq RWe “We1 , (3)

and with this WMpIrtsq “ L, if pospIrtsq “ L.

On the other hand M 1 does not consistently learn L as by the choice of j we
obtain M 1pσjaapσjqq “ M 1pσjq “ e1 and  Conspσjaapσjq,We1q by (3), a con-
tradiction. ‚
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4 Relations between Delayable Learning Success Criteria

In order to reveal the relations between the delayable learning restrictions in
Ex-learning from informants, we provide a regularity property of learners, called
syntactic decisiveness, for Ex-learning in Lemma 20.
Most importantly, in Proposition 21 we acquire that conservativeness and strongly
decisiveness do not restrict informant learning. After this, Propositions 23 and 22
provide that cautious and monotonic learning are incomparable, implying that
both these learning settings are strictly stronger than strongly monotonic learn-
ing and strictly weaker than unrestricted learning. The overall picture is sum-
marized in Figure 2 and stated in Theorem 24.

4.1 Syntactically Decisive Learning

A further beneficial property, requiring a learner never to syntactically return to
an abandoned hypothesis, is supplied.

Definition 19 (Kötzing and Palenta [2016]). Let M be a learner, L a lan-
guage and I an informant for L. We write

SynDecpM, Iq, if M is syntactically decisive on I, i.e.,

@r, s, t : pr ď s ď t^ hr “ htq ñ hr “ hs.

The following easy observation shows that this variant of decisiveness can always
be assumed in the setting of Ex-learning from informants. This is employed in
the proof of our essential Proposition 21, showing that conservativeness and
strong decisiveness do not restrict Ex-learning from informants.

Lemma 20. We have rInfExs “ rSynDecInfExs.

Proof. Since obviously rSynDecInfExs Ď rInfExs, it suffices to show that
every InfEx-learnable collection of languages is also SynDecInfEx-learnable.
For, let L P rInfExs and M witnessing this. In the definition of the learner M 1,
we make use of a one-one computable padding function pad : NˆN Ñ N such
that Wp “ dompϕpq “ dompϕpadpp,xqq “Wpadpp,xq for all p, x P N. Now, consider
M 1 defined by

M 1pσq :“

#

padpMpσq, |σ|q, if Mpσ´q ‰Mpσq;

M 1pσq, otherwise.

M 1 behaves almost like M with the crucial difference, that whenever M performs
a mind change, M 1 semantically guesses the same language as M did, but syn-
tactically its hypothesis is different from all former ones. The padding function’s
defining property and the assumption that M InfEx-learns L immediately yield
the SynDecInfEx-learnability of L by M 1. ‚
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Note that SDec implies SynDec, which is again a delayable learning restriction.
Thus by Lemma 14, in the proof of Lemma 20 we could have also restricted our
attention to canonical informants. It is further easy to see that Lemma 20 also
holds for all other convergence criteria introduced and the simulation does not
destroy any of the learning restrictions introduced in Definition 7.

4.2 Conservative and Strongly Decisive Learning

The following proof for ConvSDecEx-learning being equivalent to Ex-learning
from informants builds on the normal forms of canonical presentations and to-
tality provided in Section 3 as well as the regularity property introduced in the
last subsection.

Proposition 21. We have rInfExs “ rInfConvSDecExs.

Proof. Obviously rInfExs Ě rInfConvSDecExs and by the Lemmas 14, 17
and 20 it suffices to show rRSynDecInfExs Ď rInf canConvSDecExs.
In the following for every setX and t P N, letXrts denote the canonical informant
sequence of the first t elements of X.

Now, let L P rRSynDecInfExs and M a learner witnessing this. In particular,
M is total and on informants for languages in L we have that M never returns
to a withdrawn hypothesis. We want to define a learner M 1 which mimics the
behavior of M , but modified such that, if σ is a locking sequence, then the
hypothesis of M 1 codes the same language as the guess of M . However, if σ is
not a locking sequence, then the language guessed by M 1 should not include
data that M changes its mind on in the future. Thus, carefully in form of a
recursively defined Ď-increasing sequence pAtσqtPN in the guess of M 1 we only
include the elements of the hypothesis of M that do not cause a mind change of
M when looking more and more computation steps ahead. The following formal
definitions make sure, this can be done in a computable way.

For every σ P pNˆt0, 1uqăω, t P N with t ě |σ| and D ĎW t
Mpσq, we let

rtσpDq “ mint|σ| ď r ď t | D ĎW r
Mpσqu.

Moreover, we define‹

X t
σpDq “ tX ĎW t

Mpσq | maxpXq ă infpW t
MpσqzXq, D Ĺ X and

Mpσq “MpW t
Mpσqr r

t
σpXq ` 1 s q u.

In the following we abbreviate X Ď W t
Mpσq and maxpXq ă infpW t

MpσqzXq by

X ĎW t
Mpσq and say that X is an initial subset of W t

Mpσq.

Aiming at providing suitable hypotheses ppσq for the conservative strongly de-
cisive learner M 1, given σ, we carefully enumerate more and more elements
included in WMpσq. We are going to start with the positive information provided

‹ We suppose infpHq “ 8 for convenience.
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by σ. Having obtained Atσ with X t
σpA

t
σq we have a set at hand that contains all

initial subsets X of W t
Mpσq strictly incorporating Atσ, for which M does not dif-

ferentiate between σ and the appropriate initial segment W t
Mpσqr r

t
σpXq ` 1 s of

the canonical informant of M ’s guess on σ. Thus X t
σpA

t
σq contains our candidate

sets for extending Atσ. The length rtσpXq ` 1 of the initial segment is minimal

such that X is a subset of W
rtσpXq
Mpσq and at least |σ| to assure Ex-convergence of

the new learner.
For an arbitrary σ P pNˆt0, 1uqăω this reads as follows

A0
σ “ pospσq;

@t P N : At`1
σ “

$

’

&

’

%

W t
Mpσq, if negpσq XAtσ ‰ H;

maxĎ X t
σpA

t
σq, else if X t

σpA
t
σq ‰ H;

Atσ, otherwise.

Furthermore, using s-m-n, we define p : pNˆt0, 1uqăω Ñ N as a one-one function,
such that for all σ P pNˆt0, 1uqăω

Wppσq “
ď

tPN

Atσ. (4)

In the following, for all τ P pNˆt0, 1uqăω we denote by τ 1 the largest initial
segment of τ for which M 1pτ 1q “M 1pτq, i.e., the last time M 1 performed a mind
change. Finally, we define our new learner M 1 by

M 1pσq “

$

’

&

’

%

ppσq, if |σ| “ 0;

ppσq, else if Mppσ´q1q ‰Mpσq ^  Conspσ,A
|σ|
pσ´q1

q;

M 1pσ´q, otherwise.

That is, M 1 follows the mind changes of M once a suitably inconsistent hypoth-
esis has been seen. All hypotheses of M are poisoned in a way to ensure that we
can decide inconsistency.

Let us first observe that M 1 Ex-learns every L P InfExpMq from informants.
For, let t0 be minimal such that, for all t ě t0, MpLrtsq “ MpLrt0sq. Thus,
e :“MpLrt0sq is a correct hypothesis for L.

If M 1 does not make a mind change in or after t0, then M 1 converged already
before that mind change of M . Thus, let s0 ă t0 be minimal such that for all
t ě s0, e1 :“ M 1pLrs0sq “ M 1pLrtsq. As p is one-one and M learns syntactically
decisive, we have MpLrs0sq ‰ MpLrtsq for all t ě t0. From pLrt ´ 1sq1 “ Lrs0s
and the definition of M 1 we get ConspLrts, AtLrs0sq for all t ě t0. Thus, We1 “ L,

because the final hypothesis We1 of M 1 contains all elements of L and no other
by Equation (4).

In case M 1 makes a mind change in or after t0, let t1 ě t0 be the time of that
mind change. As M does not perform mind changes after t0, the learner M 1

cannot make further mind changes and therefore converges to e1 :“ ppLrt1sq.
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By construction we have AtLrt1s Ď We “ L for all t P N and with it We1 Ď L

by Equation 4. Towards a contradiction, suppose We1 Ĺ L and let x P LzWe1

be minimal. By letting s0 such that pospLrxsq Ď As0Lrt1s and x P W s0
e , every

initial subset of W s0
e extending As0Lrt1s would necessarily contain x. Therefore

we have AsLrt1s “ As0Lrt1s and X s
Lrt1s

pAs0Lrt1sq “ ∅ for all s ě s0. We obtain the

Ex-convergence of M 1 by constructing s2 ě s0 with X s2
Lrt1s

pAs0Lrt1sq ‰ ∅. For

this, let y :“ maxpAs0Lrt1sYtxuq which implies As0Lrt1s Ĺ pospLry` 1sq. Moreover,

let s1 ě t1 be large enough such that Lry ` 1s “ W s1
e ry ` 1s. Thus, by letting

r :“ rs1Lrt1sppospLry`1sqq`1 we gain r “ rsLrt1sppospLry`1sqq`1 for all s ě s1,

where the latter denotes the time window considered in the third requirement
for pospLry` 1sq P X s

Lrt1s
pAs0Lrt1sq. Furthermore, let s2 ě s1 with Lrrs “W s2

e rrs.

By the definition of r we have r ą t1 ě t0 and gain

pospLry ` 1sq ĎW s2
e , As2Lrt1s “ As0Lrt1s Ĺ pospLry ` 1sq and

MpLrt1sq “ e “MpLrrsq “MpW s2
e rrs q,

for short pospLry ` 1sq P X s2
Lrt1s

pAs0Lrt1sq, implying X s2
Lrt1s

pAs0Lrt1sq ‰ ∅.

Now we come to prove that M 1 is conservative on every L P InfExpMq. For,
let t be such that M 1pLrtsq ‰ M 1pLrt ` 1sq. Let e1 :“ M 1pLrtsq and let t1 ď t
be minimal such that M 1pLrt1sq “ e1. From the mind change of M 1 we get
 ConspLrt ` 1s, At`1

Lrt1sq. In case it holds negpLrt ` 1sq X At`1
Lrt1s ‰ ∅, since

At`1
Lrt1s Ď We1 , we would immediately observe  ConspLrt ` 1s,We1q. Therefore,

we may assume pospLrt` 1sqzAt`1
Lrt1s ‰ ∅. Suppose, by way of contradiction, We1

is consistent with Lrt`1s, i.e., pospLrt`1sq ĎWe1 and negpLrt`1sqXWe1 “ ∅.
Then we have negpLrt`1sqXAsLrt1s “ ∅ for all s P N. Since pospLrt`1sq ĎWe1 ,
there is t0 minimal such that

Lrt` 1s “ At0`1
Lrt1s rt` 1s. (5)

We have negpLrt1sq X At0Lrt1s “ ∅ as otherwise  ConspLrt` 1s,We1q. Because t0

was minimal, we have At0Lrt1s Ĺ At0`1
Lrt1s and with this At0`1

Lrt1s P X
t0
Lrt1spA

t0
Lrt1sq by the

definition of At0`1
Lrt1s . In particular, this tells us

At0`1
Lrt1s ĎW t0

MpLrt1sq and (6)

MpLrt1sq “MpW t0
MpLrt1sqr r

t0
Lrt1spA

t0`1
Lrt1sq ` 1 s q. (7)

and therefore with

Lrt1s Ď Lrt` 1s
(5)
Ď At0`1

Lrt1s

(6)
Ď W t0

MpLrt1sqr r
t0
Lrt1spA

t0`1
Lrt1sq ` 1 s

by Equation (7) and M ’s syntactic decisivenes we get MpLrt1sq “ MpLrt` 1sq.
Therefore, M 1 did not make a mind change in t` 1, a contradiction. ‚
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4.3 Completing the Picture of Delayable Learning

The next two propositions show that monotonic and cautious Ex-learning are
incomparable on the level of indexable families. With Proposition 21 this yields
all relations between delayable Ex-learning success criteria as stated in Theo-
rem 24.

We extend the observation of Osherson, Stob, and Weinstein [1986] for cautious
learning to restrict learning power with the following result. The positive part
has already been discussed in the example in the introduction.

Proposition 22. For the indexable family L :“ tNzX | X Ď N finiteu holds

L P rInfMonExszrInfCautBcs.

Particularly, rInfCautExs Ĺ rInfExs.

Proof. In order to approach L R rInfCautBcs, let M be a InfBc-learner for L
and I0 the canonical informant for N. Moreover, let t0 be such that WMpI0rt0sq “

N. Let I1 be the canonical informant for L1 :“ Nztt0u. Since M learns L1, there
is t1 ą t0 such that WMpI1rt1sq “ L1. We have I1rt0s “ I0rt0s and hence M is
not cautiously learning L1 from I1.

We now show the MonEx-learnability. By s-m-n there is a computable function
p : N Ñ N such that for all finite sets X holds WppxXyq “ NzX, where xXy
denotes a canonical code for X as already employed in the proof of Proposition
23. We define the learner M by letting for all σ P Nˆt0, 1uăω

Mpσq “ ppxnegpσqyq.

The corresponding intuition is that M includes every natural number in its guess,
not explicitly excluded by σ. Clearly, M learns L and behaves monotonically on
L, since for every X Ď N finite, every informant I for NzX and every t P N, we
have WMpIrtsq Ě NzX and therefore WMpIrtsq X NzX “ NzX. ‚

This reproves rInfSMonExs Ĺ rInfMonExs observed by Lange, Zeugmann,
and Kapur [1996] also on the level of indexable families.

In the next proposition the learner can even be assumed cautious on languages
it does not identify. Thus, according to Definition 10 we write this success inde-
pendent property of the learner on the left side of the mode of presentation.

Proposition 23. For the indexable family

L :“ t2X Y p2pNzXq ` 1q | X Ď N finite or X “ Nu

holds L P rCautInfExszrInfMonBcs.
Particularly, rInfMonExs Ĺ rInfExs.
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Proof. We first show L R rInfMonBcs. Let M be a InfBc-learner for L. Fur-
ther, let I0 be the canonical informant for L0 :“ 2N P L. Then there exists t0
such that WMpI0r2t0sq “ 2N. Moreover, consider the canonical informant I1 for

L1 :“ 2t0, . . . , t0u Y p2pNzt0, . . . , t0uq ` 1q P L

and let t1 ą t0 such that WMpI1r2t1sq “ L1. Similarly, we let I2 be the canonical
informant for

L2 :“ 2t0, . . . , t0, t1 ` 1u Y p2pNzt0, . . . , t0, t1 ` 1uq ` 1q P L

and choose t2 ą t1 with WMpI2r2t2sq “ L2. Since 2pt1 ` 1q P pL0 X L2qzL1 and
by construction I2r2t0s “ I0r2t0s as well as I2r2t1s “ I1r2t1s, we obtain

2pt1 ` 1q PWMpI2r2t0sq X L2 and 2pt1 ` 1q RWMpI2r2t1sq X L2

and therefore M does not learn L2 monotonically from I2.

Let us now adress L P rCautInfExs. Fix p P N such that Wp “ 2N. Further, by
s-m-n there is a computable function q : N Ñ N with WqpxXyq “ XYp2NzXq`1,
where xXy stands for a canonical code of the finite set X. We define the learner
M for all σ P Nˆt0, 1uăω by

Mpσq “

#

p, if pospσq Ď 2N;

qpxpospσq X 2Nyq, otherwise.

Intuitively, M guesses 2N as long as no odd number is known to be in the
language L to be learned. If for sure L ‰ 2N, then M assumes that all even
numbers known to be in L so far are the only even numbers therein.

It is easy to verify that M is computable and by construction it learns L. For
establishing the cautiousness, let L be any language, I an informant for L and
s ď t. Furthermore, assume WMpIrssq ‰ WMpIrtsq. In case pospIrssq Ę 2N, we
have x P ppospIrtsq X 2Nq with x R ppospIrssq X 2Nq and therefore as desired
WMpIrtsqzWMpIrssq ‰ ∅. Then pospIrssq Ď 2N implies WMpIrssq “ 2N and thus
again WMpIrtsqzWMpIrssq ‰ ∅. ‚

We sum up the preceding results in the next theorem and also represent them
in Figure 2.

Theorem 24. We have

(i) @δ P tConv,Dec,SDec,WMon,NU,SNUu : rInfδExs “ rInfExs.

(ii) rInfMonExs K rInfCautExs.

Proof. The first part is an immediate consequence of Proposition 21 and so is
the second part of the Propositions 22 and 23. ‚
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Fig. 2. Relations between delayable learning restrictions in full-information (ex-
planatory) Ex-learning of languages from informants. The implications according to
Lemma 8 are represented as black lines from bottom to top. Two learning settings are
equivalent if and only if they lie in the same grey outlined zone as stated in Theorem 24.

5 Outperforming Learning from Texts

Already Gold [1967] observed rTxtExs Ĺ rInfExs and later on Lange and Zeug-
mann [1993] further investigated the interdependencies when considering the dif-
ferent monotonicity learning restrictions. For instance, they showed that there
exists an indexable family L P rInfMonExszrTxtExs ‰ ∅ and in contrast that
for indexable families InfSMonEx-learnability implies TxtEx-learnability. We
show that this inclusion fails on the level of families of recursive languages even
with all learning restrictions at hand.

Proposition 25. For the class of recursive languages

L :“ t2pLY txuq Y 2L` 1 | L is recursive^WminpLq “ L^ x ě minpLqu

holds L P rInfConvSDecSMonExszrTxtExs.

Proof. Let pm denote an index for 2Wm Y 2Wm ` 1 and pm,x an index for
2pWm Y txuq Y 2Wm ` 1. The learner M will look for the minimum of the
presented set and moreover try to detect the exception x, in case it exists. Thus,
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it checks for all m such that 2m P pospσq or 2m ` 1 P pospσq whether for all
k ă m holds 2k P negpσq or 2k`1 P negpσq. In case m has this property relative
to σ, we write minLpm,σq as m is the minimum of the language presented.
Further, M tries to find x such that 2x P pospσq and 2x ` 1 P negpσq and we
abbreviate by excLpx, σq that x is such an exception. Consider the learner M
for all σ P pNˆt0, 1uqăω defined by

Mpσq “

$

’

&

’

%

indp∅q, if there is no m with minLpm,σq;

pm, if minLpm,σq and there is no x with excLpx, σq;

pm,x, if minLpm,σq and x is minimal with excLpx, σq.

Clearly, M conservatively, strongly decisively and strongly monotonically Ex-
learns L.
To observe L R rTxtExs, assume there exists M such that L P TxtExpMq. By
s-m-n there exists e P N such that for all i P N

Aσpiq “ t k P N |Mpσq ‰Mpσap2e` 4iqkq u;

Bσpiq “ t k P N |Mpσq ‰Mpσap2e` 4i` 2qkq u;

σ0 “ p2e, 2e` 1q;

σi`1 “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

σi, if Aσipiq “ Bσipiq “ ∅
or i ą 0^ σi´1 “ σi;

σa
i p2e` 4iqinfpAσi piqqap2e` 4i` 1q, if Aσipiq ‰ ∅

^ infpAσipiqq ď infpBσipiqqq;

σa
i p2e` 4i` 2qinfpBσi piqqap2e` 4i` 3q, if Bσipiq ‰ ∅

^ infpBσipiqq ă infpAσipiqq;

We “
ď

iPN

tn | 2n` 1 P ranpσiqu.

We is recursive, because it is either finite or we can decide it along the construc-
tion of the σi. Thus, 2We Y 2We ` 1 P L. If for some index i holds σi`1 “ σi,
then M fails to learn 2pWeYte`2iuqY2We`1 or 2pWeYte`2i`1uqY2We`1.
On the other hand, if there is no such i, by letting T :“

Ť

iPN σi we obtain a
text for 2We Y 2We ` 1, on which M performs infinitely many mindchanges. ‚

6 Vacillatory Duality

We compare the convergence criteria Exab from Definition 3 for different param-
eters a P NYt˚u and b P Ną0Yt˚,8u. The duality depending on whether b “ 8
for fixed a follow from the Propositions 26 and 27.

We separate InfEx- and InfBc-learning at the level of families of recursive
languages, even when requiring the Bc-learning sequence to meet all introduced
delayable semantic learning restrictions. As every indexable family of recursive
languages is Ex-learnable from informants by enumeration, the result is optimal.
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Proposition 26. For the collection of recursive languages

L “ tLY txu | L Ď N is recursive^WminpLq “ L^ x ě minpLqu

holds L P rInfSMonBcszrInfExs.

Proof. By Lemma 14 it suffices to show

L P rInf canSMonBcszrInf canExs.

By s-m-n there are p : Nˆt0, 1uăω ˆ N Ñ N and a learner M such that for all
σ P Nˆt0, 1uăω and x P N

Wppσ,xq “Wminppospσqq Y txu and

Mpσq “

$

’

&

’

%

o, if pospσq “ ∅;

minppospσqq, else if pospσqzW
|σ|
minppospσqq “ ∅;

ppσ, xq, else if x “ minppospσqzW
|σ|
minppospσqqq;

where o refers to the canonical index for the empty set. Let LYtxu P L with L Ď
N recursive, WminpLq “ L and x ě minpLq and let I be the canonical informant
for L Y txu. Then for all t ą minpLq we have WminppospIrtsqq “ WminpLq “ L.
Further, let m be minimal such that ty P L | y ă xu Ď Wm

minpLq. Since x ě

minpLq the construction yields for all t P N

Wht “

$

’

&

’

%

∅, if t ď minpLq;

L, else if minpLq ď t ă maxtx` 1,mu;

LY txu, otherwise.

This can be easily verified, since in case y P L we have L “ LYtyu and establishes
the Inf canSMonBc-learnability of L by M .

In order to approach L R rInf canExs, assume to the contrary that there is a
learner M that Inf canEx-learns L. By Lemma 17 M can be assumed total.
We are going to define a recursive language L with WminpLq “ L helpful for
showing that not all of L is Inf canEx-learned by M . In order to do so, for every
canonical σ P Nˆt0, 1uăω we define sets A0

σ, A
1
σ Ď N. For this let I0σ stand for

the canonical informant of pospσq, whereas I1σ denotes the canonical informant
of pospσq Y t|σ|u. In A0

σ we collect all t ą |σ| for which M ’s hypothesis on I0σrts
is different from Mpσq. Similarly, in A1

σ we capture all t ą |σ| such that M on
I1σrts makes a guess different from Mpσq. This reads as follows

A0
σ :“ t t P N | t ą |σ| ^MpI0σrtsq ‰Mpσq u,

A1
σ :“ t t P N | t ą |σ| ^MpI1σrtsq ‰Mpσq u.

Note that for every t ą |σ|

I0σrts “ σap p|σ|, 0q, p|σ|`1, 0q, . . . , pt´ 1, 0q q,

I1σrts “ σap p|σ|, 1q, p|σ|`1, 0q, . . . , pt´ 1, 0q q.
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By s-m-n there exists p P N such that‹‹

σ0 “ p p0, 0q, . . . , pp´ 1, 0q, pp, 1q q,

@i P N : σi`1 “

$

’

&

’

%

σi, if A0
σi “ A1

σi “ H;

I0σirminpA0
σiqs, if infpA0

σiq ď infpA1
σiq;

I1σirminpA1
σiqs, otherwise;

Wp “
ď

iPN

pospσiq.

By construction p “ minpWpq and Wp is recursive, which immediately yields
L :“Wp P L. Further, for every i P N from σi ‰ σi`1 follows Mpσiq ‰Mpσi`1q.
Aiming at a contradiction, let I be the canonical informant for L, which implies
Ť

iPN σi Ď I. Since M Ex-learns L and thus does not make infinitely many mind
changes on I, there exists i0 P N such that for all i ě i0 we have σi “ σi0 . But
then for all t ą |σi0 | holds

MpI0σi0 rtsq “Mpσi0q “MpI1σi0 rtsq,

thus M does not learn at least one of L “ pospσi0q and L Y t|σi0 |u from their
canonical informants. On the other hand both of them lie in L and therefore, M
had not existed in the beginning. ‚

Since allowing infinitely many different correct hypotheses in the limit gives more
learning power, the question arises, whether finitely many hypotheses already
allow to learn more collections of languages. The following proposition shows
that, as observed by Bārzdiņš and Podnieks [1973] and Case and Smith [1983]
for function learning, the hierarchy of vacillatory learning collapses when learning
languages from informants.

Proposition 27. Let a P NY t˚u. Then rInfExas “ rInfExa˚s.

Proof. Clearly, rInfExas Ď rInfExa˚s. For the other inclusion let L be in rInfExa˚s
and M a learner witnessing this. By Lemma 17 we assume that M is total.
In the construction of the Exa-learner M 1, we employ the recursive function
Ξ : pNˆt0, 1uqăω ˆ N Ñ N, which given σ P pNˆt0, 1uqăω and p P N al-

ters p such that W
|σ|
Ξpσ,pq X negpσq “ ∅ and moreover, if σ Ď τ are such that

W
|σ|
p X negpσq “ W

|τ |
p X negpτq, then Ξpσ, pq “ Ξpτ, pq. One way to do this is

by letting Ξpσ, pq denote the unique program, which given x successively checks,
whether x “ yi, where pyiqiă|negpσq| is the increasing enumeration of negpσq.
As soon as the answer is positive, the program goes into a loop. Otherwise it
executes the program encoded in p on x, which yields

ϕΞpσ,pqpxq “

#

Ò, if x P negpσq;

ϕppxq, otherwise.

‹‹ Again we use the convention infpHq “ 8.
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Now, M 1 works as follows:

I. Compute pi :“Mpσrisq for all i ď |σ|.

II. Withdraw all pi with the property |negpσq XW
|σ|
pi | ą a.

III. Define M 1pσq to be a code for the program coresponding to the union vote
of all Ξpσ, piq, for which pi was not withdrawn in the previous step:

Given input x, for n from 0 till8 do the following: If i :“ π1pnq ď |σ|,

|negpσqXW
|σ|
pi | ď a and ΦΞpσ,piqpxq ď π2pnq, then return 0; otherwise

increment n.

This guarantees

ϕM 1pσqpxq “

#

0, if D i ď |σ| p |negpσq XW
|σ|
pi | ď a ^ ϕΞpσ,piqpxqÓ q;

Ò, otherwise.

Intuitively, M 1pσq eliminates all commission errors in guesses of M on initial
segments of σ, not immediately violating the allowed number of anomalies, and
then asks whether one of them converges on the input, which implies

WM 1pσq “
ď

iď|σ|,|negpσqXW
|σ|
pi
|ďa

WΞpσ,Mpσrisqq.

In order to show L P InfExapMq, let L P L and I P InfpLq. As L P Exa˚pMq,
there is t0 such that all of M ’s hypotheses are in ths | s ď t0u and additionally
|W t0

hs
XNzL | ą a for all s ď t0 with |Whs XNzL| ą a. Moreover, we can assume

that for all s ď t0 with |WhsXNzL | ď a we have observed all commission errors
in at most t0 steps, which formally reads as Whs X NzL “W t0

hs
X NzL.

Then for all t ě t0 we obtain the same set of indices

A :“ tΞpIrts, piq | i ď t^ |negpIrtsq XW t
pi | ď a u

and therefore M 1 will return syntactically the same hypothesis, namely, h1t0 .
It remains to argue for Wh1t0

“a L. By construction and the choice of t0 there

are no commission errors, i.e., Wh1t0
X NzL “ ∅. Further, since ϕh1t0

pxq exists

in case there is at least one p P A such that ϕppxq exists, there are at most a
arguments, on which ϕh1t0

is undefined. ‚

This contrasts the results in language learning from texts by Case [1999], ob-
serving for every a P NY t˚u a hierarchy

rTxtExas Ĺ . . . Ĺ rTxtExab s Ĺ rTxtExab`1s Ĺ . . .

Ĺ
ď

bPNą0

rTxtExab s Ĺ rTxtExa˚s Ď rTxtBcas.

For learning from informants we gain for every a P NY t˚u a duality

rInfExas “ . . . “ rInfExab s “ rInfExab`1s “ . . .

“
ď

bPNą0

rInfExab s “ rInfExa˚s Ĺ rInfBcas.
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7 Learning Characteristic Functions of Collections of
Recursive Languages

We now turn to the setting in which we want to learn a set of Boolean classifiers.
In Machine Learning the input is usually considered a labeled element of Rd. It is
reasonable to consider only the countably many d-tuples x of computable reals
Rdcomp. By fixing a (non-computable) enumeration Rdcomp “ xxi | i ă Ny, we
might as a first attempt identify i with xi. Then our hypothesis space is the
set of all Boolean functions. We will later restrict ourselves to total computable
Boolean functions.

Definitions 1 for informant and 2 for the learner are independent of the inter-
pretation of the hypothesis. The Definition 3 of convergence criteria has to be
slightly modified as follows.

Definition 28. Let M be a learner and L a collection of recursive languages.
Further, let a P NY t˚u and b P Ną0 Y t˚,8u.

(i) Let L P L be a language and I P InfpLq an informant for L presented to M .

(a) We call h “ phtqtPN P Nω, where ht :“MpIrtsq for all t P N, the learning
sequence of M on I.

(b) M learns L from I with a anomalies and vacillation number b in the
limit, for short M ExC

a
b -learns L from I or ExC

a
b pM, Iq, if there is a

time t0 P N such that | tht | t ě t0 u | ď b and for all t ě t0 we have
DiffLphtq “ tx P N | ϕhtpxq ‰ χLpxqu has at most size a.

(ii) M learns L with a anomalies and vacillation number b in the limit, for short
M ExC

a
b -learns L, if ExC

a
b pM, Iq for every L P L and every I P InfpLq.

We also have to adjust the Definition 4 of locking sequences.

Definition 29. Let M be a learner, L a language and a P N Y t˚u as well as
b P Ną0 Y t˚,8u. We call σ P pNˆt0, 1uqăω an ExC

a
b -locking sequence for M

on L, if Conspσ, Lq and

DD Ď N p |D| ď b ^ @τ P pNˆt0, 1uqăω
`

Conspτ, Lq ñ
`

MpσaτqÓ ^ |DiffLpMpσ
aτqq| ď a^Mpσaτq P D

˘˘ ˘

Then the proof of Lemma 5 immediately transfers and we obtain the following
lemma.

Lemma 30. Let M be a learner, a P NYt˚u, b P Ną0Yt˚,8u and L a language
ExC

a
b -identified by M . Then there is a ExC

a
b -locking sequence for M on L.

We also have to adjust the Definition 6 of consistency in the following way.
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Definition 31. Let ϕ be a Boolean computable function. We define

pospϕq “ tx P N | ϕpxqÓ“ 1u;

negpϕq “ tx P N | ϕpxqÓ“ 0u.

Let f P pNˆt0, 1uqďω. We say f is consistent with ϕ, for short Conspf, ϕq, if

pospfq Ď pospϕq ^ negpfq Ď negpϕq.

Let Cht denote pospϕhtq. By replacing Wht by Cht , the definitions of the learning
restrictions in Definition 7, learning success criteria in Definition 9 and learning
criteria in Definition 10 remain the same. The implications (independent of the
learning success criterion at hand) between the delayable learning restrictions as
stated in Lemma 8 hold accordingly.

Moreover, the Definition 11 and basic Lemma 12 concerning delayability remain
unchanged. Also Lemma 14 about considering canonical informants being suf-
ficient and Lemma 17 about totality being no restriction for delayable learning
success criteria still hold as the proofs only refer to the abstract concept of
delayability.

To our knowledge Machine Learning algorithms only hypothesize total classifiers.
Denote the set of encoded programs for total Boolean functions on N by CInd.
Then we will from now on only allow the learner M to hypothesize elements
of CInd on data consistent with some classifier to be learned. We denote by
rInfCIndExCs the collection of all recursive languages ExC-learnable by such
a learner M from informants. In Definition 9 in the learning success criterion at
position β, we write CInd between the learning restrictions to be met and the
convergence criterion.
With rCIndInfExCs we refer to the collection of all recursive languages ExC-
learnable by a learner with range contained in CInd. These learners only output
hypotheses for total computable Boolean functions and in Definition 9 we write
CInd as part of α.
Later we might consider appropriately chosen subsets of CInd as hypothesis
space.

In this setting we can assume the learner to output only hypotheses consistent
with the input on relevant data. This is done by patching the hypothesis ac-
cording to the finitely many training data points the learner has received so
far.

Proposition 32. We have

rInf canCIndExs “ rSdInfConsCIndExs.

Proof. We use the idea from Lemma 14. Thus, the new learner outputs M ’s
hypothesis h on the largest complete canonical informant with information only
from the current input σ. As h is an index for a total function, we can, in a
uniformly computable way, obtain a hypothesis hσ from h such that
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(i) ϕhσ is consistent with all data in σ and
(ii) hσ “ h if σ is consistent with ϕh.

More precisely, the computable operator maps an index h of a computable func-
tion ϕh : N Ñ t0, 1u and a finite informant sequence σ to an index hσ of a
computable function ϕhσ with

ϕhσ pxq “

$

’

&

’

%

1, if x P pospσq;

0, else if x P cntpσq;

ϕhpxq, otherwise.

The simulation only requires information about cntpσq “ pospσq Y negpσq and
thus the learner is set-driven. Further, hσ “ h whenever ϕh is consistent with σ.
As M converges on the canonical informant and we only alter h in case at least
one datum in σ is inconsistent with ϕh, we obtain the convergence of the new
learner. Clearly, it is consistent by construction. ‚

Summing up, as consistency of the input data with a hypothesized total com-
putable Boolean functions is computable, CInd-learners can be assumed con-
sistent while learning. By the same argument τpCIndq-learners can be assumed
τpConsq.

It is easy to see that Ex can be replaced by every convergence criterion (and
also Mon).

On the other hand, it is easy to adapt the proof of Proposition 18 as follows.

Proposition 33. There is a collection of decidable languages witnessing

rRInfConsCIndExCs Ĺ rInfConsCIndExCs.

Proof. Let o be an index for the everywhere 0-function. Further, define for all
σ P pNˆt0, 1uqăω the learner M by

Mpσq :“

#

o, if pospσq “ ∅;

ϕmaxppospσqqpxσyq, otherwise.

We argue that L :“ tL Ď N | L is decidable and L P InfConsExCpMq u is
not consistently learnable by a total learner from informants. Assume towards
a contradiction M 1 is such a learner. For a sequence σ of natural numbers we
denote by σ the corresponding canonical finite informant sequence, ending with
the highest value σ takes. Further, for a natural number x we denote by τpxq
the unique element of Năω with xτpxqy “ x. Then by padded ORT there are
e, z P N and functions a, b : Năω Ñ N, such that

@σ, τ P Năω pσ Ĺ τ ñ maxtapσq, bpσqu ă mintapτq, bpτqu q, (8)
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with the property that for all σ P Năω and all i P N

σ0 “ ∅;

σi`1 “ σi
a

#

apσiq, if M 1pσiaapσiqq ‰M 1pσiq;

bpσiq, otherwise;
(9)

ϕepyq “

#

1, if y P pospσyq;

0, otherwise;

ϕapσqpxq “

#

e, if Conspτpxq, ϕeq and M 1pσaapσqq ‰M 1pσq;

indppospτpxqqq, otherwise;

ϕbpσqpxq “

#

e, if Conspτpxq, ϕeq;

indppospτpxqqq, otherwise;

Consider the decidable language Le “ pospϕeq. Clearly, we have Le P L and thus
M 1 also InfConsExC-learns Le. By the ExC-convergence there are e1, j P N,
where j is minimal, such that ϕe1 “ ϕe and for all i ě j we have M 1pσiq “ e1

and hence M 1pσiaapσiqq “M 1pσiq by (9).
We now argue that L :“ pospσjqY tapσjqu P L. Let I be an informant for L and
t P N. By (9) we observe that M is consistent on I as

MpIrtsq “ ϕmaxppospIrtsqqpxIrtsyq “

#

e, if ConspIrts, ϕeq;

indppospIrtsqq, otherwise.

Further, by the choice of j we have  Consp papσjq, 1q, ϕe q. If pospIrtsq “ L, we
obtain ϕMpIrtsq “ indL. On the other hand M 1 does not consistently learn L as by

the choice of j we obtainM 1pσjaapσjqq “M 1pσjq “ e1 and Conspσjaapσjq, Leq,
a contradiction. ‚

Thus, learning algorithms not defined on all inputs have strictly more learning
power.

As we clearly can do a padding-trick for C-indices, similar to Lemma 20, we
might assume the learner to be syntactically decisive. Furthermore, the separa-
tions of Caut, Mon and SMon are still valid as they are witnessed by indexable
families. Thus, the interesting question is whether Conv and SDec are also not
restrictive for binary classifiers. We now observe that this still holds true but the
proof is much simpler than for W -indices, because the consistency of data with
hypotheses is decidable.

Theorem 34. For δ P tT,Monu holds

rInfδCIndBcCs “ rInfConvSDecδCIndExCs.

Proof. By the comment after Proposition 32 we assume δ Ď Cons. Let L P

rInfδBcs and the learner M witnessing this. It is an easy exercise to check that
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the following learner acts as required, where σ is a finite informant sequence and
ξ P Nˆ t0, 1u:

M 1p∅q “Mp∅q;

M 1pσaξq “

#

Mpσaξq if  Conspσaξ,M 1pσqq;

M 1pσq otherwise.

Note that the consistency of M on L is only employed to obtain SDec. ‚

Corollary 35. rInf canCIndBcCs “ rInfConsConvCIndExCs.

For τpCIndq-learners the simulation in Theorem 34 preserves totality.

In a nutshell for learners only outputting C-indices, we obtain the same map as
for W -indices. In contrast, Cons is not a restriction anymore.

Moreover, BcC-learning is not weaker than explanatory learning and thus the
vacillatory hierarchy collapses.

8 Further Research

Future investigations could address the relationships between the different de-
layable learning restrictions for other convergence criteria, where the general
results in Section 3 may be helpful.

According to Osherson, Stob, and Weinstein [1986] requiring the learner to base
its hypothesis only on the previous one and the current datum, makes Ex-
learning harder. While the relations between the delayable learning restrictions
for these so called iterative learners in the presentation mode of solely positive
information has been investigated by Jain, Kötzing, Ma, and Stephan [2016],
so far this has not been done when learning from informants. For indexable
families, this was already of interest to Lange and Zeugmann [1992], Lange and
Grieser [2003] and Jain, Lange, and Zilles [2006]. In the corresponding map
each of Caut, Mon and SMon is separated from all other learning restrictions.
Moreover, Conv restricts iterative learning from informant and we are sure that
also SNU does. It remains open, whether all syntactic learning criteria have
the same learning power. Further, it seems like settling NU, Dec and WMon
requires completely new techniques. This model is of special interest as it models
the behavior of neural networks. Further improvements to the model would be
a more appropriate hypothesis space, a probabilistic presentation of the data
and other convergence criteria. For C-indices the incomparability of Caut and
Mon, as well as the separation of Conv are still valid.

For automatic structures as alternative approach to model a learner, there have
been investigations on how different types of text effect the Ex-learnability, see
Jain, Luo, and Stephan [2010] and Hölzl, Jain, Schlicht, Seidel, and Stephan
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[2017]. The latter started investigating how learning from canonical informants
and learning from text relate to one another in the automatic setting. A natural
question seems to be what effect other kinds of informants and learning success
criteria have.

Last but not least, rating the models value for other research aiming at under-
standing the capability of human and machine learning is another very challeng-
ing task to tackle.
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Birkhäuser Boston, 1994.

G. Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzs-
trategien, 1984. Dissertation, RWTH Aachen.



Learning from Informants: Relations between Learning Success Criteria 39

K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT
Press, Cambridge, Massachusetts, 1980.

R. Wiehagen. A thesis in inductive inference. In Nonmonotonic and Inductive
Logic, 1st International Workshop, Proc., pages 184–207, 1991.

R. Wiehagen and T. Zeugmann. Learning and consistency. In Algorithmic
Learning for Knowledge-Based Systems, pages 1–24. 1995.


	Learning from Informants:  Relations between Learning Success Criteria

