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2 PSL, Université Paris-Dauphine, LAMSADE UMR CNRS 7243,

75775 Paris Cedex 16, France
bazgan@lamsade.dauphine.fr

3 The University of Newcastle, Callaghan, NSW 2308, Australia
ljiljana.brankovic@newcastle.edu.au

4 Fachbereich 4, Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
{casel,fernau}@uni-trier.de

Abstract. In this paper, we survey and supplement the complexity
landscape of the domination chain parameters as a whole, including
classifications according to approximability and parameterised complex-
ity. Moreover, we provide clear pointers to yet open questions. As this
posed the majority of hitherto unsettled problems, we focus on Upper
Irredundance and Lower Irredundance that correspond to finding
the largest irredundant set and resp. the smallest maximal irredundant
set. The problems are proved NP-hard even for planar cubic graphs.
While Lower Irredundance is proved not c log(n)-approximable in
polynomial time unless NP ⊆ DTIME(nlog logn), no such result is known
for Upper Irredundance. Their complementary versions are constant-
factor approximable in polynomial time. All these four versions are APX-
hard even on cubic graphs.

1 Introduction

The well-known domination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G)

links parameters related to the fundamental notions of independence, domination
and irredundance in graphs. It was introduced in [12,22], is thoroughly discussed
in the textbook [34] and studied further in many ways, [11,21,39,43] showing
only a small selection. These studies cover both combinatorial and computational
aspects. We focus on the latter aspects in this paper. In this chain, γ(G) and
Γ (G) are the minimum and maximum cardinalities over all minimal dominating
sets in G, α(G) is the maximum cardinality of an independent set, i(G) is the
minimum cardinality over all maximal independent sets in G. The less known
irredundance parameters are explained below.
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With n(G) being the order (number of vertices) of G, we can write co−ζ(G) =
n(G) − ζ(G). Then, we state the following complementary domination chain:

co − IR(G) ≤ co − Γ (G) ≤ co − α(G) ≤ co − i(G) ≤ co − γ(G) ≤ co − ir(G) .

Sometimes, the complement problems have received their own names, like Non-
blocker, Maximum Enclaveless Set, or Maximum Spanning Star For-
est, which all refer to the complement problem of Minimum Domination, or,
most likely better known, Minimum Vertex Cover which refers to the comple-
ment problem of Maximum Independent Set. We will also use τ(G) instead
of co − α(G) to refer to this graph parameter.

Throughout this paper, we will use rather standard terminology from graph
theory. For any subset S ⊆ V and v ∈ S we define the private neighbourhood
of v with respect to S as pn(v, S) := N [v] − N [S − {v}]. Any w ∈ pn(v, S) is
called a private neighbour of v (with respect to S). S is called irredundant if
every vertex in S has at least one private neighbour, i.e., if |pn(v, S)| > 0 for
every v ∈ S. A maximal irredundant set is also known as an upper irredundant
set. IR(G) denotes the cardinality of the largest irredundant set in G, while
ir(G) is the cardinality of the smallest maximal irredundant set in G that is the
smallest upper irredundant set in G. The domination chain is largely due to the
following two combinatorial properties: (1) Every maximal independent set is a
minimal dominating set. (2) A dominating set S ⊆ V is minimal if and only if
|pn(v, S)| > 0 for every v ∈ S. Observe that v can be a private neighbour of
itself, i.e., a dominating set is minimal if and only if it is also an irredundant
set. Actually, every minimal dominating set is also a maximal irredundant set.

For any ε > 0, a graph G = (V,E) is called everywhere-ε-dense if every
vertex in G has at least ε|V | neighbours and average-ε-dense if |E| ≥ εn2, for
0 < ε < 1/2.

We first present some combinatorial bounds for IR(G). The same kind of
bounds have been derived for Γ (G) in [6]. Some proofs are omitted due to space
restrictions.

Lemma 1. For any connected graph G with n > 0 vertices we have:

α(G) ≤ IR(G) ≤ max
{

α(G),
n

2
+

α(G)
2

− 1
}

(1)

Lemma 2. For any connected graph G with n > 0 vertices, minimum degree δ
and maximum degree Δ, we have:

α(G) ≤ IR(G) ≤ max
{

α(G),
n

2
+

α(G)(Δ − δ)
2Δ

− Δ − δ

Δ

}
(2)

This lemma generalises [35, Proposition 12], which states the property for Δ-
regular graphs, where, in particular, δ = Δ. Equation 1 immediately yields:

Lemma 3. Let G be a connected graph. Then,

τ(G)
2

+ 1 ≤ co − IR(G) ≤ τ(G) (3)
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2 The Complexity of the Domination Chain

We are studying algorithmic and complexity aspects of the domination chain
parameters in this paper. For the basic definitions on classical complexity,
approximation and parameterised algorithms we refer to standard texts like
[5,26]. For providing hardness proofs in the area of approximation algorithms,
L-reductions and E-reductions have become a kind of standard. An optimisation
problem APX-hard under L-reduction has no polynomial-time approximation
scheme if P �= NP. The notion of an E-reduction was introduced by Khanna
et al. [37].

We have summarised what is known (and what is done in this paper) in
Tables 1 and 2. Clearly, there is no need to repeat classical complexity results
in Table 2. However, observe that the status of parameterised complexity and
approximation of these problems and their complementary versions indeed dif-
fer. The hitherto unsolved questions regarding Upper Domination have been
tackled and largely resolved in [6], which can be seen as a kind of companion
paper to this one. Notice that in Table 1, the optimisation problems that cor-
respond to the first three listed graph parameters are minimisation problems
(in particular Lower Irredundance wich corresponds to find ir(G)), while
the last three are maximisation problems (in particular Upper Irredundance
wich corresponds to find IR(G)); this split is indicated by the double lines;
this is reversed in Table 2. Also, when considering these problems as parame-
terised problems, we only consider the standard parameterisation, which is a
lower bound on the entity to be maximised or an upper bound on the entity to
be minimised. In order to distinguish the problem parameters of the two tables,
we use k in Table 1 and 
 in Table 2. The purpose of this paper is to survey the
state of art and to solve most of what was still open until now.

3 On the Classical Complexity of Irredundant Set
Problems

In this section, we prove that Lower Irredundance and Upper Irredun-
dance (also their complementary versions) are NP-hard on planar cubic graphs.

Theorem 1. Lower Irredundance is NP-hard on planar cubic graphs.

Proof. We use the same construction as in [39], where Minimum Domination on
planar cubic graphs is reduced to Minimum Independent Domination, that
is: Given a planar cubic graph G = (V,E), construct G′ from G by replacing
every (u, v) ∈ E by the following planar cubic subgraph with four new vertices:

The argumentation [39] shows that i(G′) = γ(G) + |E| which automatically
gives us ir(G′) ≤ γ(G) + |E|. One can also proof that ir(G′) ≥ γ(G) + |E| which
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Table 1. Status of various problems related to the domination chain

means that Minimum Domination on G has a solution of cardinality at most
k if and only if Lower Irredundance on G′ has a solution of cardinality at
most k + |E|. ��

Interesting side note to this proof is that ir, γ and i coincide on G′. Since
especially ir and i are known to differ arbitrarily even on cubic graphs [46],
this is obviously due to the special structure of G′. It contains induced K1,3

(every original vertex with its neighbourhood), so the result for ir = γ = i from
[28] does not apply. This makes this construction an interesting candidate to
study the characterisation of the graph class for which ir = i. With a different
construction, we can show the same type of result for Upper Irredundance.

Theorem 2. Upper Irredundance is NP-hard on planar cubic graphs.

4 A Special Flavour of Minimax/Maximin Problems

Half of the parameters in the domination chain can be defined as either, in case
of minimax problems, looking for the smallest of all (inclusion-wise) maximal
vertex sets with a certain property (i(G) is the size of the smallest maximal
independent set; similarly, ir(G) is defined), or, in case of maximin problems,
looking for the largest of all minimal vertex sets with a certain property (Γ (G) is
an example). Also, the complementary problems share this flavour; for instance,
co − i(G) can be seen as looking for the largest of all minimal vertex covers.

Typical exact algorithms for maximisation problems fix certain subsets to
be part of the solution. In the decision variant, when a parameter value that
lower-bounds the size of the solution is part of the input, we might have a
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Table 2. Status of various problems related to the complementary domination chain

sufficient number of vertices in our partial solution and now want to (rather
immediately) announce that a sufficiently large solution exists. This is not a
problem for determining α(G) or IR(G), but this may become problematic in the
case of maximin problems. In the following we consider the extension-problem
for the other two maximin problems related to the domination-chain: co − i(G)
and co − ir(G). The first one can formally be stated as follows:

Minimal Vertex Cover Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a minimal vertex cover S′ with S′ ⊇ S?

Observe that this extension problem can also be seen as a kind of subset problem
for independent sets by rephrasing the question to: Is there a maximal indepen-
dent set S′ for G with S′ ⊆ V − S? In more general terms, one can view the
extension-version of some maximin problem as exclusion-version of the comple-
mentary minimax problem.

Theorem 3. Minimal Vertex Cover Extension is NP-hard even restricted
to planar cubic graphs.

Proof. Consider the following simple reduction from satisfiability: For a formula
c1 ∧ · · · ∧ cm over variables x1, . . . , xn, let G = (V,E) be the graph with vertices
vi, v̄i for every i = 1, . . . , n and c1, . . . , cm and edges connecting every clause
with its literals and connecting vi with v̄i for every i. For this graph, the set
S = {c1, . . . , cm} can be extended to a minimal vertex cover if and only if the
formula c1 ∧ · · · ∧ cm is satisfiable. A more sophisticated construction yields a
planar cubic graph G as input for Minimal Vertex Cover Extension. ��
The maximin problem co−ir(G) can also be considered with respect to extension.
Since complements of irredundant sets are rather uncomfortable, we describe this
problem in terms of the complementary problem ir(G):
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Minimal Co-Irredundant Extension
Input: A graph G = (V,E), a set S ⊆ V .
Question: Does G possess a maximal irredundant set S′ with S′ ⊆ V − S?

Theorem 4. Minimal Co-Irredundant Extension is NP-hard.

5 Approximation Results

In this section, after studying the approximation on general graphs, we consider
bounded degree graphs and cubic graphs.

Theorem 5. For any c > 0, there is no c log(n)-approximation for Lower
Irredundance unless NP ⊆ DTIME(nlog log n).

For the little studied complement of Lower Irredundance we observe:

Observation 1. For any graph G without isolated vertices one can compute
a minimal dominating set of cardinality at most n

2 in polynomial time for an
arbitrary spanning forest of G. The complement of this dominating set is conse-
quently a 2-approximation for Co-Lower Irredundance.

Using Lemma 3, one can use known exact or approximation algorithms for
Minimum Vertex Cover and also results from parameterized approximation
such as [15] to deduce:

Theorem 6. Co-Upper Irredundance can be approximated with factor 4
in polynomial, factor 3 in O∗(1.2738τ(G)) and factor 2 in O∗(1.2738τ(G)) or
O∗(1.2002n) time.

There is a kind of methodology to link optimisation problems related to
the domination chain to those related to the complementary domination chain,
which can be stated as follows.

Theorem 7. Assume that the optimisation problem associated to some graph
parameter ζ of the domination chain is APX-hard on cubic graphs. Then, the
optimisation problem associated to the complement problem of ζ is also APX-
hard on cubic graphs.

Proof. We claim that the reduction that acts as the identity on graph (instances)
and complements solution sets is an L-reduction. Given a cubic graph G =
(V,E) of order n with m = 3

2n edges as an instance of the optimisation problem
belonging to ζ (and also to the complement problem). Let us distinguish the two
optima by writing optζ(G) and optco−ζ(G), respectively. Then, optco−ζ(G) =
n − optζ(G). Similarly, if S′ is a solution to G in the complement problem, then
n − |S′| is the size of the solution S := V \ S′ of the original problem. Hence,

∣∣optζ(G) − |S|∣∣ =
∣∣(n − optco−ζ(G)) − (n − |S′|)∣∣ =

∣∣optco−ζ −|S′|∣∣ .
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Moreover, as ir(G) ≥ 2n
9 according to [23], which yields optζ(G) ≥ 2n

9 by the
domination chain,

optco−ζ(G) ≤ n ≤ 9
2

optζ(G),

which proves the claim. ��
Theorem 3.3 in [2] shows that Minimum Domination, restricted to cubic
graphs, is APX-hard. We can use Theorem 7 to immediately deduce:

Corollary 1. The complement problem corresponding to Minimum Domina-
tion is APX-hard when restricted to cubic graph instances.

This sharpens earlier results [8] that only considered the subcubic case.

Corollary 2. Lower Irredundance restricted to cubic graphs is APX-hard.
Similarly, Co-Lower Irredundance is APX-hard on cubic graphs.

Proof. The reduction from Theorem 1 can be seen as an L-reduction from the
APX-hard Minimum Domination problem on cubic graphs [2] to Lower Irre-
dundance on cubic graphs. Observe that γ(G) ≥ n

4 and |E| = 3
2n for any cubic

graph G, which gives ir(G′) = γ(G) + |E| ≤ 7γ(G). Furthermore, any maximal
irredundant set of cardinality val′ for G′ can be used to compute a dominating
set for G of cardinality val = val′ − |E|, which yields val − γ(G) = val′ − ir(G′).
Together with Theorem 7 the result for Co-Lower Irredundance follows. ��
The computations in the previous proof can be carried out completely analo-
gously for Upper Irredundance and Co-Upper Irredundance.

Corollary 3. Upper Irredundance is APX-hard on cubic graphs. Similarly,
Co-Upper Irredundance is APX-hard on cubic graphs.

Manlove’s NP-hardness proof for Minimum Independent Domination on
cubic planar graphs [39] turns out to be an L-reduction, so that with Theorem 7
we can conclude:

Corollary 4. Minimum Independent Domination and Maximum Minimal
Vertex Cover is APX-hard on cubic graphs.

This improves on earlier results for Maximum Minimal Vertex Cover,
for instance, the APX-hardness shown in [40] for graphs of maximum degree
bounded by five.

6 Further Algorithmic Observations

Most of the previously collected results have been hardness results; here we
complement some of them by simple algorithmic results.
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Observation 2. The approximation-results for Upper Domination restricted
to graphs of bounded degree from [6] are based on Eq. 2 and the fact that every
maximal independent set is an upper dominating set which is also true for Upper
Irredundance. The approximation by a suitable independent set yields the
same approximation-ratio here which especially means that Upper Irredun-

dance can be approximated within factor at most 6Δ2+2Δ−3
10Δ for any graph G of

bounded degree Δ.

Observation 3. With Brooks’ Theorem one can always find an independent set of
cardinality at least n

Δ for any graph G of bounded degree Δ. From a parameterised
point of view, this immediately gives a Δk-kernel for Maximum Independent
Set,Upper Domination and Upper Irredundance for the natural parameter
k of these problems, since any bounded-degree graph with more than Δk vertices is
a trivial “yes”-instance.

Observation 4. Bounded degree Δ implies γ ≥ n
Δ+1 , which means that any

greedy solution yields a (Δ + 1)-approximation for Minimal Maximum Inde-
pendent Set (i(G) in domination chain) and Minimum Domination. For
standard parameterisation this also yields a (Δ + 1)k kernel for these problems
since graphs with more than (Δ + 1)k vertices are trivial “no”-instances.

Lower Irredundance is the only problem for which these consequences
of bounded degree are less obvious. A more thorough investigation of lower
irredundant sets in [23] yields the bound ir(G) ≥ 2n

3Δ .

Observation 5. The bound from [23] implies that any greedy maximal irredun-
dant set for a graph of bounded degree Δ is a 1.5Δ-approximation for Lower
Irredundance. Parameterised by k = ir(G), any graph with more than 1.5Δk
vertices is a trivial “no”-instance which yields a 1.5Δk kernel.

Notice that, although the kernel results indicated in the previous two obser-
vations look weak at first glance, they allow for lower bound results based on
the assumption that P �= NP according to [17].

7 Consequences for Everywhere Dense Graphs

In [3], Arora et al. presented a unified framework for proving polynomial time
approximation schemes for (average) dense graphs, mainly for Max Cut type
problems, and for Min Bisection for everywhere dense graphs. Concerning
the problems from the domination chain Minimum Vertex Cover and Min-
imum Domination were studied; in [20], Minimum Vertex Cover is proved
APX-hard on everywhere dense graphs and in [32], it is proved that Minimum
Domination is NP-hard on (average) dense graphs. We will show inapproxima-
tion results for more domination-chain problems on everywhere dense graphs.
Interestingly, we can make use of our reductions for sparse (cubic) graphs:

Theorem 8. For any ε > 0, Upper Irredundance and Co-Upper Irre-
dundance are APX-hard for everywhere-ε-dense graphs.
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Proof. We construct an L-reduction from (Co-)Upper Irredundance on cubic
graphs to (Co-)Upper Irredundance on everywhere-ε-dense graphs. Given a
connected cubic graph G = (V,E) on n vertices, we construct a dense graph G′

by joining a clique C of � εn−3
1−ε � new vertices to G. G′ has minimum degree εn′,

where n′ = n + � εn−3
1−ε � = � εn−3+n−εn

1−ε � = �n−3
1−ε � is the number of vertices of G′.

Any vertex v ∈ V has 3 + � εn−3
1−ε � = � εn−3+3−3ε

1−ε � = � ε(n−3)
1−ε � many neighbours

in G′. Any vertex in the added clique has an even higher degree if n ≥ 4. As
any maximal irredundant set of G′ that contains a vertex of C is a singleton set,
opt(G′) = opt(G) and, w.l.o.g., any maximum irredundant set in G′ is a subset
of V which makes it a maximal irredundant set of G.

For Co-Upper Irredundance, we have opt(G′) = opt(G) + � εn−3
1−ε � and,

given any solution S′ in G′, we can transform it into a new one containing all new
vertices and some vertices from V . The set S′ ∩ V is a solution for G. In a cubic
graph, the optimum value of the complement of an upper irredundant set is at
least n/4 using inequality (3) and the fact that τ(G) ≥ n/2 (as G is connected
and non-trivial) and thus opt(G) ≥ n/4. Thus opt(G′) ≤ opt(G) + εn−3

1−ε ≤
opt(G) + 4ε opt(G)−3

1−ε ≤ 1+3ε
1−ε opt(G). ��

Observe that the arguments and the computations of the previous proof are also
valid for Co-Upper Domination. Since it is also APX-hard on cubic graphs [6]
we can conclude the same result. Almost the same reduction is an E-reduction
when we start with a general instance for Upper Domination (just adding
more vertices in order to be sure that G′ is everywhere-ε-dense). Since Upper
Domination is not n1−δ-approximable for any δ > 0, if P �= NP on general
graphs [6] we can conclude the same result for everywhere-dense graphs.

Corollary 5. For any ε > 0, Co-Upper Domination is APX-hard and
Upper Domination is not n1−δ-approximable for any δ > 0, if P �= NP, for
everywhere-ε-dense graphs.

The inapproximability result from [45] with the above reduction yields:

Proposition 1. For any ε > 0, Maximum Independent Set is not n1−δ-
approximable for any δ > 0, if P �= NP, for everywhere-ε-dense graphs.1

Theorem 9. For any ε > 0, Maximum Minimal Vertex Cover is APX-
hard and Minimum Maximal Independent Set is not n1−δ-approximable for
any δ > 0, if P �= NP, for everywhere-ε-dense graphs.

Proof. We give an E-reduction from Minimum Maximal Independent Set
on general graphs to Minimum Maximal Independent Set on everywhere-ε-
dense graphs. Consider for a graph G the family {Gj : j ∈ N}, recursively defined
by G0 := G and Gj+1 := Gj + Gj (“+” denotes graph join). If the order of G
is n, the order of Gj is 2jn for every j ∈ N. Also every v ∈ Gj has degree at
least n(2j − 1) which means that Gj is (1 − 1/2j)-dense. Let V be the vertices

1 We were informed about this fact by Marek Karpiński.
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of G and V ∪ V ′ be the vertices of G + G. For any independent set S of G + G
either S ⊆ V or S ⊆ V ′, which means that independent sets in G + G always
yield equivalent independent sets in G and hence i(G) = i(G + G). Inductively,
this argument implies i(G) = i(Gj) for all j ∈ N. For j = �log2(1/(1 − ε))�, the
graph Gj hence yields the aforementioned E-reduction since any independent
set in Gj yields an independent set in G of the same size.

Starting with a cubic graph G, Gj yields an L-reduction from Maximum
Minimal Vertex Cover on cubic graphs, which is APX-hard by Corollary 4,
to Maximum Minimal Vertex Cover on everywhere-ε-dense graphs, since
for cubic graphs co − i(G) ≥ n

2 and hence co − i(Gj) < 2jn ≤ 2j+1co − i(G). ��

8 Summary, Open Problems and Prospects

We have presented a sketch of the complexity landscape of the domination chain.
As can be seen from our tables, the status of most combinatorial problems
has now been solved. However, there are still several question marks in these
tables, and also the positive (algorithmic) results implicitly always ask for pos-
sible improvements.

For the investigation of complexity aspects of graph parameters, chains of
inequalities like the domination chain help to unify proofs, but also to find spots
that have not been investigated yet. Also, the idea of looking at the comple-
mentary chain should work out in each case. An example of a similar chain of
parameters is the Roman domination chain [16]. Most of what we know is con-
cerning Roman domination and its complementary version, which is also called
the differential of a graph; see [1,8–10].

Acknowledgements. We gratefully acknowledge the support by the Deutsche
Forschungsgemeinschaft, grant FE 560/6-1.
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