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ABSTRACT
The target set selection problem (TSS) asks for a set of vertices such
that an influence spreading process started in these vertices reaches
the whole graph. The current state of the art for this NP-hard
problem are three recently proposed randomized search heuristics,
namely a biased random-key genetic algorithm (BRKGA) obtained
from extensive parameter tuning, a max-min ant system (MMAS),
and a MMAS using Q-learning with a graph convolutional network.

We show that the BRKGA with two simple modifications and
without the costly parameter tuning obtains significantly better
results. Our first modification is to simply choose all parameters
of the BRKGA in each iteration randomly from a power-law distri-
bution. The resulting parameterless BRKGA is already competitive
with the tuned BRKGA, as our experiments on the previously used
benchmarks show.

We then add a natural greedy heuristic, namely to repeatedly
discard small-degree vertices that are not necessary for reaching
the whole graph. The resulting algorithm consistently outperforms
all of the state-of-the-art algorithms.

Besides providing a superior algorithm for the TSS problem, this
work shows that randomized parameter choices and elementary
greedy heuristics can give better results than complex algorithms
and costly parameter tuning.

CCS CONCEPTS
• Mathematics of computing→ Combinatorial optimization.

KEYWORDS
Target set selection, combinatorial optimization, biased random-key
genetic algorithm, parameter tuning

ACM Reference Format:
Benjamin Doerr, Martin S. Krejca, and Nguyen Vu. 2024. Superior Ge-
netic Algorithms for the Target Set Selection Problem Based on Power-Law
Parameter Choices and Simple Greedy Heuristics. In Genetic and Evolu-
tionary Computation Conference (GECCO ’24), July 14–18, 2024, Melbourne,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0494-9/24/07. . . $15.00
https://doi.org/10.1145/3638529.3654140

VIC, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3638529.3654140

1 INTRODUCTION
The target set selection problem [18] (TSS) is a combinatorial op-
timization problem that aims to find in a given graph a smallest
subset of vertices (the target set) such that a diffusion process started
on this set eventually reaches all vertices. Finding such a target
set has relevant applications in various domains, especially in viral
marketing [17, 22]. However, as the TSS problem is NP-hard [18]
and not well approximable [5], it is typically solved heuristically.
The state-of-the-art heuristics are the randomized search heuristics
that have been proposed in two recent papers [20, 24].

The first of these works, by López Serrano and Blum [20], de-
velops a biased random-key genetic algorithm (BRKGA), which
encodes potential solutions as a vector of floating-point numbers
between 0 and 1. Each such vector is translated via a greedy heuris-
tic into a valid target set, that is, a set such that the diffusion process
on the instance graph actually reaches all vertices. The authors tune
the parameters of the BRKGA and compare it to the previous state-
of-the-art heuristic (called minimum target set (MTS) [6]). On hard
instances, they find that the BRKGA almost always finds solutions
that are at least 10% better than those of the MTS, and this in
significantly shorter time, especially for large instances.

The second work, by Ramírez Sánchez et al. [24], considers two
versions of a max-min ant system (MMAS). One version is a classic
MMAS (called MMAS), the other version uses information obtained
from a Q-learning approach combined with a graph convolutional
network (called MMAS-Learn). The authors tune the parameters of
both versions and then compare them with the BRKGA above [20].
They observe that the two MMAS variants find better solutions
than the BRKGA on most of the hard instances. Especially, the
MMAS-Learn is best on large networks.

All of these algorithms have in common that they require consid-
erable effort up front in order to be used to their full effectiveness.
The BRKGA [20] has four parameters with a wide range of possible
values. The MMAS variants [24] have three parameters each. Each
approach is tuned by the authors via irace [21] before conducting
the experiments. This tuning is computationally very expensive. For
example, both López Serrano and Blum [20] and Ramírez Sánchez
et al. [24] report that they used irace with a budget of 2 000 algo-
rithm runs in order to tune the parameters. In comparison, when
conducting the experimental evaluation, in each of the two papers,
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the authors perform 10 runs for each of the 27 instances. The Q-
learning approach combined with the graph convolutional network
used for one MMAS variant [24] is already a very complex and
costly process in itself, for example, requiring to generate train-
ing instances for the graph convolutional network. Overall, since
López Serrano and Blum [20] compared their BRKGA to an existing
state-of-the-art TSS heuristic and achieved clearly superior results,
this begs the question whether more complex and costly heuristics
are necessary in order to achieve good results for the hard TSS
problem.

Our contribution. We show that the TSS problem can be solved
heuristically without the need for complex parameter tuning or
other heavy machinery, such as graph convolutional networks.
We propose two modifications to the BRKGA by López Serrano
and Blum [20], in particular, removing the need for parameter
tuning. Our resulting algorithm outperforms the state-of-the-art
algorithms by López Serrano and Blum [20] and Ramírez Sánchez
et al. [24] on almost all hard instances with statistical significance
in terms of solution quality (Table 6). In terms of computation
time, our approach is comparable, while not requiring any offline
computations, such as parameter tuning.

Our first modification is to replace the costly parameter tuning
by a simple randomized parameter choice in each iteration. For this
randomized choice, we use a power-law distribution, cropped and
scaled so that it covers exactly the range of parameter values used
in [20] for the irace parameter tuning.

The idea for this type of parameter definition stems from the
theoretical work [11], where this approach was used for the first
time in discrete evolutionary computation, namely to set the muta-
tion rate of a simple evolutionary algorithm. As shown in [11], this
parameter choice gave a drastic speed-up compared to the standard
mutation rate 1/𝑛, and it was only slightly inferior to the instance-
dependent optimal mutation rate. The idea to choose parameters
in this randomized fashion was quickly taken up in other theoret-
ical works, including works where the power-law choice gave a
performance asymptotically faster than with any fixed parameter
value [2] or where several parameters where chosen in this fashion
simultaneously [3].

Despite this success in theoretical works, power-law distributed
parameter choices have not really made it into practical applica-
tions of evolutionary algorithms. Our empirical evaluation shows
that there is no reason for this. By simply replacing the parameter
choices obtained from expensive tuning by power-law distributed
parameters, we obtain a variant of the BRKGA of [20] that has a
comparable performance (but needed no tuning in the design).

Our second modification is a simple TSS-specific local heuristic
that aims at reducing the size of already valid target sets. It greedily
eliminates vertices in the order of increasing vertex degree, always
checking whether the result is still valid after the removal. In addi-
tion to adding this modification to the BRKGA, we also combine
it with another easy TSS-specific heuristic by López Serrano and
Blum [20]. In our empirical evaluation with the other approaches,
this combination even achieves the best results on some hard in-
stances.

Overall, we observe that easy adjustments can drastically im-
prove the quality for TSS heuristics. While our experiments are

specific to the TSS problem, we believe that the insights carry over
to other problems as well. Coming up with an easy problem-specific
heuristics for improving solutions locally is a good choice in gen-
eral and essentially the same as finding reduction rules, which are
very popular, for example, in the PACE challenge [1]. Furthermore,
our recommendation for choosing parameter values on the fly via
a power-law distribution is not limited to the TSS problem or the
BRKGA, and we invite researchers to try it themselves.

2 THE TARGET SET SELECTION PROBLEM
The target set selection problem (TSS [18]) is an NP-hard graph
optimization problem. At its core is a discrete-time diffusion pro-
cess that determines how vertices in a graph become active. The
TSS problem aims to find a minimum cardinality set of initially
active vertices (target set) such that the diffusion process eventually
activates all vertices in the graph.

To make this more precise, for an undirected graph 𝐺 = (𝑉 , 𝐸)
and for all 𝑣 ∈ 𝑉 , let Γ(𝑣) = {𝑢 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸} denote the
open neighborhood of 𝑣 , and let deg(𝑣) = |Γ(𝑣) | denote the degree
of 𝑣 . Given an undirected graph 𝐺 = (𝑉 , 𝐸), a threshold function
\ : 𝑉 → N such that for all 𝑣 ∈ 𝑉 it holds that \ (𝑣) ≤ deg(𝑣), as well
as a subset 𝑆 ⊆ 𝑉 of initially active vertices, the diffusion process
of 𝐺 with \ and 𝑆 is defined as a sequence (𝐹𝑡 )𝑡 ∈N over subsets of
vertices such that in each iteration vertices whose number of active
neighbors is at least the threshold become active as well. Formally,

(1) 𝐹0 = 𝑆 and
(2) 𝐹𝑡+1 = 𝐹𝑡 ∪ {𝑣 ∈ 𝑉 | |Γ(𝑣) ∩ 𝐹𝑡 | ≥ \ (𝑣)} for all 𝑡 ∈ N.

Let 𝑇 = min{𝑡 ∈ N | 𝐹𝑡+1 = 𝐹𝑡 }. Note that since the diffusion
process is deterministic, the set of active vertices remains the same
for all 𝑡 ≥ 𝑇 . Since, by definition, the set of active vertices is strictly
increasing for all iterations before 𝑇 , the diffusion process stops
after at most |𝑉 | − 1 iterations. Let 𝜎\ (𝑆) B 𝐹𝑇 denote the finally
active set when starting with set 𝑆 . We say that 𝑆 is valid if and
only if 𝜎\ (𝑆) = 𝑉 .

Given an undirected graph𝐺 = (𝑉 , 𝐸) and a threshold function \ ,
the TSS problem aims to find a minimum cardinality set 𝑆∗ ⊆ 𝑉

such that 𝜎\ (𝑆∗) is valid.

2.1 Objective Values for the TSS Problem
In order to solve the TSS problem heuristically, we need to assign
an objective value (the fitness) to each solution candidate to the
problem. Given a TSS instance ((𝑉 , 𝐸), \ ), each 𝑆 ⊆ 𝑉 is a solution
candidate. The fitness of 𝑆 is |𝑆 | if 𝑆 is valid, and the fitness is
|𝑉 | + 1 otherwise. Hence, the solution candidates with the smallest
fitness are solutions to the original TSS instance. We note that we
only consider algorithms in this article that consider valid solution
candidates. Hence, technically, the fitness of invalid candidates is
not required for our purposes.

3 EXISTING HEURISTICS FOR THE TARGET
SET SELECTION PROBLEM

We now present, to the best of our knowledge, the most recent and
best performing heuristics for the TSS problem, by López Serrano
and Blum [20] and Ramírez Sánchez et al. [24]. López Serrano and
Blum [20, Algorithm 1] propose a variant of the biased random-key
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Algorithm 1: The maximum-degree heuristic (MDG [20,
Algorithm 3]) that greedily constructs a valid target set.
Input: graph 𝐺 = (𝑉 , 𝐸), threshold function \ : 𝑉 → N

1 𝑆 ← ∅;
2 Cov← ∅;
3 while Cov ≠ 𝑉 do
4 𝑣∗ ← argmax𝑣∈𝑉 \Cov deg(𝑣);
5 Cov← 𝜎\ (Cov ∪ {𝑣∗});
6 𝑆 ← 𝑆 ∪ {𝑣∗};
Output: 𝑆

genetic algorithm framework (BRKGA, Section 3.2), which is a ge-
netic algorithm that uses mutation and crossover and that maintains
a population of a fixed size. Ramírez Sánchez et al. [24] consider a
max-min ant system algorithm (MMAS), with and without heuristic
information retrieved via Q-learning from a graph convolutional
neural network. The authors compare these MMAS variants em-
pirically to the BRKGA by López Serrano and Blum [20] and find
that the MMAS with Q-learning finds the best solutions among all
three algorithms in 19 out of 27 cases (including ties), especially
for all of the largest networks that were tested. However, also the
MMAS variant without Q-learning as well as the BRKGA perform
best in 11 and 10 cases, respectively (with ties).

All of these algorithms construct valid target sets greedily based
via an adaptation of the maximum-degree heuristic (MDG) [20, Al-
gorithm 3], see Section 3.1 below. López Serrano and Blum [20]
compared their BRKGA to the MDG alone and observed that the
BRKGA found strictly better solutions in all but 2 cases, which were
ties.

3.1 Maximum-Degree Heuristic
The maximum-degree heuristic (MDG) [20, Algorithm 3], see also
Algorithm 1, determines for a given graph 𝐺 = (𝑉 , 𝐸) and a thresh-
old function \ a valid target set 𝑆 ⊆ 𝑉 , that is, a set such that
the diffusion process of 𝐺 with \ started in 𝑆 eventually activates
all vertices of 𝐺 . To this end, MDG starts with the empty set and
greedily adds a vertex of largest degree to its current solution. After
each vertex added, it checks whether the set is already valid. Once
it constructs a valid set, it returns it.

Note that in line 5, we compute the set 𝜎\ (𝑆 ∪ {𝑣∗}) of vertices
activated by 𝑆 ∪ {𝑣∗}, exploiting that Cov = 𝜎\ (𝑆) and 𝜎\ (𝑆 ∪
{𝑣∗}) = 𝜎\ (𝜎\ (𝑆) ∪ {𝑣∗}) [20, Proposition 1]. We perform such an
update with a slightly modified breadth-first search.

3.2 Biased Random-Key Genetic Algorithm
The biased random-key genetic algorithm (BRKGA) [20, Algori-
thm 1], see also Algorithm 2, is an elitist genetic algorithm that
maintains a population of given fixed size 𝑛ind of individuals. For
the TSS problem, each individual is represented as a vector of
length |𝑉 |, with each component being a floating-point number in
[0, 1]. The initial population contains only random individuals as
well as one whose values are all 0.5. In each iteration, the BRKGA
selects the best solutions from its population, resulting in the elitist
population. Then, it creates a population of new random individuals

Algorithm 2: The biased random-key genetic algorithm
(BRKGA [20, Algorithm 1]) for the target set selection prob-
lem. Each individual is a vector of length |𝑉 |, with compo-
nents in [0, 1].
Input: graph 𝐺 = (𝑉 , 𝐸), threshold function \ : 𝑉 → N
Input: parameter values 𝑛ind ∈ N≥1, 𝑝e, 𝑝m ∈ [0, 1] with

𝑝e + 𝑝m ≤ 1, probelite ∈ [0, 1]
1 𝑃 ← population of 𝑛ind − 1 individuals, each generated

uniformly at random;
2 𝑃 ← 𝑃 ∪ {(0.5)𝑖∈𝑉 };
3 while termination criterion not met do
4 𝑃e ← the best ⌈𝑝e · 𝑛ind⌉ individuals from 𝑃 ;
5 𝑃m ← population of ⌈𝑝m · 𝑛ind⌉ individuals, each

generated uniformly at random;
6 𝑃𝑐 ← population of 𝑛ind − |𝑃e | − |𝑃m | individuals created

by crossover between 𝑃 and 𝑃e with bias probelite;
7 𝑃 ← 𝑃𝑒 ∪ 𝑃𝑚 ∪ 𝑃𝑐 ;
Output: best solution in 𝑃

and another population via crossover between the elitist population
and the entire population from the previous iteration. The union of
these two populations as well as the elitist population make up the
population for the next iteration.

Decoding an individual. Following the approach by López Ser-
rano and Blum [20], an individual (𝑤𝑖 )𝑖∈𝑉 is decoded into a set
𝑆 ⊆ 𝑉 that is valid for the TSS problem by following the same
approach as MDG but guided by 𝑤 instead of the vertex degrees.
More specifically, the decoding performs Algorithm 1 but replaces
line 4 by

𝑣∗ ← argmax𝑣∈𝑉 \Cov 𝑤𝑣 · deg(𝑣);

Quality of an individual. The quality of an individual is deter-
mined by decoding it into a vertex set 𝑆 and then determining the
objective value of 𝑆 as explained in Section 2.1. Note that the TSS
problem is a minimization problem. Hence, the term best in Algo-
rithm 2 refers to individuals with the smallest quality-value among
the population (breaking ties arbitrarily).

Crossover. The crossover operation picks one individual 𝑥 ∈ 𝑃
and one individual𝑦 ∈ 𝑃e, each uniformly at random. It then creates
a new individual 𝑧 by choosing for each component a value of one of
the two parents, with a probability bias of probelite toward 𝑦. That
is, for all 𝑣 ∈ 𝑉 , it holds independently with probability probelite
that 𝑧𝑣 = 𝑦𝑣 , and it holds 𝑧𝑣 = 𝑥𝑣 otherwise.

4 OUR IMPROVEMENTS TO THE EXISTING
HEURISTICS

Wepropose two independent modifications to the BRKGA described
in Section 3, namely:

(1) On-the-fly parameter choices based on a power-law distri-
bution (Section 4.1).

(2) The minimum-degree heuristic (reverseMDG, Algorithm 3),
which is given a valid solution candidate for the TSS problem
and greedily aims to improve it.
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4.1 On-the-Fly Parameter Tuning via
Power-Law Random Choices

To avoid the costly tuning of the parameters of the BRKGA, we
propose to choose the parameter values during the run, namely
randomly from a power-law distribution. Naturally, this only con-
cerns parameters that can be adjusted meaningfully during the run.
For the BRKGA, these are all parameters except the population size,
which we choose following the recommendation by López Serrano
and Blum [20].

Power-law distributed random parameter values were proposed
first (in evolutionary computation with discrete search spaces) in
the theoretical work [11], where under the name fast GA it was
suggested to use bit-wise mutation with a random mutation rate,
sampled anew for each application of the mutation operator from
a power-law distribution. This idea was quickly taken up in other
theoretical works and extended to other parameters, to more than
one parameter, and to multi-objective optimization [2–4, 7–9, 12–
16, 23, 25]. All these work showed that a power-law parameter
choice can significantly beat the standard parameter choice, or
even any static parameter choice, and this in an essentially param-
eterless manner (formally speaking, the power-law exponent 𝛽 is
a parameter, but already the first work [11] detected that it has
little influence on the performance and that taking 𝛽 = 1.5 is a
reasonable choice). Surprisingly, these promising theoretical results
never found significant applications in practice.

Formal definition of capped power-laws. In [11], the following
type of capped power-law was used. Let 𝛽 > 1 be the (negative)
power-law exponent and [1..𝑟 ] B [1, 𝑟 ] ∩ N, 𝑟 ∈ N, be the range
of the distribution. Then a random variable 𝑋 follows a power-law
with exponent 𝛽 and range [1..𝑟 ] if for all 𝑘 ∈ [1..𝑟 ],

Pr[𝑋 = 𝑘] = 𝑘−𝛽

𝐶𝑟 (𝛽)
,

where 𝐶𝑟 =
∑𝑟
𝑘=1 𝑘

−𝛽 .
Doerr et al. [11] report that the choice of 𝛽 does not have a big

impact on the run time, and they recommend a choice of 𝛽 = 1.5.
The range of the power-law is usually determined by the applica-
tion. In [11], a random mutation rate for mutation of bit-strings of
length 𝑛 was sought, so with the aim of avoiding mutation rates
larger than 1/2, the number 𝑟 was chosen as 𝑟 = 𝑛

2 , a number 𝛼
was sampled from a power-law with range [1..𝑟 ], and 𝛼/𝑛 was
used as mutation rate. These considerations turn the power-law
distribution effectively into a parameter-less distribution.

It is clear that the range of the power-law distribution can be ad-
justed to arbitrary finite sets𝐴 by choosing an appropriate mapping
between 𝐴 and [1..𝑟 ].

4.1.1 Applying Power-Law Tuning to the BRKGA. Out of the four
parameters of the BRKGA (Algorithm 2), we choose all but 𝑛ind via
a power-law distribution.1

For the three remaining parameters, we pick a power-law over
the range of values that López Serrano and Blum [20, Table 1] chose
1Technically, the BRKGA by López Serrano and Blum [20] has one more parameter,
which is binary and affects a single individual in the initial population. Since it does
not make sense to adjust such a parameter dynamically, we go with the choice that
López Serrano and Blum [20] propose (i.e., seed = true). Algorithm 2 already reflects
this choice.

Table 1: The power-law distributions we employ when choos-
ing the parameters of the BRKGA (Algorithm 2) according
to the method described in Section 4.1. The column Support
denotes the values that the power-law distribution takes.
All distributions choose a power-law exponent of 1.5. The
conversion map shows how we transform the values from
Support such that they result in a power-law over the values
in Resulting range, which are the ones chosen by López Ser-
rano and Blum [20, Table 1]. The value 𝑥 represents a random
number drawn from the respective power-law distribution.

Parameter Support Conversion map Resulting range
𝑝e [1..15] 0.1 + 0.01(15 − 𝑥) {0.24, 0.23, . . . , 0.1}
𝑝m [1..20] 0.1 + 0.01𝑥 {0.11, 0.12, . . . , 0.3}
probelite [1..30] 0.5 + 0.01𝑥 {0.51, 0.52, . . . , 0.8}

Algorithm 3: The minimum-degree heuristic (reverse-
MDG) that is given a valid solution candidate for the target
set selection problem and greedily tries to eliminate vertices
of the lowest degree.
Input: graph 𝐺 , threshold function \ , and 𝑆 ⊆ 𝑉 such that

𝜎\ (𝑆) = 𝑉

1 𝑉≤ ← vertices in 𝑉 sorted by ascending vertex degree;
2 𝐶 ← 𝑆 ;
3 for 𝑣 ∈ 𝑉≤ do
4 if 𝑣 ∈ 𝐶 then
5 𝐶′ ← 𝐶 \ {𝑣};
6 if 𝜎\ (𝐶′) = 𝑉 then 𝐶 ← 𝐶′;

Output: 𝐶

for their parameter tuning. We apply a suitable transformation, as
reported in Table 1. We note that the ranges of 𝑝e and 𝑝m do not
overlap and are such that the constraint 𝑝e + 𝑝m ≤ 1 is always
satisfied. However, we only make this choice because we choose
for each parameter the same range as López Serrano and Blum [20,
Table 1]. The constraint 𝑝e + 𝑝m ≤ 1 can still be satisfied if the
ranges of 𝑝e and 𝑝m would overlap. In such a case, one would first
sample one of the two values, for example 𝑝e, and then sample the
other value via rejection sampling. Alternatively, the support of the
power-law mutation for the second could be adjusted.

When transforming the values of the power-law into the in-
tended parameter range, it is not very important where the highest
probability mass lies, as the ranges are all rather small. For example,
for 𝑝e, the highest mass is on the value that López Serrano and
Blum [20] determined as best via the parameter tuner irace [21].
However, for probelite, the best value reported by López Serrano
and Blum [20] is 0.69, which receives a comparably low probability
in the power-law we chose.

We recall that we draw a value for each of these three parameters
once at the beginning of the while-loop of the BRKGA, that is, once
each iteration.
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Table 2: The best TSS objective values achieved for all of the algorithms that we ran on the specified networks, as described in
Section 5.1. The average is over 10 independent runs per algorithm. Bold numbers indicate the best value among all algorithms
in this table and in Table 3. The columns |𝑉 | and |𝐸 | denote the number of vertices and edges, respectively, of the networks. See
Section 5.2.3 for more details.

Network |𝑉 | |𝐸 | BRKGA MDG+rev BRKGA+rev fastBRKGA fastBRKGA+rev

Best Avg. Best Avg. Best Avg. Best Avg.
Dolphins 62 159 6 6.0 7 6 6.0 6 6.0 6 6.0
Football 115 613 22 23.4 28 22 23.4 22 23.5 22 23.5
Karate 34 78 3 3.0 3 3 3.0 3 3.0 3 3.0
Jazz 198 2 742 20 21.1 24 20 21.1 20 21.1 20 21.1
CA-AstroPh 18 772 198 050 1 428 1 438.0 1 381 1 375 1 384.9 1 427 1 438.4 1 375 1 385.6
CA-GrQc 5 242 14 484 928 930.7 889 891 895.7 924 930.6 892 897.0
CA-HepPh 12 008 118 489 1 343 1 347.8 1 257 1 280 1 286.0 1 338 1 349.2 1 278 1 285.7
CA-HepTh 9 877 25 973 1 234 1 242.4 1 154 1 155 1 160.2 1 237 1 242.4 1 157 1 160.6
CA-CondMat 23 133 93 439 2 563 2 592.8 2 326 2 350 2 360.4 2 580 2 599.5 2 354 2 364.1
Email-Enron 36 692 183 831 2 670 2 679.1 2 676 2 635 2 643.5 2 664 2 671.7 2 633 2 639.1
ego-facebook 4 039 88 234 466 470.5 477 463 464.7 467 473.2 460 466.7
socfb-Brandeis99 3 898 137 567 320 337.4 356 320 336.2 321 332.4 320 331.5
socfb-nips-ego 2 888 2 981 10 10.0 10 10 10.0 10 10.0 10 10.0
socfb-Mich67 3 748 81 903 166 168.1 177 165 168.0 164 167.9 164 167.9
soc-gplus 23 628 39 194 62 63.0 61 61 61.0 62 62.8 61 61.1
musae_git 37 700 289 003 173 178.4 190 172 178.1 172 178.3 171 178.1
loc-gowalla_edges 196 591 950 327 5 450 5 465.2 4 780 4 760 4 777.2 5 436 5 464.6 4762 4 778.9
gemsec_facebook_artist 50 515 819 090 648 669.2 688 631 649.8 624 671.1 610 650.6
deezer_HR 54 573 498 202 2 046 2 092.1 1 895 1 874 1 904.5 2 057 2 096.5 1 873 1 892.2
com-dblp 317 080 1 049 866 36 875 36 917.0 29 114 29 170 29 215.8 36 832 36 907.8 29 212 29 235.5
Amazon0302 262 111 899 792 35 579 35 567.3 26 618 26 665 26 642.0 35 576 35 563.9 26 667 26 636.4
Amazon0312 400 727 2 349 869 31 051 31 075.2 23 529 23 523 23 549.6 31 045 31 068.2 23 542 23 559.4
Amazon0505 410 236 2 439 437 31 763 31 778.5 24 115 24 115 24 134.6 31 751 31 776.9 24 122 24 135.0
Amazon0601 403 394 2 443 408 31 393 31 412.3 23 759 23 757 23 777.1 31 390 31 403.0 23 758 23 777.6

4.2 ReverseMDG
The minimum-degree heuristic (reverseMDG, Algorithm 3) is given
a valid TSS solution candidate 𝑆 and greedily tries to eliminate
vertices from 𝑆 , starting with those of the lowest degree. In our
BRKGA, we apply the heuristic after obtaining target sets from the
MDG heuristic (Algorithm 1).

Since the TSS problem is NP-hard, a heuristic solution candidate,
such as one constructed by MDG, may not be optimal because (1) it
may not contain vertices that are required for an optimal solution
or (2) it may not have minimum size. While reverseMDG does not
help with (1), it helps with (2). Since vertices with a high degree can
potentially activate more vertices once they are active themselves,
reverseMDG tries to remove vertices with a low degree first. Al-
though this does not even guarantee a locally optimal solution, we
see in Section 5 that reverseMDG is already very powerful. We note
that, mostly due to its simplicity, reverseMDG is also comparably
cheap to compute: It only needs to compute the finally active set
for a given set at most |𝑆 | times, which is typically not too large, as
we are considering a minimization problem.

5 EMPIRICAL EVALUATION
We compare the existing heuristics for the TSS problem discussed
in Section 3 to a select choice of these algorithms modified by our

approaches discussed in Section 4. More specifically, we compare
the BRKGA from López Serrano and Blum [20] as well as the MMAS
with and without Q-learning from Ramírez Sánchez et al. [24] to
the BRKGA with power-law tuning (Section 4.1.1), the BRKGA with
power-law tuning and with reverseMDG, and the MDG with re-
verseMDG. We compare these algorithms primarily with respect to
the best solution that they found after a fixed time budget. However,
we also report on the run time. Our code is available on GitHub [10].

We chose to apply our modifications to the BRKGA and theMDG,
because they are simple algorithms, and we are interested to see to
what extent our modifications improve such simple approaches, es-
pecially compared to more sophisticated approaches such as MMAS
with Q-learning. For modifications that employ the reverseMDG,
we add the suffix +rev to the algorithm name. For modifications
that employ the power-law parameter tuning, we add the prefix
fast to the algorithm name, based on the naming convention by
Doerr et al. [11].

5.1 Experimental Setup
We consider the same experimental setup as López Serrano and
Blum [20] and Ramírez Sánchez et al. [24]. To this end, we consider
24 out of the 27 social networks that the previous studies considered
that are part of the Stanford Network Analysis Project [19]. We note
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Table 3: The empirical results from Ramírez Sánchez
et al. [24, Table 2] for solving the TSS instances as explained
in Section 5.1. The numbers are the objective values of the
best solution found after a certain time budget. The average
is over 10 independent runs per network. Numbers in bold
are the best value among all of the algorithms in this table
and in Table 2. We note that we strongly believe that Ramírez
Sánchez et al. [24, Table 2] mixed up the labels of the rows for
Dolphins and for Karate, as the number of vertices and edges
do not match the actual values of these networks. Below, we
corrected this. See Section 5.2.3 for more details.

Network MMAS MMAS-Learn

Best Avg. Best Avg.
Dolphins 6 6.0 6 6.0
Football 23 23.0 22 23.0
Karate 3 3.0 3 3.0
Jazz 20 20.0 20 20.0
CA-AstroPh 1 405 1 412.5 1 405 1 413.0
CA-GrQc 898 900.1 897 899.4
CA-HepPh 1 289 1 297.2 1 289 1 298.4
CA-HepTh 1 179 1 186.2 1 182 1 189.2
CA-CondMat 2 416 2 422.3 2 419 2 428.0
Email-Enron 2 679 2 686.0 2 692 2 699.4
ego-facebook 478 482.8 478 481.9
socfb-Brandeis99 365 369.2 368 370.2
socfb-nips-ego 10 10.0 10 10.0
socfb-Mich67 177 179.3 177 179.3
soc-gplus 61 61.5 61 61.9
musae_git 202 205.9 199 206.4
loc-gowalla_edges 5 180 5 195.1 5 155 5 177.6
gemsec_facebook_artist 726 744.7 735 748.4
deezer_HR 2 231 2 247.0 2 240 2 255.9
com-dblp 32 981 33 016.9 32 364 32 397.7
Amazon0302 30 291 30 334.7 29 553 29 618.0
Amazon0312 26 280 26 317.8 26 186 26 201.2
Amazon0505 26 945 27 000.9 26 801 26 871.2
Amazon0601 26 665 26 708.3 26 511 26 568.0

that we exclude the network com-youtube from this data set, due to
its size—being at least 2.5 times larger than the largest of the remain-
ing networks, in terms of vertices. The two networks ncstrlwg2
and actors-data from the previous studies are excluded because
we could not obtain them.

For each graph (𝑉 , 𝐸) above, we consider a TSS instance where
the threshold of each vertex is half its degree, that is, for each 𝑣 ∈ 𝑉 ,
it holds that \ (𝑣) = ⌈deg(𝑣)/2⌉.

We run the original BRKGA from López Serrano and Blum [20]
with the best parameters determined by the authors. In addition,
we run our modifications MDG+rev, BRKGA+rev, fastBRKGA, and
fastBRKGA+rev. Since the BRKGA+rev does not tune its parameters
automatically, we choose the best parameters determined by López
Serrano and Blum [20]. For all versions of the BRKGA, we choose
the population size 𝑛ind = 46 recommended by López Serrano and
Blum [20]. We execute 10 independent runs per algorithm and TSS

Table 4: The statistical significance of the best solution found
of the fastBRKGA compared to the (tuned) BRKGA by López
Serrano and Blum [20]. The reported 𝑝-values are the result
of a Mann–Whitney𝑈 test based on the same 10 independent
runs per algorithm per network as the ones in Table 2. Values
of statistical significance (that is, a 𝑝-value of at most 0.05)
are highlighted in bold. See Section 5.2.2 for more details.

Network 𝑝-value
Dolphins 1.00
Football 0.77
Karate 1.00
Jazz 0.56
CA-AstroPh 0.82
CA-GrQc 0.91
CA-HepPh 0.70
CA-HepTh 0.79
CA-CondMat 0.57
Email-Enron 0.03
ego-facebook 0.10
socfb-Brandeis99 0.27
socfb-nips-ego 1.00
socfb-Mich67 0.97
soc-gplus 0.36
musae_git 1.00
loc-gowalla_edges 1.00
gemsec_facebook_artist 0.60
deezer_HR 0.60
com-dblp 0.62
Amazon0302 0.33
Amazon0312 0.24
Amazon0505 1.00
Amazon0601 0.05

instance. For each graph (𝑉 , 𝐸), each run has a run time budget of
max{100, |𝑉 |/100} seconds. We stop a run prematurely if it finds
an optimal solution. During each run, we log the objective value of
the best solution found so far. For the BRKGA and the fastBRKGA,
we also log the run times.

All of our modifications were implemented in C++, since López
Serrano and Blum [20] also used C++ for the BRKGA. Our experi-
ments were run on a machine with 2 Intel® Xeon® Platinum 8362
CPUs @ 2.80GHz (32 cores; 64 threads) with 2TB of RAM.

5.2 Results
We discuss our results mostly with respect to the quality of the
best solution found. We do so first in absolute terms (Section 5.2.1)
and then in terms of statistical significance (Section 5.2.2). Last, we
briefly discuss the run time, since we compare our results to some
algorithms that we did not run ourselves (Section 5.2.3).

5.2.1 Comparison of the Best Objective Value. Table 2 shows our
results in terms of objective value. Table 3 shows the results ob-
tained by Ramírez Sánchez et al. [24] for the same setting; that is,
we did not run experiments for the results in Table 3.
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First, we observe that all bold entries for the existing heuris-
tics (that is, BRKGA, MMAS, and MMAS-learn) are almost always
matched by all of our modifications of the BRKGA. The only two
exceptions are that the fastBRKGA reports for soc-gplus and for
socfb-Brandeis99 values that are worse by 1 than the overall best
value. For all of these networks, the average is for all algorithms also
very close to the best value, indicating that these are not particularly
hard instances. Still, our modification MDG+rev does not match
the best value in 3 cases, showing that a purely greedy strategy is
insufficient. In total, these cases cover 6 out of the 24 networks.

For the remaining 18 networks on which at least one of our
modifications is solely the best algorithm, we get a diverse picture.
Surprisingly, the deterministic greedy heuristic MDG+rev obtains
the best value in 7 of these 18 cases. This implies for these instances
that the randomness used by any of the other algorithms is worse
than a simple one-time greedy approach. This is even the case for
the fastBRKGA+rev, which employs a modified version of MDG+rev
in order to create valid solutions. This suggests that it would be
generally better to add the solution computed by MDG+rev to the
initial population of every other algorithm, which would remain in
the population, due to the elitist nature of the algorithms.

Focusing on our modifications of the BRKGA on the 18 − 7 = 11
remaining networks, we see that the fastBRKGA performs worst in
terms of number of best solutions found. However, when compared
to the original BRKGA, which was tuned in advance, the results are
very similar. This shows that the power-law parameter tuning is
actually comparable to the offline parameter tuning of the BRKGA
via irace. We consider this to be a success for the power-law tuning.

The two remaining algorithms are the BRKGA+rev and the
fastBRKGA+rev, which only differ on an algorithmic level with
respect to whether their parameters were tuned before the opti-
mization or chosen during the optimization. We observe that the
fastBRKGA+rev performs better on smaller networks, whereas the
BRKGA+rev performs better on larger networks. However, for each
of these networks, the differences in the best solution found are
rather close. Any of these two modified algorithms is better than
the state of the art, presented in Table 3. Overall, this shows that the
reverseMDG heuristic, which is problem-dependent, has an impor-
tant impact on the overall performance. Furthermore, the simple
power-law parameter tuning is comparable to the complex offline
parameter tuning in terms of the solution quality the respective
variants produce.

5.2.2 Statistical Significance. Table 6 shows a comparison in terms
of statistical significance of the best solution found of the fast-
BRGKA+rev to the existing TSS heuristics as well as our modi-
fications. We notice that our observations from Section 5.2.1 are
confirmed. For most of the networks, besides the easy ones, the
fastBRKGA+rev is significantly better; in many cases with a very
small 𝑝-value. This advantage holds also against the fastBRKGA,
but it does not exist against the BRKGA+rev. This shows that the
reverseMDG heuristic, albeit simple, has a huge impact on the
performance of the algorithms.

Table 4 as well as the last column of Table 6 compare the BRKGA
variants whose parameters were tuned offline (by López Serrano
and Blum [20]) against the respective variants who use the on-the-
fly power-law parameter tuning.We see no statistical significance in

either case, except for two cases in Table 4, where the fastBRKGA is
significantly better than the (tuned) BRKGA. This highlights that an
on-the-fly parameter choice following a power-law is comparable
to costly offline parameter tuning in this setting.

Table 5: The average run time in seconds of all of the algo-
rithms for which we have run time information. We note
that we did not run MMAS and MMAS-Learn (MMAS-L be-
low) ourselves—their respective columns are from Ramírez
Sánchez et al. [24, Table 2]. For the BRKGA and the fast-
BRKGA, the information is from the runs from Table 2. The
sizes of the networks are mentioned in Table 2. Bold entries
denote the minimum value of a row.We strongly believe that
Ramírez Sánchez et al. [24] mixed up the labels of the rows
Dolphins and Karate, which we correct below.

Network BRKGA MMAS MMAS-L fBRKGA
Dolphins < 0.01 < 0.01 < 0.01 < 0.01
Football 10.2 22.0 30.3 21.3
Karate < 0.01 < 0.01 < 0.01 < 0.01
Jazz 12.3 4.7 12.9 5.8
CA-AstroPh 162.2 173.1 172.6 176.3
CA-GrQc 51.3 64.2 72.3 52.1
CA-HepPh 102.90 109.2 110.5 84.9
CA-HepTh 88.20 84.6 82.5 82.3
CA-CondMat 225.80 220.4 222.8 226.2
Email-Enron 328.9 287.4 299.6 334.0
ego-facebook 51.3 65.7 68.1 54.9
socfb-Brandeis99 53.9 68.1 59.3 56.0
socfb-nips-ego < 0.01 < 0.01 < 0.01 < 0.01
socfb-Mich67 26.1 68.3 67.5 34.8
soc-gplus 15.30 28.8 10.2 44.2
musae_git 169.4 202.9 172.7 192.9
loc-gowalla_edges 1 938.5 728.0 1 113.5 1 950.5
gemsec_facebook- 457.3 383.6 330.8 445.9

_artist
deezer_HR 541.6 335.9 283.9 535.3
com-dblp 3 059.9 1 749.1 1 726.5 3 065.1
Amazon0302 2 527.4 1 768.8 1 705.4 2 524.4
Amazon0312 3 820.4 1 747.4 1 733.1 3 851.3
Amazon0505 3 993.5 1 746.3 1 695.6 3 965.8
Amazon0601 3 862.5 1 726.5 1 714.0 3 900.3

5.2.3 Comparison of the Run Time. Table 5 shows the average run
time in seconds of some of the algorithms we consider. We note
that we did not run the MMAS and the MMAS-Learn ourselves but
simply report the values from Ramírez Sánchez et al. [24]. Since
their setup uses a different machine, the results are not directly com-
parable. However, since we as well as Ramírez Sánchez et al. [24]
ran the BRKGA, we have a common ground for comparison. We
find that our run times are close to those reported by Ramírez
Sánchez et al. [24]. Hence, we are claim that our results are in
general comparable.

We note that the run time of the MMAS and the MMAS-Learn
(without the time spent on learning and tuning) is faster than the
run time of the fastBRKGA by a factor of around 2. However, the
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Table 6: The statistical significance (𝑝-values) of the best solution found of the fastBRKGA+rev in comparison to the other
shown algorithms. The reported 𝑝-values are the result of a Mann–Whitney𝑈 test based on the same 10 independent runs per
algorithm per network as the ones in Table 2. For MMAS and MMAS-Learn, since we did not run any experiments, we use for
each instance the two data points (best and average) from Table 3. Values of statistical significance (that is, with a 𝑝-value of at
most 0.05) are highlighted in bold. See Section 5.2.2 for more details.

Network BRKGA MMAS MMAS-Learn fastBRKGA BRKGA+rev
Dolphins 1.00 1.00 1.00 1.00 1.00
Football 0.63 0.51 0.89 0.96 0.77
Karate 1.00 1.00 1.00 1.00 1.00
Jazz 0.72 0.50 0.91 0.91 0.56
CA-AstroPh < 0.001 < 0.001 0.02 0.02 0.97
CA-GrQc < 0.001 < 0.001 0.24 0.33 0.52
CA-HepPh < 0.001 < 0.001 0.08 0.08 0.82
CA-HepTh < 0.001 < 0.001 0.02 0.02 1.00
CA-CondMat < 0.001 < 0.001 0.02 0.02 0.26
Email-Enron < 0.001 < 0.001 0.02 0.02 0.12
ego-facebook 0.02 0.001 0.02 0.02 0.11
socfb-Brandeis99 0.09 0.37 0.02 0.02 0.38
socfb-nips-ego 1.00 1.00 1.00 1.00 1.00
socfb-Mich67 0.48 0.52 0.02 0.02 1.00
soc-gplus < 0.001 < 0.001 0.16 0.16 0.37
musae_git 0.48 0.45 0.02 0.02 0.97
loc-gowalla_edges < 0.001 < 0.001 0.02 0.02 0.62
gemsec_facebook_artist 0.01 0.02 0.02 0.02 1.00
deezer_HR < 0.001 < 0.001 0.02 0.02 0.19
com-dblp < 0.001 < 0.001 0.03 0.03 0.16
Amazon0302 < 0.001 < 0.001 0.02 0.02 0.60
Amazon0312 < 0.001 < 0.001 0.02 0.02 0.33
Amazon0505 < 0.001 < 0.001 0.02 0.02 0.73
Amazon0601 < 0.001 < 0.001 0.02 0.02 0.62

fastBRKGA does not require any preparations upfront, and its run
time is the entire time spent on this algorithms. The MMAS variants
were subject to some offline parameter tuning. Thus, the factor of 2
lost in the run time comparison is a fair price to pay.

6 CONCLUSION
We proposed two ways of modifying the BRKGA [20], a state-of-
the-art heuristic solver for the target set selection problem (TSS).
Our first modification aims to choose the parameter values of the
BRKGA during the run instead of tuning them beforehand expen-
sively offline. We choose the value of each parameter with respect
to a power-law distribution anew in each iteration. The resulting
fastBRKGA algorithm yields solutions that are comparable to the
highly tuned BRKGA. This shows that the expensive offline tuning
used previously can be well replaced by our cheap and easy on-the-
fly parameter choice. We believe that such a parameter choice is
also a good strategy for other problems than TSS.

Our second modification is adding a simple greedy heuristic
specific to the TSS, namely removing vertices from the target set
when this does not destroy the target set property. When combined
with our power-law parameter choice above, the resulting algorithm
significantly outperforms all state-of-the-art algorithms on almost
all non-easy instances.

Overall, our results show that the methods applied in the current
state of the art, namely, costly parameter tuning and complex com-
putations such as Q-learning combined with a graph convolutional
network, are currently not necessary to obtain the best heuristics
for TSS problems. Optimizing good solutions greedily and choosing
parameter values on the fly are already good by themselves and,
in combination, significantly better than the state of the art. We
invite other researchers to give both of our approaches a try when
they perform their next experiments. Especially, the power-law
parameter choice is an easy modification that is applicable to a
plethora of randomized search heuristics.
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