
Theoretical Computer Science 1003 (2024) 114622

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Estimation-of-distribution algorithms for multi-valued decision

variables ✩

Firas Ben Jedidia a, Benjamin Doerr b, Martin S. Krejca b,∗

a École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau, 91120, France
b Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de Paris, 1 rue Honoré d’Estienne d’Orves, Palaiseau, 91120,
France

A R T I C L E I N F O A B S T R A C T

Communicated by C. Witt

Keywords:
Estimation-of-distribution algorithms

Univariate marginal distribution algorithm

Evolutionary algorithms

Genetic drift

LeadingOnes benchmark

The majority of research on estimation-of-distribution algorithms (EDAs) concentrates on pseudo-

Boolean optimization and permutation problems, leaving the domain of EDAs for problems in
which the decision variables can take more than two values, but which are not permutation
problems, mostly unexplored. To render this domain more accessible, we propose a natural way
to extend the known univariate EDAs to this setting. Different from a naïve reduction to the binary
case, our approach avoids additional constraints.

Since understanding genetic drift is crucial for an optimal parameter choice, we extend the
known quantitative analysis of genetic drift to EDAs for multi-valued, categorical variables.
Roughly speaking, when the variables take 𝑟 different values, the time for genetic drift to become
significant is 𝑟 times shorter than in the binary case. Consequently, the update strength of the
probabilistic model has to be chosen 𝑟 times lower now.

To investigate how desired model updates take place in this framework, we undertake a
mathematical runtime analysis on the 𝑟-valued LEADINGONES problem. We prove that with the
right parameters, the multi-valued UMDA solves this problem efficiently in 𝑂(𝑟 ln(𝑟)2𝑛2 ln(𝑛))
function evaluations. This bound is nearly tight as our lower bound Ω(𝑟 ln(𝑟)𝑛2 ln(𝑛)) shows.

Overall, our work shows that our good understanding of binary EDAs naturally extends to the
multi-valued setting, and it gives advice on how to set the main parameters of multi-values EDAs.

1. Introduction

Estimation-of-distribution algorithms (EDAs [1]) are randomized search heuristics that evolve a probabilistic model of the search
space (that is, a probability distribution over the search space). In contrast to solution-based algorithms such as classic evolutionary
algorithms, which only have the choice between the two extreme decisions of keeping or discarding a solution, EDAs can take into
account the information gained from a function evaluation also to a smaller degree. This less short-sighted way of reacting to new
insights leads to several proven advantages, e.g., that EDAs can be very robust to noise [2,3]. Since the evolved distributions often

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.

* Corresponding author.
Available online 13 May 2024
0304-3975/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: martin.krejca@polytechnique.edu (M.S. Krejca).

https://doi.org/10.1016/j.tcs.2024.114622

Received 18 December 2023; Received in revised form 7 May 2024; Accepted 7 May 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:martin.krejca@polytechnique.edu
https://doi.org/10.1016/j.tcs.2024.114622
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114622&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114622
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

have a larger variance, EDAs can also be faster in exploring the search space, in particular, when it comes to leaving local optima,
where they have been shown to significantly outperform simple evolutionary algorithms [4–9].

While EDAs have been employed in a variety of settings and to different types of decision variables [1,10], they are very often
presented and discussed for the binary domain. In fact, the number of results in which they have been used for discrete optimization
problems with decision variables taking more than two values, other than permutation problems, is scarce [11–15]. All of these results
have in common that they propose specific EDAs to deal with multi-valued problems. To the best of our knowledge, no systematic
way to model EDAs for the multi-valued domain exists, even not for the easiest case of EDAs that do not model dependencies,
so-called univariate EDAs (we note that multi-variate EDAs are much less understood, i.e., despite some theoretical works in this
direction [16,17], there are no proven runtime guarantees for these algorithms).

In order to improve our theoretical understanding in this domain, we undertake the first steps towards a framework of univariate
EDAs for problems with decision variables taking more than two values (but different from permutation problems). We first note
that the strong dependencies that distinguish a permutation problem from just a problem defined on {1, … , 𝑛}𝑛 have led to very
particular EDAs for permutation problems. We did not see how to gain insights from these results for general multi-valued problems.

We therefore define EDAs for multi-valued decision variables without building on any related existing work. We note that, in
principle, one could transform a multi-valued problem into a binary one by having, for each variable taking 𝑟 different values,
𝑟 binary variables, each indicating that the variable has the corresponding value. This would lead to a constrained optimization
problem with the additional constraints that exactly one of these variables can take the value 1. This might be a feasible approach,
but since such constraints generally impose additional difficulties, we propose a way that does not need an additional treatment of
constraints (in other words, we set up our EDAs in a way that these constraints are satisfied automatically).

We defer the details to Section 4.2 and only sketch the rough idea of our approach here. For each variable taking 𝑟 values, without
loss of generality the values {0, … , 𝑟 − 1}, we have 𝑟 sampling frequencies 𝑝0, 𝑝1, … , 𝑝𝑟−1 that always add up to 1. When sampling
a value for the variable, we do this mutually exclusively, that is, the variable takes the value 𝑖 with probability 𝑝𝑖. This appears to
be a convenient (and in fact very natural) set-up for a multi-valued EDA. We note that there are some non-trivial technical questions
to be discussed when working with frequency borders, such as

[
1
𝑛
,1 − 1

𝑛

]
in the classical binary case, but we also come up with a

simple and natural solution for this aspect. Moreover, this model is well suited for categorical decision variables, i.e., variables whose
different values do not exhibit any neighborhood property. For other kinds of variables, different, more concise models might be
better suited, although our model is also applicable.

As a first step towards understanding this multi-valued EDA framework, we study how prone it is to genetic drift. Genetic drift
in EDAs means that sampling frequencies not only move because of a clear signal induced by the objective function, but also due
random fluctuations in the sampling process. This has the negative effect that even in the complete absence of a fitness signal, the
EDA develops a preference for a particular value of this decision variable. From a long sequence of works, see Section 5 for the
details, it is well understood how the time for this genetic-drift effect to become relevant depends on the parameters of the EDA [18].
Consequently, if one plans to run the EDA for a certain number of iterations, then this quantification tells the user how to set the
parameters as to avoid genetic drift within this time period.

Since such a quantification is apparently helpful in the application of EDAs, we first extend it to multi-valued EDAs. When looking
at the relatively general tools used in [18], this appears straightforward, but it turns out that such a direct approach does not give
the best possible result. The reason is that for multi-valued decision variables, the martingale describing a frequency of a neutral
variable over time has a lower variance (in the relevant initial time interval). To profit from this, we use a fairly technical martingale
concentration result of McDiarmid [19], which, to the best our knowledge, has not been used before in the analysis of randomized
search heuristics. Thanks to this result, we show that the time for genetic drift to become relevant is (only) by a factor of 𝑟 lower
than in the case of binary decision variables (Theorem 3).

We use this result to conduct a mathematical runtime analysis of the multi-valued univariate marginal distribution algorithm
(𝑟-UMDA) on the 𝑟-valued LEADINGONES problem in the regime with low genetic drift. This problem returns, similar to the binary
domain, the longest prefix of consecutive 0s in the input. It is interesting since a typical optimization process optimizes the variable
sequentially in a fixed order. Consequently, in a run of an EDA on LEADINGONES, there is typically always one variable with undecided
sampling frequency that has a strong influence on the fitness. Hence, this problem is suitable to study how fast an EDA reacts to a
strong fitness signal.

Our runtime analysis shows that also in the multi-valued setting, EDAs can react quickly to a strong fitness signal. Since now
the frequencies start at the value

1
𝑟
, the time to move a frequency is a little longer, namely Θ(𝑟 ln(𝑟)) instead of constant when the

sample size 𝜆 is by a sufficient constant factor larger than the selection size 𝜇. This still appears to be a small price for having to deal
with 𝑟 decision alternatives. This larger time also requires that the model update has to be chosen more conservatively as to prevent
genetic drift (for this, we profit from our analysis of genetic drift), leading to another ln(𝑟) factor in the runtime. In summary, we
prove (Theorem 6) that the UMDA can optimize the 𝑟-valued LEADINGONES problem in time 𝑂(𝑟 ln(𝑟)2𝑛2 ln(𝑛)), a bound that agrees
with the one shown in [20] for the classical case 𝑟 = 2. Our upper bound is tight apart from a factor logarithmic in 𝑟, that is, we
prove a lower bound of order Ω(𝑟 ln(𝑟)𝑛2 ln(𝑛)) in Theorem 10.

Overall, our work shows that 𝑟-valued EDAs can be effective problem solvers, suggesting to apply such EDAs more in practice.

This work extends our prior extended abstract [21] by adding a lower bound for the runtime of the 𝑟-valued UMDA on the
𝑟-valued LEADINGONES problem. Also, it contains all proofs that were omitted in the conference version for reasons of space. To
avoid misunderstandings, we note that this work bears no similarity or overlap with the paper Generalized Univariate Estimation-of-
2

Distribution Algorithms [22], which studies generalized update mechanisms for EDAs for binary decision variables.

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

This article is organized as follows. We describe previous works in the following section and set the notation in the subsequent
section. In Section 4, we propose our multi-valued EDA framework. Our main technical results, the analysis of genetic drift and the
runtime analysis for the LEADINGONES problem, can be found in Sections 5 and 6. The paper ends with a short conclusion.

2. Related work

Since the technical sections of this work contain three relatively independent topics—the definition of multi-valued EDAs, ge-

netic drift, and a runtime analysis on the LEADINGONES benchmark—we present the previous works relevant to these topics in the
respective sections.

This being a theoretical work, we do not discuss in detail how EDAs have been successfully used to solve real-worlds optimization
problems and refer to the surveys [1,10].

Theoretically oriented works have accompanied the development and use of univariate binary EDAs for a long time, see, e.g.,
the early works on genetic drift described in Section 5. The first mathematical runtime analysis of an EDA was conducted by
Droste [23]. This seminal work, showing an asymptotically tight bound for the runtime of the compact genetic algorithm on the

ONEMAX benchmark, already contains many ideas that are now frequently used in the runtime analysis of EDAs. It also observed
that EDAs optimize problems in a very different manner, visible from the different runtimes shown on two linear functions, which
contrasts the famous analysis of how the (1 + 1) EA optimizes linear functions by Droste, Jansen, and Wegener [24]. Interestingly,
apart from the works of one research group [25–27], Droste’s ground-breaking work [23] was not followed up by other runtime
analyses for around ten years. Since then, starting with works like [28–31], the runtime analysis of EDAs has become very active
and has, despite the technical challenges in analyzing such complex algorithms, produced many fundamental results and a good
understanding of some of the working principles of EDAs. We refer to the recent survey [32] for more details.

An algorithmic concept related to EDAs is ant colony optimization (ACO) [33]. ACO lends itself well to combinatorial optimization,
which is typically multi-valued in nature, and ACO has been analyzed theoretically to some degree, e.g., on the minimum-spanning
tree problem [34], the traveling-salesman problem [35], and shortest-path problems [36]. ACO is related to EDAs in that ACO
constructs solutions according to a probabilistic model, known as the construction graph. However, in contrast to EDAs, ACO usually
stores a best-so-far solution, which helps enforce the probabilistic model. This in contrast to the EDAs we consider in this work. A
more thorough overview on theoretical results for ACO is also provided in the same survey mentioned above [32].

3. Preliminaries

We denote by ℕ the set of all natural numbers, including 0, and by ℝ the set of all real numbers. Additionally, for 𝑎, 𝑏 ∈ ℕ, let
[𝑎..𝑏] = [𝑎, 𝑏] ∩ ℕ, and let [𝑎] = [1..𝑎]. When we say that a random process is a martingale and do not specify a filtration, then we
mean that the process is a martingale with respect to its natural filtration. Further, for all 𝑛 ∈ ℕ≥1 and 𝑝 ∈ℝ𝑛

≥0, we denote the 1-norm
of 𝑝, that is, the sum of the entries of 𝑝, by ‖𝑝‖1. For a proposition 𝑃 , we denote the Iversion bracket by 1{𝑃 }, which is 1 if 𝑃 is
true, and it is 0 otherwise.

Let 𝑛 ∈ℕ≥1 and 𝑟 ∈ℕ≥2. We consider the maximization of functions of the form 𝑓 ∶ [0..𝑟− 1]𝑛 →ℝ, which we call r-valued fitness
functions. Whenever we mention an 𝑟-valued fitness function, we implicitly assume that its dimension 𝑛 and the cardinality 𝑟 of its
domain are given. We call each 𝑥 ∈ [0..𝑟− 1]𝑛 an individual, and we call 𝑓 (𝑥) the fitness of 𝑥.

We say that a random variable 𝑌 stochastically dominates another random variable 𝑋, not necessarily defined on the same
probability space, denoted by 𝑋 ⪯ 𝑌 , if and only if for all 𝜆 ∈ℝ, we have Pr [𝑋 ≤ 𝜆] ≤ Pr [𝑌 ≤ 𝜆].

4. Multi-valued EDAs

In this section, we generalize the three common univariate EDAs for the binary decision variable to multi-valued decision vari-

ables. We do so in a manner that is consistent with the existing (empirical) literature on univariate EDAs [13,15]. We call our
EDA variants multi-valued EDAs. To this end, we briefly discuss the binary case in Section 4.1 before presenting our framework in
Section 4.2. In our presentation, we concentrate on the UMDA [37] and then briefly present the generalizations of the other two
common univariate EDAs.

We note that for classic evolutionary algorithms, multi-valued decision variables have been discussed to some extent [38–44].
Due to the very different working principles, we could not see how these results help in designing and analyzing multi-valued EDAs.

4.1. Binary EDAs

Binary EDAs refer to EDAs for pseudo-Boolean optimization, that is, the optimization of functions 𝑓 ∶ {0, 1}𝑛 → ℝ. This setting
is a special case of optimizing 𝑟-valued fitness functions, for 𝑟 = 2. The probabilistic model of univariate EDAs in this domain
is a length-𝑛 vector 𝑝 of probabilities (the frequency vector), where the probability (the frequency) at position 𝑖 ∈ [𝑛] denotes the
probability that a sample has a 1 at position 𝑖, independent of the other positions. Formally, for all 𝑥, 𝑦 ∈ {0, 1}𝑛, it holds that
Pr[𝑥 = 𝑦] =

∏
𝑖∈[𝑛](𝑝𝑖𝑦𝑖 ⋅ (1 − 𝑝𝑖)1−𝑦𝑖), where we assume that 00 = 1.

Binary EDAs commonly take at least a parameter 𝜆 ∈ ℕ≥1 (the population size) as well as a pseudo-Boolean fitness function 𝑓 as
3

input and optimize 𝑓 as follows: Initially, the frequency vector 𝑝 models the uniform distribution, that is, each frequency is 1∕2.

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Algorithm 1: The UMDA [37] with parameters 𝜆 ∈ℕ≥1 and 𝜇 ∈ [𝜆], maximizing a pseudo-Boolean fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← (1
2
)𝑖∈[𝑛] ;

3 repeat // iteration 𝑡

4 𝑃 (𝑡) ← population of 𝜆 individuals, independently sampled from 𝑝(𝑡) ;

5 {𝑥(𝑡,𝑘)}𝑘∈[𝜇] ← multiset of 𝜇 individuals from 𝑃 (𝑡) with the highest fitness (breaking ties uniformly at random);

6 for 𝑖 ∈ [𝑛] do 𝑝
(𝑡+1)
𝑖

← 1
𝜇

∑
𝑘∈[𝜇] 𝑥

(𝑡,𝑘)
𝑖

;

7 𝑝(𝑡+1) ← values of 𝑝(𝑡+1) , restricted to
[
1
𝑛
,1 − 1

𝑛

]
;

8 𝑡 ← 𝑡 + 1;

9 until termination criterion met;

Then, in an iterative manner, the algorithm produces 𝜆 samples (the population) independently via 𝑝, and it updates 𝑝 based on these
samples and their fitness. This process is repeated until a user-defined termination criterion is met.

In order to prevent frequencies from only producing a single value (which is the case if a frequency is 0 or 1), after the frequency
vector is updated, it is typically restricted to the interval [1∕𝑛, 1 − 1∕𝑛]. That is, if the frequency is less than 1∕𝑛, it is set to 1∕𝑛, and
if it is greater than 1 − 1∕𝑛, it is set to 1 − 1∕𝑛. The extreme values of this interval are referred to as the borders, and the value 1∕𝑛 is
called the margin of the algorithm.

UMDA. Algorithm 1 shows the univariate marginal distribution algorithm (UMDA) [37], which is a well established binary EDA,
both in the empirical [1] and the theoretical [45] domain. In addition to the population size 𝜆 ∈ ℕ≥1 and a fitness function, the
UMDA also utilizes a parameter 𝜇 ∈ [𝜆], called the selection size. In each iteration, the UMDA selects 𝜇 out of the 𝜆 samples that
have the best fitness (breaking ties uniformly at random). Each frequency is then set to the relative frequency of 1s at the respective
position (line 6). Afterwards, the frequencies are restricted to lie within the frequency borders.

4.2. The multi-valued EDA framework

We propose a framework for EDAs for optimizing 𝑟-valued fitness functions. We call the resulting EDAs 𝑟-valued EDAs. Our
framework closely follows the one presented in Section 4.1. That is, an 𝑟-valued EDA starts with a probabilistic model initialized to
represent the uniform distribution, and it then iteratively generates 𝜆 ∈ ℕ≥1 samples independently, based on its model. This model
is then updated and afterwards restricted such that it does not contain the extreme probabilities 0 and 1.

The difference to the framework for binary EDAs lies in how the probabilistic model of 𝑟-valued EDAs is represented and how it
is restricted from containing extreme probabilities.

The probabilistic model. The probabilistic model of an 𝑟-valued EDA is an 𝑛 × 𝑟 matrix (𝑝𝑖,𝑗)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] (the frequency matrix),
where each row 𝑖 ∈ [𝑛] forms a vector 𝑝𝑖 ∶= (𝑝𝑖,𝑗)𝑗∈[0..𝑟−1] (the frequency vector at position 𝑖) of probabilities (the frequencies) that sum
to 1. As in the binary case, samples from 𝑝 are created independently for each position. When creating an individual 𝑥 ∈ [0..𝑟 − 1]𝑛,
then, for all 𝑖 ∈ [𝑛] and all 𝑗 ∈ [𝑟 − 1], the probability that 𝑥𝑖 has value 𝑗 is 𝑝𝑖,𝑗 . Formally, for all 𝑥, 𝑦 ∈ [0..𝑟 − 1]𝑛, it holds that
Pr[𝑥 = 𝑦] =

∏
𝑖∈[𝑛]

∏
𝑗∈[0..𝑟−1](𝑝𝑖,𝑗)1{𝑦𝑖=𝑗}, where we assume that 00 = 1.

The frequency matrix 𝑝 is initialized such that each frequency is 1∕𝑟, representing the uniform distribution. When performing an
update to 𝑝, it is important to make sure that each row sums to 1.

Restricting the probabilistic model. The aim of restricting the frequency matrix 𝑝 is to clamp all frequencies, for some values
𝑎, 𝑏 ∈ [0, 1] (the lower and upper border, respectively) with 𝑎 ≤ 1∕𝑟 ≤ 𝑏, to [𝑎, 𝑏]. That is, if a frequency 𝑞 is less than 𝑎, it should be 𝑎

after the restriction, and if it is greater than 𝑏, it should be 𝑏 afterwards. For such a restriction, it is important for each row 𝑖 ∈ [𝑛] that
the frequency vector 𝑝𝑖 sums to 1 after the restriction. This process is not straightforward. If 𝑞 ∉ [𝑎, 𝑏], and 𝑞 is updated to 𝑞′ ∈ [𝑎, 𝑏],
then this creates a change in probability mass of 𝑞′ − 𝑞. Hence, simply updating 𝑞 to 𝑞′ can result in all frequencies of 𝑝𝑖 summing to
a value other than 1 after the restriction.

We address the problem above as follows. To this end, let 𝑎, 𝑏 ∈ [0, 1] be the lower and upper border, respectively, with 𝑎 ≤
1∕(𝑟 − 1) −1∕(𝑟(𝑟 − 1)) and 𝑏 = 1 − 𝑎(𝑟 −1). Further, let 𝑖 ∈ [𝑛] be a row of the frequency matrix we wish to restrict, let 𝑝𝑖 ∈ [0, 1]𝑛 be
the frequency vector after the update but before the restriction (with ‖𝑝𝑖‖1 = 1), and let 𝑝+

𝑖
∈ [𝑎, 𝑏]𝑛 be the vector 𝑝𝑖 after clamping

it to [𝑎, 𝑏] but before taking care that the frequencies sum to 1. We define the restriction of 𝑝𝑖 to [𝑎, 𝑏], denoted by 𝑝′
𝑖
, to be the vector

where each frequency’s share above 𝑎 is reduced by the surplus of the probability relative to the share above 𝑎. Formally, for all
𝑗 ∈ [0..𝑟 − 1], it holds that

𝑝′
𝑖,𝑗

= (𝑝+
𝑖,𝑗

− 𝑎) 1 − 𝑎𝑟‖𝑝+
𝑖
− (𝑎)𝑘∈[𝑛]‖1 + 𝑎. (1)

Note that 1 − 𝑎𝑟 = ‖𝑝𝑖 − (𝑎)𝑘∈[𝑛]‖1 denotes how much probability mass should be in the frequency vector, above 𝑎. The resulting
frequency vector 𝑝′

𝑖
sums to 1, since∑

𝑗∈[0..𝑟−1]
𝑝′
𝑖,𝑗

= 1 − 𝑎𝑟‖𝑝+
𝑖
− (𝑎)𝑘∈[𝑛]‖1 ∑𝑗∈[0..𝑟−1]

(𝑝+
𝑖,𝑗

− 𝑎) +
∑

𝑗∈[0..𝑟−1]
𝑎

4

= 1 − 𝑎𝑟+ 𝑎𝑟 = 1.

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Algorithm 2: The 𝑟-UMDA with parameters 𝜆 ∈ ℕ≥1 and 𝜇 ∈ [𝜆], maximizing an 𝑟-valued fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← (1
𝑟
)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] ;

3 repeat // iteration 𝑡

4 𝑃 (𝑡) ← population of 𝜆 individuals, independently sampled from 𝑝(𝑡) ;

5 {𝑥(𝑡,𝑘)}𝑘∈[𝜇] ← multiset of 𝜇 individuals from 𝑃 (𝑡) with the highest fitness (breaking ties uniformly at random);

6 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟− 1] do

7 𝑝
(𝑡+1)
𝑖,𝑗

← 1
𝜇

∑
𝑘∈[𝜇] 1{𝑥

(𝑡,𝑘)
𝑖

= 𝑗};

8 𝑝(𝑡+1) ← restriction of 𝑝
(𝑡+1)

to
[

1
(𝑟−1)𝑛

,1 − 1
𝑛

]
, as described in eq. (1);

9 𝑡 ← 𝑡 + 1;

10 until termination criterion met;

Algorithm 3: The 𝑟-PBIL with parameters 𝜆 ∈ ℕ≥1, 𝜇 ∈ [𝜆], and 𝜌 ∈ [0, 1], maximizing an 𝑟-valued fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← (1
𝑟
)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] ;

3 repeat // iteration 𝑡

4 𝑃 (𝑡) ← population of 𝜆 individuals, independently sampled from 𝑝(𝑡) ;

5 {𝑥(𝑡,𝑘)}𝑘∈[𝜇] ← multiset of 𝜇 individuals from 𝑃 (𝑡) with the highest fitness (breaking ties uniformly at random);

6 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟− 1] do

7 𝑝
(𝑡+1)
𝑖,𝑗

← (1 − 𝜌)𝑝(𝑡)
𝑖,𝑗
+ 𝜌

𝜇

∑
𝑘∈[𝜇] 1{𝑥

(𝑡,𝑘)
𝑖

= 𝑗};

8 𝑝(𝑡+1) ← restriction of 𝑝
(𝑡+1)

to
[

1
(𝑟−1)𝑛

,1 − 1
𝑛

]
, as described in eq. (1);

9 𝑡 ← 𝑡 + 1;

10 until termination criterion met;

Further, each frequency is at least 𝑎, since this value is added at the end of eq. (1) and since 𝑝+
𝑖,𝑗

≥ 𝑎 by definition of 𝑝+
𝑖

. Last, since
each frequency is at least 𝑎 after restricting, the largest a frequency can be is 1 − (𝑟 − 1)𝑎 = 𝑏.

In order to disallow the extreme frequencies 0 and 1 but to stay close to the binary case, we propose to choose the upper border
as 1 − 1∕𝑛. Following our ideas above, this implies that the lower border is 1∕((𝑟 − 1)𝑛). This is consistent with the binary case but
generalizes to the 𝑟-valued domain.

We say that an EDA is without margins if and only if the lower border is 0 and the upper border is 1. That is, the restriction of the
frequencies does not take place.

𝑟-UMDA. We generalize the UMDA (Algorithm 1) to the 𝑟-UMDA (Algorithm 2), utilizing our framework. This leads to the same
generalization mentioned by Santana et al. [13]. Like the UMDA, the 𝑟-UMDA has three parameters, namely the population size
𝜆 ∈ ℕ≥1, the selection size 𝜇 ∈ [𝜆], and the 𝑟-valued fitness function 𝑓 . It also updates its frequencies analogously to the UMDA by
choosing 𝜇 best individuals from the population of size 𝜆 and then setting each frequency at position 𝑖 ∈ [𝑛] for value 𝑗 ∈ [0..𝑟 − 1]
to the relative frequency of value 𝑗 at position 𝑖 among the 𝜇 best individuals (line 7). We note that this results in a valid frequency
vector for each row 𝑖 ∈ [𝑛], since∑

𝑗∈[0..𝑟−1]
1
𝜇

∑
𝑘∈[𝜇]

1{𝑥(𝑡,𝑘)
𝑖

= 𝑗} = 1
𝜇

∑
𝑘∈[𝜇]

∑
𝑗∈[0..𝑟−1]

1{𝑥(𝑡,𝑘)
𝑖

= 𝑗} = 1
𝜇

∑
𝑘∈[𝜇]

1 = 1.

𝑟-PBIL. Another popular univariate EDA is population-based incremental learning (PBIL [46]). It operates very similarly to the
UMDA, with the only difference being in how it performs an update. In contrast to the UMDA, the PBIL does not set a frequency
to the relative frequency of respective values at a position but, instead, computes the convex combination of the relative frequency
with the current frequency value in its frequency vector. To this end, it utilizes a parameter 𝜌 ∈ [0, 1], the scaling factor.

We generalize the PBIL to the 𝑟-PBIL (Algorithm 3). Each frequency vector of the 𝑟-PBIL sums to 1 (before the restriction) because
it is a convex combination of the 𝑟-UMDA’s update (which sums to 1) and the current frequency vector (which also sums to 1).

𝑟-cGA. Another popular univariate EDA is the compact genetic algorithm (cGA [47]). The cGA only has a single parameter 𝐾 ∈ℝ>0,
the hypothetical population size, and it creates only two samples each iteration. It ranks these two samples by fitness and then adjusts
each frequency by

1
𝐾

such that the frequency of the value of the better sample is increased and that of the worse sample decreased.

We generalize the cGA to the 𝑟-cGA (Algorithm 4). Each frequency vector of the 𝑟-cGA sums to 1 after the update (before the
restriction) because exactly one entry is increased by

1
𝐾

and exactly one value is decreased by this amount (noting that this can be
the same frequency, in which case no change is made overall).

5. Genetic drift

We prove an upper bound on the effect of genetic drift for 𝑟-valued EDAs (Theorem 3) in a similar fashion as Doerr and Zheng [18]

for binary decision variables. This allows us to determine parameter values for EDAs that avoid the usually unwanted effect of genetic
drift. The main novelty of our result over that by Doerr and Zheng [18] is that we use a slightly technical martingale concentration
5

result due to McDiarmid [19] that allows one to profit from small variances. Such an approach is necessary. If one directly applies

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Algorithm 4: The 𝑟-cGA with parameter 𝐾 ∈ℝ>0, maximizing an 𝑟-valued fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← (1
𝑟
)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] ;

3 repeat // iteration 𝑡

4 𝑥(𝑡,1), 𝑥(𝑡,2) ← two individuals, independently sampled from 𝑝(𝑡) ;

5 𝑦(𝑡,1) ← individual with the higher fitness from {𝑥(𝑡,1) , 𝑥(𝑡,2)} (breaking ties uniformly at random);

6 𝑦(𝑡,2) ← individual from {𝑥(𝑡,1) , 𝑥(𝑡,2)} ⧵ {𝑦(𝑡,1)};

7 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟− 1] do

8 𝑝
(𝑡+1)
𝑖,𝑗

← 𝑝
(𝑡)
𝑖,𝑗
+
(
1{𝑦(𝑡,1)

𝑖,𝑗
= 𝑗} − 1{𝑦(𝑡,2)

𝑖,𝑗
= 𝑗}

) 1
𝐾

;

9 𝑝(𝑡+1) ← restriction of 𝑝
(𝑡+1)

to
[

1
(𝑟−1)𝑛

,1 − 1
𝑛

]
, as described in eq. (1);

10 𝑡 ← 𝑡 + 1;

11 until termination criterion met;

the methods presented by Doerr and Zheng [18], one obtains estimates for the genetic drift times that are by a factor of Θ(𝑟) lower
than ours (that is, the genetic-drift effect appears 𝑟 times stronger).

In Sections 5.1 and 5.2, we first present a general introduction to the phenomenon of genetic drift. In Section 5.3, we then prove
a concentration result on neutral positions (Theorem 3). Last, in Section 5.4, we consider the setting of weak preference.

5.1. Introduction to genetic drift

In EDAs, genetic drift means that a frequency reaches the extreme values 0 or 1 due to random fluctuations from the stochasticity
of the process and in the absence of a clear signal from the objective function.

While there is no proof that genetic drift is always problematic, the general opinion is that this effect should better be avoided.
This is supported by the following observations and results: (i) When genetic drift is strong, many frequencies (in the binary case)
approach the extreme values 0 and 1 and, consequently, the behavior of the EDA comes close to the one of a mutation-based EA, so
the advantages of an EDA might be lost. (ii) The vast majority of the runtime results for EDAs, especially those for harder scenarios
like noise [2] or multimodality [5], have only been shown in regimes with low genetic drift. (iii) For some particular situations,
a drastic performance decrease from genetic drift was proven. For example, the UMDA with standard selection pressure but small
population size 𝜆 ∈ Ω(ln(𝑛)) ∩ 𝑜(𝑛) has a runtime exponential in 𝜆 on the DECEPTIVELEADINGBLOCKS problem [16]. In contrast,
when the population size is large enough to prevent genetic drift, here 𝜆 = Ω(𝑛 ln(𝑛)), then the runtime drops to 𝑂(𝜆𝑛) with high
probability.

Genetic drift in EDAs has been studied since the ground-breaking works of Shapiro [48–50], and it appears in many runtime
analyses such as [8,51–55]. Experimental evidences for the negative impact of genetic drift can further be found in [18,32,56]. The
most final answer to the genetic-drift problem for univariate EDAs, including clear suggestions to choose the parameters as to avoid
genetic drift, was given by Doerr and Zheng [18]. In the case of the UMDA (and binary decision variables, that is, the classic model),
their work shows that a neutral frequency (defined in Section 5.2) stays with high probability in the middle range [0.25, 0.75] for
the first 𝑇 iterations if 𝜇 = 𝜔(𝑇). This bound is tight. When regarding 𝑛 frequencies together, a value of 𝜇 =Ω(𝑇 ln(𝑛)) with implicit
constant computable from [18, Theorem 2] ensures with high probability that all frequencies stay in the middle range for at least
𝑇 iterations. Hence these bounds give a clear indication how to choose the selection size 𝜇 when aiming to run the UMDA for a
given number of iterations. We note that the quantification of genetic drift can also be used to design automated ways to choose
parameters, see the work by Zheng and Doerr [57], when no a-priori estimate on 𝑇 is available.

Given the importance of a good understanding of genetic drift, we now analyze genetic drift for multi-valued EDAs, more specifi-

cally, for the 𝑟-UMDA. We are optimistic that, analogous to the work by Doerr and Zheng [18], very similar arguments can be applied
for other main univariate EDAs.

5.2. Martingale property of neutral positions

Genetic drift is usually studied via neutral positions of a fitness function. Let 𝑓 be an 𝑟-valued fitness function. We call a position
𝑖 ∈ [𝑛] (as well as, for an individual 𝑥 ∈ [0..𝑟 − 1]𝑛, its corresponding variable 𝑥𝑖 and the associated frequencies of an EDA) neutral
(w.r.t. 𝑓) if and only if, for all 𝑥 ∈ [0..𝑟 − 1]𝑛, the value 𝑥𝑖 has no influence on the value of 𝑓 , that is, if and only if for all individuals
𝑥, 𝑥′ ∈ [0..𝑟− 1]𝑛 such that for all 𝑗 ∈ [𝑛] ⧵ {𝑖} it holds that 𝑥𝑗 = 𝑥′

𝑗
, we have 𝑓 (𝑥) = 𝑓 (𝑥′).

An important property of neutral variables that we capitalize on in our analysis of genetic drift is that their frequencies in typical
EDAs without margins form martingales [18]. This observation extends the corresponding one for EDAs for binary representations.
We make this statement precise for the 𝑟-UMDA.

Lemma 1. Let 𝑓 be an 𝑟-valued fitness function, and let 𝑖 ∈ [𝑛] be a neutral position of 𝑓 . Consider the 𝑟-UMDA without margins optimiz-
ing 𝑓 . For each 𝑗 ∈ [0..𝑟− 1], the frequencies (𝑝(𝑡)

𝑖,𝑗
)𝑡∈ℕ are a martingale.

Proof. Let 𝑗 ∈ [0..𝑟 − 1]. Since the algorithm has no margins, in each iteration 𝑡 ∈ ℕ, no restriction takes place, so it holds that
6

𝑝
(𝑡+1)
𝑖,𝑗

= 1
𝜇

∑
𝑘∈[𝜇] 1{𝑥

(𝑡,𝑘)
𝑖

= 𝑗}. Since 𝑖 is neutral, the selection of the 𝜇 best individuals is not affected by the values at position 𝑖 of

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

the 𝜆 samples. Consequently, for each 𝑘 ∈ [𝜇], the value 𝑥
(𝑡,𝑘)
𝑖

follows a Bernoulli distribution with success probability 𝑝(𝑡)
𝑖,𝑗

. Hence,
E[1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ∣ 𝑝(𝑡)

𝑖,𝑗
] = 𝑝

(𝑡)
𝑖,𝑗

. Further, by linearity of expectation, we get

E

[
𝑝
(𝑡+1)
𝑖,𝑗

∣ 𝑝(𝑡)
𝑖,𝑗

]
= 1
𝜇

∑
𝑘∈[𝜇]

E

[
1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ||| 𝑝(𝑡)𝑖,𝑗] = 1

𝜇

∑
𝑘∈[𝜇]

𝑝
(𝑡)
𝑖,𝑗

= 𝑝
(𝑡)
𝑖,𝑗
,

proving the claim. □

As in previous works on genetic drift, the martingale property of neutral frequencies allows to use strong martingale concentration
results. Since in our setting the frequencies start at a value of 1

𝑟
, we can only tolerate smaller deviations from this value, namely up to

1
2𝑟 in either direction. With the methods of Doerr and Zheng [18], this reduces the genetic drift by a factor of Θ(𝑟2). We therefore use
a stronger martingale concentration result, namely [19, Theorem 3.15], which allows to exploit the lower sampling variance present
at frequencies in Θ(1

𝑟
). We note that we adjust the theorem by incorporating comments by McDiarmid, especially [19, eq. (41)],

mentioning that the absolute value in eq. (41) should be around the sum, not around the maximum, as also observed by Doerr and
Zheng [18].

Theorem 2 (Martingale concentration result based on the variance [19, Theorem 3.15 and eq. (41)]). Let (𝑋𝑡)𝑡∈ℕ be a martingale with
respect to a filtration (𝑡)𝑡∈ℕ. Further, for all 𝑡 ∈ ℕ≥1, denote the deviation by dev𝑡 ∶= |𝑋𝑡 −𝑋𝑡−1|. In addition, let 𝑏 = sup𝑡∈ℕ dev𝑡, and
assume that 𝑏 is finite. Last, for all 𝑡 ∈ ℕ, let 𝑣̂𝑡 = sup

∑
𝑠∈[𝑡] Var[𝑋𝑠 −𝑋𝑠−1 ∣ 𝑠−1]. Then for all 𝑡 ∈ ℕ and all 𝜀 ∈ℝ≥0, it holds that

Pr
[
max𝑠∈[0..𝑡] |𝑋𝑠 −E

[
𝑋0
] | ≥ 𝜀

]
≤ 2exp

(
− 𝜀2

2𝑣̂𝑡 + 2𝑏𝜀∕3

)
.

5.3. Upper bound on the genetic-drift effect of a neutral position

By utilizing Theorem 2, we show for how long the frequencies of the 𝑟-UMDA at neutral positions stay concentrated around their
initial value of

1
𝑟
.

Theorem 3. Let 𝑓 be an 𝑟-valued fitness function, and let 𝑖 ∈ [𝑛] be a neutral position of 𝑓 . Consider the 𝑟-UMDA optimizing 𝑓 . Let 𝑇 ∈ℕ
and 𝑗 ∈ [0..𝑟 − 1]. Then

Pr
[
max𝑠∈[0..𝑇]

||||𝑝(𝑠)𝑖,𝑗 − 1
𝑟

|||| ≥ 1
2𝑟

]
≤ 2exp

(
− 𝜇

12𝑇 𝑟+ (4∕3)𝑟

)
.

Proof. We apply the same proof strategy as in the proof of [18, Theorem 1]. That is, we aim to apply Theorem 2. Naturally, one
would apply the theorem to the sequence of frequencies (𝑝(𝑡)

𝑖,𝑗
)𝑡∈ℕ. However, since the deviation of 𝑝𝑖,𝑗 is very large, namely 1, we

consider instead a more fine-grained process (𝑍𝑡)𝑡∈ℕ, which, roughly speaking, splits each iteration of the 𝑟-UMDA into 𝜇 sections,
each of which denotes that an additional sample is added to the update. Formally, for all 𝑡 ∈ ℕ and 𝑎 ∈ [0..𝜇 − 1], let

𝑍𝑡𝜇+𝑎 = 𝑝
(𝑡)
𝑖,𝑗
(𝜇 − 𝑎) +

∑
𝑘∈[𝑎]

1{𝑥(𝑡+1,𝑘)
𝑖

= 𝑗}.

Note that, for all 𝑡 ∈ ℕ≥1, it holds that 𝑍𝑡𝜇 = 𝜇𝑝
(𝑡)
𝑖,𝑗

. Thus, the natural filtration (𝑡)𝑡∈ℕ of 𝑍 allows us to measure 𝑝𝑖,𝑗 .

In order to apply Theorem 2, we check that its assumptions are met. To this end, we first show that 𝑍 is a martingale. Since 𝑖 is
neutral, the selection of the 𝜇 best individuals is not affected by the values at position 𝑖 of the 𝜆 samples. Consequently, for all 𝑘 ∈ [𝜇],
the random variable 𝑥(𝑡,𝑘)

𝑖
follows a Bernoulli distribution with success probability 𝑝

(𝑡)
𝑖,𝑗

. Thus, we get for all 𝑡 ∈ ℕ and 𝑎 ∈ [0..𝜇 − 2]
that

E
[
𝑍𝑡𝜇+𝑎+1 −𝑍𝑡𝜇+𝑎 ∣ 𝑡𝜇+𝑎

]
= −𝑝(𝑡)

𝑖,𝑗
+E[1{𝑥(𝑡,𝑎+1)

𝑖
= 𝑗} ∣ 𝑡𝜇+𝑎] = 0, (2)

and further, by the definition of 𝑝(𝑡+1)
𝑖,𝑗

, that

E
[
𝑍(𝑡+1)𝜇 −𝑍𝑡𝜇+𝜇−1 ∣ 𝑡𝜇+𝜇−1

]
= 𝜇E[𝑝(𝑡+1)

𝑖,𝑗
∣ 𝑡𝜇+𝜇−1] − 𝑝

(𝑡)
𝑖,𝑗

−E
[∑

𝑘∈[𝜇−1]
1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ||| 𝑡𝜇+𝜇−1

]
=
∑

𝑘∈[𝜇]
E[1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ∣ 𝑡𝜇+𝜇−1] − 𝑝

(𝑡)
𝑖,𝑗

−
∑

𝑘∈[𝜇−1]
E[1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ∣ 𝑡𝜇+𝜇−1]

=E[1{𝑥(𝑡,𝜇)
𝑖

= 𝑗} ∣ 𝑡𝜇+𝜇−1] − 𝑝
(𝑡)
𝑖,𝑗

= 0, (3)

showing that 𝑍 is a martingale.

We take an alternative view of the event {max𝑠∈[0..𝑇] |𝑝(𝑠)𝑖,𝑗 − 1
𝑟
| ≥ 1

2𝑟}, whose probability we aim to bound. Note that this event
7

is equivalent to {∃𝑠 ∈ [0..𝑇]∶ |𝑝(𝑠)
𝑖,𝑗

− 1
𝑟
| ≥ 1

2𝑟}. A superset of this event is the event where we stop at the first iteration such that the

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

inequality holds. To this end, let 𝑆 = inf{𝑡 ∈ℕ ∣𝑍𝑡 ∉ [𝜇2𝑟 ,
3𝜇
2𝑟]} be a stopping time (with respect to ). From now on, we consider the

stopped process 𝑍 of 𝑍 with respect to 𝑆 . That is, for all 𝑡 ∈ ℕ, it holds that 𝑍𝑡 =𝑍min{𝑡,𝑆}. Since 𝑍 is a martingale, so is 𝑍 .

Let 𝑡 ∈ ℕ, and let 𝑌𝑡 be a Bernoulli random variable with success probability 𝑝
(⌊𝑡∕𝜇⌋)
𝑖,𝑗

that is 𝑡-measurable. Note that by eqs. (2)

and (3), disregarding the expected values, it holds that

𝑍𝑡+1 −𝑍𝑡 = (𝑌𝑡 − 𝑝
(⌊𝑡∕𝜇⌋)
𝑖,𝑗

) ⋅ 1{𝑡 < 𝑆}.

Thus, the maximum deviation 𝑏 of 𝑍 is 1. Further, let 𝑣̂𝑡 denote the sum of variances, as defined in Theorem 2. Then, since 𝑝
(⌊𝑡∕𝜇⌋)
𝑖,𝑗

and 1{𝑡 < 𝑆} are 𝑡-measurable and since, due to 𝑍 being stopped, it holds that 𝑝(⌊𝑡∕𝜇⌋)
𝑖,𝑗

⋅ 1{𝑡 < 𝑆} ∈ [1
2𝑟 ,

3
2𝑟], we get

Var
[
𝑍𝑡+1 −𝑍𝑡 ∣ 𝑡

]
=Var

[
𝑌𝑡 ⋅ 1{𝑡 < 𝑆} ∣ 𝑡

]
= 𝑝

(⌊𝑡∕𝜇⌋)
𝑖,𝑗

(
1 − 𝑝

(⌊𝑡∕𝜇⌋)
𝑖,𝑗

)
⋅ 1{𝑡 < 𝑆} ≤ 3

2𝑟
.

Hence, 𝑣̂𝑡 ≤
3𝑡
2𝑟 .

Let 𝑝 denote the stopped process of 𝑝𝑖,𝑗 with respect to 𝑆 . Applying Theorem 2 with 𝑡 = 𝜇𝑇 and our estimates above, noting that
𝑍0 =

𝜇

𝑟
, yields

Pr
[
max

𝑠∈[0..𝑇]

||||𝑝𝑠 − 1
𝑟

|||| ≥ 1
2𝑟

]
= Pr

[
max

𝑠∈[0..𝑇]
|𝑝𝑠 −E[𝑝0]| ≥ 1

2𝑟

]
= Pr

[
max

𝑠∈[0..𝑇]
1
𝜇
|𝑍𝑠𝜇 −E[𝑍0]| ≥ 1

2𝑟

]
≤ Pr

[
max
𝑠∈[0..𝑡]

|𝑍𝑠 −E[𝑍0]| ≥ 𝜇

2𝑟

]
≤ 2exp

(
−

(𝜇∕(2𝑟))2

2 ⋅ 3𝜇𝑇 ∕(2𝑟) + (2∕3)𝜇∕(2𝑟)

)
= 2exp

(
− 𝜇

12𝑇 𝑟+ (4∕3)𝑟

)
.

Since we only need to consider the stopped process, as explained above, and since 𝑝 is identical to 𝑝𝑖,𝑗 until the process stops, the
result follows. □

5.4. Upper bound for positions with weak preference

A position is rarely neutral for a given fitness function. However, we prove that the results on neutral positions translate to
positions where one value is better than all other values. This is referred to as weak preference. Formally, we say that an 𝑟-valued
fitness function 𝑓 has a weak preference for a value 𝑗 ∈ [0..𝑟− 1] at a position 𝑖 ∈ [𝑛] if and only if, for all 𝑥1, ..., 𝑥𝑛 ∈ [0..𝑟− 1], it holds
that

𝑓
(
𝑥1, .., 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑛

)
≤ 𝑓

(
𝑥1, .., 𝑥𝑖−1, 𝑗, 𝑥𝑖+1, ..., 𝑥𝑛

)
.

We now adapt Lemma 7 by Doerr and Zheng [18] to the 𝑟-UMDA.

Theorem 4. Consider two r-valued fitness functions 𝑓, 𝑔 to optimize using the 𝑟-UMDA, such that without loss of generality, the first position
of f weakly prefers 0 and the first position of g is neutral.

Let 𝑝 correspond to the frequency matrix of 𝑓 and 𝑞 to the frequency matrix of 𝑔, both defined by the 𝑟-UMDA. Then, for all 𝑡 ∈ ℕ, it
holds that 𝑞(𝑡)1,0 ⪯ 𝑝

(𝑡)
1,0.

Proof. We prove our claim by induction on the number of iterations 𝑡. For the base case 𝑡 = 0, all frequencies are 1∕𝑟. Hence,
𝑞
(0)
1,0 ⪯ 𝑝

(0)
1,0.

For the induction step, let 𝑡 ∈ ℕ≥1 and let 𝑗 ∈ [0..𝑟− 1]. Further, let 𝑌𝑗 ∼ Bin
(
𝜇, 𝑞

(𝑡)
0,𝑗

)
. Since 0 is a neutral position of 𝑔, the

selection of the 𝜇 best individuals is not affected by the values at position 0 of the 𝜆 samples. Thus, 𝑞(𝑡+1)1,𝑗 = 1
𝜇
𝑌 . Further, since 𝑓

weakly prefers 0s, defining 𝑌 ′
𝑗
∼ Bin

(
𝜇, 𝑝

(𝑡)
0,𝑗

)
, it holds that 𝑝𝑡+11,𝑗 ≳

1
𝜇
𝑌 ′.

Analogously to Doerr and Zheng [18], we note that since 𝑝(𝑡)1,0 stochastically dominates 𝑞(𝑡)1,0 by induction hypothesis, there exists
a coupling of the two probability spaces that describe the states of the two algorithms at iteration 𝑡 in such a way that 𝑝(𝑡)1,0 ≥ 𝑞

(𝑡)
1,0 for

any point 𝜔 in the coupling probability space. For such an 𝜔, it then follows that 𝑌𝑗 ⪯ 𝑌 ′
𝑗
, as the success probability of the former is

bounded from above by that of the latter. Hence, 𝑞(𝑡+1)1,𝑗 = 1
𝜇
𝑌 ⪯ 1

𝜇
𝑌 ′ ⪯ 𝑝

(𝑡+1)
1,𝑗 , which proves the claim. □

We now apply Theorem 4 and extend Theorem 3 to positions with weak preference.

Theorem 5. Let 𝑓 be an 𝑟-valued fitness function with a weak preference for 0 at position 𝑖 ∈ [𝑛]. Consider the 𝑟-UMDA optimizing 𝑓 . Let
𝑇 ∈ℕ. Then[

(𝑠) 1] (
𝜇

)

8

Pr min𝑠∈[0..𝑇] 𝑝𝑖,0 ≤ 2𝑟
≤ 2exp −

12𝑇 𝑟+ (4∕3)𝑟
. (4)

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Proof. Let 𝑔 be an 𝑟-valued fitness function with neutral position 𝑖. Let 𝑞 be the frequency matrix of the 𝑟-UMDA optimizing 𝑔. By
Theorem 4, it follows for all 𝑠 ∈ ℕ that 𝑝(𝑠)

𝑖,0 stochastically dominates 𝑞(𝑠)
𝑖,0 . Applying Theorem 3 to 𝑔 for position 𝑖, we have

Pr
[
min𝑠∈[0..𝑇] 𝑞

(𝑠)
𝑖,0 ≤

1
2𝑟

]
≤ 2exp

(
− 𝜇

12𝑇 𝑟+ (4∕3)𝑟

)
.

Using the stochastic domination yields the tail bound for 𝑓 . □

6. Runtime analysis of the 𝒓-UMDA

We analyze the runtime of the 𝑟-UMDA (Algorithm 2) on an 𝑟-valued variant of LEADINGONES. We start by describing the previous
runtime results of EDAs on LEADINGONES (Section 6.1), then define the 𝑟-LEADINGONES problem formally (Section 6.2), and finally
state and prove our main result (Theorem 6, Section 6.3).

6.1. Previous runtime analyses of EDAs on LEADINGONES

In contrast to ONEMAX (another popular theory benchmark function), LEADINGONES is not that extensively studied for EDAs.
This is surprising, as LEADINGONES is interesting as a benchmark for univariate EDAs, since the function introduces dependencies
among the different positions of a bit string, but the model of univariate EDAs assumes independence. However, since LEADINGONES

only has a single local maximum, known runtime results are rather fast.

In a first mathematical runtime analysis of an EDA, however, using the unproven no-error-assumption (which essentially states
that there is no genetic drift), it was shown that the UMDA optimizes the LEADINGONES benchmark in expected time 𝑂(𝜆𝑛). This was
made rigorous by Chen et al. [27] with a proof that the UMDA with population size Ω(𝑛2+𝜀) optimizes LEADINGONES in time 𝑂(𝜆𝑛)
with high probability. Here the relatively large required population stems from the, then, incomplete understanding of genetic drift.

In a remarkable work [28], Dang and Lehre prove a runtime of 𝑂(𝑛𝜆 ln(𝜆) + 𝑛2), only assuming that the sample size 𝜆 is at least
logarithmic. Hence this result applies both to regimes without and with genetic drift. In the regime with genetic drift, however, the
dependence on 𝜆 is slightly worse than in the result by Chen et al. [27]. This was improved by Doerr and Krejca [20], where an
𝑂(𝑛𝜆 ln(𝜆)) upper bound was shown for the whole regime 𝜆 =Ω(𝑛 ln(𝑛)) of low genetic drift. More precisely, when 𝜇 =Ω(𝑛 ln(𝑛)) and
𝜆 = Ω(𝜇), both with sufficiently large implicit constants, then the runtime of the UMDA on LEADINGONES is 𝑂(𝑛𝜆 ln(𝜆

𝜇
)) with high

probability. We note that the analysis by Doerr and Krejca [20] is technically much simpler than the previous ones, in particular, it
avoids the complicated level-based method used by Dang and Lehre [28]. We note that also lower bounds [3,20] and runtimes in the
presence of noise have been regarded. Since we have no such results, we refer to the original works.

Besides the UMDA, LEADINGONES was considered in the analysis of newly introduced univariate EDAs. Interestingly, each of these
algorithms optimizes LEADINGONES in 𝑂(𝑛 ln(𝑛)) with high probability. This runtime is faster by a factor of 𝑛∕ ln(𝑛) when compared
to classical EAs, and it suggests that LEADINGONES is a rather easy problem for EDAs. Friedrich, Kötzing, and Krejca [29] proved
the first of these results for their stable compact genetic algorithm (scGA), which introduces an artificial bias into its update process
that is overcome by the LEADINGONES function. However, it was later proven that the scGA fails on the typically easy ONEMAX

function [58], highlighting that the scGA is not a good EDA in general.

The next result was proven by Doerr and Krejca [58], who introduce the significance-based compact genetic algorithm (sig-cGA).
The sig-cGA saves a history of good individuals and only updates a frequency when the number of bits in the history of that position
significantly deviates from its expectation. This algorithm also performs well on ONEMAX, i.e., exhibits an 𝑂(𝑛 ln(𝑛)) expected
runtime.

The last result was proven recently by Ajimakin and Devi [59], who introduce the competing genes evolutionary algorithm (cgEA).
The cgEA utilizes the Gauss–Southwell score as a quality metric for the positions of its samples. Iteratively, it picks the position 𝑖

with the best score and creates a new population by letting each individual of the previous population compete against a copy of it
where the bit at position 𝑖 is flipped. Based on the best individuals created this way, the frequency at position 𝑖 is immediately set to
either 0 or 1, whichever value turns out to be better. This approach works very well for a variety of theory benchmarks, as proven
by the authors. For example, for optimal parameter values, it exhibits a (deterministic) linear runtime on ONEMAX, and it optimizes
the JUMP𝑘 benchmark with high probability in 𝑂(4𝑘𝑛 ln(𝑛)) time.

6.2. The 𝑟-LEADINGONES benchmark

The 𝑟-LEADINGONES function (eq. (5)) is a generalization of the classical LEADINGONES benchmark [60] from the binary to the
multi-valued domain. Before we define the generalization, we briefly present the LEADINGONES function.

LEADINGONES. LEADINGONES [60] is one of the most commonly mathematically analyzed benchmark functions, both in the
general domain of evolutionary computation [45] as well as in the domain of EDAs [32]. For a bit string of length 𝑛 ∈ ℕ≥1, it
returns the number of consecutive 1s, starting from the leftmost position. Formally, LEADINGONES∶ {0, 1}𝑛 → [0..𝑛] is defined as
𝑥 ↦

∑
𝑖∈[𝑛]

∏
𝑗∈[𝑖] 𝑥𝑖. The function has a single local maximum at the all-1s string, which is also its global maximum.

𝑟-LEADINGONES. Inspired by LEADINGONES from the binary domain, we define 𝑟-LEADINGONES∶ [0..𝑟 − 1]𝑛 → [0..𝑛] as the func-
9

tion that returns the number of consecutive 0s, starting from the leftmost position. Formally,

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

𝑟-LEADINGONES∶ 𝑥↦
∑

𝑖∈[𝑛]

∏
𝑗∈[𝑖]

1{𝑥𝑗 = 0}. (5)

In contrast to the binary case, the single local optimum of 𝑟-LEADINGONES is the all-0s string, which is also its global optimum.

6.3. Runtime results

We analyze the runtime of the 𝑟-UMDA (Algorithm 2) on the 𝑟-LEADINGONES benchmark (eq. (5)) in the regime with low genetic
drift. For the upper bound (Theorem 6), compared to the binary case [20, Theorem 5], we get an extra factor of order 𝑟 ln(𝑟)2 in the
runtime. The factor of 𝑟 is a result of the increased waiting time to see a certain position out of 𝑟. The factor of ln(𝑟)2 stems from
the choice to stay in the regime with low genetic drift as well as for the time it takes a frequency to get to the upper border. For the
lower bound, (Theorem 10), compared to the binary case [20, Theorem 6], we get an extra factor of order 𝑟 ln(𝑟).

Our two bounds differ by a factor in the order of ln(𝑟) (for polynomial population sizes). We believe that our lower bound is
missing a factor of ln(𝑟), as we currently do not account for the time it takes a frequency to get from its starting value

1
𝑟

to 1 − 1
𝑛

for
this bound.

We prove the upper bound in Section 6.3.1 and the lower bound in Section 6.3.2. Both bounds are a generalization of the binary
case.

6.3.1. Upper bound
Our upper bound shows that the number of iterations until an optimum is found for the first time is almost linear in 𝜆 and in 𝑛,

only adding a factor in the order of ln(𝑟).

Theorem 6. Let 𝑠 ∈ℝ≥1. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 3𝑠𝑒𝜇, 𝜇 ≥ 24(𝑛 + 1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟)), and 𝑛 ≥ 4𝑟.
Then with a probability of at least 1 − 2

𝑛
− ln2𝑠(2𝑟)𝑛2−0.5𝑛 =∶ 𝑝succ, the frequency vector corresponding to the value 0 is set to (1 − 1

𝑛
)𝑖∈[𝑛] in

𝑛 ln2𝑠(2𝑟) iterations.
Hence, after 𝜆

(
𝑛 ln2𝑠(2𝑟) +1

)
fitness function evaluations, the 𝑟-UMDA samples the optimum with probability at least 𝑝succ

(
1 −exp(− 𝜆

2𝑒)
)
.

The basic premise for our proof is that for the entirety of the considered iterations, frequencies corresponding to the value 0
remain above a given threshold since 𝑟-LEADINGONES weakly prefers 0 at all positions. We define this threshold as 1

2𝑟 , and we show
that in a sequential manner, position by position, the frequencies corresponding to 0 are brought to 1 − 1

𝑛
within a given number of

iterations until all positions are covered.

First, we provide a guarantee on the concentration of all the probabilities during the entirety of the algorithm’s runtime, in a way
to avoid genetic drift and to remain above a minimal threshold for all frequencies.

Lemma 7. Let 𝑠 ∈ℝ≥1. Consider the 𝑟-UMDA with 𝜆 ≥ 𝜇 ≥ 24(𝑛 +1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟)) optimizing a function that weakly prefers 0 at every
position. Then with a probability of at least 1 − 2

𝑛
, for each 𝑖 ∈ [𝑛], the frequency 𝑝(𝑡)

𝑖,0 remains above 1
2𝑟 for the first 𝑛(1 + ln2𝑠(𝑟)) iterations.

Proof. By Theorem 5 with 𝑇 = 𝑛(1 + ln2𝑠(𝑟)), we have for all 𝑖 ∈ [𝑛] that

Pr
[

min
𝑘=1,...,𝑇

𝑝
(𝑘)
𝑖,0 ≤

1
2𝑟

]
≤ 2exp

⎛⎜⎜⎝−
𝜇

12𝑛(1 + ln2𝑠(𝑟))𝑟+
4𝑟
3

⎞⎟⎟⎠ .
Since 𝜇 ≥ 24(𝑛 + 1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟)), we get

Pr
[

min
𝑘=1,...,𝑇

𝑝
(𝑘)
𝑖,0 ≤

1
2𝑟

]
≤ 2exp

⎛⎜⎜⎝−
24(𝑛+ 1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟))

12𝑛(1 + ln2𝑠(𝑟))𝑟+
4𝑟
3

⎞⎟⎟⎠
≤ 2exp

(
−
24(𝑛+ 1) ln(𝑛)(1 + ln2𝑠(𝑟))

12(𝑛+ 1)(1 + ln2𝑠(𝑟))

)
≤ 2exp (−2 ln(𝑛)) .

Hence, it follows that

Pr
[
min𝑘=1,...,𝑇 𝑝

(𝑘)
𝑖,0 ≤

1
2𝑟

]
≤

2
𝑛2
.

Applying a union bound over all 𝑛 positions yields the result. □

In the proof of our next result, we apply the following Chernoff bound. We apply it in order to quantify the number of iterations
10

necessary to converge every position 𝑖 ∈ [𝑛].

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Theorem 8 (Chernoff bound [61, Theorem 1.10.5]). Let 𝑘 ∈ ℕ≥1, 𝛿 ∈ [0,1], and let 𝑋 be the sum of 𝑘 independent random variables each
taking values in [0,1]. Then

Pr [𝑋 ≤ (1 − 𝛿) E [𝑋]] ≤ exp
(
− 𝛿2E [𝑋]

2

)
.

An important concept for our analysis, following the approach by Doerr and Krejca [20], is that a position is critical. Informally, a
position is critical if and only if the frequencies for all smaller positions corresponding to value 0 are at the upper border. Our runtime
proof relies on showing that the 𝑟-UMDA quickly increases the frequency of a critical position to the upper border, thus making the
next position critical. Formally, let 𝑡 ∈ ℕ. We call a position 𝑖 ∈ [𝑛] critical for the 𝑟-UMDA on 𝑟-LEADINGONES in iteration 𝑡, if and
only if for all 𝑘 ∈ [𝑖 − 1], it holds that 𝑝(𝑡)

𝑘,0 = 1 − 1
𝑛
, and that 𝑝(𝑡)

𝑖,0 < 1 − 1
𝑛
.

We now show that once a position 𝑖 ∈ [𝑛] becomes critical, with high probability, with 𝑠 ∈ ℝ≥1 being an appropriate value
separating 𝜆 from 𝜇 (that is, defining the selection pressure), it takes less than 𝑛 ln2𝑠(𝑟 + 1) iterations to bring the frequency of the
value 0 to the upper border 1 − 1

𝑛
. We also prove that it remains there for a sufficient number of iterations until the convergence of

the frequency matrix.

Lemma 9. Let 𝑠, 𝑢 ∈ℝ≥1. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 3𝑠𝑒𝜇 and 𝜇 ∈ ℕ≥1. Consider an iteration 𝑡 ∈ℕ such
that position 𝑖 ∈ [𝑛] is critical, and let 𝑏 ∈ℝ>0 such that 𝑝(𝑡)

𝑖,0 ≥ 𝑏 ≥ 2
𝑛
. Then with a probability of at least 1 − 𝑢 ln2𝑠(

1
𝑏
) exp

(
− 𝑠𝜇𝑏

24

)
, it holds

for all 𝜃 ∈
[
ln2𝑠(

1
𝑏
)..𝑢 ln2𝑠(

1
𝑏
)
]

that 𝑝(𝑡+𝜃)
𝑖,0 = 1 − 1

𝑛
.

Proof. We start by proving that, for all 𝜃 ∈ [0..𝑢 ln2𝑠(
1
𝑏
)], the frequency 𝑝(𝑡+𝜃)

𝑖,0 multiplies by at least 2𝑠 during an update, with high

probability (and is then restricted). To this end, let 𝑡′ ∈ [𝑡..𝑡 + 𝜃], and assume that 𝑝(𝑡
′)

𝑖,0 ≥ 𝑏, and that position 𝑖 or a position greater
than 𝑖 is critical (where we assume, for convenience, that if all frequencies for value 0 are 1 − 1

𝑛
, then position 𝑛 + 1 is critical).

Furthermore, let 𝑋 denote the number of sampled individuals in iteration 𝑡′ that have at least 𝑖 leading 0s. Note that 𝑝(𝑡)
𝑖,0 ≥ 𝑏 by

assumption as well as that 𝑖 is critical in iteration 𝑡. We discuss later via induction why these assumptions also hold for iteration 𝑡′.
We consider the process of sampling a single individual. Since position at least 𝑖 is critical, by definition, for all 𝑘 ∈ [𝑖 − 1], we

have 𝑝(𝑡
′)

𝑘,0 = 1 − 1
𝑛
. Hence, the probability that all these positions are sampled as 0 for this individual is (1 − 1

𝑛
)𝑖−1 ≥ (1 − 1

𝑛
)𝑛−1 ≥ 1

𝑒
.

This yields E [𝑋] ≥
𝜆𝑝

(𝑡′)
𝑖,0
𝑒

, and since 𝜆 ≥ 3𝑠𝑒𝜇, this yields E [𝑋] ≥ 3𝑠𝜇𝑝(𝑡
′)

𝑖,0 .

By the Chernoff bound (Theorem 8) and by the assumption 𝑝(𝑡
′)

𝑖,0 ≥ 𝑏, we get

Pr
[
𝑋 ≤

5
2
𝑠𝜇𝑝

(𝑡′)
𝑖,0

]
≤ Pr

[
𝑋 ≤

5
6
E [𝑋]

]
≤ exp

(
−E [𝑋]

72

)
≤ exp

(
−
𝑠𝜇𝑝

(𝑡′)
𝑖,0

24

)
≤ exp

(
− 𝑠𝜇𝑏

24

)
.

We consider 𝑝(𝑡
′+1)

𝑖,0 as defined in Section 4.2, which is the updated frequency before being restricted to
[1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
. Since

𝑝
(𝑡′+1)
𝑖,0 ≥min(𝑋

𝜇
, 1) by the definition of the update of the 𝑟-UMDA, we have

Pr
[
𝑝
(𝑡′+1)
𝑖,0 ≤min

(5
2
𝑠𝑝

(𝑡′)
𝑖,0 ,1

)]
≤ Pr

[
𝑋 ≤

5
2
𝑠𝜇𝑝

(𝑡′)
𝑖,0

]
≤ exp

(
− 𝑠𝜇𝑏

24

)
.

In order to update 𝑝
(𝑡′)
𝑖,0 , the frequency vector 𝑝

(𝑡′+1)
𝑖

is restricted to the interval
[1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
, which entails that the updated

frequency 𝑝
(𝑡′+1)
𝑖,0 may reduce when compared to 𝑝

(𝑡′+1)
𝑖,0 . However, since the restriction adds at most the lower border (that is, 1

(𝑟−1)𝑛)

to a frequency, any restriction rule adds at most a probability mass of
1
𝑛

to the frequency vector. We assume pessimistically that, in

order for the frequencies to sum to 1, this mass is entirely subtracted from 𝑝
(𝑡′+1)
𝑖,0 during the restriction (noting that this does not

take place once 𝑝(𝑡
′+1)

𝑖,0 ≥ 1 − 1
𝑛
, as this means that it is set to the upper border instead). Further, the assumption 𝑝(𝑡

′)
𝑖,0 ≥ 𝑏 ≥ 2

𝑛
yields

that 52 𝑠𝑝
(𝑡′)
𝑖,0 − 1

𝑛
≥ 2𝑠𝑝(𝑡

′)
𝑖,0 . Hence, we get that

Pr
[
𝑝
(𝑡′+1)
𝑖,0 <min

(
2𝑠𝑝(𝑡

′)
𝑖,0 ,1 −

1
𝑛

)]
≤ Pr

[
𝑝
(𝑡′+1)
𝑖,0 <min

(5
2
𝑠𝑝

(𝑡′)
𝑖,0 − 1

𝑛
,1 − 1

𝑛

)]
≤ exp

(
− 𝑠𝜇𝑏

24

)
.

By induction on the iteration 𝑡′ (starting at 𝑡), it follows that, with an additional failure probability of at most exp
(
− 𝑠𝜇𝑏

24

)
per

iteration, the assumptions that 𝑝(𝑡
′)

𝑖,0 ≥ 𝑏 and that position at least 𝑖 is critical are satisfied.

Starting from iteration 𝑡, a union bound over the next 𝑢 ln2𝑠(
1
𝑏
) iterations yields that the frequency 𝑝𝑖,0 continues growing expo-

nentially with a factor of 2𝑠 for the next 𝑢 ln2𝑠(
1
𝑏
) iterations with probability at least 1 − 𝑢 ln2𝑠(

1
𝑏
) exp

(
− 𝑠𝜇𝑏

24

)
. Since, by assumption,
11

𝑝
(𝑡)
𝑖,0 ≥ 𝑏, it reaches 1 − 1

𝑛
after at most ln2𝑠(

1
𝑏
) iterations during that time, concluding the proof. □

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

We now prove our main result.

Proof of Theorem 6. Since 𝑟-LEADINGONES weakly prefers 0s at all positions 𝑖 ∈ [𝑛], by Lemma 7, with a probability of at least
1 − 2

𝑛
, for all 𝑖 ∈ [𝑛], the frequency 𝑝𝑖,0 remains above 1

2𝑟 for the first 𝑛(1 + ln2𝑠(𝑟)) iterations.

For each position 𝑖 ∈ [𝑛], we apply Lemma 9 with 𝑏 = 1
2𝑟 and 𝑢 = 𝑛 as well as 𝜇 ≥ 24𝑛𝑟 ln(𝑛) and 𝑠 ≥ 1, noting that the assumption

𝑏 ≥ 2
𝑛

is satisfied, since we assume 𝑛 ≥ 4𝑟. Hence, for each 𝑖 ∈ [𝑛], with a probability of at least 1 − ln2𝑠(2𝑟)𝑛1−0.5𝑛, after at most
ln2𝑠(2𝑟) iterations, the frequency 𝑝𝑖,0 is set to 1 − 1

𝑛
and remains there for at least (𝑛 −1) ln2𝑠(2𝑟) iterations. Further, by a union bound

over all 𝑛 frequency vectors, the above holds for all frequency vectors, with probability at least 1 − ln2𝑠(2𝑟)𝑛2−0.5𝑛.
Combining everything, with probability at least 1 − 2

𝑛
− ln2𝑠(2𝑟)𝑛2−0.5𝑛, it holds by induction on position 𝑖 that once position 𝑖

is critical, the frequency 𝑝𝑖,0 reaches 1 − 1
𝑛

in at most ln2𝑠(2𝑟) iterations and remains there until at least iteration 𝑛 ln2𝑠(2𝑟). Since
position 0 is critical in iteration 0, it follows that the frequencies for value 0 are set, in increasing order of their position, to 1 − 1

𝑛
.

After at most 𝑛 ln2𝑠(2𝑟) iterations, all such frequencies are at the upper border, which proves the first part of the claim.

For the second part, note that once for all 𝑖 ∈ [𝑛] holds that 𝑝𝑖,0 = 1 − 1
𝑛
, which occurs with probability at least 𝑝succ, as shown

above, the 𝑟-UMDA creates the global maximum of 𝑟-LEADINGONES during the next iteration with probability at least (1 − 1
𝑛
)𝑛 ≥ 1

2𝑒
for each offspring. Since the algorithm creates 𝜆 offspring independently, the probability of not creating the global maximum within
the next 𝜆 fitness evaluations is at most (1 − 1

2𝑒)
𝜆 ≤ exp(− 𝜆

2𝑒). Multiplying the complementary probability with the previous success
probability 𝑝succ thus concludes the proof. □

6.3.2. Lower bound
As the upper bound (Theorem 6), the lower bound shows an almost linear dependency of the number of iterations until the

optimum is sampled for the first time with respect to 𝜆 and 𝑛, only adding a factor of order ln(𝑟). The difference of ln(𝑟) to the upper
bound stems from the bound on 𝜇, which is larger by a factor of around ln(𝑟) in the upper bound.

Theorem 10. Let 𝛿 ∈ (0, 1) be a constant. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 𝜇 ≥max{24(𝑛 +1)𝑟 ln(𝑛), 6 1+𝛿
𝛿2

ln(𝑛)}.
Furthermore, let 𝑑 = ⌈log2𝑟∕3((1 +𝛿) 𝜆𝜇)⌉ = ⌈ ln((1+𝛿)𝜆∕𝜇)ln(2𝑟∕3) ⌉ and let 𝜉 = ⌈log2𝑟∕3(𝑛2𝜆)⌉ +1. Then with probability at least 1 −4𝑛−1, the 𝑟-UMDA

does not sample the optimum in iteration ⌊ 𝑛−𝜉
𝑑
⌋ − 1 or earlier. This corresponds to more than 𝜆⌊ 𝑛−𝜉

𝑑
⌋ fitness function evaluations until the

optimum is sampled for the first time.

Our proof of Theorem 10 follows closely the proof for a lower bound on the runtime of the UMDA on LEADINGONES in the binary
case by Doerr and Krejca [20, Theorem 6]. The proof mainly relies on the leftmost position in a population that never had at least 𝜇

samples with a 0 so far. This position increases each iteration with high probability by only about ln(𝜆
𝜇
)∕ ln(𝑟) =∶ 𝑑. Before this

position is sufficiently close to 𝑛, it is very unlikely that the 𝑟-UMDA samples the optimum of 𝑟-LEADINGONES. Hence, the runtime is
with high probability in the order of

𝑛

𝑑
.

To make this outline formal, we say that a position 𝑖 ∈ [𝑛] is selection-relevant in iteration 𝑡 ∈ℕ (for 𝑟-LEADINGONES) if and only if
the population in iteration 𝑡 of the 𝑟-UMDA optimizing 𝑟-LEADINGONES has at least 𝜇 individuals with at least 𝑖 − 1 leading 0s. Note
that multiple positions can be selection-relevant in the same iteration, and that position 1 is always selection-relevant. Furthermore,
for each iteration 𝑡 ∈ ℕ, we say that position 𝑖 ∈ [𝑛] is the maximum selection-relevant position if and only if 𝑖 is the largest value among
all selection-relevant positions in iteration 𝑡.

An important observation is that if position 𝑖 ∈ [𝑛] is not selection-relevant up to (including) iteration 𝑡 ∈ℕ, then 𝑖 is also neutral
up to iteration 𝑡. The reason is that the selection of individuals is solely determined by positions up to the smallest position 𝑗 ∈ [𝑛]
of the 𝜇 best individuals where one of them contains a value different than 0. All following positions do not change the ranking of
the 𝜇 best individuals. Hence, if 𝑖 > 𝑗, then 𝑖 is neutral.

The following lemma shows that the frequency for value 0 in positions that were not yet selection-relevant remain close to their
starting value of

1
𝑟
, as they are neutral up to that point.

Lemma 11. Let 𝑔 ∈ℕ≥1. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 𝜇 ≥ 24(𝑔 + 1)𝑟 ln(𝑔). For all 𝑖 ∈ [𝑛], let 𝑇𝑖 denote the
first iteration such that position 𝑖 is selection-relevant, and let 𝑇 sel

𝑖
= min{𝑇𝑖, 𝑔}. Then with probability at least 1 − 2𝑛𝑔−2, it holds for each

𝑖 ∈ [𝑛] and each 𝑡 ∈ [0..𝑇 sel
𝑖
] that 𝑝(𝑡)

𝑖,0 ∈ (12
1
𝑟
, 32

1
𝑟
).

Proof. Let 𝑖 ∈ [𝑛]. We show that the sequence (𝑝(𝑡)
𝑖,0)𝑡∈ℕ remains in (12

1
𝑟
, 32

1
𝑟
) as long as 𝑡 ≤ 𝑇 sel

𝑖
by aiming to apply Theorem 3. We

then conclude the proof via a union bound of the failure probabilities (that is, the probabilities that a frequency does not remain in
said interval) over all possible values for 𝑖.

Conditional on 𝑇 sel
𝑖

, since 𝑖 only becomes selection-relevant the earliest in iteration 𝑇𝑖, position 𝑖 is neutral up to (including)
iteration 𝑇𝑖. That is, for all 𝑡 ∈ [0..𝑇𝑖 − 1], position 𝑖 has no influence on the fitness of each individual in population 𝑃 (𝑡) (and thus on
12

the updated frequency 𝑝(𝑡+1)
𝑖,0). Hence, by Theorem 3, by 𝑇 sel

𝑖
≤ 𝑔, and by the lower bound on 𝜇, we get that

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Pr
[
max

𝑠∈[0..𝑇 sel
𝑖

]
||||𝑝(𝑠)𝑖,0 − 1

𝑟

|||| ≥ 1
2𝑟
||||𝑇 sel

𝑖

]
≤ 2exp

(
− 𝜇

12𝑇 sel
𝑖
𝑟+ (4∕3)𝑟

)

≤ 2exp
(
− 𝜇

12(𝑔 + 1)𝑟

)
≤ 2exp

(
−24(𝑔 + 1)𝑟 ln(𝑔)

12(𝑔 + 1)𝑟

)
≤ 2𝑔−2.

By the law of total probability, this bound also holds independently of the outcome of 𝑇 sel
𝑖

.

Taking the union bound of the above bound over all 𝑛 values for 𝑖 yields that the overall failure probability is at most 2𝑛𝑔−2,
concluding the proof. □

For the next lemma, we make use of the following Chernoff bound, which we apply in order to show that new offspring does not
extend the prefix of leading 0s by too much. It is a non-trivial extension of the typical Chernoff bound to the case where we have an
upper bound on the expected value of the sum of independent Bernoulli random variables. This extension is non-trivial as the upper
bound on the expectation also results in a stronger probability bound.

Theorem 12 (Chernoff bound [61, Theorem 1.10.21 (a) with Theorem 1.10.1]). Let 𝑘 ∈ ℕ≥1, and let 𝑋 be the sum of 𝑘 independent
random variables each taking values in [0,1]. Moreover, let 𝛿, 𝜇+ ∈ℝ≥0 such that 𝜇+ ≥E[𝑋]. Then

Pr
[
𝑋 ≥ (1 + 𝛿)𝜇+]

≤ exp
(
−1
3
min

{
𝛿2, 𝛿

}
𝜇+
)
.

In the following lemma, we show that the maximum selection-relevant position increases each iteration with high probability by
at most roughly log𝑟(

𝜆

𝜇
). To this end, we tie it to the concept of a critical position, as defined in Section 6.3.1. This proof is heavily

inspired by the proof of Doerr and Krejca [20, Lemma 4], but we fix a mistake in their proof, where the penultimate estimate of the
application of the Chernoff bound bounds the exponent in the wrong direction.

Lemma 13. Let 𝛿 ∈ (0, 1) be a constant. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜇 ≥ 6 1+𝛿
𝛿2

ln(𝑛). Furthermore, consider an
iteration 𝑡 ∈ ℕ such that position 𝑖 ∈ [𝑛] is critical and that, for all positions 𝑖′ ∈ [𝑖 + 1..𝑛], it holds that 𝑝(𝑡)

𝑖′ ,0 ≤
3
2
1
𝑟
. Let 𝑑 =

⌈
log2𝑟∕3

(
(1 +

𝛿) 𝜆
𝜇

)⌉
. Then, with probability at least 1 − 𝑛−2, the maximum selection-relevant position in iteration 𝑡 is at most min{𝑛, 𝑖 + 𝑑}.

Proof. We note that 𝜆 ≥ 𝜇 by the definition of the 𝑟-UMDA and since 𝛿 > 0, it holds that 𝑑 ≥ 1. Furthermore, we assume that
𝑖 < 𝑛 − 𝑑, that is, it holds that min{𝑛, 𝑖 + 𝑑} = 𝑖 + 𝑑. For 𝑖 ≥ 𝑛 − 𝑑, we statement claims that the maximum selection-relevant position
is at most 𝑛, which is trivially the case, as all positions are in [𝑛].

For a position 𝑘 ∈ [𝑛] to become the maximum selection-relevant position in iteration 𝑡, by definition, it is necessary that at least 𝜇

individuals in population 𝑃 (𝑡) have at least 𝑘 − 1 leading 0s. We show via Theorem 12 that it is very unlikely that such a prefix of
leading 0s extends by much.

To this end, let 𝑘 = 𝑖 + 𝑑, and let 𝑋 denote the number of individuals from 𝑃 (𝑡) with at least 𝑘 leading 0s. Since we assume that
each frequency of value 0 at a position larger than 𝑖 is at most

3
2
1
𝑟
, as well as due to the independent sampling of the 𝑟-UMDA and

due to the definition of 𝑑, it follows that

E[𝑋] ≤ 𝜆
(3
2
1
𝑟

)𝑑
= 𝜆
(2
3
𝑟
)−𝑑

≤ 𝜆
𝜇

(1 + 𝛿)𝜆
= 𝜇

1 + 𝛿
.

Hence, by applying Theorem 12 with 𝜇+ = 𝜇

1+𝛿 , recalling that 𝛿 ∈ (0, 1), and by applying the bound on 𝜇, we get that

Pr[𝑋 ≥ 𝜇] = Pr
[
𝑋 ≥ (1 + 𝛿) 𝜇

1 + 𝛿

]
≤ exp

(
−1
3
min

{
𝛿2, 𝛿

} 𝜇

1 + 𝛿

)
= exp

(
−1
3
𝜇

𝛿2

1 + 𝛿

)
≤ 𝑛−2.

Consequently, with probability at least 1 − 𝑛−2, the population 𝑃 (𝑡) contains fewer than 𝜇 offspring that have at least 𝑘 leading 0s.
That is, the largest position 𝑘′ ∈ [𝑛] where at least 𝜇 offspring have at least 𝑘′ leading 0s is at most 𝑘 − 1, which is equivalent to the
maximum selection-relevant position being at most 𝑘. □

The next lemma is the last one before we prove our lower bound. The lemma shows that it is very unlikely for the 𝑟-UMDA
to sample the optimum of LEADINGONES while many frequencies for value 0 are not high yet (which is measured by the critical
position).

Lemma 14. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES, and consider an iteration 𝑡 ∈ ℕ and a position 𝑖 ∈ [𝑛] such that, for all
positions 𝑖′ ∈ [𝑖 + 1..𝑛], it holds that 𝑝(𝑡)

𝑖′ ,0 ≤
3
2
1
𝑟
. Then, with probability at least 1 − 𝜆(32

1
𝑟
)𝑛−𝑖, the 𝑟-UMDA does not sample the optimum in

this iteration.

Proof. We bound the probability for sampling the optimum this iteration from above. The probability for a single offspring to be
the optimum is, due to the upper bound on the last 𝑛 − 𝑖 frequencies, at most (32

1
𝑟
)𝑛−𝑖, as all positions need to be a 0. Taking a union
13

bound over all 𝜆 samples of this iteration concludes the proof. □

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Lemmas 7, 13 and 14 are sufficient for proving Theorem 10.

Proof of Theorem 10. We only show the bound on the number of iterations. Since we start counting iterations at 0 and since the
𝑟-UMDA creates exactly 𝜆 offspring each iteration, the bound on the number of fitness function evaluations follows immediately.

For the entirety of the proof, we assume that during the first 𝑛 iterations, all frequencies for value 0 remain in (12
1
𝑟
, 32

1
𝑟
) as long as

they did not become selection-relevant yet. By Lemma 11 with 𝑔 = 𝑛, noting that 𝜇 is sufficiently large, this occurs with probability
at least 1 − 2𝑛−1. Furthermore, we assume that 𝑛 − 𝜉 ≥ 𝑑, as Theorem 10 yields a trivial lower bound of 0 otherwise.

We continue by proving via induction on 𝑡 ∈ [0..𝑛] that with probability at least 1 − (𝑡 + 1)𝑛−2 it holds that each position
𝑖 ∈ [(𝑡 + 1)𝑑 + 2..𝑛] is not relevant up to (including) iteration 𝑡.

For the base case 𝑡 = 0, by the definition of the 𝑟-UMDA, for all positions 𝑖 ∈ [𝑛], it holds that 𝑝(0)
𝑖,0 = 1

𝑟
. This especially means that

position 0 is critical this iteration. Applying Lemma 13, noting that the requirements for 𝛿 and 𝜇 are met, proves the base case, as,
with probability at least 1 − 𝑛−2, the maximum selection-relevant position in iteration 0 is 𝑑.

For the inductive step, assume that the inductive hypothesis holds up to (including) iteration 𝑡 ∈ [0..𝑛 −1]. Hence, with probability
at least 1 −(𝑡 +1)𝑛−2, the maximum selection relevant-position in iteration 𝑡 (and up to there) is at most (𝑡 +1)𝑑+1. This implies that
the critical position 𝑘 ∈ [𝑛] in iteration 𝑡 + 1 is also at most (𝑡 + 1)𝑑 + 1. Furthermore, all frequencies for value 0 at positions greater
than (𝑡 + 1)𝑑 + 1 have not been selection-relevant yet. Thus, by our argument at the beginning of the proof, these frequencies are at
most

3
2
1
𝑟
. Overall, by Lemma 13, in iteration 𝑡 +1, with probability at most 𝑛−2, the maximum selection-relevant position in iteration

𝑡 + 1 is at least 𝑘 + 𝑑 + 1. Via a union bound with the failure probability of the inductive hypothesis, this proves the claim, that is,
with probability at least 1 − (𝑡 + 2)𝑛−2, the maximum-selection relevant position in iteration 𝑡 + 1 is at most 𝑘 + 𝑑 ≤ (𝑡 + 2)𝑑 + 1.

This claim shows that, for 𝑡′ = ⌊ 𝑛−𝜉
𝑑
⌋ − 1 ≤ 𝑛, with probability at least 1 − 𝑛−1, each position greater than 𝑛 − 𝜉 + 1 is never

selection-relevant up to (including) iteration 𝑡′. Hence, by our argument at the beginning of the proof, these frequencies are at
most

3
2
1
𝑟
. Applying Lemma 14 with 𝑖 = 𝑛 − 𝜉 + 1 then yields that the 𝑟-UMDA does not sample the optimum in each iteration up to 𝑡′

with a probability of at least 1 −𝜆(32
1
𝑟
)𝑛−𝑖 = 1 −𝜆(32

1
𝑟
)𝜉−1 ≥ 1 −𝑛−2 per iteration. A union bound over at most 𝑡′ +1 ≤ 𝑛 iterations then

shows that with probability at least 1 − 𝑛−1, it holds that up to (including) iteration 𝑡′, the 𝑟-UMDA does not sample the optimum.

Last, a union bound over the three error probabilities of the three arguments above then shows that with probability at least
1 − 4𝑛−1, the 𝑟-UMDA does not sample the optimum up to (including) iteration 𝑡′, concluding the proof. □

7. Conclusion

We have proposed the first systematic framework of EDAs for problems with multi-valued decision variables. Our analysis of the
genetic-drift effect and our runtime analysis on the multi-valued version of LEADINGONES have shown that the increase in decision
values does not result in significant difficulties. Although there may be a slightly stronger genetic drift (requiring a more conservative
model update, that is, a higher selection size 𝜇 for the UMDA) and slightly longer runtimes, these outcomes are to be expected given
the increased complexity of the problem. We hope that our findings will inspire researchers and practitioners to embrace the benefits
of EDAs for multi-valued decision problems, beyond the previously limited application to mostly permutations and binary decision
variables.

An interesting question for future work is to analyze whether other model representations, especially for multi-valued problems
that do not consider categorical variables, have a benefit over our model.

CRediT authorship contribution statement

Firas Ben Jedidia: Writing – review & editing, Writing – original draft, Validation, Methodology, Formal analysis. Benjamin
Doerr: Writing – review & editing, Writing – original draft, Validation, Supervision, Project administration, Methodology, Formal
analysis, Conceptualization. Martin S. Krejca: Writing – review & editing, Writing – original draft, Validation, Supervision, Project
administration, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

Thank you to Josu Ceberio for some useful discussions. This work also profited from many scientific discussions at the Dagstuhl
Seminar 22182 “Estimation-of-Distribution Algorithms: Theory and Applications”. This work was supported by a public grant as part
14

of the Investissements d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

References

[1] M. Pelikan, M. Hauschild, F.G. Lobo, Estimation of distribution algorithms, in: J. Kacprzyk, W. Pedrycz (Eds.), Springer Handbook of Computational Intelligence,
Springer, 2015, pp. 899–928.

[2] T. Friedrich, T. Kötzing, M.S. Krejca, A.M. Sutton, The compact genetic algorithm is efficient under extreme Gaussian noise, IEEE Trans. Evol. Comput. 21 (2017)
477–490.

[3] P.K. Lehre, P.T.H. Nguyen, Runtime analysis of the univariate marginal distribution algorithm under low selective pressure and prior noise, in: Genetic and
Evolutionary Computation Conference, GECCO 2019, ACM, 2019, pp. 1497–1505.

[4] V. Hasenöhrl, A.M. Sutton, On the runtime dynamics of the compact genetic algorithm on jump functions, in: Genetic and Evolutionary Computation Conference,
GECCO 2018, ACM, 2018, pp. 967–974.

[5] B. Doerr, The runtime of the compact genetic algorithm on jump functions, Algorithmica 83 (2021) 3059–3107.

[6] S. Wang, W. Zheng, B. Doerr, Choosing the right algorithm with hints from complexity theory, in: International Joint Conference on Artificial Intelligence, IJCAI
2021, ijcai.org, 2021, pp. 1697–1703.

[7] R. Benbaki, Z. Benomar, B. Doerr, A rigorous runtime analysis of the 2-MMASib on jump functions: ant colony optimizers can cope well with local optima, in:
Genetic and Evolutionary Computation Conference, GECCO 2021, ACM, 2021, pp. 4–13.

[8] B. Doerr, M.S. Krejca, The univariate marginal distribution algorithm copes well with deception and epistasis, Evol. Comput. 29 (2021) 543–563.

[9] C. Witt, How majority-vote crossover and estimation-of-distribution algorithms cope with fitness valleys, Theor. Comput. Sci. 940 (2023) 18–42.

[10] P. Larrañaga, J.A. Lozano (Eds.), Estimation of Distribution Algorithms, Springer, 2002.

[11] R. Santana, P. Larrañaga, J.A. Lozano, Protein folding in simplified models with estimation of distribution algorithms, IEEE Trans. Evol. Comput. 12 (2008)
418–438.

[12] R. Santana, P. Larrañaga, J.A. Lozano, Learning factorizations in estimation of distribution algorithms using affinity propagation, Evol. Comput. 18 (2010)
515–546.

[13] R. Santana, A. Ochoa-Rodriguez, M. Soto, Solving problems with integer representation using a tree based factorized distribution algorithm, in: International
NAISO Congress on Neuro Fuzzy Technologies, 2002.

[14] R. Santana, A. Mendiburu, Model-based template-recombination in Markov network estimation of distribution algorithms for problems with discrete represen-

tation, in: World Congress on Information and Communication Technologies, WICT 2013, 2013, pp. 170–175.

[15] H. Mühlenbein, The equation for response to selection and its use for prediction, Evol. Comput. 5 (1997) 303–346.

[16] P.K. Lehre, P.T.H. Nguyen, On the limitations of the univariate marginal distribution algorithm to deception and where bivariate EDAs might help, in: Founda-

tions of Genetic Algorithms, FOGA 2019, ACM, 2019, pp. 154–168.

[17] B. Doerr, M.S. Krejca, Bivariate estimation-of-distribution algorithms can find an exponential number of optima, Theor. Comput. Sci. 971 (2023) 114074.

[18] B. Doerr, W. Zheng, Sharp bounds for genetic drift in estimation-of-distribution algorithms, IEEE Trans. Evol. Comput. 24 (2020) 1140–1149.

[19] C. McDiarmid, Concentration, Probabilistic Methods for Algorithmic Discrete Mathematics, vol. 16, Springer, Berlin, 1998, pp. 195–248.

[20] B. Doerr, M.S. Krejca, A simplified run time analysis of the univariate marginal distribution algorithm on LeadingOnes, Theor. Comput. Sci. 851 (2021) 121–128.

[21] F. Ben Jedidia, B. Doerr, M.S. Krejca, Estimation-of-distribution algorithms for multi-valued decision variables, in: Genetic and Evolutionary Computation
Conference, GECCO 2023, ACM, 2023, pp. 230–238.

[22] B. Doerr, M. Dufay, General univariate estimation-of-distribution algorithms, in: Parallel Problem Solving from Nature, PPSN 2022, Part II, Springer, 2022,
pp. 470–484.

[23] S. Droste, A rigorous analysis of the compact genetic algorithm for linear functions, Nat. Comput. 5 (2006) 257–283.

[24] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary algorithm, Theor. Comput. Sci. 276 (2002) 51–81.

[25] T. Chen, K. Tang, G. Chen, X. Yao, On the analysis of average time complexity of estimation of distribution algorithms, in: Congress on Evolutionary Computation,
CEC 2007, IEEE, 2007, pp. 453–460.

[26] T. Chen, P.K. Lehre, K. Tang, X. Yao, When is an estimation of distribution algorithm better than an evolutionary algorithm?, in: Congress on Evolutionary
Computation, CEC 2009, IEEE, 2009, pp. 1470–1477.

[27] T. Chen, K. Tang, G. Chen, X. Yao, Analysis of computational time of simple estimation of distribution algorithms, IEEE Trans. Evol. Comput. 14 (2010) 1–22.

[28] D. Dang, P.K. Lehre, Simplified runtime analysis of estimation of distribution algorithms, in: Genetic and Evolutionary Computation Conference, GECCO 2015,
ACM, 2015, pp. 513–518.

[29] T. Friedrich, T. Kötzing, M.S. Krejca, EDAs cannot be balanced and stable, in: Genetic and Evolutionary Computation Conference, GECCO 2016, ACM, 2016,
pp. 1139–1146.

[30] D. Sudholt, C. Witt, Update strength in EDAs and ACO: how to avoid genetic drift, in: Genetic and Evolutionary Computation Conference, GECCO 2016, ACM,
2016, pp. 61–68.

[31] M.S. Krejca, C. Witt, Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax, in: Foundations of Genetic Algorithms, FOGA
2017, ACM, 2017, pp. 65–79.

[32] M. Krejca, C. Witt, Theory of estimation-of-distribution algorithms, in: B. Doerr, F. Neumann (Eds.), Theory of Evolutionary Computation: Recent Developments
in Discrete Optimization, Springer, 2020, pp. 405–442, Also available at https://arxiv .org /abs /1806 .05392.

[33] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, 2004.

[34] F. Neumann, C. Witt, Ant colony optimization and the minimum spanning tree problem, Theor. Comput. Sci. 411 (2010) 2406–2413.

[35] T. Kötzing, F. Neumann, H. Röglin, C. Witt, Theoretical analysis of two ACO approaches for the traveling salesman problem, Swarm Intell. 6 (2012) 1–21,
https://doi .org /10 .1007 /S11721 -011 -0059 -7.

[36] D. Sudholt, C. Thyssen, A simple ant colony optimizer for stochastic shortest path problems, Algorithmica 64 (2012) 643–672.

[37] H. Mühlenbein, G. Paass, From recombination of genes to the estimation of distributions I. Binary parameters, in: Parallel Problem Solving from Nature, PPSN
1996, Springer, 1996, pp. 178–187.

[38] B. Doerr, D. Johannsen, M. Schmidt, Runtime analysis of the (1+1) evolutionary algorithm on strings over finite alphabets, in: Foundations of Genetic Algorithms,
FOGA 2011, ACM, 2011, pp. 119–126.

[39] B. Doerr, S. Pohl, Run-time analysis of the (1+1) evolutionary algorithm optimizing linear functions over a finite alphabet, in: Genetic and Evolutionary
Computation Conference, GECCO 2012, ACM, 2012, pp. 1317–1324.

[40] B. Doerr, D. Sudholt, C. Witt, When do evolutionary algorithms optimize separable functions in parallel?, in: Foundations of Genetic Algorithms, FOGA 2013,
ACM, 2013, pp. 48–59.

[41] T. Kötzing, A. Lissovoi, C. Witt, (1+1) EA on generalized dynamic OneMax, in: Foundations of Genetic Algorithms, FOGA 2015, ACM, 2015, pp. 40–51.

[42] Y. Yu, C. Qian, Z. Zhou, Switch analysis for running time analysis of evolutionary algorithms, IEEE Trans. Evol. Comput. 19 (2015) 777–792.

[43] A. Lissovoi, C. Witt, MMAS versus population-based EA on a family of dynamic fitness functions, Algorithmica 75 (2016) 554–576.

[44] B. Doerr, C. Doerr, T. Kötzing, Static and self-adjusting mutation strengths for multi-valued decision variables, Algorithmica 80 (2018) 1732–1768.

[45] B. Doerr, F. Neumann (Eds.), Theory of Evolutionary Computation—Recent Developments in Discrete Optimization, Springer, 2020, Also available at http://

www .lix .polytechnique .fr /Labo /Benjamin .Doerr /doerr _neumann _book .html.

[46] S. Baluja, Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, Technical
15

Report, Carnegie Mellon University, 1994.

http://refhub.elsevier.com/S0304-3975(24)00237-8/bibD48E9E936389F5FAE6B8A715C33B832Bs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibD48E9E936389F5FAE6B8A715C33B832Bs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibB5C10358C24716914D2ABF204EDE4D0Ds1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibB5C10358C24716914D2ABF204EDE4D0Ds1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibE4E5E61D7B2F78E1DC667108B9C0F2FCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibE4E5E61D7B2F78E1DC667108B9C0F2FCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib2EF328210B034C69320ADD9BD8315641s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib2EF328210B034C69320ADD9BD8315641s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib898C806071DA7C7002C54D82FB41D5CFs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib4E6BEEABFDDFB55B1AD2FBF1B79863BFs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib4E6BEEABFDDFB55B1AD2FBF1B79863BFs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib8FA9B48967CEE36C000BC60185B4B16Bs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib8FA9B48967CEE36C000BC60185B4B16Bs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib21C72C6BC41178A14FFD4301E2B8E12Cs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib94FF78CDBC18CF884D369244C5354A44s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib1AF3DDFE2A3BCFE42FDBBE3317A703C5s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib5D0D5FCDBAE8E34D4BA10358DE0FA670s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib5D0D5FCDBAE8E34D4BA10358DE0FA670s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibA766033556C8DCCAA373238FF534F0A4s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibA766033556C8DCCAA373238FF534F0A4s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib26A180C879059236BF156DFF750FFB6As1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib26A180C879059236BF156DFF750FFB6As1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib93E12B5BA58ABA49FAD67A70758A9B70s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib93E12B5BA58ABA49FAD67A70758A9B70s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibB05D328BED1D635E09420094FBBBC424s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib8D1DE8849CADF71EE8951AC840A98D47s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib8D1DE8849CADF71EE8951AC840A98D47s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib03F6E919CD691A67D2F8251E07B3BD38s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib618AC6B152265352E8B75C2278FA144Es1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib01BF8733EB8A1895B399BC33E9957930s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibA2FEC416055DD3C3B335514EF9F753CEs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib0FC21E1A27055FBDF073E8B9864A0BCCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib0FC21E1A27055FBDF073E8B9864A0BCCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib7A7200CC1D56E39BDEF502DD9A38D2C1s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib7A7200CC1D56E39BDEF502DD9A38D2C1s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib13D201A96595B8DC57D10BC8A14BEF1Cs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib2ADF27CAC9B4455618C0B4D622808F0Es1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib17DE602A4B961D88BAAFDFE9D7CF2A5Ds1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib17DE602A4B961D88BAAFDFE9D7CF2A5Ds1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibEFE0EA41C9C2EE413E0C8B2C63915F35s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibEFE0EA41C9C2EE413E0C8B2C63915F35s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib27E0427B8EA0E7DC1A7FB1ABA722C45Es1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib61EA16566C2DBEB4B50A5D32415AFB0As1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib61EA16566C2DBEB4B50A5D32415AFB0As1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibC34ED3341DBD6D490F32D8F889F86592s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibC34ED3341DBD6D490F32D8F889F86592s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibEFD59848AD5326DFEF3079DB2EA2632As1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibEFD59848AD5326DFEF3079DB2EA2632As1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib94EC5CE426AEA3261296B90BA0AFAED5s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib94EC5CE426AEA3261296B90BA0AFAED5s1
https://arxiv.org/abs/1806.05392
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib419E2B737F96B6A6C7BF858C617C65CCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib50986D662D88F1C6EE5067121E0001D8s1
https://doi.org/10.1007/S11721-011-0059-7
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib0B93A38F72FA91C581B41DB6B8F8F9C2s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib9B23E120AFC315A1D426AE2CEF2D0DD9s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib9B23E120AFC315A1D426AE2CEF2D0DD9s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibADEA2FCC7342A878E891A8D24D6205EAs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibADEA2FCC7342A878E891A8D24D6205EAs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib5AD1B10CEE2AEAF660D19CE1DDFDAE24s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib5AD1B10CEE2AEAF660D19CE1DDFDAE24s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibDF8D98F639DF8BD0AD4A9B987E4D4288s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibDF8D98F639DF8BD0AD4A9B987E4D4288s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibCF1B802EE5F18AEE0747CE49775B69D9s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib8EAD2E40F64B483556282260BEA1CE4Es1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib29574CC093F367C35FAAF288526008BDs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib2960E820A13F9B085AE9494255F2D314s1
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib038A5835175C072B6A436BAAE22692A6s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib038A5835175C072B6A436BAAE22692A6s1

Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

[47] G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm, IEEE Trans. Evol. Comput. 3 (1999) 287–297.

[48] J.L. Shapiro, The sensitivity of PBIL to its learning rate, and how detailed balance can remove it, in: Foundations of Genetic Algorithms, FOGA 2002, Morgan
Kaufmann, 2002, pp. 115–132.

[49] J.L. Shapiro, Drift and scaling in estimation of distribution algorithms, Evol. Comput. 13 (2005) 99–123.

[50] J.L. Shapiro, Diversity loss in general estimation of distribution algorithms, in: Parallel Problem Solving from Nature, PPSN 2006, Springer, 2006, pp. 92–101.

[51] S. Droste, Not all linear functions are equally difficult for the compact genetic algorithm, in: Genetic and Evolutionary Computation Conference, GECCO 2005,
ACM, 2005, pp. 679–686.

[52] C. Witt, Domino convergence: why one should hill-climb on linear functions, in: Genetic and Evolutionary Computation Conference, GECCO 2018, ACM, 2018,
pp. 1539–1546.

[53] C. Witt, Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax, Algorithmica 81 (2019) 632–667.

[54] D. Sudholt, C. Witt, On the choice of the update strength in estimation-of-distribution algorithms and ant colony optimization, Algorithmica 81 (2019)
1450–1489.

[55] J. Lengler, D. Sudholt, C. Witt, The complex parameter landscape of the compact genetic algorithm, Algorithmica 83 (2021) 1096–1137.

[56] F. Neumann, D. Sudholt, C. Witt, The compact genetic algorithm struggles on Cliff functions, in: Genetic and Evolutionary Computation Conference, GECCO
2022, ACM, 2022, pp. 1426–1433.

[57] W. Zheng, B. Doerr, From understanding genetic drift to a smart-restart mechanism for estimation-of-distribution algorithms, J. Mach. Learn. Res. 24 (2023)
1–40.

[58] B. Doerr, M.S. Krejca, Significance-based estimation-of-distribution algorithms, IEEE Trans. Evol. Comput. 24 (2020) 1025–1034.

[59] A.D. Ajimakin, V.S. Devi, The competing genes evolutionary algorithm: avoiding genetic drift through competition, local search, and majority voting, IEEE
Trans. Evol. Comput. 27 (2023) 1678–1689.

[60] G. Rudolph, Convergence Properties of Evolutionary Algorithms, Verlag Dr. Kovǎc, 1997.

[61] B. Doerr, Probabilistic tools for the analysis of randomized optimization heuristics, in: B. Doerr, F. Neumann (Eds.), Theory of Evolutionary Computation: Recent
16

Developments in Discrete Optimization, Springer, 2020, pp. 1–87, Also available at https://arxiv .org /abs /1801 .06733.

http://refhub.elsevier.com/S0304-3975(24)00237-8/bibE1BD541E7EA4E6DF87171F0A535E9626s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibC87071035A414A45F1553FC4C95939F6s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibC87071035A414A45F1553FC4C95939F6s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib1A4C1012106653E47F95710C200A15E2s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibCCB0F845E34B1E27215E09ACC263A264s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibEA491AD9430162EF6F6CD14C9EBADA45s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibEA491AD9430162EF6F6CD14C9EBADA45s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibAF1E5A11798E0C440C73309C054F5BFCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibAF1E5A11798E0C440C73309C054F5BFCs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib57A2996BB5FC13239F08CAA807FF3A56s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib5855BA892AE0A82FA662B4758930A949s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib5855BA892AE0A82FA662B4758930A949s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibBE4B1D482B3F78AF4E4406EFF0397F50s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib172417B55B3A53A3CECF7C3D48C35987s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib172417B55B3A53A3CECF7C3D48C35987s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibD5AABB1D78B1CB137452D4BD6B99C041s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bibD5AABB1D78B1CB137452D4BD6B99C041s1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib96A0A43A00A05CB1974DC6F30E55BC2Cs1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib4C5061D6390517C5880411E38D49DF8Es1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib4C5061D6390517C5880411E38D49DF8Es1
http://refhub.elsevier.com/S0304-3975(24)00237-8/bib8C43CD12752F2DB97B58C29980989307s1
https://arxiv.org/abs/1801.06733

	Estimation-of-distribution algorithms for multi-valued decision variables
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Multi-valued EDAs
	4.1 Binary EDAs
	4.2 The multi-valued EDA framework

	5 Genetic drift
	5.1 Introduction to genetic drift
	5.2 Martingale property of neutral positions
	5.3 Upper bound on the genetic-drift effect of a neutral position
	5.4 Upper bound for positions with weak preference

	6 Runtime analysis of the r-UMDA
	6.1 Previous runtime analyses of EDAs on LEADINGONES
	6.2 The r-LEADINGONES benchmark
	6.3 Runtime results
	6.3.1 Upper bound
	6.3.2 Lower bound

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

