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The majority of research on estimation-of-distribution algorithms (EDAs) concentrates on pseudo-

Boolean optimization and permutation problems, leaving the domain of EDAs for problems in 
which the decision variables can take more than two values, but which are not permutation 
problems, mostly unexplored. To render this domain more accessible, we propose a natural way 
to extend the known univariate EDAs to this setting. Different from a naïve reduction to the binary 
case, our approach avoids additional constraints.

Since understanding genetic drift is crucial for an optimal parameter choice, we extend the 
known quantitative analysis of genetic drift to EDAs for multi-valued, categorical variables. 
Roughly speaking, when the variables take 𝑟 different values, the time for genetic drift to become 
significant is 𝑟 times shorter than in the binary case. Consequently, the update strength of the 
probabilistic model has to be chosen 𝑟 times lower now.

To investigate how desired model updates take place in this framework, we undertake a 
mathematical runtime analysis on the 𝑟-valued LEADINGONES problem. We prove that with the 
right parameters, the multi-valued UMDA solves this problem efficiently in 𝑂(𝑟 ln(𝑟)2𝑛2 ln(𝑛))
function evaluations. This bound is nearly tight as our lower bound Ω(𝑟 ln(𝑟)𝑛2 ln(𝑛)) shows.

Overall, our work shows that our good understanding of binary EDAs naturally extends to the 
multi-valued setting, and it gives advice on how to set the main parameters of multi-values EDAs.

1. Introduction

Estimation-of-distribution algorithms (EDAs [1]) are randomized search heuristics that evolve a probabilistic model of the search 
space (that is, a probability distribution over the search space). In contrast to solution-based algorithms such as classic evolutionary 
algorithms, which only have the choice between the two extreme decisions of keeping or discarding a solution, EDAs can take into 
account the information gained from a function evaluation also to a smaller degree. This less short-sighted way of reacting to new 
insights leads to several proven advantages, e.g., that EDAs can be very robust to noise [2,3]. Since the evolved distributions often 
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have a larger variance, EDAs can also be faster in exploring the search space, in particular, when it comes to leaving local optima, 
where they have been shown to significantly outperform simple evolutionary algorithms [4–9].

While EDAs have been employed in a variety of settings and to different types of decision variables [1,10], they are very often 
presented and discussed for the binary domain. In fact, the number of results in which they have been used for discrete optimization 
problems with decision variables taking more than two values, other than permutation problems, is scarce [11–15]. All of these results 
have in common that they propose specific EDAs to deal with multi-valued problems. To the best of our knowledge, no systematic 
way to model EDAs for the multi-valued domain exists, even not for the easiest case of EDAs that do not model dependencies, 
so-called univariate EDAs (we note that multi-variate EDAs are much less understood, i.e., despite some theoretical works in this 
direction [16,17], there are no proven runtime guarantees for these algorithms).

In order to improve our theoretical understanding in this domain, we undertake the first steps towards a framework of univariate 
EDAs for problems with decision variables taking more than two values (but different from permutation problems). We first note 
that the strong dependencies that distinguish a permutation problem from just a problem defined on {1, … , 𝑛}𝑛 have led to very 
particular EDAs for permutation problems. We did not see how to gain insights from these results for general multi-valued problems.

We therefore define EDAs for multi-valued decision variables without building on any related existing work. We note that, in 
principle, one could transform a multi-valued problem into a binary one by having, for each variable taking 𝑟 different values, 
𝑟 binary variables, each indicating that the variable has the corresponding value. This would lead to a constrained optimization 
problem with the additional constraints that exactly one of these variables can take the value 1. This might be a feasible approach, 
but since such constraints generally impose additional difficulties, we propose a way that does not need an additional treatment of 
constraints (in other words, we set up our EDAs in a way that these constraints are satisfied automatically).

We defer the details to Section 4.2 and only sketch the rough idea of our approach here. For each variable taking 𝑟 values, without 
loss of generality the values {0, … , 𝑟 − 1}, we have 𝑟 sampling frequencies 𝑝0, 𝑝1, … , 𝑝𝑟−1 that always add up to 1. When sampling 
a value for the variable, we do this mutually exclusively, that is, the variable takes the value 𝑖 with probability 𝑝𝑖. This appears to 
be a convenient (and in fact very natural) set-up for a multi-valued EDA. We note that there are some non-trivial technical questions 
to be discussed when working with frequency borders, such as 

[
1
𝑛
,1 − 1

𝑛

]
in the classical binary case, but we also come up with a 

simple and natural solution for this aspect. Moreover, this model is well suited for categorical decision variables, i.e., variables whose 
different values do not exhibit any neighborhood property. For other kinds of variables, different, more concise models might be 
better suited, although our model is also applicable.

As a first step towards understanding this multi-valued EDA framework, we study how prone it is to genetic drift. Genetic drift 
in EDAs means that sampling frequencies not only move because of a clear signal induced by the objective function, but also due 
random fluctuations in the sampling process. This has the negative effect that even in the complete absence of a fitness signal, the 
EDA develops a preference for a particular value of this decision variable. From a long sequence of works, see Section 5 for the 
details, it is well understood how the time for this genetic-drift effect to become relevant depends on the parameters of the EDA [18]. 
Consequently, if one plans to run the EDA for a certain number of iterations, then this quantification tells the user how to set the 
parameters as to avoid genetic drift within this time period.

Since such a quantification is apparently helpful in the application of EDAs, we first extend it to multi-valued EDAs. When looking 
at the relatively general tools used in [18], this appears straightforward, but it turns out that such a direct approach does not give 
the best possible result. The reason is that for multi-valued decision variables, the martingale describing a frequency of a neutral 
variable over time has a lower variance (in the relevant initial time interval). To profit from this, we use a fairly technical martingale 
concentration result of McDiarmid [19], which, to the best our knowledge, has not been used before in the analysis of randomized 
search heuristics. Thanks to this result, we show that the time for genetic drift to become relevant is (only) by a factor of 𝑟 lower 
than in the case of binary decision variables (Theorem 3).

We use this result to conduct a mathematical runtime analysis of the multi-valued univariate marginal distribution algorithm 
(𝑟-UMDA) on the 𝑟-valued LEADINGONES problem in the regime with low genetic drift. This problem returns, similar to the binary 
domain, the longest prefix of consecutive 0s in the input. It is interesting since a typical optimization process optimizes the variable 
sequentially in a fixed order. Consequently, in a run of an EDA on LEADINGONES, there is typically always one variable with undecided 
sampling frequency that has a strong influence on the fitness. Hence, this problem is suitable to study how fast an EDA reacts to a 
strong fitness signal.

Our runtime analysis shows that also in the multi-valued setting, EDAs can react quickly to a strong fitness signal. Since now 
the frequencies start at the value

1
𝑟
, the time to move a frequency is a little longer, namely Θ(𝑟 ln(𝑟)) instead of constant when the 

sample size 𝜆 is by a sufficient constant factor larger than the selection size 𝜇. This still appears to be a small price for having to deal 
with 𝑟 decision alternatives. This larger time also requires that the model update has to be chosen more conservatively as to prevent 
genetic drift (for this, we profit from our analysis of genetic drift), leading to another ln(𝑟) factor in the runtime. In summary, we 
prove (Theorem 6) that the UMDA can optimize the 𝑟-valued LEADINGONES problem in time 𝑂(𝑟 ln(𝑟)2𝑛2 ln(𝑛)), a bound that agrees 
with the one shown in [20] for the classical case 𝑟 = 2. Our upper bound is tight apart from a factor logarithmic in 𝑟, that is, we 
prove a lower bound of order Ω(𝑟 ln(𝑟)𝑛2 ln(𝑛)) in Theorem 10.

Overall, our work shows that 𝑟-valued EDAs can be effective problem solvers, suggesting to apply such EDAs more in practice.

This work extends our prior extended abstract [21] by adding a lower bound for the runtime of the 𝑟-valued UMDA on the 
𝑟-valued LEADINGONES problem. Also, it contains all proofs that were omitted in the conference version for reasons of space. To 
avoid misunderstandings, we note that this work bears no similarity or overlap with the paper Generalized Univariate Estimation-of-
2

Distribution Algorithms [22], which studies generalized update mechanisms for EDAs for binary decision variables.
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This article is organized as follows. We describe previous works in the following section and set the notation in the subsequent 
section. In Section 4, we propose our multi-valued EDA framework. Our main technical results, the analysis of genetic drift and the 
runtime analysis for the LEADINGONES problem, can be found in Sections 5 and 6. The paper ends with a short conclusion.

2. Related work

Since the technical sections of this work contain three relatively independent topics—the definition of multi-valued EDAs, ge-

netic drift, and a runtime analysis on the LEADINGONES benchmark—we present the previous works relevant to these topics in the 
respective sections.

This being a theoretical work, we do not discuss in detail how EDAs have been successfully used to solve real-worlds optimization 
problems and refer to the surveys [1,10].

Theoretically oriented works have accompanied the development and use of univariate binary EDAs for a long time, see, e.g., 
the early works on genetic drift described in Section 5. The first mathematical runtime analysis of an EDA was conducted by 
Droste [23]. This seminal work, showing an asymptotically tight bound for the runtime of the compact genetic algorithm on the

ONEMAX benchmark, already contains many ideas that are now frequently used in the runtime analysis of EDAs. It also observed 
that EDAs optimize problems in a very different manner, visible from the different runtimes shown on two linear functions, which 
contrasts the famous analysis of how the (1 + 1) EA optimizes linear functions by Droste, Jansen, and Wegener [24]. Interestingly, 
apart from the works of one research group [25–27], Droste’s ground-breaking work [23] was not followed up by other runtime 
analyses for around ten years. Since then, starting with works like [28–31], the runtime analysis of EDAs has become very active 
and has, despite the technical challenges in analyzing such complex algorithms, produced many fundamental results and a good 
understanding of some of the working principles of EDAs. We refer to the recent survey [32] for more details.

An algorithmic concept related to EDAs is ant colony optimization (ACO) [33]. ACO lends itself well to combinatorial optimization, 
which is typically multi-valued in nature, and ACO has been analyzed theoretically to some degree, e.g., on the minimum-spanning 
tree problem [34], the traveling-salesman problem [35], and shortest-path problems [36]. ACO is related to EDAs in that ACO 
constructs solutions according to a probabilistic model, known as the construction graph. However, in contrast to EDAs, ACO usually 
stores a best-so-far solution, which helps enforce the probabilistic model. This in contrast to the EDAs we consider in this work. A 
more thorough overview on theoretical results for ACO is also provided in the same survey mentioned above [32].

3. Preliminaries

We denote by ℕ the set of all natural numbers, including 0, and by ℝ the set of all real numbers. Additionally, for 𝑎, 𝑏 ∈ ℕ, let 
[𝑎..𝑏] = [𝑎, 𝑏] ∩ ℕ, and let [𝑎] = [1..𝑎]. When we say that a random process is a martingale and do not specify a filtration, then we 
mean that the process is a martingale with respect to its natural filtration. Further, for all 𝑛 ∈ ℕ≥1 and 𝑝 ∈ℝ𝑛

≥0, we denote the 1-norm 
of 𝑝, that is, the sum of the entries of 𝑝, by ‖𝑝‖1. For a proposition 𝑃 , we denote the Iversion bracket by 1{𝑃 }, which is 1 if 𝑃 is 
true, and it is 0 otherwise.

Let 𝑛 ∈ℕ≥1 and 𝑟 ∈ℕ≥2. We consider the maximization of functions of the form 𝑓 ∶ [0..𝑟− 1]𝑛 →ℝ, which we call r-valued fitness 
functions. Whenever we mention an 𝑟-valued fitness function, we implicitly assume that its dimension 𝑛 and the cardinality 𝑟 of its 
domain are given. We call each 𝑥 ∈ [0..𝑟− 1]𝑛 an individual, and we call 𝑓 (𝑥) the fitness of 𝑥.

We say that a random variable 𝑌 stochastically dominates another random variable 𝑋, not necessarily defined on the same 
probability space, denoted by 𝑋 ⪯ 𝑌 , if and only if for all 𝜆 ∈ℝ, we have Pr [𝑋 ≤ 𝜆] ≤ Pr [𝑌 ≤ 𝜆].

4. Multi-valued EDAs

In this section, we generalize the three common univariate EDAs for the binary decision variable to multi-valued decision vari-

ables. We do so in a manner that is consistent with the existing (empirical) literature on univariate EDAs [13,15]. We call our 
EDA variants multi-valued EDAs. To this end, we briefly discuss the binary case in Section 4.1 before presenting our framework in 
Section 4.2. In our presentation, we concentrate on the UMDA [37] and then briefly present the generalizations of the other two 
common univariate EDAs.

We note that for classic evolutionary algorithms, multi-valued decision variables have been discussed to some extent [38–44]. 
Due to the very different working principles, we could not see how these results help in designing and analyzing multi-valued EDAs.

4.1. Binary EDAs

Binary EDAs refer to EDAs for pseudo-Boolean optimization, that is, the optimization of functions 𝑓 ∶ {0, 1}𝑛 → ℝ. This setting 
is a special case of optimizing 𝑟-valued fitness functions, for 𝑟 = 2. The probabilistic model of univariate EDAs in this domain 
is a length-𝑛 vector 𝑝 of probabilities (the frequency vector), where the probability (the frequency) at position 𝑖 ∈ [𝑛] denotes the 
probability that a sample has a 1 at position 𝑖, independent of the other positions. Formally, for all 𝑥, 𝑦 ∈ {0, 1}𝑛, it holds that 
Pr[𝑥 = 𝑦] =

∏
𝑖∈[𝑛](𝑝𝑖𝑦𝑖 ⋅ (1 − 𝑝𝑖)1−𝑦𝑖 ), where we assume that 00 = 1.

Binary EDAs commonly take at least a parameter 𝜆 ∈ ℕ≥1 (the population size) as well as a pseudo-Boolean fitness function 𝑓 as 
3

input and optimize 𝑓 as follows: Initially, the frequency vector 𝑝 models the uniform distribution, that is, each frequency is 1∕2. 



Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

Algorithm 1: The UMDA [37] with parameters 𝜆 ∈ℕ≥1 and 𝜇 ∈ [𝜆], maximizing a pseudo-Boolean fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← ( 1
2
)𝑖∈[𝑛] ;

3 repeat // iteration 𝑡

4 𝑃 (𝑡) ← population of 𝜆 individuals, independently sampled from 𝑝(𝑡) ;

5 {𝑥(𝑡,𝑘)}𝑘∈[𝜇] ← multiset of 𝜇 individuals from 𝑃 (𝑡) with the highest fitness (breaking ties uniformly at random);

6 for 𝑖 ∈ [𝑛] do 𝑝
(𝑡+1)
𝑖

← 1
𝜇

∑
𝑘∈[𝜇] 𝑥

(𝑡,𝑘)
𝑖

;

7 𝑝(𝑡+1) ← values of 𝑝(𝑡+1) , restricted to 
[
1
𝑛
,1 − 1

𝑛

]
;

8 𝑡 ← 𝑡 + 1;

9 until termination criterion met;

Then, in an iterative manner, the algorithm produces 𝜆 samples (the population) independently via 𝑝, and it updates 𝑝 based on these 
samples and their fitness. This process is repeated until a user-defined termination criterion is met.

In order to prevent frequencies from only producing a single value (which is the case if a frequency is 0 or 1), after the frequency 
vector is updated, it is typically restricted to the interval [1∕𝑛, 1 − 1∕𝑛]. That is, if the frequency is less than 1∕𝑛, it is set to 1∕𝑛, and 
if it is greater than 1 − 1∕𝑛, it is set to 1 − 1∕𝑛. The extreme values of this interval are referred to as the borders, and the value 1∕𝑛 is 
called the margin of the algorithm.

UMDA. Algorithm 1 shows the univariate marginal distribution algorithm (UMDA) [37], which is a well established binary EDA, 
both in the empirical [1] and the theoretical [45] domain. In addition to the population size 𝜆 ∈ ℕ≥1 and a fitness function, the 
UMDA also utilizes a parameter 𝜇 ∈ [𝜆], called the selection size. In each iteration, the UMDA selects 𝜇 out of the 𝜆 samples that 
have the best fitness (breaking ties uniformly at random). Each frequency is then set to the relative frequency of 1s at the respective 
position (line 6). Afterwards, the frequencies are restricted to lie within the frequency borders.

4.2. The multi-valued EDA framework

We propose a framework for EDAs for optimizing 𝑟-valued fitness functions. We call the resulting EDAs 𝑟-valued EDAs. Our 
framework closely follows the one presented in Section 4.1. That is, an 𝑟-valued EDA starts with a probabilistic model initialized to 
represent the uniform distribution, and it then iteratively generates 𝜆 ∈ ℕ≥1 samples independently, based on its model. This model 
is then updated and afterwards restricted such that it does not contain the extreme probabilities 0 and 1.

The difference to the framework for binary EDAs lies in how the probabilistic model of 𝑟-valued EDAs is represented and how it 
is restricted from containing extreme probabilities.

The probabilistic model. The probabilistic model of an 𝑟-valued EDA is an 𝑛 × 𝑟 matrix (𝑝𝑖,𝑗 )(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] (the frequency matrix), 
where each row 𝑖 ∈ [𝑛] forms a vector 𝑝𝑖 ∶= (𝑝𝑖,𝑗 )𝑗∈[0..𝑟−1] (the frequency vector at position 𝑖) of probabilities (the frequencies) that sum 
to 1. As in the binary case, samples from 𝑝 are created independently for each position. When creating an individual 𝑥 ∈ [0..𝑟 − 1]𝑛, 
then, for all 𝑖 ∈ [𝑛] and all 𝑗 ∈ [𝑟 − 1], the probability that 𝑥𝑖 has value 𝑗 is 𝑝𝑖,𝑗 . Formally, for all 𝑥, 𝑦 ∈ [0..𝑟 − 1]𝑛, it holds that 
Pr[𝑥 = 𝑦] =

∏
𝑖∈[𝑛]

∏
𝑗∈[0..𝑟−1](𝑝𝑖,𝑗 )1{𝑦𝑖=𝑗}, where we assume that 00 = 1.

The frequency matrix 𝑝 is initialized such that each frequency is 1∕𝑟, representing the uniform distribution. When performing an 
update to 𝑝, it is important to make sure that each row sums to 1.

Restricting the probabilistic model. The aim of restricting the frequency matrix 𝑝 is to clamp all frequencies, for some values 
𝑎, 𝑏 ∈ [0, 1] (the lower and upper border, respectively) with 𝑎 ≤ 1∕𝑟 ≤ 𝑏, to [𝑎, 𝑏]. That is, if a frequency 𝑞 is less than 𝑎, it should be 𝑎

after the restriction, and if it is greater than 𝑏, it should be 𝑏 afterwards. For such a restriction, it is important for each row 𝑖 ∈ [𝑛] that 
the frequency vector 𝑝𝑖 sums to 1 after the restriction. This process is not straightforward. If 𝑞 ∉ [𝑎, 𝑏], and 𝑞 is updated to 𝑞′ ∈ [𝑎, 𝑏], 
then this creates a change in probability mass of 𝑞′ − 𝑞. Hence, simply updating 𝑞 to 𝑞′ can result in all frequencies of 𝑝𝑖 summing to 
a value other than 1 after the restriction.

We address the problem above as follows. To this end, let 𝑎, 𝑏 ∈ [0, 1] be the lower and upper border, respectively, with 𝑎 ≤
1∕(𝑟 − 1) −1∕(𝑟(𝑟 − 1)) and 𝑏 = 1 − 𝑎(𝑟 −1). Further, let 𝑖 ∈ [𝑛] be a row of the frequency matrix we wish to restrict, let 𝑝𝑖 ∈ [0, 1]𝑛 be 
the frequency vector after the update but before the restriction (with ‖𝑝𝑖‖1 = 1), and let 𝑝+

𝑖
∈ [𝑎, 𝑏]𝑛 be the vector 𝑝𝑖 after clamping 

it to [𝑎, 𝑏] but before taking care that the frequencies sum to 1. We define the restriction of 𝑝𝑖 to [𝑎, 𝑏], denoted by 𝑝′
𝑖
, to be the vector 

where each frequency’s share above 𝑎 is reduced by the surplus of the probability relative to the share above 𝑎. Formally, for all 
𝑗 ∈ [0..𝑟 − 1], it holds that

𝑝′
𝑖,𝑗

= (𝑝+
𝑖,𝑗

− 𝑎) 1 − 𝑎𝑟‖𝑝+
𝑖
− (𝑎)𝑘∈[𝑛]‖1 + 𝑎. (1)

Note that 1 − 𝑎𝑟 = ‖𝑝𝑖 − (𝑎)𝑘∈[𝑛]‖1 denotes how much probability mass should be in the frequency vector, above 𝑎. The resulting 
frequency vector 𝑝′

𝑖
sums to 1, since∑

𝑗∈[0..𝑟−1]
𝑝′
𝑖,𝑗

= 1 − 𝑎𝑟‖𝑝+
𝑖
− (𝑎)𝑘∈[𝑛]‖1 ∑𝑗∈[0..𝑟−1]

(𝑝+
𝑖,𝑗

− 𝑎) +
∑

𝑗∈[0..𝑟−1]
𝑎

4

= 1 − 𝑎𝑟+ 𝑎𝑟 = 1.
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Algorithm 2: The 𝑟-UMDA with parameters 𝜆 ∈ ℕ≥1 and 𝜇 ∈ [𝜆], maximizing an 𝑟-valued fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← ( 1
𝑟
)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] ;

3 repeat // iteration 𝑡

4 𝑃 (𝑡) ← population of 𝜆 individuals, independently sampled from 𝑝(𝑡) ;

5 {𝑥(𝑡,𝑘)}𝑘∈[𝜇] ← multiset of 𝜇 individuals from 𝑃 (𝑡) with the highest fitness (breaking ties uniformly at random);

6 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟− 1] do

7 𝑝
(𝑡+1)
𝑖,𝑗

← 1
𝜇

∑
𝑘∈[𝜇] 1{𝑥

(𝑡,𝑘)
𝑖

= 𝑗};

8 𝑝(𝑡+1) ← restriction of 𝑝
(𝑡+1)

to 
[

1
(𝑟−1)𝑛

,1 − 1
𝑛

]
, as described in eq. (1);

9 𝑡 ← 𝑡 + 1;

10 until termination criterion met;

Algorithm 3: The 𝑟-PBIL with parameters 𝜆 ∈ ℕ≥1, 𝜇 ∈ [𝜆], and 𝜌 ∈ [0, 1], maximizing an 𝑟-valued fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← ( 1
𝑟
)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] ;

3 repeat // iteration 𝑡

4 𝑃 (𝑡) ← population of 𝜆 individuals, independently sampled from 𝑝(𝑡) ;

5 {𝑥(𝑡,𝑘)}𝑘∈[𝜇] ← multiset of 𝜇 individuals from 𝑃 (𝑡) with the highest fitness (breaking ties uniformly at random);

6 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟− 1] do

7 𝑝
(𝑡+1)
𝑖,𝑗

← (1 − 𝜌)𝑝(𝑡)
𝑖,𝑗
+ 𝜌

𝜇

∑
𝑘∈[𝜇] 1{𝑥

(𝑡,𝑘)
𝑖

= 𝑗};

8 𝑝(𝑡+1) ← restriction of 𝑝
(𝑡+1)

to 
[

1
(𝑟−1)𝑛

,1 − 1
𝑛

]
, as described in eq. (1);

9 𝑡 ← 𝑡 + 1;

10 until termination criterion met;

Further, each frequency is at least 𝑎, since this value is added at the end of eq. (1) and since 𝑝+
𝑖,𝑗

≥ 𝑎 by definition of 𝑝+
𝑖

. Last, since 
each frequency is at least 𝑎 after restricting, the largest a frequency can be is 1 − (𝑟 − 1)𝑎 = 𝑏.

In order to disallow the extreme frequencies 0 and 1 but to stay close to the binary case, we propose to choose the upper border 
as 1 − 1∕𝑛. Following our ideas above, this implies that the lower border is 1∕((𝑟 − 1)𝑛). This is consistent with the binary case but 
generalizes to the 𝑟-valued domain.

We say that an EDA is without margins if and only if the lower border is 0 and the upper border is 1. That is, the restriction of the 
frequencies does not take place.

𝑟-UMDA. We generalize the UMDA (Algorithm 1) to the 𝑟-UMDA (Algorithm 2), utilizing our framework. This leads to the same 
generalization mentioned by Santana et al. [13]. Like the UMDA, the 𝑟-UMDA has three parameters, namely the population size 
𝜆 ∈ ℕ≥1, the selection size 𝜇 ∈ [𝜆], and the 𝑟-valued fitness function 𝑓 . It also updates its frequencies analogously to the UMDA by 
choosing 𝜇 best individuals from the population of size 𝜆 and then setting each frequency at position 𝑖 ∈ [𝑛] for value 𝑗 ∈ [0..𝑟 − 1]
to the relative frequency of value 𝑗 at position 𝑖 among the 𝜇 best individuals (line 7). We note that this results in a valid frequency 
vector for each row 𝑖 ∈ [𝑛], since∑

𝑗∈[0..𝑟−1]
1
𝜇

∑
𝑘∈[𝜇]

1{𝑥(𝑡,𝑘)
𝑖

= 𝑗} = 1
𝜇

∑
𝑘∈[𝜇]

∑
𝑗∈[0..𝑟−1]

1{𝑥(𝑡,𝑘)
𝑖

= 𝑗} = 1
𝜇

∑
𝑘∈[𝜇]

1 = 1.

𝑟-PBIL. Another popular univariate EDA is population-based incremental learning (PBIL [46]). It operates very similarly to the 
UMDA, with the only difference being in how it performs an update. In contrast to the UMDA, the PBIL does not set a frequency 
to the relative frequency of respective values at a position but, instead, computes the convex combination of the relative frequency 
with the current frequency value in its frequency vector. To this end, it utilizes a parameter 𝜌 ∈ [0, 1], the scaling factor.

We generalize the PBIL to the 𝑟-PBIL (Algorithm 3). Each frequency vector of the 𝑟-PBIL sums to 1 (before the restriction) because 
it is a convex combination of the 𝑟-UMDA’s update (which sums to 1) and the current frequency vector (which also sums to 1).

𝑟-cGA. Another popular univariate EDA is the compact genetic algorithm (cGA [47]). The cGA only has a single parameter 𝐾 ∈ℝ>0, 
the hypothetical population size, and it creates only two samples each iteration. It ranks these two samples by fitness and then adjusts 
each frequency by

1
𝐾

such that the frequency of the value of the better sample is increased and that of the worse sample decreased.

We generalize the cGA to the 𝑟-cGA (Algorithm 4). Each frequency vector of the 𝑟-cGA sums to 1 after the update (before the 
restriction) because exactly one entry is increased by

1
𝐾

and exactly one value is decreased by this amount (noting that this can be 
the same frequency, in which case no change is made overall).

5. Genetic drift

We prove an upper bound on the effect of genetic drift for 𝑟-valued EDAs (Theorem 3) in a similar fashion as Doerr and Zheng [18]

for binary decision variables. This allows us to determine parameter values for EDAs that avoid the usually unwanted effect of genetic 
drift. The main novelty of our result over that by Doerr and Zheng [18] is that we use a slightly technical martingale concentration 
5

result due to McDiarmid [19] that allows one to profit from small variances. Such an approach is necessary. If one directly applies 
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Algorithm 4: The 𝑟-cGA with parameter 𝐾 ∈ℝ>0, maximizing an 𝑟-valued fitness function 𝑓 .

1 𝑡 ← 0;

2 𝑝(0) ← ( 1
𝑟
)(𝑖,𝑗)∈[𝑛]×[0..𝑟−1] ;

3 repeat // iteration 𝑡

4 𝑥(𝑡,1), 𝑥(𝑡,2) ← two individuals, independently sampled from 𝑝(𝑡) ;

5 𝑦(𝑡,1) ← individual with the higher fitness from {𝑥(𝑡,1) , 𝑥(𝑡,2)} (breaking ties uniformly at random);

6 𝑦(𝑡,2) ← individual from {𝑥(𝑡,1) , 𝑥(𝑡,2)} ⧵ {𝑦(𝑡,1)};

7 for (𝑖, 𝑗) ∈ [𝑛] × [0..𝑟− 1] do

8 𝑝
(𝑡+1)
𝑖,𝑗

← 𝑝
(𝑡)
𝑖,𝑗
+
(
1{𝑦(𝑡,1)

𝑖,𝑗
= 𝑗} − 1{𝑦(𝑡,2)

𝑖,𝑗
= 𝑗}

) 1
𝐾

;

9 𝑝(𝑡+1) ← restriction of 𝑝
(𝑡+1)

to 
[

1
(𝑟−1)𝑛

,1 − 1
𝑛

]
, as described in eq. (1);

10 𝑡 ← 𝑡 + 1;

11 until termination criterion met;

the methods presented by Doerr and Zheng [18], one obtains estimates for the genetic drift times that are by a factor of Θ(𝑟) lower 
than ours (that is, the genetic-drift effect appears 𝑟 times stronger).

In Sections 5.1 and 5.2, we first present a general introduction to the phenomenon of genetic drift. In Section 5.3, we then prove 
a concentration result on neutral positions (Theorem 3). Last, in Section 5.4, we consider the setting of weak preference.

5.1. Introduction to genetic drift

In EDAs, genetic drift means that a frequency reaches the extreme values 0 or 1 due to random fluctuations from the stochasticity 
of the process and in the absence of a clear signal from the objective function.

While there is no proof that genetic drift is always problematic, the general opinion is that this effect should better be avoided. 
This is supported by the following observations and results: (i) When genetic drift is strong, many frequencies (in the binary case) 
approach the extreme values 0 and 1 and, consequently, the behavior of the EDA comes close to the one of a mutation-based EA, so 
the advantages of an EDA might be lost. (ii) The vast majority of the runtime results for EDAs, especially those for harder scenarios 
like noise [2] or multimodality [5], have only been shown in regimes with low genetic drift. (iii) For some particular situations, 
a drastic performance decrease from genetic drift was proven. For example, the UMDA with standard selection pressure but small 
population size 𝜆 ∈ Ω(ln(𝑛)) ∩ 𝑜(𝑛) has a runtime exponential in 𝜆 on the DECEPTIVELEADINGBLOCKS problem [16]. In contrast, 
when the population size is large enough to prevent genetic drift, here 𝜆 = Ω(𝑛 ln(𝑛)), then the runtime drops to 𝑂(𝜆𝑛) with high 
probability.

Genetic drift in EDAs has been studied since the ground-breaking works of Shapiro [48–50], and it appears in many runtime 
analyses such as [8,51–55]. Experimental evidences for the negative impact of genetic drift can further be found in [18,32,56]. The 
most final answer to the genetic-drift problem for univariate EDAs, including clear suggestions to choose the parameters as to avoid 
genetic drift, was given by Doerr and Zheng [18]. In the case of the UMDA (and binary decision variables, that is, the classic model), 
their work shows that a neutral frequency (defined in Section 5.2) stays with high probability in the middle range [0.25, 0.75] for 
the first 𝑇 iterations if 𝜇 = 𝜔(𝑇 ). This bound is tight. When regarding 𝑛 frequencies together, a value of 𝜇 =Ω(𝑇 ln(𝑛)) with implicit 
constant computable from [18, Theorem 2] ensures with high probability that all frequencies stay in the middle range for at least 
𝑇 iterations. Hence these bounds give a clear indication how to choose the selection size 𝜇 when aiming to run the UMDA for a 
given number of iterations. We note that the quantification of genetic drift can also be used to design automated ways to choose 
parameters, see the work by Zheng and Doerr [57], when no a-priori estimate on 𝑇 is available.

Given the importance of a good understanding of genetic drift, we now analyze genetic drift for multi-valued EDAs, more specifi-

cally, for the 𝑟-UMDA. We are optimistic that, analogous to the work by Doerr and Zheng [18], very similar arguments can be applied 
for other main univariate EDAs.

5.2. Martingale property of neutral positions

Genetic drift is usually studied via neutral positions of a fitness function. Let 𝑓 be an 𝑟-valued fitness function. We call a position 
𝑖 ∈ [𝑛] (as well as, for an individual 𝑥 ∈ [0..𝑟 − 1]𝑛, its corresponding variable 𝑥𝑖 and the associated frequencies of an EDA) neutral
(w.r.t. 𝑓 ) if and only if, for all 𝑥 ∈ [0..𝑟 − 1]𝑛, the value 𝑥𝑖 has no influence on the value of 𝑓 , that is, if and only if for all individuals 
𝑥, 𝑥′ ∈ [0..𝑟− 1]𝑛 such that for all 𝑗 ∈ [𝑛] ⧵ {𝑖} it holds that 𝑥𝑗 = 𝑥′

𝑗
, we have 𝑓 (𝑥) = 𝑓 (𝑥′).

An important property of neutral variables that we capitalize on in our analysis of genetic drift is that their frequencies in typical 
EDAs without margins form martingales [18]. This observation extends the corresponding one for EDAs for binary representations. 
We make this statement precise for the 𝑟-UMDA.

Lemma 1. Let 𝑓 be an 𝑟-valued fitness function, and let 𝑖 ∈ [𝑛] be a neutral position of 𝑓 . Consider the 𝑟-UMDA without margins optimiz-
ing 𝑓 . For each 𝑗 ∈ [0..𝑟− 1], the frequencies (𝑝(𝑡)

𝑖,𝑗
)𝑡∈ℕ are a martingale.

Proof. Let 𝑗 ∈ [0..𝑟 − 1]. Since the algorithm has no margins, in each iteration 𝑡 ∈ ℕ, no restriction takes place, so it holds that 
6

𝑝
(𝑡+1)
𝑖,𝑗

= 1
𝜇

∑
𝑘∈[𝜇] 1{𝑥

(𝑡,𝑘)
𝑖

= 𝑗}. Since 𝑖 is neutral, the selection of the 𝜇 best individuals is not affected by the values at position 𝑖 of 



Theoretical Computer Science 1003 (2024) 114622F. Ben Jedidia, B. Doerr and M.S. Krejca

the 𝜆 samples. Consequently, for each 𝑘 ∈ [𝜇], the value 𝑥
(𝑡,𝑘)
𝑖

follows a Bernoulli distribution with success probability 𝑝(𝑡)
𝑖,𝑗

. Hence, 
E[1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ∣ 𝑝(𝑡)

𝑖,𝑗
] = 𝑝

(𝑡)
𝑖,𝑗

. Further, by linearity of expectation, we get

E

[
𝑝
(𝑡+1)
𝑖,𝑗

∣ 𝑝(𝑡)
𝑖,𝑗

]
= 1
𝜇

∑
𝑘∈[𝜇]

E

[
1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ||| 𝑝(𝑡)𝑖,𝑗] = 1

𝜇

∑
𝑘∈[𝜇]

𝑝
(𝑡)
𝑖,𝑗

= 𝑝
(𝑡)
𝑖,𝑗
,

proving the claim. □

As in previous works on genetic drift, the martingale property of neutral frequencies allows to use strong martingale concentration 
results. Since in our setting the frequencies start at a value of 1

𝑟
, we can only tolerate smaller deviations from this value, namely up to 

1
2𝑟 in either direction. With the methods of Doerr and Zheng [18], this reduces the genetic drift by a factor of Θ(𝑟2). We therefore use 
a stronger martingale concentration result, namely [19, Theorem 3.15], which allows to exploit the lower sampling variance present 
at frequencies in Θ( 1

𝑟
). We note that we adjust the theorem by incorporating comments by McDiarmid, especially [19, eq. (41)], 

mentioning that the absolute value in eq. (41) should be around the sum, not around the maximum, as also observed by Doerr and 
Zheng [18].

Theorem 2 (Martingale concentration result based on the variance [19, Theorem 3.15 and eq. (41)]). Let (𝑋𝑡)𝑡∈ℕ be a martingale with 
respect to a filtration (𝑡)𝑡∈ℕ. Further, for all 𝑡 ∈ ℕ≥1, denote the deviation by dev𝑡 ∶= |𝑋𝑡 −𝑋𝑡−1|. In addition, let 𝑏 = sup𝑡∈ℕ dev𝑡, and 
assume that 𝑏 is finite. Last, for all 𝑡 ∈ ℕ, let 𝑣̂𝑡 = sup

∑
𝑠∈[𝑡] Var[𝑋𝑠 −𝑋𝑠−1 ∣ 𝑠−1]. Then for all 𝑡 ∈ ℕ and all 𝜀 ∈ℝ≥0, it holds that

Pr
[
max𝑠∈[0..𝑡] |𝑋𝑠 −E

[
𝑋0
] | ≥ 𝜀

]
≤ 2exp

(
− 𝜀2

2𝑣̂𝑡 + 2𝑏𝜀∕3

)
.

5.3. Upper bound on the genetic-drift effect of a neutral position

By utilizing Theorem 2, we show for how long the frequencies of the 𝑟-UMDA at neutral positions stay concentrated around their 
initial value of

1
𝑟
.

Theorem 3. Let 𝑓 be an 𝑟-valued fitness function, and let 𝑖 ∈ [𝑛] be a neutral position of 𝑓 . Consider the 𝑟-UMDA optimizing 𝑓 . Let 𝑇 ∈ℕ
and 𝑗 ∈ [0..𝑟 − 1]. Then

Pr
[
max𝑠∈[0..𝑇 ]

||||𝑝(𝑠)𝑖,𝑗 − 1
𝑟

|||| ≥ 1
2𝑟

]
≤ 2exp

(
− 𝜇

12𝑇 𝑟+ (4∕3)𝑟

)
.

Proof. We apply the same proof strategy as in the proof of [18, Theorem 1]. That is, we aim to apply Theorem 2. Naturally, one 
would apply the theorem to the sequence of frequencies (𝑝(𝑡)

𝑖,𝑗
)𝑡∈ℕ. However, since the deviation of 𝑝𝑖,𝑗 is very large, namely 1, we 

consider instead a more fine-grained process (𝑍𝑡)𝑡∈ℕ, which, roughly speaking, splits each iteration of the 𝑟-UMDA into 𝜇 sections, 
each of which denotes that an additional sample is added to the update. Formally, for all 𝑡 ∈ ℕ and 𝑎 ∈ [0..𝜇 − 1], let

𝑍𝑡𝜇+𝑎 = 𝑝
(𝑡)
𝑖,𝑗
(𝜇 − 𝑎) +

∑
𝑘∈[𝑎]

1{𝑥(𝑡+1,𝑘)
𝑖

= 𝑗}.

Note that, for all 𝑡 ∈ ℕ≥1, it holds that 𝑍𝑡𝜇 = 𝜇𝑝
(𝑡)
𝑖,𝑗

. Thus, the natural filtration (𝑡)𝑡∈ℕ of 𝑍 allows us to measure 𝑝𝑖,𝑗 .

In order to apply Theorem 2, we check that its assumptions are met. To this end, we first show that 𝑍 is a martingale. Since 𝑖 is 
neutral, the selection of the 𝜇 best individuals is not affected by the values at position 𝑖 of the 𝜆 samples. Consequently, for all 𝑘 ∈ [𝜇], 
the random variable 𝑥(𝑡,𝑘)

𝑖
follows a Bernoulli distribution with success probability 𝑝

(𝑡)
𝑖,𝑗

. Thus, we get for all 𝑡 ∈ ℕ and 𝑎 ∈ [0..𝜇 − 2]
that

E
[
𝑍𝑡𝜇+𝑎+1 −𝑍𝑡𝜇+𝑎 ∣ 𝑡𝜇+𝑎

]
= −𝑝(𝑡)

𝑖,𝑗
+E[1{𝑥(𝑡,𝑎+1)

𝑖
= 𝑗} ∣ 𝑡𝜇+𝑎] = 0, (2)

and further, by the definition of 𝑝(𝑡+1)
𝑖,𝑗

, that

E
[
𝑍(𝑡+1)𝜇 −𝑍𝑡𝜇+𝜇−1 ∣ 𝑡𝜇+𝜇−1

]
= 𝜇E[𝑝(𝑡+1)

𝑖,𝑗
∣ 𝑡𝜇+𝜇−1] − 𝑝

(𝑡)
𝑖,𝑗

−E
[∑

𝑘∈[𝜇−1]
1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ||| 𝑡𝜇+𝜇−1

]
=
∑

𝑘∈[𝜇]
E[1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ∣ 𝑡𝜇+𝜇−1] − 𝑝

(𝑡)
𝑖,𝑗

−
∑

𝑘∈[𝜇−1]
E[1{𝑥(𝑡,𝑘)

𝑖
= 𝑗} ∣ 𝑡𝜇+𝜇−1]

=E[1{𝑥(𝑡,𝜇)
𝑖

= 𝑗} ∣ 𝑡𝜇+𝜇−1] − 𝑝
(𝑡)
𝑖,𝑗

= 0, (3)

showing that 𝑍 is a martingale.

We take an alternative view of the event {max𝑠∈[0..𝑇 ] |𝑝(𝑠)𝑖,𝑗 − 1
𝑟
| ≥ 1

2𝑟}, whose probability we aim to bound. Note that this event 
7

is equivalent to {∃𝑠 ∈ [0..𝑇 ]∶ |𝑝(𝑠)
𝑖,𝑗

− 1
𝑟
| ≥ 1

2𝑟}. A superset of this event is the event where we stop at the first iteration such that the 
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inequality holds. To this end, let 𝑆 = inf{𝑡 ∈ℕ ∣𝑍𝑡 ∉ [ 𝜇2𝑟 , 
3𝜇
2𝑟 ]} be a stopping time (with respect to  ). From now on, we consider the 

stopped process 𝑍 of 𝑍 with respect to 𝑆 . That is, for all 𝑡 ∈ ℕ, it holds that 𝑍𝑡 =𝑍min{𝑡,𝑆}. Since 𝑍 is a martingale, so is 𝑍 .

Let 𝑡 ∈ ℕ, and let 𝑌𝑡 be a Bernoulli random variable with success probability 𝑝
(⌊𝑡∕𝜇⌋)
𝑖,𝑗

that is 𝑡-measurable. Note that by eqs. (2)

and (3), disregarding the expected values, it holds that

𝑍𝑡+1 −𝑍𝑡 = (𝑌𝑡 − 𝑝
(⌊𝑡∕𝜇⌋)
𝑖,𝑗

) ⋅ 1{𝑡 < 𝑆}.

Thus, the maximum deviation 𝑏 of 𝑍 is 1. Further, let 𝑣̂𝑡 denote the sum of variances, as defined in Theorem 2. Then, since 𝑝
(⌊𝑡∕𝜇⌋)
𝑖,𝑗

and 1{𝑡 < 𝑆} are 𝑡-measurable and since, due to 𝑍 being stopped, it holds that 𝑝(⌊𝑡∕𝜇⌋)
𝑖,𝑗

⋅ 1{𝑡 < 𝑆} ∈ [ 1
2𝑟 , 

3
2𝑟 ], we get

Var
[
𝑍𝑡+1 −𝑍𝑡 ∣ 𝑡

]
=Var

[
𝑌𝑡 ⋅ 1{𝑡 < 𝑆} ∣ 𝑡

]
= 𝑝

(⌊𝑡∕𝜇⌋)
𝑖,𝑗

(
1 − 𝑝

(⌊𝑡∕𝜇⌋)
𝑖,𝑗

)
⋅ 1{𝑡 < 𝑆} ≤ 3

2𝑟
.

Hence, 𝑣̂𝑡 ≤
3𝑡
2𝑟 .

Let 𝑝 denote the stopped process of 𝑝𝑖,𝑗 with respect to 𝑆 . Applying Theorem 2 with 𝑡 = 𝜇𝑇 and our estimates above, noting that 
𝑍0 =

𝜇

𝑟
, yields

Pr
[
max

𝑠∈[0..𝑇 ]

||||𝑝𝑠 − 1
𝑟

|||| ≥ 1
2𝑟

]
= Pr

[
max

𝑠∈[0..𝑇 ]
|𝑝𝑠 −E[𝑝0]| ≥ 1

2𝑟

]
= Pr

[
max

𝑠∈[0..𝑇 ]
1
𝜇
|𝑍𝑠𝜇 −E[𝑍0]| ≥ 1

2𝑟

]
≤ Pr

[
max
𝑠∈[0..𝑡]

|𝑍𝑠 −E[𝑍0]| ≥ 𝜇

2𝑟

]
≤ 2exp

(
−

(𝜇∕(2𝑟))2

2 ⋅ 3𝜇𝑇 ∕(2𝑟) + (2∕3)𝜇∕(2𝑟)

)
= 2exp

(
− 𝜇

12𝑇 𝑟+ (4∕3)𝑟

)
.

Since we only need to consider the stopped process, as explained above, and since 𝑝 is identical to 𝑝𝑖,𝑗 until the process stops, the 
result follows. □

5.4. Upper bound for positions with weak preference

A position is rarely neutral for a given fitness function. However, we prove that the results on neutral positions translate to 
positions where one value is better than all other values. This is referred to as weak preference. Formally, we say that an 𝑟-valued 
fitness function 𝑓 has a weak preference for a value 𝑗 ∈ [0..𝑟− 1] at a position 𝑖 ∈ [𝑛] if and only if, for all 𝑥1, ..., 𝑥𝑛 ∈ [0..𝑟− 1], it holds 
that

𝑓
(
𝑥1, .., 𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1, ..., 𝑥𝑛

)
≤ 𝑓

(
𝑥1, .., 𝑥𝑖−1, 𝑗, 𝑥𝑖+1, ..., 𝑥𝑛

)
.

We now adapt Lemma 7 by Doerr and Zheng [18] to the 𝑟-UMDA.

Theorem 4. Consider two r-valued fitness functions 𝑓, 𝑔 to optimize using the 𝑟-UMDA, such that without loss of generality, the first position 
of f weakly prefers 0 and the first position of g is neutral.

Let 𝑝 correspond to the frequency matrix of 𝑓 and 𝑞 to the frequency matrix of 𝑔, both defined by the 𝑟-UMDA. Then, for all 𝑡 ∈ ℕ, it 
holds that 𝑞(𝑡)1,0 ⪯ 𝑝

(𝑡)
1,0.

Proof. We prove our claim by induction on the number of iterations 𝑡. For the base case 𝑡 = 0, all frequencies are 1∕𝑟. Hence, 
𝑞
(0)
1,0 ⪯ 𝑝

(0)
1,0.

For the induction step, let 𝑡 ∈ ℕ≥1 and let 𝑗 ∈ [0..𝑟− 1]. Further, let 𝑌𝑗 ∼ Bin
(
𝜇, 𝑞

(𝑡)
0,𝑗

)
. Since 0 is a neutral position of 𝑔, the 

selection of the 𝜇 best individuals is not affected by the values at position 0 of the 𝜆 samples. Thus, 𝑞(𝑡+1)1,𝑗 = 1
𝜇
𝑌 . Further, since 𝑓

weakly prefers 0s, defining 𝑌 ′
𝑗
∼ Bin

(
𝜇, 𝑝

(𝑡)
0,𝑗

)
, it holds that 𝑝𝑡+11,𝑗 ≳

1
𝜇
𝑌 ′.

Analogously to Doerr and Zheng [18], we note that since 𝑝(𝑡)1,0 stochastically dominates 𝑞(𝑡)1,0 by induction hypothesis, there exists 
a coupling of the two probability spaces that describe the states of the two algorithms at iteration 𝑡 in such a way that 𝑝(𝑡)1,0 ≥ 𝑞

(𝑡)
1,0 for 

any point 𝜔 in the coupling probability space. For such an 𝜔, it then follows that 𝑌𝑗 ⪯ 𝑌 ′
𝑗
, as the success probability of the former is 

bounded from above by that of the latter. Hence, 𝑞(𝑡+1)1,𝑗 = 1
𝜇
𝑌 ⪯ 1

𝜇
𝑌 ′ ⪯ 𝑝

(𝑡+1)
1,𝑗 , which proves the claim. □

We now apply Theorem 4 and extend Theorem 3 to positions with weak preference.

Theorem 5. Let 𝑓 be an 𝑟-valued fitness function with a weak preference for 0 at position 𝑖 ∈ [𝑛]. Consider the 𝑟-UMDA optimizing 𝑓 . Let 
𝑇 ∈ℕ. Then[

(𝑠) 1 ] (
𝜇

)

8

Pr min𝑠∈[0..𝑇 ] 𝑝𝑖,0 ≤ 2𝑟
≤ 2exp −

12𝑇 𝑟+ (4∕3)𝑟
. (4)
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Proof. Let 𝑔 be an 𝑟-valued fitness function with neutral position 𝑖. Let 𝑞 be the frequency matrix of the 𝑟-UMDA optimizing 𝑔. By 
Theorem 4, it follows for all 𝑠 ∈ ℕ that 𝑝(𝑠)

𝑖,0 stochastically dominates 𝑞(𝑠)
𝑖,0 . Applying Theorem 3 to 𝑔 for position 𝑖, we have

Pr
[
min𝑠∈[0..𝑇 ] 𝑞

(𝑠)
𝑖,0 ≤

1
2𝑟

]
≤ 2exp

(
− 𝜇

12𝑇 𝑟+ (4∕3)𝑟

)
.

Using the stochastic domination yields the tail bound for 𝑓 . □

6. Runtime analysis of the 𝒓-UMDA

We analyze the runtime of the 𝑟-UMDA (Algorithm 2) on an 𝑟-valued variant of LEADINGONES. We start by describing the previous 
runtime results of EDAs on LEADINGONES (Section 6.1), then define the 𝑟-LEADINGONES problem formally (Section 6.2), and finally 
state and prove our main result (Theorem 6, Section 6.3).

6.1. Previous runtime analyses of EDAs on LEADINGONES

In contrast to ONEMAX (another popular theory benchmark function), LEADINGONES is not that extensively studied for EDAs. 
This is surprising, as LEADINGONES is interesting as a benchmark for univariate EDAs, since the function introduces dependencies 
among the different positions of a bit string, but the model of univariate EDAs assumes independence. However, since LEADINGONES

only has a single local maximum, known runtime results are rather fast.

In a first mathematical runtime analysis of an EDA, however, using the unproven no-error-assumption (which essentially states 
that there is no genetic drift), it was shown that the UMDA optimizes the LEADINGONES benchmark in expected time 𝑂(𝜆𝑛). This was 
made rigorous by Chen et al. [27] with a proof that the UMDA with population size Ω(𝑛2+𝜀) optimizes LEADINGONES in time 𝑂(𝜆𝑛)
with high probability. Here the relatively large required population stems from the, then, incomplete understanding of genetic drift.

In a remarkable work [28], Dang and Lehre prove a runtime of 𝑂(𝑛𝜆 ln(𝜆) + 𝑛2), only assuming that the sample size 𝜆 is at least 
logarithmic. Hence this result applies both to regimes without and with genetic drift. In the regime with genetic drift, however, the 
dependence on 𝜆 is slightly worse than in the result by Chen et al. [27]. This was improved by Doerr and Krejca [20], where an 
𝑂(𝑛𝜆 ln(𝜆)) upper bound was shown for the whole regime 𝜆 =Ω(𝑛 ln(𝑛)) of low genetic drift. More precisely, when 𝜇 =Ω(𝑛 ln(𝑛)) and 
𝜆 = Ω(𝜇), both with sufficiently large implicit constants, then the runtime of the UMDA on LEADINGONES is 𝑂(𝑛𝜆 ln( 𝜆

𝜇
)) with high 

probability. We note that the analysis by Doerr and Krejca [20] is technically much simpler than the previous ones, in particular, it 
avoids the complicated level-based method used by Dang and Lehre [28]. We note that also lower bounds [3,20] and runtimes in the 
presence of noise have been regarded. Since we have no such results, we refer to the original works.

Besides the UMDA, LEADINGONES was considered in the analysis of newly introduced univariate EDAs. Interestingly, each of these 
algorithms optimizes LEADINGONES in 𝑂(𝑛 ln(𝑛)) with high probability. This runtime is faster by a factor of 𝑛∕ ln(𝑛) when compared 
to classical EAs, and it suggests that LEADINGONES is a rather easy problem for EDAs. Friedrich, Kötzing, and Krejca [29] proved 
the first of these results for their stable compact genetic algorithm (scGA), which introduces an artificial bias into its update process 
that is overcome by the LEADINGONES function. However, it was later proven that the scGA fails on the typically easy ONEMAX

function [58], highlighting that the scGA is not a good EDA in general.

The next result was proven by Doerr and Krejca [58], who introduce the significance-based compact genetic algorithm (sig-cGA). 
The sig-cGA saves a history of good individuals and only updates a frequency when the number of bits in the history of that position 
significantly deviates from its expectation. This algorithm also performs well on ONEMAX, i.e., exhibits an 𝑂(𝑛 ln(𝑛)) expected 
runtime.

The last result was proven recently by Ajimakin and Devi [59], who introduce the competing genes evolutionary algorithm (cgEA). 
The cgEA utilizes the Gauss–Southwell score as a quality metric for the positions of its samples. Iteratively, it picks the position 𝑖

with the best score and creates a new population by letting each individual of the previous population compete against a copy of it 
where the bit at position 𝑖 is flipped. Based on the best individuals created this way, the frequency at position 𝑖 is immediately set to 
either 0 or 1, whichever value turns out to be better. This approach works very well for a variety of theory benchmarks, as proven 
by the authors. For example, for optimal parameter values, it exhibits a (deterministic) linear runtime on ONEMAX, and it optimizes 
the JUMP𝑘 benchmark with high probability in 𝑂(4𝑘𝑛 ln(𝑛)) time.

6.2. The 𝑟-LEADINGONES benchmark

The 𝑟-LEADINGONES function (eq. (5)) is a generalization of the classical LEADINGONES benchmark [60] from the binary to the 
multi-valued domain. Before we define the generalization, we briefly present the LEADINGONES function.

LEADINGONES. LEADINGONES [60] is one of the most commonly mathematically analyzed benchmark functions, both in the 
general domain of evolutionary computation [45] as well as in the domain of EDAs [32]. For a bit string of length 𝑛 ∈ ℕ≥1, it 
returns the number of consecutive 1s, starting from the leftmost position. Formally, LEADINGONES∶ {0, 1}𝑛 → [0..𝑛] is defined as 
𝑥 ↦

∑
𝑖∈[𝑛]

∏
𝑗∈[𝑖] 𝑥𝑖. The function has a single local maximum at the all-1s string, which is also its global maximum.

𝑟-LEADINGONES. Inspired by LEADINGONES from the binary domain, we define 𝑟-LEADINGONES∶ [0..𝑟 − 1]𝑛 → [0..𝑛] as the func-
9

tion that returns the number of consecutive 0s, starting from the leftmost position. Formally,
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𝑟-LEADINGONES∶ 𝑥↦
∑

𝑖∈[𝑛]

∏
𝑗∈[𝑖]

1{𝑥𝑗 = 0}. (5)

In contrast to the binary case, the single local optimum of 𝑟-LEADINGONES is the all-0s string, which is also its global optimum.

6.3. Runtime results

We analyze the runtime of the 𝑟-UMDA (Algorithm 2) on the 𝑟-LEADINGONES benchmark (eq. (5)) in the regime with low genetic 
drift. For the upper bound (Theorem 6), compared to the binary case [20, Theorem 5], we get an extra factor of order 𝑟 ln(𝑟)2 in the 
runtime. The factor of 𝑟 is a result of the increased waiting time to see a certain position out of 𝑟. The factor of ln(𝑟)2 stems from 
the choice to stay in the regime with low genetic drift as well as for the time it takes a frequency to get to the upper border. For the 
lower bound, (Theorem 10), compared to the binary case [20, Theorem 6], we get an extra factor of order 𝑟 ln(𝑟).

Our two bounds differ by a factor in the order of ln(𝑟) (for polynomial population sizes). We believe that our lower bound is 
missing a factor of ln(𝑟), as we currently do not account for the time it takes a frequency to get from its starting value

1
𝑟

to 1 − 1
𝑛

for 
this bound.

We prove the upper bound in Section 6.3.1 and the lower bound in Section 6.3.2. Both bounds are a generalization of the binary 
case.

6.3.1. Upper bound
Our upper bound shows that the number of iterations until an optimum is found for the first time is almost linear in 𝜆 and in 𝑛, 

only adding a factor in the order of ln(𝑟).

Theorem 6. Let 𝑠 ∈ℝ≥1. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 3𝑠𝑒𝜇, 𝜇 ≥ 24(𝑛 + 1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟)), and 𝑛 ≥ 4𝑟. 
Then with a probability of at least 1 − 2

𝑛
− ln2𝑠(2𝑟)𝑛2−0.5𝑛 =∶ 𝑝succ, the frequency vector corresponding to the value 0 is set to (1 − 1

𝑛
)𝑖∈[𝑛] in 

𝑛 ln2𝑠(2𝑟) iterations.
Hence, after 𝜆

(
𝑛 ln2𝑠(2𝑟) +1

)
fitness function evaluations, the 𝑟-UMDA samples the optimum with probability at least 𝑝succ

(
1 −exp(− 𝜆

2𝑒 )
)
.

The basic premise for our proof is that for the entirety of the considered iterations, frequencies corresponding to the value 0
remain above a given threshold since 𝑟-LEADINGONES weakly prefers 0 at all positions. We define this threshold as 1

2𝑟 , and we show 
that in a sequential manner, position by position, the frequencies corresponding to 0 are brought to 1 − 1

𝑛
within a given number of 

iterations until all positions are covered.

First, we provide a guarantee on the concentration of all the probabilities during the entirety of the algorithm’s runtime, in a way 
to avoid genetic drift and to remain above a minimal threshold for all frequencies.

Lemma 7. Let 𝑠 ∈ℝ≥1. Consider the 𝑟-UMDA with 𝜆 ≥ 𝜇 ≥ 24(𝑛 +1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟)) optimizing a function that weakly prefers 0 at every 
position. Then with a probability of at least 1 − 2

𝑛
, for each 𝑖 ∈ [𝑛], the frequency 𝑝(𝑡)

𝑖,0 remains above 1
2𝑟 for the first 𝑛(1 + ln2𝑠(𝑟)) iterations.

Proof. By Theorem 5 with 𝑇 = 𝑛(1 + ln2𝑠(𝑟)), we have for all 𝑖 ∈ [𝑛] that

Pr
[

min
𝑘=1,...,𝑇

𝑝
(𝑘)
𝑖,0 ≤

1
2𝑟

]
≤ 2exp

⎛⎜⎜⎝−
𝜇

12𝑛(1 + ln2𝑠(𝑟))𝑟+
4𝑟
3

⎞⎟⎟⎠ .
Since 𝜇 ≥ 24(𝑛 + 1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟)), we get

Pr
[

min
𝑘=1,...,𝑇

𝑝
(𝑘)
𝑖,0 ≤

1
2𝑟

]
≤ 2exp

⎛⎜⎜⎝−
24(𝑛+ 1)𝑟 ln(𝑛)(1 + ln2𝑠(𝑟))

12𝑛(1 + ln2𝑠(𝑟))𝑟+
4𝑟
3

⎞⎟⎟⎠
≤ 2exp

(
−
24(𝑛+ 1) ln(𝑛)(1 + ln2𝑠(𝑟))

12(𝑛+ 1)(1 + ln2𝑠(𝑟))

)
≤ 2exp (−2 ln(𝑛)) .

Hence, it follows that

Pr
[
min𝑘=1,...,𝑇 𝑝

(𝑘)
𝑖,0 ≤

1
2𝑟

]
≤

2
𝑛2
.

Applying a union bound over all 𝑛 positions yields the result. □

In the proof of our next result, we apply the following Chernoff bound. We apply it in order to quantify the number of iterations 
10

necessary to converge every position 𝑖 ∈ [𝑛].
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Theorem 8 (Chernoff bound [61, Theorem 1.10.5]). Let 𝑘 ∈ ℕ≥1, 𝛿 ∈ [0,1], and let 𝑋 be the sum of 𝑘 independent random variables each 
taking values in [0,1]. Then

Pr [𝑋 ≤ (1 − 𝛿) E [𝑋]] ≤ exp
(
− 𝛿2E [𝑋]

2

)
.

An important concept for our analysis, following the approach by Doerr and Krejca [20], is that a position is critical. Informally, a 
position is critical if and only if the frequencies for all smaller positions corresponding to value 0 are at the upper border. Our runtime 
proof relies on showing that the 𝑟-UMDA quickly increases the frequency of a critical position to the upper border, thus making the 
next position critical. Formally, let 𝑡 ∈ ℕ. We call a position 𝑖 ∈ [𝑛] critical for the 𝑟-UMDA on 𝑟-LEADINGONES in iteration 𝑡, if and 
only if for all 𝑘 ∈ [𝑖 − 1], it holds that 𝑝(𝑡)

𝑘,0 = 1 − 1
𝑛
, and that 𝑝(𝑡)

𝑖,0 < 1 − 1
𝑛
.

We now show that once a position 𝑖 ∈ [𝑛] becomes critical, with high probability, with 𝑠 ∈ ℝ≥1 being an appropriate value 
separating 𝜆 from 𝜇 (that is, defining the selection pressure), it takes less than 𝑛 ln2𝑠(𝑟 + 1) iterations to bring the frequency of the 
value 0 to the upper border 1 − 1

𝑛
. We also prove that it remains there for a sufficient number of iterations until the convergence of 

the frequency matrix.

Lemma 9. Let 𝑠, 𝑢 ∈ℝ≥1. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 3𝑠𝑒𝜇 and 𝜇 ∈ ℕ≥1. Consider an iteration 𝑡 ∈ℕ such 
that position 𝑖 ∈ [𝑛] is critical, and let 𝑏 ∈ℝ>0 such that 𝑝(𝑡)

𝑖,0 ≥ 𝑏 ≥ 2
𝑛
. Then with a probability of at least 1 − 𝑢 ln2𝑠(

1
𝑏
) exp

(
− 𝑠𝜇𝑏

24

)
, it holds 

for all 𝜃 ∈
[
ln2𝑠(

1
𝑏
)..𝑢 ln2𝑠(

1
𝑏
)
]

that 𝑝(𝑡+𝜃)
𝑖,0 = 1 − 1

𝑛
.

Proof. We start by proving that, for all 𝜃 ∈ [0..𝑢 ln2𝑠(
1
𝑏
)], the frequency 𝑝(𝑡+𝜃)

𝑖,0 multiplies by at least 2𝑠 during an update, with high 

probability (and is then restricted). To this end, let 𝑡′ ∈ [𝑡..𝑡 + 𝜃], and assume that 𝑝(𝑡
′)

𝑖,0 ≥ 𝑏, and that position 𝑖 or a position greater 
than 𝑖 is critical (where we assume, for convenience, that if all frequencies for value 0 are 1 − 1

𝑛
, then position 𝑛 + 1 is critical). 

Furthermore, let 𝑋 denote the number of sampled individuals in iteration 𝑡′ that have at least 𝑖 leading 0s. Note that 𝑝(𝑡)
𝑖,0 ≥ 𝑏 by 

assumption as well as that 𝑖 is critical in iteration 𝑡. We discuss later via induction why these assumptions also hold for iteration 𝑡′.
We consider the process of sampling a single individual. Since position at least 𝑖 is critical, by definition, for all 𝑘 ∈ [𝑖 − 1], we 

have 𝑝(𝑡
′)

𝑘,0 = 1 − 1
𝑛
. Hence, the probability that all these positions are sampled as 0 for this individual is (1 − 1

𝑛
)𝑖−1 ≥ (1 − 1

𝑛
)𝑛−1 ≥ 1

𝑒
. 

This yields E [𝑋] ≥
𝜆𝑝

(𝑡′)
𝑖,0
𝑒

, and since 𝜆 ≥ 3𝑠𝑒𝜇, this yields E [𝑋] ≥ 3𝑠𝜇𝑝(𝑡
′)

𝑖,0 .

By the Chernoff bound (Theorem 8) and by the assumption 𝑝(𝑡
′)

𝑖,0 ≥ 𝑏, we get

Pr
[
𝑋 ≤

5
2
𝑠𝜇𝑝

(𝑡′)
𝑖,0

]
≤ Pr

[
𝑋 ≤

5
6
E [𝑋]

]
≤ exp

(
−E [𝑋]

72

)
≤ exp

(
−
𝑠𝜇𝑝

(𝑡′)
𝑖,0

24

)
≤ exp

(
− 𝑠𝜇𝑏

24

)
.

We consider 𝑝(𝑡
′+1)

𝑖,0 as defined in Section 4.2, which is the updated frequency before being restricted to 
[ 1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
. Since 

𝑝
(𝑡′+1)
𝑖,0 ≥min(𝑋

𝜇
, 1) by the definition of the update of the 𝑟-UMDA, we have

Pr
[
𝑝
(𝑡′+1)
𝑖,0 ≤min

(5
2
𝑠𝑝

(𝑡′)
𝑖,0 ,1

)]
≤ Pr

[
𝑋 ≤

5
2
𝑠𝜇𝑝

(𝑡′)
𝑖,0

]
≤ exp

(
− 𝑠𝜇𝑏

24

)
.

In order to update 𝑝
(𝑡′)
𝑖,0 , the frequency vector 𝑝

(𝑡′+1)
𝑖

is restricted to the interval 
[ 1
(𝑟−1)𝑛 , 1 −

1
𝑛

]
, which entails that the updated 

frequency 𝑝
(𝑡′+1)
𝑖,0 may reduce when compared to 𝑝

(𝑡′+1)
𝑖,0 . However, since the restriction adds at most the lower border (that is, 1

(𝑟−1)𝑛 ) 

to a frequency, any restriction rule adds at most a probability mass of
1
𝑛

to the frequency vector. We assume pessimistically that, in 

order for the frequencies to sum to 1, this mass is entirely subtracted from 𝑝
(𝑡′+1)
𝑖,0 during the restriction (noting that this does not 

take place once 𝑝(𝑡
′+1)

𝑖,0 ≥ 1 − 1
𝑛
, as this means that it is set to the upper border instead). Further, the assumption 𝑝(𝑡

′)
𝑖,0 ≥ 𝑏 ≥ 2

𝑛
yields 

that 52 𝑠𝑝
(𝑡′)
𝑖,0 − 1

𝑛
≥ 2𝑠𝑝(𝑡

′)
𝑖,0 . Hence, we get that

Pr
[
𝑝
(𝑡′+1)
𝑖,0 <min

(
2𝑠𝑝(𝑡

′)
𝑖,0 ,1 −

1
𝑛

)]
≤ Pr

[
𝑝
(𝑡′+1)
𝑖,0 <min

(5
2
𝑠𝑝

(𝑡′)
𝑖,0 − 1

𝑛
,1 − 1

𝑛

)]
≤ exp

(
− 𝑠𝜇𝑏

24

)
.

By induction on the iteration 𝑡′ (starting at 𝑡), it follows that, with an additional failure probability of at most exp
(
− 𝑠𝜇𝑏

24

)
per 

iteration, the assumptions that 𝑝(𝑡
′)

𝑖,0 ≥ 𝑏 and that position at least 𝑖 is critical are satisfied.

Starting from iteration 𝑡, a union bound over the next 𝑢 ln2𝑠(
1
𝑏
) iterations yields that the frequency 𝑝𝑖,0 continues growing expo-

nentially with a factor of 2𝑠 for the next 𝑢 ln2𝑠(
1
𝑏
) iterations with probability at least 1 − 𝑢 ln2𝑠(

1
𝑏
) exp

(
− 𝑠𝜇𝑏

24

)
. Since, by assumption, 
11

𝑝
(𝑡)
𝑖,0 ≥ 𝑏, it reaches 1 − 1

𝑛
after at most ln2𝑠(

1
𝑏
) iterations during that time, concluding the proof. □
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We now prove our main result.

Proof of Theorem 6. Since 𝑟-LEADINGONES weakly prefers 0s at all positions 𝑖 ∈ [𝑛], by Lemma 7, with a probability of at least 
1 − 2

𝑛
, for all 𝑖 ∈ [𝑛], the frequency 𝑝𝑖,0 remains above 1

2𝑟 for the first 𝑛(1 + ln2𝑠(𝑟)) iterations.

For each position 𝑖 ∈ [𝑛], we apply Lemma 9 with 𝑏 = 1
2𝑟 and 𝑢 = 𝑛 as well as 𝜇 ≥ 24𝑛𝑟 ln(𝑛) and 𝑠 ≥ 1, noting that the assumption 

𝑏 ≥ 2
𝑛

is satisfied, since we assume 𝑛 ≥ 4𝑟. Hence, for each 𝑖 ∈ [𝑛], with a probability of at least 1 − ln2𝑠(2𝑟)𝑛1−0.5𝑛, after at most 
ln2𝑠(2𝑟) iterations, the frequency 𝑝𝑖,0 is set to 1 − 1

𝑛
and remains there for at least (𝑛 −1) ln2𝑠(2𝑟) iterations. Further, by a union bound 

over all 𝑛 frequency vectors, the above holds for all frequency vectors, with probability at least 1 − ln2𝑠(2𝑟)𝑛2−0.5𝑛.
Combining everything, with probability at least 1 − 2

𝑛
− ln2𝑠(2𝑟)𝑛2−0.5𝑛, it holds by induction on position 𝑖 that once position 𝑖

is critical, the frequency 𝑝𝑖,0 reaches 1 − 1
𝑛

in at most ln2𝑠(2𝑟) iterations and remains there until at least iteration 𝑛 ln2𝑠(2𝑟). Since 
position 0 is critical in iteration 0, it follows that the frequencies for value 0 are set, in increasing order of their position, to 1 − 1

𝑛
. 

After at most 𝑛 ln2𝑠(2𝑟) iterations, all such frequencies are at the upper border, which proves the first part of the claim.

For the second part, note that once for all 𝑖 ∈ [𝑛] holds that 𝑝𝑖,0 = 1 − 1
𝑛
, which occurs with probability at least 𝑝succ, as shown 

above, the 𝑟-UMDA creates the global maximum of 𝑟-LEADINGONES during the next iteration with probability at least (1 − 1
𝑛
)𝑛 ≥ 1

2𝑒
for each offspring. Since the algorithm creates 𝜆 offspring independently, the probability of not creating the global maximum within 
the next 𝜆 fitness evaluations is at most (1 − 1

2𝑒 )
𝜆 ≤ exp(− 𝜆

2𝑒 ). Multiplying the complementary probability with the previous success 
probability 𝑝succ thus concludes the proof. □

6.3.2. Lower bound
As the upper bound (Theorem 6), the lower bound shows an almost linear dependency of the number of iterations until the 

optimum is sampled for the first time with respect to 𝜆 and 𝑛, only adding a factor of order ln(𝑟). The difference of ln(𝑟) to the upper 
bound stems from the bound on 𝜇, which is larger by a factor of around ln(𝑟) in the upper bound.

Theorem 10. Let 𝛿 ∈ (0, 1) be a constant. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 𝜇 ≥max{24(𝑛 +1)𝑟 ln(𝑛), 6 1+𝛿
𝛿2

ln(𝑛)}. 
Furthermore, let 𝑑 = ⌈log2𝑟∕3((1 +𝛿) 𝜆𝜇 )⌉ = ⌈ ln((1+𝛿)𝜆∕𝜇)ln(2𝑟∕3) ⌉ and let 𝜉 = ⌈log2𝑟∕3(𝑛2𝜆)⌉ +1. Then with probability at least 1 −4𝑛−1, the 𝑟-UMDA 

does not sample the optimum in iteration ⌊ 𝑛−𝜉
𝑑
⌋ − 1 or earlier. This corresponds to more than 𝜆⌊ 𝑛−𝜉

𝑑
⌋ fitness function evaluations until the 

optimum is sampled for the first time.

Our proof of Theorem 10 follows closely the proof for a lower bound on the runtime of the UMDA on LEADINGONES in the binary 
case by Doerr and Krejca [20, Theorem 6]. The proof mainly relies on the leftmost position in a population that never had at least 𝜇

samples with a 0 so far. This position increases each iteration with high probability by only about ln( 𝜆
𝜇
)∕ ln(𝑟) =∶ 𝑑. Before this 

position is sufficiently close to 𝑛, it is very unlikely that the 𝑟-UMDA samples the optimum of 𝑟-LEADINGONES. Hence, the runtime is 
with high probability in the order of

𝑛

𝑑
.

To make this outline formal, we say that a position 𝑖 ∈ [𝑛] is selection-relevant in iteration 𝑡 ∈ℕ (for 𝑟-LEADINGONES) if and only if 
the population in iteration 𝑡 of the 𝑟-UMDA optimizing 𝑟-LEADINGONES has at least 𝜇 individuals with at least 𝑖 − 1 leading 0s. Note 
that multiple positions can be selection-relevant in the same iteration, and that position 1 is always selection-relevant. Furthermore, 
for each iteration 𝑡 ∈ ℕ, we say that position 𝑖 ∈ [𝑛] is the maximum selection-relevant position if and only if 𝑖 is the largest value among 
all selection-relevant positions in iteration 𝑡.

An important observation is that if position 𝑖 ∈ [𝑛] is not selection-relevant up to (including) iteration 𝑡 ∈ℕ, then 𝑖 is also neutral 
up to iteration 𝑡. The reason is that the selection of individuals is solely determined by positions up to the smallest position 𝑗 ∈ [𝑛]
of the 𝜇 best individuals where one of them contains a value different than 0. All following positions do not change the ranking of 
the 𝜇 best individuals. Hence, if 𝑖 > 𝑗, then 𝑖 is neutral.

The following lemma shows that the frequency for value 0 in positions that were not yet selection-relevant remain close to their 
starting value of

1
𝑟
, as they are neutral up to that point.

Lemma 11. Let 𝑔 ∈ℕ≥1. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜆 ≥ 𝜇 ≥ 24(𝑔 + 1)𝑟 ln(𝑔). For all 𝑖 ∈ [𝑛], let 𝑇𝑖 denote the 
first iteration such that position 𝑖 is selection-relevant, and let 𝑇 sel

𝑖
= min{𝑇𝑖, 𝑔}. Then with probability at least 1 − 2𝑛𝑔−2, it holds for each 

𝑖 ∈ [𝑛] and each 𝑡 ∈ [0..𝑇 sel
𝑖
] that 𝑝(𝑡)

𝑖,0 ∈ ( 12
1
𝑟
, 32

1
𝑟
).

Proof. Let 𝑖 ∈ [𝑛]. We show that the sequence (𝑝(𝑡)
𝑖,0)𝑡∈ℕ remains in ( 12

1
𝑟
, 32

1
𝑟
) as long as 𝑡 ≤ 𝑇 sel

𝑖
by aiming to apply Theorem 3. We 

then conclude the proof via a union bound of the failure probabilities (that is, the probabilities that a frequency does not remain in 
said interval) over all possible values for 𝑖.

Conditional on 𝑇 sel
𝑖

, since 𝑖 only becomes selection-relevant the earliest in iteration 𝑇𝑖, position 𝑖 is neutral up to (including) 
iteration 𝑇𝑖. That is, for all 𝑡 ∈ [0..𝑇𝑖 − 1], position 𝑖 has no influence on the fitness of each individual in population 𝑃 (𝑡) (and thus on 
12

the updated frequency 𝑝(𝑡+1)
𝑖,0 ). Hence, by Theorem 3, by 𝑇 sel

𝑖
≤ 𝑔, and by the lower bound on 𝜇, we get that
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Pr
[
max

𝑠∈[0..𝑇 sel
𝑖

]
||||𝑝(𝑠)𝑖,0 − 1

𝑟

|||| ≥ 1
2𝑟
||||𝑇 sel

𝑖

]
≤ 2exp

(
− 𝜇

12𝑇 sel
𝑖
𝑟+ (4∕3)𝑟

)

≤ 2exp
(
− 𝜇

12(𝑔 + 1)𝑟

)
≤ 2exp

(
−24(𝑔 + 1)𝑟 ln(𝑔)

12(𝑔 + 1)𝑟

)
≤ 2𝑔−2.

By the law of total probability, this bound also holds independently of the outcome of 𝑇 sel
𝑖

.

Taking the union bound of the above bound over all 𝑛 values for 𝑖 yields that the overall failure probability is at most 2𝑛𝑔−2, 
concluding the proof. □

For the next lemma, we make use of the following Chernoff bound, which we apply in order to show that new offspring does not 
extend the prefix of leading 0s by too much. It is a non-trivial extension of the typical Chernoff bound to the case where we have an 
upper bound on the expected value of the sum of independent Bernoulli random variables. This extension is non-trivial as the upper 
bound on the expectation also results in a stronger probability bound.

Theorem 12 (Chernoff bound [61, Theorem 1.10.21 (a) with Theorem 1.10.1]). Let 𝑘 ∈ ℕ≥1, and let 𝑋 be the sum of 𝑘 independent 
random variables each taking values in [0,1]. Moreover, let 𝛿, 𝜇+ ∈ℝ≥0 such that 𝜇+ ≥E[𝑋]. Then

Pr
[
𝑋 ≥ (1 + 𝛿)𝜇+]

≤ exp
(
−1
3
min

{
𝛿2, 𝛿

}
𝜇+
)
.

In the following lemma, we show that the maximum selection-relevant position increases each iteration with high probability by 
at most roughly log𝑟(

𝜆

𝜇
). To this end, we tie it to the concept of a critical position, as defined in Section 6.3.1. This proof is heavily 

inspired by the proof of Doerr and Krejca [20, Lemma 4], but we fix a mistake in their proof, where the penultimate estimate of the 
application of the Chernoff bound bounds the exponent in the wrong direction.

Lemma 13. Let 𝛿 ∈ (0, 1) be a constant. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES with 𝜇 ≥ 6 1+𝛿
𝛿2

ln(𝑛). Furthermore, consider an 
iteration 𝑡 ∈ ℕ such that position 𝑖 ∈ [𝑛] is critical and that, for all positions 𝑖′ ∈ [𝑖 + 1..𝑛], it holds that 𝑝(𝑡)

𝑖′ ,0 ≤
3
2
1
𝑟
. Let 𝑑 =

⌈
log2𝑟∕3

(
(1 +

𝛿) 𝜆
𝜇

)⌉
. Then, with probability at least 1 − 𝑛−2, the maximum selection-relevant position in iteration 𝑡 is at most min{𝑛, 𝑖 + 𝑑}.

Proof. We note that 𝜆 ≥ 𝜇 by the definition of the 𝑟-UMDA and since 𝛿 > 0, it holds that 𝑑 ≥ 1. Furthermore, we assume that 
𝑖 < 𝑛 − 𝑑, that is, it holds that min{𝑛, 𝑖 + 𝑑} = 𝑖 + 𝑑. For 𝑖 ≥ 𝑛 − 𝑑, we statement claims that the maximum selection-relevant position 
is at most 𝑛, which is trivially the case, as all positions are in [𝑛].

For a position 𝑘 ∈ [𝑛] to become the maximum selection-relevant position in iteration 𝑡, by definition, it is necessary that at least 𝜇

individuals in population 𝑃 (𝑡) have at least 𝑘 − 1 leading 0s. We show via Theorem 12 that it is very unlikely that such a prefix of 
leading 0s extends by much.

To this end, let 𝑘 = 𝑖 + 𝑑, and let 𝑋 denote the number of individuals from 𝑃 (𝑡) with at least 𝑘 leading 0s. Since we assume that 
each frequency of value 0 at a position larger than 𝑖 is at most

3
2
1
𝑟
, as well as due to the independent sampling of the 𝑟-UMDA and 

due to the definition of 𝑑, it follows that

E[𝑋] ≤ 𝜆
(3
2
1
𝑟

)𝑑
= 𝜆
(2
3
𝑟
)−𝑑

≤ 𝜆
𝜇

(1 + 𝛿)𝜆
= 𝜇

1 + 𝛿
.

Hence, by applying Theorem 12 with 𝜇+ = 𝜇

1+𝛿 , recalling that 𝛿 ∈ (0, 1), and by applying the bound on 𝜇, we get that

Pr[𝑋 ≥ 𝜇] = Pr
[
𝑋 ≥ (1 + 𝛿) 𝜇

1 + 𝛿

]
≤ exp

(
−1
3
min

{
𝛿2, 𝛿

} 𝜇

1 + 𝛿

)
= exp

(
−1
3
𝜇

𝛿2

1 + 𝛿

)
≤ 𝑛−2.

Consequently, with probability at least 1 − 𝑛−2, the population 𝑃 (𝑡) contains fewer than 𝜇 offspring that have at least 𝑘 leading 0s. 
That is, the largest position 𝑘′ ∈ [𝑛] where at least 𝜇 offspring have at least 𝑘′ leading 0s is at most 𝑘 − 1, which is equivalent to the 
maximum selection-relevant position being at most 𝑘. □

The next lemma is the last one before we prove our lower bound. The lemma shows that it is very unlikely for the 𝑟-UMDA 
to sample the optimum of LEADINGONES while many frequencies for value 0 are not high yet (which is measured by the critical 
position).

Lemma 14. Consider the 𝑟-UMDA optimizing 𝑟-LEADINGONES, and consider an iteration 𝑡 ∈ ℕ and a position 𝑖 ∈ [𝑛] such that, for all 
positions 𝑖′ ∈ [𝑖 + 1..𝑛], it holds that 𝑝(𝑡)

𝑖′ ,0 ≤
3
2
1
𝑟
. Then, with probability at least 1 − 𝜆( 32

1
𝑟
)𝑛−𝑖, the 𝑟-UMDA does not sample the optimum in 

this iteration.

Proof. We bound the probability for sampling the optimum this iteration from above. The probability for a single offspring to be 
the optimum is, due to the upper bound on the last 𝑛 − 𝑖 frequencies, at most ( 32

1
𝑟
)𝑛−𝑖, as all positions need to be a 0. Taking a union 
13

bound over all 𝜆 samples of this iteration concludes the proof. □
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Lemmas 7, 13 and 14 are sufficient for proving Theorem 10.

Proof of Theorem 10. We only show the bound on the number of iterations. Since we start counting iterations at 0 and since the 
𝑟-UMDA creates exactly 𝜆 offspring each iteration, the bound on the number of fitness function evaluations follows immediately.

For the entirety of the proof, we assume that during the first 𝑛 iterations, all frequencies for value 0 remain in ( 12
1
𝑟
, 32

1
𝑟
) as long as 

they did not become selection-relevant yet. By Lemma 11 with 𝑔 = 𝑛, noting that 𝜇 is sufficiently large, this occurs with probability 
at least 1 − 2𝑛−1. Furthermore, we assume that 𝑛 − 𝜉 ≥ 𝑑, as Theorem 10 yields a trivial lower bound of 0 otherwise.

We continue by proving via induction on 𝑡 ∈ [0..𝑛] that with probability at least 1 − (𝑡 + 1)𝑛−2 it holds that each position 
𝑖 ∈ [(𝑡 + 1)𝑑 + 2..𝑛] is not relevant up to (including) iteration 𝑡.

For the base case 𝑡 = 0, by the definition of the 𝑟-UMDA, for all positions 𝑖 ∈ [𝑛], it holds that 𝑝(0)
𝑖,0 = 1

𝑟
. This especially means that 

position 0 is critical this iteration. Applying Lemma 13, noting that the requirements for 𝛿 and 𝜇 are met, proves the base case, as, 
with probability at least 1 − 𝑛−2, the maximum selection-relevant position in iteration 0 is 𝑑.

For the inductive step, assume that the inductive hypothesis holds up to (including) iteration 𝑡 ∈ [0..𝑛 −1]. Hence, with probability 
at least 1 −(𝑡 +1)𝑛−2, the maximum selection relevant-position in iteration 𝑡 (and up to there) is at most (𝑡 +1)𝑑+1. This implies that 
the critical position 𝑘 ∈ [𝑛] in iteration 𝑡 + 1 is also at most (𝑡 + 1)𝑑 + 1. Furthermore, all frequencies for value 0 at positions greater 
than (𝑡 + 1)𝑑 + 1 have not been selection-relevant yet. Thus, by our argument at the beginning of the proof, these frequencies are at 
most

3
2
1
𝑟
. Overall, by Lemma 13, in iteration 𝑡 +1, with probability at most 𝑛−2, the maximum selection-relevant position in iteration 

𝑡 + 1 is at least 𝑘 + 𝑑 + 1. Via a union bound with the failure probability of the inductive hypothesis, this proves the claim, that is, 
with probability at least 1 − (𝑡 + 2)𝑛−2, the maximum-selection relevant position in iteration 𝑡 + 1 is at most 𝑘 + 𝑑 ≤ (𝑡 + 2)𝑑 + 1.

This claim shows that, for 𝑡′ = ⌊ 𝑛−𝜉
𝑑
⌋ − 1 ≤ 𝑛, with probability at least 1 − 𝑛−1, each position greater than 𝑛 − 𝜉 + 1 is never 

selection-relevant up to (including) iteration 𝑡′. Hence, by our argument at the beginning of the proof, these frequencies are at 
most

3
2
1
𝑟
. Applying Lemma 14 with 𝑖 = 𝑛 − 𝜉 + 1 then yields that the 𝑟-UMDA does not sample the optimum in each iteration up to 𝑡′

with a probability of at least 1 −𝜆( 32
1
𝑟
)𝑛−𝑖 = 1 −𝜆( 32

1
𝑟
)𝜉−1 ≥ 1 −𝑛−2 per iteration. A union bound over at most 𝑡′ +1 ≤ 𝑛 iterations then 

shows that with probability at least 1 − 𝑛−1, it holds that up to (including) iteration 𝑡′, the 𝑟-UMDA does not sample the optimum.

Last, a union bound over the three error probabilities of the three arguments above then shows that with probability at least 
1 − 4𝑛−1, the 𝑟-UMDA does not sample the optimum up to (including) iteration 𝑡′, concluding the proof. □

7. Conclusion

We have proposed the first systematic framework of EDAs for problems with multi-valued decision variables. Our analysis of the 
genetic-drift effect and our runtime analysis on the multi-valued version of LEADINGONES have shown that the increase in decision 
values does not result in significant difficulties. Although there may be a slightly stronger genetic drift (requiring a more conservative 
model update, that is, a higher selection size 𝜇 for the UMDA) and slightly longer runtimes, these outcomes are to be expected given 
the increased complexity of the problem. We hope that our findings will inspire researchers and practitioners to embrace the benefits 
of EDAs for multi-valued decision problems, beyond the previously limited application to mostly permutations and binary decision 
variables.

An interesting question for future work is to analyze whether other model representations, especially for multi-valued problems 
that do not consider categorical variables, have a benefit over our model.
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