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Abstract Many nonstationary time series exhibit changes in the trendand seasonal-
ity structure, that may be modeled by splitting the time axisinto different regimes.
We propose multi-regime models where, inside each regime, the trend is linear and
seasonality is explained by a Periodic Autoregressive model. In addition, for achiev-
ing parsimony, we allow season grouping, i.e. seasons may consist of one, two, or
more consecutive observations. Identification is obtainedby means of a Genetic Al-
gorithm that minimizes an identification criterion.
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1 Introduction

Many seasonal time series exhibit an autocorrelation structure which depends not
only on the time between observations but also on the season of the year. Moreover,
the time series of observations within a given season is usually second order sta-
tionary (Hipel and McLeod, 1994). In order to model appropriately these and sim-
ilar types of time series, Periodic AutoRegressive models (PAR) can be employed.
When fitting a PAR model to periodic time series a separate AR model for each
season of the year is estimated. These models are appropriate for describing time
series drawn from different areas such as economics, hydrology, climatology and
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signal processing (e. g. Franses and Paap, 2004; Hipel and McLeod, 1994; Ursu and
Turkman, 2012).

In this study we consider a generalization of PAR models withlinear trend in
two directions. First, the model may follow different regimes in time, and regime
changes may occur at any time. The regime changes may affect the linear trend, the
seasonal means and the autoregressive parameters. We also allow a discontinuous
trend which can identify changes in level. Second, inside each regime the model
structure may be different for each seasonal position (e.g.months) or vary more
slowly, changing only according to grouped seasons like quarters or semesters.

The number of regimes and change times (or break points) are assumed to be
unknown. The problem of their identification can be treated as a statistical model
selection problem according to a specified identification criterion (Aue and Horväth,
2013). This approach has been used for identification of structural breaks e.g. in
Davis et al (2008) and Lu et al (2010). In these works Genetic Algorithms (GAs)
are proposed to solve the selection problem.

To the best of our knowledge, there are no articles that handle the changing pa-
rameters and changing trend problem in PAR models simultaneously. We propose
a class of GAs to detect the number of regimes of piecewise PARmodels and their
locations. Our procedure evaluates several regime patterns where the locations that
are possibly change times are simultaneously considered. In this way, GAs deal
efficiently with the detection of multiple change times. We also allow subset AR
models to be selected. Each piecewise subset PAR configuration is evaluated by an
AIC identification criterion.

In our paper, since the seasonal effect on means, variances and correlations may
show different speed and pattern, we propose to join appropriately season parame-
ters into groups for each of these three features.

The piecewise linear nature of our model makes forecasting very simple.

2 The Model

Suppose that a time series{Xt} of N observations is available. The seasonal pe-
riod of the series iss and is assumed to be known. Assume that there arem+ 1
different regimes, separated bym change timesτ j so that the first regime con-
tains observations from time 1 toτ1 − 1, the second regime contains data from
time τ1 to τ2 − 1, the( j + 1)-th regime contains data fromτ j to τ j+1− 1, and the
last regime data fromτm to N. To ensure reasonable estimates we assume that the
minimum regime length is a fixed constantmrl, thus any regime assignment is de-
fined by the set{τ j , j = 1, . . . ,m} subject tomrl < τ1 < τ2 < .. . < τm < N−mrl,
τ j ≥ τ j−1+mrl, j = 2, . . . ,m.

The parameters of the model for regimej will be denoted by a superscript( j).
The seasonal effect on means, variances and correlations may show different

speed and pattern, thus it seems advisable, for each of thesefeatures, to use a differ-
ent splitting of the year, determined by a different length of the season inside which



Generalized PAR models 3

that feature remains constant. For example, if the seasonalperiod iss, we may have
exactlys different models, one for each seasonal position; or ratheronly s/c differ-
ent structures, whenc consecutive observations are supposed to belong to the same
season. E. g. ifs= 12 (monthly data) andc = 3, the same model works for each
quarter, therefore there are onlys/c= 4 different seasons. This may be useful when
the seasonal variation is slow and more detailed models would be redundant.

We allow a different season grouping for means, correlationand variance. We
denote bycM the number of consecutive observations for which the mean remains
constant (cM dividess), and byss= s/cM the number of seasons. In an analogue
fashion, we denote bycAR the number of consecutive observations for which the
AR parameters remain constant, andsv= s/cAR the related number of seasons. E.
g. for s= 12, if cAR= 1, each month has a different set of AR parameters, then the
variances of the 12 months may a priori be different. If on thecontrarycAR > 1,
the variances ofcAR contiguous observation all are proportional, through the same
coefficient, to the residual variances, thus a variance instability is equivalent to a
residual variance instability. Therefore, we allow the possibility that, inside each
single season for the AR model (containingcAR consecutive observations) the resid-
ual variances may change. Thus we must consider sub-seasonscomposed bycV

observations, wherecV dividescAR, and allow the residual variance to change ev-
erycV observations, in a total number of seasons (concerning the residual variance)
equal tosvar= s/cV .

A linear trend and a different mean for each season is assumed. The residuals
are treated as zero mean and described by an autoregressive model with maximum
order p, and parameters varying with seasons. Letkt denote the season (for the
mean) of thet-th observation (1≤ kt ≤ ss) andk∗t the season forARstructure of the
t-th observation, denote bya( j)+b( j)t the linear trend in regimej, by µ ( j)(k) the

mean of seasonk in regime j, and byφ ( j)
k (i) the lag-i autoregressive parameter for

the model in seasonk and regimej. Then forτ j−1 ≤ t < τ j :

Xt = a( j)+b( j)t + µ ( j)(kt)+Wt , Wt =
p

∑
i=1

φ ( j)
k∗t

(i)Wt−i + εt

whereτ0 = 1 andτm+1 = N+1.
The innovationsε are supposed independent and zero-mean, with variances

σ2( j,k) possibly depending on the regime and season.
As far as subset selection is concerned, we introduce alsom+ 1 binary vec-

torsδ 1, ...,δ m+1, which specify presence or absence of autoregressive parameters in

each regime as follows: ifδ j [p(k∗t −1)+ i] = 1 thenφ ( j)
k∗t

(i) is constrained to zero.
In summary, a model is identified by the following:
External parameters(fixed and equal for all models)N,s, maximum orderp, maxi-
mum number of regimes, and minimum number of observations per regimemrl
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Structural parameters(determining the model structure)
m number of change times
τ1,τ2, . . . ,τm change times or thresholds
δ 1, ...,δ m+1 denote whichφ ’s are zero in each regime and season
cM,cAR,cV season grouping parameters subject to constraints:

cM dividess; cAR dividess; cV dividescAR
Regression parametersto be estimated by Least Squares (LS) or Maximum Likeli-
hood (ML)
a1,a2, . . . ,am+1 intercepts
b1,b2, . . . ,bm+1 slopes
µ ( j)(k) seasonal means,k= 1, . . . ,ss; j = 1, . . . ,m+1

φ ( j)
k (i) AR parameters,k= 1, . . . ,sv; j = 1, . . . ,m+1; i = 1, . . . , p

(some of them may be constrained to zero)
σ2( j,k) innovation variances, regimej and seasonk= 1, . . . ,svar.

For estimating trend and seasonal means by LS, note that the intercept and the
means are linearly dependent, therefore we assume that the seasonal means sum to
zero on one cycle:µ ( j)(1)+µ ( j)(2)+ . . .+µ ( j)(ss) = 0,∀ j. Therefore the following
equations are estimated:

Xt = b( j)t + c( j,kt) , τ j ≤ t < τ j+1 (1)

and then the parameter vector isβ ′ = {b(1),b(2), . . . ,b(m+1),c(1,1),c(1,2), . . . , c(1,ss),
c(2,1), . . . ,c(2,ss), . . . ,c(m+1,1), . . . ,c(m+1,ss)} with dimension(m+1)×(ss+
1) and the estimates are obtained by least squares. From the{ĉ( j,k)}, the intercepts
â( j) and seasonal meansµ̂ ( j)(k) are recovered basing on the above assumption. It
follows

â( j) =
1
ss

ss

∑
k=1

ĉ( j,k) , µ̂ ( j)(k) = ĉ( j,k)− â( j).

Moreover it is possible to prescribe trend continuity by imposing that, if the number
of regimes is larger than one, the trend values of two consecutive regimes coincide
on the first observation of the second regime. A possible level change att = τ j+1 is
estimated if the trend continuity is not imposed.

Conditioning on thresholds, seasonal arrangement and estimated trend and means,
the residual series is computed asŴt = Xt − â( j)− b̂( j)t − µ̂ ( j)(kt).

For each regime and season a separate autoregressive process is considered:

Ŵt =
p

∑
i=1

φ ( j)
k∗t

(i)Ŵt−i + εt .

We denote byI( j,k) the set of times belonging to regimej and seasonk. The cor-
responding observationszj ,k are selected and the LS estimates of the parameters

{φ ( j)
k (i), i = 1, . . . , p} are obtained. As far as subset selection is concerned, the final

estimates are obtained via LS constrained optimization, with constraints given by
linear systemHφ = 0:
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φ̂ = φLS− (Z′Z)−1H ′[H(Z′Z)−1H ′]−1HφLS,

whereφLS = (Z′Z)−1Z′z are the unconstrained least squares estimates,Z is the
n j ,k× p design matrix including lagged observations andH is the constraints matrix
that specifies subset models. The residualse= z−Z φ̂ give the estimate of the in-
novations for regimej and seasonk {εt , t ∈ I( j,k)}, which allow to obtainσ̂2( j,k).
The structural parameters take discrete values and their combinations amount to a
very large number. GAs are naturally suitable for the choiceof optimal structural
parameters.

3 Genetic algorithms

GAs, initially developed by Holland (1975), imitate the evolution process of bio-
logical systems, to optimize a given function. A GA uses a setof candidate so-
lutions, calledpopulation, instead of one single current solution. In GA termi-
nology, any candidate solution is encoded via a numerical vector calledchromo-
some. The GA proceeds iteratively by updating the population in rounds, called
generations. In each generation, some of the active chromosomes are selected
(parents-chromosomes) to form the chromosomes of the next generation (children-
chromosomes). The selection process is based on an evaluation measure calledfit-
ness function, linked to the objective function, that assigns to each chromosome a
positive number. Children are formed by recombining (crossover) the genetic ma-
terial of their two parents-chromosomes and perhaps after arandom alteration of
some of the genes (single digits of the chromosome), which iscalledmutation(see
Holland, 1975; Goldberg, 1989, for a detailed description).

A successful implementation of GAs is certainly crucial to obtain satisfactory re-
sults. Before a GA can be applied to a problem some important decisions have to be
made. The GA methods require a suitable encoding for the problem and an appro-
priate definition of objective function. In addition operators of selection, crossover
and mutation have to be chosen.
Encoding. An appropriate encoding scheme is a key issue for GAs. It must guarantee
an efficient coding producing no illegal chromosome and no redundancy. Details of
the adopted method may be found in Battaglia et al (2018).
Fitness function. The most natural objective in building statistical modelsis to mini-
mize an identification criterion such as AIC, BIC, ICOMP, MDL. They all are based
on the estimated residual varianceσ̂2( j,k) and the total number of estimated pa-
rameters: there arem+1 parameters for trend,(m+1)× ssseasonal means, and in
regime j there arep× sv−|δ j | autoregressive parameters (where|x|2 = ∑i x

2
i ). So,

the total number of estimated parameters isP= (m+1)(ss+1)+ (m+1)p× sv−
|δ 1|− |δ 2|− . . .−|δ m+1|.

If continuity constraints on trend are added, the number of parameters decreases
by m.
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The most obvious generalization of AIC is the NAIC criterionintroduced by
Tong (1990, p. 379) for threshold models:

NAIC= [∑
j
∑
k

AICj ,k]/N =

[

∑
j
∑
k

n j ,k logσ̂2( j,k)+π ×P

]

/N,

whereAICj ,k is identification criterion for series of regimej and seasonk, σ2( j,k)
is the related residual variance,P is the total number of parameters,π is the penal-
ization term (equal to 2 in the original Akaike’s proposal).Other alternatives are
possible (see Battaglia et al, 2018).

Since the identification criteria are to be minimized, the fitness function is a
monotonically decreasing function of the identification criterion. We adopted a neg-
ative exponential transformation.
GA operators. For selection we used the “roulette wheel” rule where the probability
of a chromosome being selected as a parent is proportional toits fitness. Each se-
lected couple of parents will produce two “children” by methods of crossover and
mutation. We implemented uniform crossover — each child receives each gene from
one parent or the other randomly with probability 1/2.

The entire population of chromosomes is replaced by the offsprings created by
the crossover and mutation processes at each generation except for the best chro-
mosome, which survives to the next generation. Thiselitist strategy ensures that the
fitness will never decrease through generations (Rudolph, 1994).

Our search strategy is in two steps: in the first one the GA tries to determine the
best splitting in regimes for complete models, as the chromosome includes only
m,τ1, ...,τm; in the second step we exhaustively enumerate all possible seasons
grouping (specified bycM,cAR,cV) and subset models (examiningδ 1, ...,δ m+1).
This strategy is hybrid, as it combines an exact method with an approximate method,
and it is feasible if orderp and seasonal periodsare not too large.

4 Applications

We briefly summarize the application of our method to the CET series of monthly
mean surface temperatures for a location in the Midlands region (see Proietti and
Hillebrand, 2017, and references therein). It is a very longand frequently inves-
tigated series (we use 2904 observations for years 1772–2013). Many researchers
suggest an upward trend since the beginning of the 20th century, due to global warm-
ing, and an evolution of seasonal pattern, identified as a precession of Earth’s axis
of rotation. Four PAR models were fitted to the time series: acompletemodel, with
a different AR(2) model for each month and no constraint on the autoregressive pa-
rameters; asubsetmodel similar to the previous one, but with some AR parameters
constrained to zero in order to maximize fitness; agroupedsubset model where the
season are grouped; and finally aconstantseasonality model, subset as well, where



Generalized PAR models 7

the autoregressive parameters remain equal in each regime.The series plot appears
in Figure 1 (left panel).

Two regimes were identified, with change time at July, 1899 (the trend is drawn
as a dotted line in the figure). This confirms with clear evidence the suggested
trend change at the beginning of the last century. The grouped season model iden-
tified the optimal settingcM = cAR = 1, meaning that any grouping of seasons
would not increase the fitness, thus the grouped model coincides with the subset
model (with other more parsimonious criteria likeBIC the best grouping results
cM = 1,cAR = 4,cV = 2). The results appear in Table 1: it may be concluded that
many autoregressive parameters may be constrained to zero without a sensible loss
of fit. Moreover, the smaller fitness of the constant seasons model indicates an evo-
lution in the seasonal pattern; Figure 1 (right panel) reports the monthly means for
the two regimes. More applications may be found in Battagliaet al (2018).

Table 1 Models fitted to the CET series

Model CompleteSubsetConstant seasons

Residual variance 1.696 1.701 1.752
Number of parameters 74 50 30

Fitness 0.594 0.602 0.595

5 Conclusions

In this paper we have proposed models that are able to explain, on one side, regime
changes and structural breaks, and on the other side a seasonal behavior that evolves
in time.
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Fig. 1 Left panel: CET series and trend (dotted line). Right panel:monthly means, continuous
line: first regime; dotted line: second regime
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The complex problem of identifying and estimating such models is solved by
GAs. The best model is selected according to a fitness function that is a monoton-
ically decreasing transformation of widely used identification criteria. Experience
on real and simulated data suggests that the choice of the fitness function is crucial
because a too parsimonious criterion may lead to models thatoverlook important
structure changes.

The results seem to support the usefulness of the proposed methods in detecting
relevant changes in the structure of the trend and also possible evolution in the sea-
sonal behavior concerning levels, variance and correlation. The generalized periodic
autoregressive models allow a closer analysis of the seasonal behavior, suggesting
also the most convenient grouping of seasons in terms of fitness.
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