Generalized periodic autor egressive models for
trend and seasonality varying time series

Francesco Battaglia and Domenico Cucina and Manuel Rizzo

Abstract Many nonstationary time series exhibit changes in the teamttiseasonal-
ity structure, that may be modeled by splitting the time axie different regimes.
We propose multi-regime models where, inside each regimegrénd is linear and
seasonality is explained by a Periodic Autoregressive mdaddition, for achiev-
ing parsimony, we allow season grouping, i.e. seasons masistoof one, two, or
more consecutive observations. ldentification is obtamecheans of a Genetic Al-
gorithm that minimizes an identification criterion.
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1 Introduction

Many seasonal time series exhibit an autocorrelation straavhich depends not
only on the time between observations but also on the sedsba gpear. Moreover,
the time series of observations within a given season isllyssecond order sta-
tionary (Hipel and McLeod, 1994). In order to model apprafeiy these and sim-
ilar types of time series, Periodic AutoRegressive modeddR) can be employed.
When fitting a PAR model to periodic time series a separate ARdehfor each
season of the year is estimated. These models are appeofaiiatescribing time
series drawn from different areas such as economics, hyglrptlimatology and
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signal processing (e. g. Franses and Paap, 2004; Hipel ahddd¢1994; Ursu and
Turkman, 2012).

In this study we consider a generalization of PAR models Witbar trend in
two directions. First, the model may follow different regimin time, and regime
changes may occur at any time. The regime changes may dféeliméar trend, the
seasonal means and the autoregressive parameters. Wedl@lsa discontinuous
trend which can identify changes in level. Second, insidgheagime the model
structure may be different for each seasonal position (@anths) or vary more
slowly, changing only according to grouped seasons liketgtgor semesters.

The number of regimes and change times (or break points)sauaeed to be
unknown. The problem of their identification can be treatec atatistical model
selection problem according to a specified identificatigieion (Aue and Horvath,
2013). This approach has been used for identification otstral breaks e.g. in
Davis et al (2008) and Lu et al (2010). In these works GenelipmAthms (GAs)
are proposed to solve the selection problem.

To the best of our knowledge, there are no articles that leath@l changing pa-
rameters and changing trend problem in PAR models simutzsig We propose
a class of GAs to detect the number of regimes of piecewise iRA&els and their
locations. Our procedure evaluates several regime pattenere the locations that
are possibly change times are simultaneously considenethid way, GAs deal
efficiently with the detection of multiple change times. Weaoaallow subset AR
models to be selected. Each piecewise subset PAR configniatevaluated by an
AIC identification criterion.

In our paper, since the seasonal effect on means, variandesarelations may
show different speed and pattern, we propose to join ap@tedy season parame-
ters into groups for each of these three features.

The piecewise linear nature of our model makes forecasgngsimple.

2 TheModd

Suppose that a time seri¢X;} of N observations is available. The seasonal pe-
riod of the series is and is assumed to be known. Assume that therararel
different regimes, separated Iy change timest; so that the first regime con-
tains observations from time 1 to — 1, the second regime contains data from
time 11 to T2 — 1, the(j + 1)-th regime contains data from to 7,1 — 1, and the
last regime data fromy, to N. To ensure reasonable estimates we assume that the
minimum regime length is a fixed constantl, thus any regime assignment is de-
fined by the se{tj,j =1,...,m} subjecttomrl < Ty < T2 < ... < T;m < N—mrl,
T >Tj_+mrlj=2,....m

The parameters of the model for regimwill be denoted by a superscrify).

The seasonal effect on means, variances and correlatiopsihoav different
speed and pattern, thus it seems advisable, for each offéasees, to use a differ-
ent splitting of the year, determined by a different lendtthe season inside which
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that feature remains constant. For example, if the seapeniald iss, we may have
exactlys different models, one for each seasonal position; or rathbrs/c differ-

ent structures, whenconsecutive observations are supposed to belong to the same
season. E. g. i = 12 (monthly data) and = 3, the same model works for each
quarter, therefore there are orglfic = 4 different seasons. This may be useful when
the seasonal variation is slow and more detailed modelsdimeitedundant.

We allow a different season grouping for means, correladiot variance. We
denote bycy the number of consecutive observations for which the mearaires
constant ¢ dividess), and byss= s/cyv the number of seasons. In an analogue
fashion, we denote bgar the number of consecutive observations for which the
AR parameters remain constant, awk= s/car the related number of seasons. E.
g. fors=12, if car = 1, each month has a different set of AR parameters, then the
variances of the 12 months may a priori be different. If on ¢batrarycarg > 1,
the variances ofar contiguous observation all are proportional, through e
coefficient, to the residual variances, thus a variancalbilgty is equivalent to a
residual variance instability. Therefore, we allow the gibiity that, inside each
single season for the AR model (containimg consecutive observations) the resid-
ual variances may change. Thus we must consider sub-seesompsed byoy
observations, where, dividescagr, and allow the residual variance to change ev-
ery oy observations, in a total number of seasons (concerningsiéual variance)
equal tosvar=s/oy.

A linear trend and a different mean for each season is assuhiedresiduals
are treated as zero mean and described by an autoregressieéwith maximum
order p, and parameters varying with seasons. ketlenote the season (for the
mean) of the-th observation (X k < sg andk the season foARstructure of the
t-th observation, denote /) + b(i)t the linear trend in regim¢, by u') (k) the

mean of seasokin regimej, and by(gij)(i) the lagt autoregressive parameter for
the model in seasdhand regimg. Then forrj_; <t < 1j:

) ) ) p .
X =all 0t ) e W= (Wi +

wheretp =1 andtyp g = N+ 1.
The innovationse are supposed independent and zero-mean, with variances
02(j,k) possibly depending on the regime and season.
As far as subset selection is concerned, we introduceralsal binary vec-
torsd?t, ..., 8™, which specify presence or absence of autoregressive paesin
each regime as follows: #![p(k’ — 1) +i] =1 thenqqg*”(i) is constrained to zero.
In summary, a model is identified by the following:
External parameterffixed and equal for all model$y, s, maximum ordep, maxi-
mum number of regimes, and minimum number of observationsgoggmemr|
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Structural parametergdetermining the model structure)
m number of change times
T1,T2,..., T Change times or thresholds
ot,...,6™1 denote whichp's are zero in each regime and season
Cm,CaR, Oy Season grouping parameters subject to constraints:
cv dividess; car dividess; oy dividescar
Regression parametets be estimated by Least Squares (LS) or Maximum Likeli-
hood (ML)
ai,ay,...,am1 intercepts
by,by,...,bm1 Slopes

u (k) seasonal meank=1,...,s5j=1,...,m+1

(gﬁ”(i) AR parameterk=1,...,sv,j=1,....m+1;i=1...,p
(some of them may be constrained to zero)

o2(j,k) innovation variances, regimeand seasok=1,...,svar.

For estimating trend and seasonal means by LS, note thattéreépt and the
means are linearly dependent, therefore we assume thagdlersal means sum to
zero onone cyclgzV (1) 4+ p1(2) +...+ pul(sg9 = 0,Vj. Therefore the following
equations are estimated:

X =bWt+c(j,k) , Tj <t<Tj1 (1)

and then the parameter vectofis= {b(Y), b ... b(™D ¢(1,1),¢(1,2),...,¢(1,59,
c(2,1),...,¢(2,s9,...,c¢(m+1,1),...,c(m+1,s9} with dimensionm+1) x (ss+

1) and the estimates are obtained by least squares. Frofd(th&)}, the intercepts
al) and seasonal meayig!) (k) are recovered basing on the above assumption. It

follows
SS

A= 2y &k, A =¢(j ka0,
K=1

Moreover it is possible to prescribe trend continuity by asing that, if the number
of regimes is larger than one, the trend values of two corisectegimes coincide
on the first observation of the second regime. A possibld thange at = 1j1 is
estimated if the trend continuity is not imposed.

Conditioning on thresholds, seasonal arrangement andagstil trend and means,
the residual series is computedviis= X, —al) — bt — (i) (k).

For each regime and season a separate autoregressivespgsoo@ssidered:

W _iﬂg)(i)\m—iJrft-

We denote by (j,k) the set of times belonging to reginjeand seasok. The cor-
responding observatiors are selected and the LS estimates of the parameters

{qqi” (i),i=1,...,p} are obtained. As far as subset selection is concerned, tie fin
estimates are obtained via LS constrained optimizatioth wonstraints given by
linear systenH @ = 0:
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where @ s = (Z'Z)~1Z'z are the unconstrained least squares estimatés, the
nj k x p design matrix including lagged observations &his the constraints matrix
that specifies subset models. The resideatsz— Z ¢ give the estimate of the in-
novations for regimg and seasok {&,t € I (j,k)}, which allow to obtaing?(j, k).
The structural parameters take discrete values and theibications amount to a
very large number. GAs are naturally suitable for the choiceptimal structural
parameters.

3 Genetic algorithms

GAs, initially developed by Holland (1975), imitate the &wion process of bio-
logical systems, to optimize a given function. A GA uses adfatandidate so-
lutions, calledpopulation instead of one single current solution. In GA termi-
nology, any candidate solution is encoded via a humericetiovecalledchromo-
some The GA proceeds iteratively by updating the populationdnnds, called
generations. In each generation, some of the active chromes are selected
(parents-chromosomes) to form the chromosomes of the egergtion (children-
chromosomes). The selection process is based on an evalnagiasure callefit-
ness functionlinked to the objective function, that assigns to each etusome a
positive number. Children are formed by recombiningpésove) the genetic ma-
terial of their two parents-chromosomes and perhaps aftandom alteration of
some of the genes (single digits of the chromosome), whichlledmutation(see
Holland, 1975; Goldberg, 1989, for a detailed description)

A successful implementation of GAs is certainly crucial bdan satisfactory re-
sults. Before a GA can be applied to a problem some impor&isibns have to be
made. The GA methods require a suitable encoding for thelgmolnd an appro-
priate definition of objective function. In addition opevet of selection, crossover
and mutation have to be chosen.

Encoding An appropriate encoding scheme is a key issue for GAs. It guerantee
an efficient coding producing no illegal chromosome and doimelancy. Details of
the adopted method may be found in Battaglia et al (2018).

Fitness functionThe most natural objective in building statistical modgl® mini-
mize an identification criterion such as AIC, BIC, ICOMP, MDrhey all are based
on the estimated residual varian@é(j,k) and the total number of estimated pa-
rameters: there ama+ 1 parameters for trendm+ 1) x ssseasonal means, and in
regimej there arep x sv— |8/| autoregressive parameters (whgdé = 3 x?). So,
the total number of estimated parameteB is (m+ 1)(ss+ 1) + (m+1)p x sv—
|6 — |62 — ... — [6™ ).

If continuity constraints on trend are added, the numberaodmeters decreases
by m.
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The most obvious generalization of AIC is the NAIC criterioriroduced by
Tong (1990, p. 379) for threshold models:

NAIC=[Y ZAlcj,k]/N = lzgnj,klogaz(j,k) +mxP| /N,
J J

whereAlC;  is identification criterion for series of reginjeand seasok, 02(j,k)
is the related residual variande@js the total number of parametersjs the penal-
ization term (equal to 2 in the original Akaike's propos&ther alternatives are
possible (see Battaglia et al, 2018).

Since the identification criteria are to be minimized, theef#s function is a
monotonically decreasing function of the identificatioitenion. We adopted a neg-
ative exponential transformation.

GA operatorsFor selection we used the “roulette wheel” rule where ttobability
of a chromosome being selected as a parent is proportiorital fitness. Each se-
lected couple of parents will produce two “children” by madls of crossover and
mutation. We implemented uniform crossover — each childikexs each gene from
one parent or the other randomly with probabilif21

The entire population of chromosomes is replaced by thenifgs created by
the crossover and mutation processes at each generatieptdac the best chro-
mosome, which survives to the next generation. Efitsst strategy ensures that the
fithess will never decrease through generations (Rudofpdg .

Our search strategy is in two steps: in the first one the GA toeletermine the
best splitting in regimes for complete models, as the chsmme includes only
m,T1,..., Im; IN the second step we exhaustively enumerate all posséz#soss
grouping (specified by, car,0v) and subset models (examining, ..., 6™1).
This strategy is hybrid, as it combines an exact method witlygroximate method,
and it is feasible if ordep and seasonal periaghre not too large.

4 Applications

We briefly summarize the application of our method to the CEfies of monthly
mean surface temperatures for a location in the Midland®neee Proietti and
Hillebrand, 2017, and references therein). It is a very langd frequently inves-
tigated series (we use 2904 observations for years 1773}2Bany researchers
suggest an upward trend since the beginning of the 20thggdtie to global warm-
ing, and an evolution of seasonal pattern, identified as eggston of Earth’s axis
of rotation. Four PAR models were fitted to the time seriesom@mpletenodel, with

a different AR(2) model for each month and no constraint engthitoregressive pa-
rameters; aubsemodel similar to the previous one, but with some AR paranseter
constrained to zero in order to maximize fithesgr@upedsubset model where the
season are grouped; and finallg@nstantseasonality model, subset as well, where
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the autoregressive parameters remain equal in each regimeseries plot appears
in Figure 1 (left panel).

Two regimes were identified, with change time at July, 1866 {tend is drawn
as a dotted line in the figure). This confirms with clear evidethe suggested
trend change at the beginning of the last century. The giepason model iden-
tified the optimal settingey = car = 1, meaning that any grouping of seasons
would not increase the fitness, thus the grouped model aw@raivith the subset
model (with other more parsimonious criteria liB#C the best grouping results
cm = 1,car = 4,0y = 2). The results appear in Table 1: it may be concluded that
many autoregressive parameters may be constrained to #béimuba sensible loss
of fit. Moreover, the smaller fitness of the constant seasaydeirindicates an evo-
lution in the seasonal pattern; Figure 1 (right panel) reptire monthly means for
the two regimes. More applications may be found in Battagflial (2018).

Table 1 Models fitted to the CET series

| Model |CompletdSubsefConstant seasohs
Residual variance | 1.696 |1.701 1.752
Number of parametefs 74 50 30
Fitness 0.594 |0.602 0.595

5 Conclusions

In this paper we have proposed models that are able to explaione side, regime
changes and structural breaks, and on the other side a séhsbavior that evolves
in time.
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Fig. 1 Left panel: CET series and trend (dotted line). Right pamanthly means, continuous
line: first regime; dotted line: second regime
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The complex problem of identifying and estimating such mede solved by
GAs. The best model is selected according to a fitness funttiat is a monoton-
ically decreasing transformation of widely used identifiwa criteria. Experience
on real and simulated data suggests that the choice of tlesdifanction is crucial
because a too parsimonious criterion may lead to modelsotreatook important
structure changes.

The results seem to support the usefulness of the proposhddsan detecting
relevant changes in the structure of the trend and alsolgessiolution in the sea-
sonal behavior concerning levels, variance and correlalibe generalized periodic
autoregressive models allow a closer analysis of the sahbehavior, suggesting
also the most convenient grouping of seasons in terms osfitne
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