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ABSTRACT: A theoretical framework to analyze variability of parametric estimates

obtained via Evolutionary Algorithms (EAs) is proposed. The nature of EAs, in fact,

introduces a further source of variability, due to stochastic elements of the procedure.

A simulation study employing Genetic Algorithms and Differential Evolution is also

conducted in order to make comments on the effect of these stochastic elements on

variability.
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1 Introduction

Evolutionary Algorithms (EAs) are nature inspired methods, introduced in the

1960s in the field of Artificial Intelligence as a tool to analyze complex sys

tems and problems (De Jong, 2006). In the last decades many researchers

have employed such methodologies in statistics, where complex optimization

problems often arise (Baragona et al., 2011). In the present paper we focus on

parameter estimation problems tackled by EAs for which an analytical solution

can not be found, or complexity of optimization problem may cause failure of

standard methods. In this case an additional source of variability due to the

stochastic elements in EAs must be considered in the analysis. As far as this

kind of variability has not been addressed yet in statistical literature, we shall

propose a framework to analyze it as a component which is independent from

sampling variability.

Paper is organized as follows: in Section 2 EAs employed in the study are

introduced; in Section 3 we present the framework of analysis of variability;

Section 4 outlines a simulation study; in Section 5 we resume comments and

conclusions.



2 Evolutionary Algorithms

EAs fall in the category of population based methods, for which at each iter

ation (or generation) a population of N individuals, coded to represent solu

tions, is evaluated. The objective function, called fitness, measures solutions

goodness and biases
search process

towards
modal

zones. Stochastic
opera

tors which modify and create solutions at each generation characterize specific

EAs. We shall now shortly describe the two algorithms implemented in our

parametric estimation framework, valid for consistent estimators and conver

gent EAs.

2.1 Genetic Algorithm

Genetic Algorithms (GAs; Holland, 1975) are among the most important EAs.

In our
problem a binary vector ψ (called chromosome)

encodes
a
real

parame

ter
vector θ = (θ1,...,θk)

by
standard binary coding rule;

each
fixed length bit

interval
of
ψ encodes a

component θj of
θ.

At each
generation N individuals

are selected proportionally with respect to fitness, and are subject to operators

of crossover and mutation: according to crossover, with fixed probability pC,

pairs of chromosomes are selected to exchange a section of their bits, specified

by a common cutting point; mutation step, on the other side, allows each bit

of each chromosome to flip its value from 0 to 1 or viceversa, with fixed prob

ability pM. GA convergence is assured (Rudolph, 1997) if pM > 0 and if an

elitist strategy is employed, for which the best individual in the population at

each generation is always maintained.

2.2 Differential Evolution

Differential Evolution (DE) algorithm has been introduced in the 1990s and

became soon a powerful EA for continuous optimization (Price et al., 2006).

In this case parameter vectors are directly represented in the population. At

each generation, for each vector xi in the population a so-called mutant vi is

built by differential mutation, using three randomly chosen vectors xr0, xr1, xr2,

by: vi = xr0 +F(xr1 -xr2), where F > 0 is a scale factor. Afterwards xi and

vi are recombined by use of binomial crossover, for which each component of

new vector ui
can be inherited either from xi or vi, with fixed probability CR. If

resultingui has a better fitness value thanxi
it is accepted in the next generation,

otherwise xi is retained (selection operator); this latter step implies elitism.

In order to guarantee global convergence of the procedure (Hu et al., 2013;



Knobloch
et

al., 2017)
we

modify standard
DE

by
forcing at least

one vector

in the population at each generation to be uniformly regenerated at random

within its boundaries, before the selection step.

3 Variability decomposition

Let us consider a samplea
parameter

vector
θ. In

aoffrequentistn observationsinferencegeneratedframeworkfrom a
wemodeldenoteindexedθˆ by

as the

best theoretical value of a consistent estimator (for example a Maximum Like

lihood estimator), not available in practice. If θ∗ is the approximation of θ,ˆ

obtained by a convergent EA withV fitness function evaluations, then we must

account for extra variability introduced in the analysis, due to the stochastic

elements
of EA.

Following Rizzo & Battaglia, 2017 we
assume

independence

between data-generating model and process generating EA random seeds, in

troduce the tjwo related expectations ES andcovariance
matrix

ΣTOT (whose
generic EEA, and decomposeelement

refers to trace of total

total
error

[θ∗ −θ])

by:

tr(ΣTOT ) = tr(ΣS)+tr(ΣEA) = tr(WS)

f(n)

1

+tr(WEA)

h(V)

1

,

where ΣS is Cθiθi)(Cθj sampling
is

covariance matrix (generic element is
σS
Cθ
iji
= ES[(Cθj −

f(n)
−θj)]),

ΣEA
and h(V)

are, EA
respectively,covarianceestimatormatrixconsistency(σ∗ij = EEA[(θ∗

ratei−
and)(θ∗

EA
j−)]),

conver

gence rate, WS and WEA are matrices composed by elements that depend, re

spectively, from statistical model and from EA but are constant with respect to

n and V.

Whilst sampling variability is generally well understood in consistency

theory (for example, in the case of asymptotically efficient estimators we have

f(n)
=

n), EAs
convergence

rate,
which corresponds to algorithmic variability

in our framework, is not an easy task to analyze theoretically.

In the next section we shall consider an application of GA and DE based

estimation, for which we will evaluate algorithmic variability. We shall also

make some comments
on

the effect of algorithm configurations
on

h(V).

4 Applications

Application considered is a Least Absolute Deviation estimation of Linear Re

gression model: yi = β0−β1xi,1−β2xi,2+εi, i = 1,...,n. This estimator is the



function that minimizes the sum of absolute value of errors, and it is not dif

ferentiable. We employed both GA and DE in this estimation problem, using

data
simulated from a model with β = (0.5,0.5,−0.5)

and εi ∼ t5. We chose

fitness function f, to be maximized, as:

f = exp{− ∑ni=1

|yi
−β0−β1xi,1−β2xi,2|/n}.

In both algorithm applications we estimated EA variability using J = 500

algorithm runs at each generation g by:

σ∗(g)ii1J ∑Jj=1
∗(g)j,iCβi]2, i=1,...,3,

= [β−

where β∗(g)
best

theoreticalj,i is the best solution found up to generation g in run j, and Cβi is the

value, available
in

simulation. Then a linear
EA

convergence

rate was estimated by regression:

tr(Σ(g)EA) = tr(WEA) [V(g)]1
+eg, g = 1,...,G, (1)

whererameter,
tr(Σ

[V(g)](g)EA)
is
includesthe numberelementsof fitnessσ∗(g)ii, tr(WEA)

is treated as
regression pa

evaluations
up to

generation
g, eg is

the error. By considering [V(g)] instead of g we were allowed to compare al

gorithms with different population sizes. In fact we considered population

sizes N = 50,70 (with related maximum number of generations, respectively,

G = 2000,1450) and following configurations for GAs and DE:

• GA: pM = 0.01,0.05,0.10; pC = 0.5,0.7,0.9

• DE: F = 0.3,0.5,0.8; CR = 0.3,0.5,0.8,

so that 18 algorithms have been employed in the study.

Figure 1 shows the curves of
tr(Σ

(g)EA) estimates for all scenarios. DE exper

iments show a more homogeneous behaviour with respect to GAs (in particu

lar CR seems to have a very low effect), and in both algorithms as N increases

differences between experiments in each panel tend to reduce. However DE

estimation seems to improve as F decreases, as the best behaviour is regis

tered at 0.3. On GA side the same happens for low mutation rate pM (with a

worsening for low pC), possibly because if an elitist strategy is adopted then

effect of exploration (task assigned to mutation operator) become crucial in the

analysis.



(d) GA, population size N = 70

(c) GA, population size N = 50(a) DE, population size N = 50 (b) DE, population size N = 70

Figure 1: Estimates of EA covariance matrix trace

Table 1 shows goodness of fit results of regression analysis (1), in term of

R2, for all scenarios. These results clearly indicate that a linear convergence

rate is reasonable for all different EAs configurations in this application, and

this extends part of results in Rizzo & Battaglia, 2017, which considers only a

single configuration of GA.

5 Conclusions

In this paper we analyzed variability of EA-based estimates, considering the ef

fect of stochastic elements of these methods and estimating their convergence



Table 1: R2 coefficient values for EAs linear convergence rate estimates

GA N=50
N=70pM=0.01 pC=0.5 0.87 0.89 DE N=50 N=70

CR=0.3 F=0.3 0.93 0.93

pM=0.01 pC=0.7 0.90 0.91pM=0.01 pC=0.9 0.89 0.92pM=0.05 pC=0.5 0.92 0.93pM=0.05 pC=0.7 0.92 0.93pM=0.05 pC=0.9 0.93 0.93pM=0.10 pC=0.5 0.93 0.94pM=0.10 pC=0.7 0.92 0.95pM=0.10 pC=0.9 0.93 0.93 CR=0.3 F=0.5 0.95 0.95

CR=0.3 F=0.8 0.95 0.95

CR=0.5 F=0.3 0.94 0.93

CR=0.5 F=0.5 0.95 0.94

CR=0.5 F=0.8 0.96 0.95

CR=0.8 F=0.3 0.94 0.93

CR=0.8 F=0.5 0.95 0.94

CR=0.8 F=0.8 0.96 0.96

rates in a simulation study. Further studies are needed to better understand

theoretically the effect of algorithm configurations on variability, that could

support applications of EAs to statistical problems.
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