
Comput Econ (2016) 48:473–485
DOI 10.1007/s10614-015-9522-7

On the Choice of a Genetic Algorithm for Estimating
GARCHModels

Manuel Rizzo1 · Francesco Battaglia1

Accepted: 18 August 2015 / Published online: 25 August 2015
© Springer Science+Business Media New York 2015

Abstract TheGARCHmodels have been founddifficult to build by classicalmethods,
and several other approaches have been proposed in literature, including metaheuristic
and evolutionary ones. In the present paper we employ genetic algorithms to estimate
the parameters of GARCH(1,1) models, assuming a fixed computational time (mea-
sured in number of fitness function evaluations) that is variously allocated in number
of generations, number of algorithm restarts and number of chromosomes in the pop-
ulation, in order to gain some indications about the impact of each of these factors
on the estimates. Results from this simulation study show that if the main purpose
is to reach a high quality solution with no time restrictions the algorithm should not
be restarted and an average population size is recommended, while if the interest is
focused on driving rapidly to a satisfactory solution then for moderate population sizes
it is convenient to restart the algorithm, even if this means to have a small number of
generations.

Keywords Evolutionary computation · Conditional heteroscedasticity · Parameter
estimation · Restarts

1 Introduction

The class of generalized autoregressive conditional heteroscedastic (GARCH)models,
introduced by Bollerslev (1986), has received great attention in the literature devoted

B Manuel Rizzo
manuel.rizzo@uniroma1.it

Francesco Battaglia
francesco.battaglia@uniroma1.it

1 Department of Statistics, Sapienza University of Rome, Piazzale Aldo Moro 5, 00100 Roma, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-015-9522-7&domain=pdf


474 M. Rizzo, F. Battaglia

to the analysis of financial time series, because of its importance in reproducing the
so-called volatility clustering, along with ARCH models (Engle 1982), of which the
GARCH models represent, indeed, a generalization.

Building models (precisely estimating their parameters) with this features is not
trivial: in fact, since the earliest related works, the inference from GARCH mod-
els has always been based on the Maximum Likelihood Estimation principle, that,
under some Gaussian assumptions, leads to the Quasi Maximum Likelihood Estima-
tor (QMLE), which is the most used in this field. The QML function, even for the
simplest form of the model, the GARCH(1,1), has been found numerically difficult to
optimize using classical methods, like Newton’s for example, because of drawbacks
like multimodality (see Zumbach 2000 for an account of these problems), so different
kind of optimization methods have been proposed.

The growing importance in literature ofmetaheuristics and evolutionary procedures
has encouraged many researchers to try using these methods in statistical applica-
tions (for some comprehensive accounts see Baragona et al. 2011 and Winker and
Gilli 2004). Several metaheuristics and evolutionary algorithms have already been
proposed in literature for the estimating problem in exam. As observed by Winker
and Maringer (2009) the theoretical ML estimator for the GARCH model cannot
be observed in practice. Deterministic algorithms approximations very often provide
high quality solutions, but they fail to do so from time to time due to the inherent
complexity of the estimation problem. This is true even for the simplest form of
the model, the GARCH(1,1). For such a reason stochastic algorithms may be more
efficient. Winker and Maringer proposed the Threshold Accepting, but many more
options can be found in literature. Adanu (2006) showed that the performance of
the genetic algorithm (GA) and the Differential Evolution in optimizing the GARCH
model, compared with two local search methods, is competitive, especially when the
problem complexity is high.Wang and Li (2001) observed that the GA based GARCH
optimization outperforms the conventional numerical methods on the aspect of com-
putational robustness and accuracy. Furthermore, the GAs have been successfully
employed in several applications where modifications of the basic GARCHmodel are
involved, for example Fuzzy-GARCH models (Hung 2009) or Grey GARCH-Type
models (Geng and Zhang 2015). Santamaría-Bonfil et al. (2015), proposed a Sup-
port Vector Machine model and used a hybrid genetic algorithm for estimating the
parameters.

In this paperwe examine the behaviour ofGAswhenused to estimate the parameters
of a GARCH(1,1) when a fixed computational time, measured in number of fitness
function evaluations, is allocated in number of generations G, number of algorithm
restarts R and number of chromosomes in the population N , in a range of different
ways. Thus we can study and analyze the effects of each of these parameters on the
estimates.

123



On the Choice of a Genetic Algorithm for Estimating GARCH… 475

2 GARCH(1,1) Estimation and GAs

The GARCH(1,1) model is defined by the following equations:

Yt = √
htεt ,

ht = ψ1 + ψ2Y
2
t−1 + ψ3ht−1,

with the conditions:

ψ1 > 0, ψ2, ψ3 ≥ 0, ψ2 + ψ3 < 1,

where Yt is a zero mean stochastic process, εt a stochastic process composed by
independent standard normal random variables, ht the conditional variance of Yt and
ψ = (ψ1, ψ2, ψ3) the model parameters vector.

The presence of the conditional variance ht allows the model to account for the
volatility of the process, but the estimation of ψ is not easy. The standard techniques
maximize the QML function:

L(ψ; y) = −n

2
log(2π) − 1

2

n∑

t=1

[
log(ht ) + y2t

ht

]
, (1)

where y = (y1, ..., yn) is the observed time series.
The difficulties experienced in maximizing this function with classical methods

have induced researchers to study other optimization tools, and GAs represent a valid
option. In particular, GAs allow to easily select the quality of the approximation of
the solution, and this is very important when dealing with a large number of financial
datasets.

The GA was introduced by Holland (1975) and became, over the years, one of
the most important algorithm in the metaheuristic and evolutionary field, because of
its simplicity and variety of applications. Many modifications of the GA have been
proposed in literature, but the basic GA can be summarized as follows: the solutions
of the problem are represented as individuals, called chromosomes, which are binary
coded vectors composed by values called genes, of a population that evolves through
generations to populations of better individuals; an individual is considered better
than another if he is better able to adapt to the environment, and this is measured by
the fitness function, to be optimized. The process of evolution in every generation
takes place by applying, on individuals selected stochastically from the population
according to their fitness, two genetic operators: crossover, that allows with a fixed
probability two individuals to reproduce and generate two new solutions (children),
which are created by randomly choosing a common cutting point from the original
chromosomes and taking the left part from the first parent and the right part from
the other and vice versa, and mutation, whereby every gene of chromosomes in the
population is subject to change its value, simulating the random mutations in nature,
with a fixed probability. The flow of generations generally stops if it has reached a

123



476 M. Rizzo, F. Battaglia

prior fixed number, if there are no more significative improvements within a certain
number of generations or if a stopping criterion is met.

The algorithm is initialized by generating a random initial population, and this may
influence qualitatively and quantitatively the convergence to the optimum: in fact the
lack of a mechanism that can dynamically guarantee a certain degree of diversity in the
population may lead the algorithm to prematurely converge to local optima. Several
methods have been proposed in literature to deal with this problem, for example the
restart mechanism.

The restart mechanism is generally employed when an optimization algorithm has
not found a significative improvement of the current solution within a fixed number
of iterations or if it has reached a local optimum: in this case the algorithm is restarted
with a new initial solution, with the purpose of improving the speed of convergence
to the global optimum and escaping the local ones.

Ghannadian et al. (1996) brought formally this idea in the field of GAs, proposing
the restart mechanism as a replacement for the mutation operator: as the search stag-
nates, a new initial population of chromosomes is created and the algorithm is restarted.
They studied analytically the expected time for the algorithm to reach an optimal solu-
tion using the Markov Chain theory. Fukunaga (1998) proposed a distinction between
dynamic restart, the one just described (without the elimination of the mutation opera-
tor), and static restart, where the time at which the restart is applied is prior fixed: in the
classic Traveling Salesman Problem, he used a static restart strategy based on perfor-
mance data from previous runs of the GA on similar problems, when a fixed computa-
tional time is given. The results showed the competitivity of the static strategy in rela-
tion to a dynamic one. It is worth noting that the basic dynamic restart can be thought as
a particular case of the random immigrants scheme (introduced by Grefenstette 1992),
another method that allows to deal with the premature convergence problem, for which
the solutions regeneration step takes place only if a certain condition is met and it may
be applied to the population as a whole. For other different applications of dynamic
restart, that avoid premature convergence and improve the fitness, see Misevicius
(2009) and Phanden et al. (2012). The restart method used in the present paper is sim-
ilar to the version analyzed by Winker (2006) in the field of the Threshold Accepting,
and it may be classified as static, because an equal amount of time is allocated to every
restart; in such awaywe can find some indications about the optimal number of restart.

As far as the choice of the population size is concerned, both empirical and the-
oretical studies have been conducted (see, respectively, Alander 1992 and Goldberg
(1989) for examples), but a general indication tells that it should be large enough to
allow an exhaustive search, but not too large to avoid heavy computational efforts. As
far as the usual population sizes are of the order of the tens, in this paper a range of
population sizes from 10 to 100 is considered.

Lastly, the importance of the number of generations has been shown by Rudolph
(1997) in his convergence theorem valid for elitist GAs: it states that if we choose a
non-zero mutation rate and we employ the elitism, a strategy based on saving the best
result of every generation to obtain a monotonic best fitness in generation function,
then the GA will converge almost surely to the global optimum when the number of
generations tends to infinity. For this reason we shall employ the elitist strategy in the
present analysis.

123



On the Choice of a Genetic Algorithm for Estimating GARCH… 477

3 Problem Description

The problem studied in the present paper is based on a paper byWinker (2006), where
he provides a formal theoretical framework for the analysis of the ThresholdAccepting
method, and then analyzes the optimal allocation of an amount of computational
resources C (measured in iterations) on number of iterations I and number of restarts
R of the algorithm, in an application to the uniform design problem. He shows that
the optimal choice is neither a large number of restarts (with few iterations) nor a very
small one (with many iterations): rather the optimum seems to be of the order of 10–20
restarts.

In a GA analysis we must consider also the population size as a factor influencing
time, because it is a population based method (in fact in every iteration a population
of solutions is considered). Thus, the question becomes how to distribute a fixed
computational time C in number of restarts R, number of generations G and number
of chromosomes in the population N , with the constraint C = R × G × N , meaning
that this computational timewill bemeasured in number of fitness function evaluations
(which is usually the most computationally expensive step).

Now we shall describe first the implementation of a GA for a GARCH(1,1) para-
meters estimation, then the choices and the objectives for the time allocation problem
will be discussed.

3.1 GA’s Implementation

3.1.1 Coding

Every chromosome in the population will be composed by 21 genes and will represent
an estimate of the vector ψ by use of the binary coding: genes 1–7 will indicate ψ̂1,

genes 8–14 ψ̂2, genes 15–21 ψ̂3. We shall adopt the usual rule to represent a parameter
θ defined on the real interval [a, b] by binary coding:

θ = a + b − a

2M − 1

M∑

j=1

2 j−1x j ,

where M is the number of genes in the chromosome and x j is the value of the j-th
gene.

ψ1 will be defined on [0, V ], where V is the unconditional variance of the observed
time series; ψ2 on [0, 1]; ψ3 on [0, (1− ψ2)], to include the constraint ψ2 + ψ3 < 1.
If a decoded chromosome provides an unacceptable value (the rare eventualities are
ψ1 = 0 or ψ2 + ψ3 = 1) it is rejected and regenerated.

3.1.2 Genetic Operators

The selection mechanism employed is the roulette wheel, so that every individual has
a probability of selection for the evolution proportional to his fitness; we also employ

123



478 M. Rizzo, F. Battaglia

the single-point crossover as reproduction operator, with random cutting point and
rate 0.7, and the bit-flip mutation, with rate 0.1, chosen on the basis of some pilot
experiments. Lastly, the elitist strategy is employed, so the best individual in the
previous generation will replace the worst in the current, if there was no improvement
of the best fitness in the current generation.

3.1.3 Fitness

The fitness function f to bemaximized will be based on the log-likelihood (1), divided
by a constant β = 800 to avoid troubles related to numerical approximations and
using the exponential scale to avoid negative values that give problems to the selection
mechanism:

f (ψ) = exp{L(ψ; y)/β}. (2)

3.1.4 Restart Mechanism

The number of restarts R for every time allocation is prior fixed and the restart mech-
anism will operate sequentially, so that at the end of the runs only a vector of fitness
values will result: precisely, at the end of the GA run R vectors of best fitness in
generation values will result but, for every generation, only the best value between all
the restarts will be selected, while the others will be lost. In this way we operate as if
we ran several parallel GAs keeping only the best value between the restarts for every
generation.

3.1.5 Data

The time series analyzed are simulated according to a GARCH(1,1) model with ψ

held fixed, which is considered the true parameters vector of the model, and the GA
will operate to reach the global optimum in f (ψ̂

MLE
), that is the QMLE estimator

maximizing (2). Every time series y leads to a different value of f (ψ̂
MLE

), so we
will proceed in the following way: for every time allocation 50 simulated time series
of length n = 500 are considered and the GA will operate on each of them; every

f (ψ̂
(g)

GA
(y)) (namely the best fitness in generation g obtained with the series y) will be

divided by f (ψ̂
MLE

(y)), and at the end of the runs we will take, for every generation,
the mean of these values on all the series. In this way we can reduce the sampling
variability, different from the variability associated to the GA, and allocate a general
global optimum at 1.

3.2 Time Allocation Problem

The computational time C has been fixed at 105 fitness evaluations and the range of
allocations has been decided on the basis of R and N (the number of generations G
will be derived by the constraintC = R×G×N ). For the optimal number R of restarts

123



On the Choice of a Genetic Algorithm for Estimating GARCH… 479

Table 1 Time allocations
R G N

1 10,000 10

5 2000 10

10 1000 10

20 500 10

1 5000 20

5 1000 20

10 500 20

20 250 20

1 2000 50

5 400 50

10 200 50

20 100 50

1 1429 70

5 286 70

10 143 70

20 72 70

1 1000 100

5 200 100

10 100 100

20 50 100

no indications are found in literature; Winker (2006) worked on a range between 1
and 50,000 with C = 2× 107, but the Threshold Accepting is not a population based
method, so in a GA analysis we must consider a very smaller range. So, in addition
to no restart (R = 1) we chose the values 5, 10 and 20 for R. For each of these R we
considered several population sizes N : 10, 20, 50, 70, 100, to have various levels of
allocations. The 20 allocations are summarized in Table 1.

Once decided the allocations we must consider the stability of the results of the
study; thus we will consider 4 different generator processes:

A) ψ = (0.01, 0.15, 0.80)
B) ψ = (0.01, 0.50, 0.35)
C) ψ = (0.01, 0.80, 0.15)
D) ψ = (0.01, 0.04, 0.94)

In this way we can see how the results change overbalancing the weights of the
conditional variance ht more on the data (bigger ψ2) or on the autoregressive term
(biggerψ3). Experiment A andD’s triplet are similar to the estimates obtained, respec-
tively, by Bollerslev and Ghysels (1991) and Fan and Yao (2003, p. 176), based on
real exchange rate data.

Figure 1 shows the histogram of QML estimates (on a logarithmic scale) of para-
meter ψ3 obtained by R-package fGarch (Wuertz et al. 2013), using 1000 time series

123



480 M. Rizzo, F. Battaglia

Fig. 1 QML estimates

generated according to process D: it is clear that standard numerical methods some-
times fail in providing accurate estimates.

For the present simulation study we used the open-source software R (R Core Team
2013), that was also employed to create all the graphs.

4 Results

The results of the study will be presented and discussed following two main purposes:
finding GA’s configurations that reach a satisfactory solution in a short time or to
obtain a very high precision solutionwithout time constraints (De Jong 1975 discussed
something similar introducing the notions of off-line and on-line performance ofGAs).

Figure 2 shows the progress of the best result for all allocations of the best fitness
reached across generations for every experiment (A, B, C, D). It is clear that the behav-
iour of experiments B and C is almost identical (the curves overlap) and experiments
A and D are more difficult to estimate, and this is possibly due to the large value of ψ3
(which refers to the autoregressive term of ht ), that leads to a more complex fitness.

It is now interesting tofindout, for every experiment, the overall bestGA’s allocation
for a number of time choices, in order to gain some general indications about the
association between time and GA’s configurations: Table 2 summarizes these results,
indicating the best (N , R) pairs per time choice. Experiments B and C show a nearly
identical progress, that dissuades from using a restart strategy and suggests an optimal
population size of 50–70 chromosomes; Experiment A and D, on the other hand, seem
to need higher R and/or N in the first period. As said before, these two processes have
a more complex fitness, and in this case the GA possibly needs a large variety of
chromosomes to gain good results in the first period, even if this means to have a
small number of generations G; this aspect is regulated by both R and N , because in
every generation R × N solutions are evaluated, choosing the best value among the
replications. However, starting from time t = 20, 000, all experiments conform to a

123



On the Choice of a Genetic Algorithm for Estimating GARCH… 481

Fig. 2 Best overall fitness progress for every experiment

Table 2 Best allocations
Fitness evaluations Exp A Exp B Exp C Exp D

1000 (100, 10) (70, 1) (50, 1) (50, 20)

2000 (70, 10) (50, 1) (50, 1) (50, 20)

4000 (70, 10) (50, 1) (50, 1) (50, 1)

6000 (100, 1) (50, 1) (50, 1) (50, 1)

8000 (100, 1) (50, 1) (50, 1) (50, 1)

10,000 (100, 1) (50, 1) (50, 1) (50, 1)

12,000 (100, 1) (50, 1) (50, 1) (50, 1)

14,000 (50, 5) (50, 1) (50, 1) (50, 1)

16,000 (50, 5) (50, 1) (50, 1) (50, 1)

18,000 (50, 5) (50, 1) (50, 1) (50, 1)

20,000 (50, 1) (50, 1) (50, 1) (50, 1)

40,000 (70, 1) (50, 1) (50, 1) (50, 1)

60,000 (70, 1) (50, 1) (50, 1) (50, 1)

80,000 (50, 1) (50, 1) (50, 1) (50, 1)

100,000 (70, 1) (70, 1) (50, 1) (50, 1)

common behaviour that allows us to derive a first conclusion: if we want to get as
close as possible to the optimum without time restraints it is not convenient to restart
the GA and the population size is of the order of 50 or 70.

To study the behaviour of GA’s configurations in the first period we shall analyze
some plots, describing the progress of the best fitness across generations conditioning

123



482 M. Rizzo, F. Battaglia

on each N : in this way we can see, for each N , the behaviour of the curves of the four
different restarts allocation (1, 5, 10, 20). Figure 3 shows these features for Experiment
A, the hardest process to estimate, according to Fig. 2. The results for Experiments
B and C are similar, even if Table 2 show that the overall best short period results
are obtained without restart, because of the less complex fitness. In these plots the
curves are shown from time t = R × N , the first time when all the individuals of the
initialization (generation 0) of the GA are evaluated, to time t = 10, 000, and the thin
horizontal line represents a sub optimum, namely the 90% of the discrepancy between
a totally random initial solution of this problem and the global optimum 1. The panel
for N = 20 suggests that the more you restart the GA the better results you will obtain;
starting from N = 50 the behaviour of R = 1 becomes clear, starting from the bottom
and then overtaking the curves related to higher R through time. This growth tends to
become faster as N grows, because the fact that the GA doesn’t get restarted, thus less
chromosomes are evaluated in the first phases, is balanced up by a larger population
size. We observe that also in this limited evolution runs, the best population size is
intermediate, between 50 and 70. However, for the very first period, until time 2000,
the R > 1 curves tend to overtake the R = 1 curve for every population size.

To synthesize our results we conducted also a logistic regression analysis, where
the outcome variable is the fitness and the covariates are time t (the number of fitness
evaluations, on a logarithmic scale), the number of restarts R and the population size
N (both treated as qualitative factors), and their interactions. We selected, for every
experiment, 50 points from all the fitness progress for every allocation, and estimated
the model taking R = 1 and N = 10 categories as corner point. The model parameters
estimates and the residual deviances values are summarized in Table 3. The interaction
effects values are negative, though not large in absolute value, indicating that for larger
N the restarts have not a positive effect on the fitness. The estimates of the coefficients
of the single covariates show that population size N = 50 has the larger positive
influence on the fitness, followed by the higher categories; the effect of the restart
on the fitness, on the other hand, generally increases when the restart categories get
higher. Thus the restart has a general positive effect on GA’s estimation and small
population sizes are not recommended.

A general indication of our results is that if speed is more important than precision,
then it is more effective to generate a large quantity of initial solutions instead of
spending time on generations; so in this case the total randomness gains power at the
expense of GA’s genetic operators. On the other hand, as we saw, if precision is the
main purpose then the flow of generations becomes the most important feature of the
algorithm, because the benefits of the restart mechanism in the first period are lost as
time flows.

5 Conclusions and Future Work

Results from the study showed that for a GARCH(1,1) parameters estimation problem
it is useful to restart the GA only when a short time is available, the population size is
not very large and the main interest of the user is not the convergence to the optimum
but rather the quick reaching of a satisfactory solution. On the other hand, starting from

123



On the Choice of a Genetic Algorithm for Estimating GARCH… 483

Fig. 3 Best fitness progress. a N = 20. b N = 50. c N = 70. d N = 100 for N fixed

a certain amount of total computational time, the restart is not convenient anymore,
because the effects of the genetic operators become more important than the random
nature of the restart mechanism. In fact, the restart mechanism used in the present
paper allows to run parallel GAs, having a large variety of possibilities, and this is
probably crucial only in the first phases of the algorithm.

A first possible direction for future works is to explore other extensions of the GAs
in statistical model buildings that prevents premature convergence, for example the
random immigrant scheme. Then it is possible to generalize our discussion to other
models or problems where a complex fitness is implied, because it is reasonable to
think that the point of time from which the restart is not useful anymore depends on
the complexity of the fitness. Another important matter is represented by the mutation
rate: in fact, the mutation operator was introduced to offer the opportunity of exploring
different areas of the search space, and this is also what the restart mechanism does
(in fact in many papers a dynamic restart mechanism has been used as a replacement
for the mutation operator, see for example Ghannadian et al. 1996), so it would be

123



484 M. Rizzo, F. Battaglia

Table 3 Logistic regression model summary

Exp A Exp B Exp C Exp D

log(t) 0.5048 0.6569 0.3306 0.4909

R = 5 0.2243 0.8658 0.2500 0.1328

R = 10 0.4748 1.0079 0.4284 0.3823

R = 20 0.8185 1.3791 0.5271 0.3807

N = 20 2.0151 2.5097 1.2806 1.4624

N = 50 2.5169 3.0442 1.4592 1.9480

N = 70 2.4088 2.8252 1.4421 1.8516

N = 100 2.4185 2.8381 1.4372 1.8352

R = 5 ∗ N = 20 0.0843 −0.8073 −0.1681 0.0532

R = 10 ∗ N = 20 −0.1798 −0.9139 −0.4759 −0.5012

R = 20 ∗ N = 20 −0.5647 −1.5158 −0.6603 −0.3007

R = 5 ∗ N = 50 −0.3033 −1.1471 −0.4468 −0.5723

R = 10 ∗ N = 50 −0.6655 −1.5769 −0.8428 −1.2723

R = 20 ∗ N = 50 −1.2384 −2.3673 −1.0957 −1.1532

R = 5 ∗ N = 70 −0.3932 −1.2594 −0.3987 −0.5673

R = 10 ∗ N = 70 −0.7257 −1.4616 −0.7713 −1.1401

R = 20 ∗ N = 70 −1.3549 −2.5178 −1.0466 −1.0008

R = 5 ∗ N = 100 −0.4078 −1.1531 −0.4170 −0.5099

R = 10 ∗ N = 100 −0.8851 −1.4562 −0.8075 −1.0464

R = 20 ∗ N = 100 −1.2511 −2.1106 −1.0814 −1.1112

Res Dev 0.0926 0.0333 0.0278 0.0385

interesting to deepen the relationship between this kind of static restart mechanism
and the mutation rate. Lastly, a generalization of our discussion to other evolutionary
methods may be interesting, because while several dynamic restart strategies have
already been analyzed in different evolutionary fields, a static strategy like ours still
needs to be deepened.

Acknowledgments The authors wish to thank Peter Winker for useful suggestions, and an anonymous
referee for valuable comments.

References

Adanu,K. (2006).Optimizing theGarchmodel—Anapplication of twoglobal and two local searchmethods.
Computational Economics, 28, 277–290.

Alander, J. T. (1992). On optimal population size of genetic algorithms. In Proceedings of CompEuro92
(pp. 65–70). Washington: IEEE Computer Society Press.

Baragona, R., Battaglia, F., & Poli, I. (2011). Evolutionary statistical procedures—An evolutionary com-
putation approach to statistical procedures design and applications. Berlin: Springer.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics,
31, 307–327.

123



On the Choice of a Genetic Algorithm for Estimating GARCH… 485

Bollerslev, T., & Ghysels, E. (1991). Periodic autoregressive conditional heteroskedasticity. Journal of
Business & Economic Statistics, 14(2), 139–151.

De Jong, K. A. (1975) An analysis of the behaviour of a class of genetic adaptive systems. Ph.d Thesis,
Dept. of Computer and Communication Sciences University of Michigan, Ann Arbor

Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K.
inflation. Econometrica, 50, 987–1008.

Fan, J., & Yao, Q. (2003). Nonlinear time series: Nonparametric and parametric models. New York:
Springer.

Fukunaga, A. S. (1998). Restart scheduling for genetic algorithms. Lecture Notes In Computer Science,
1498, 357–366.

Geng, L., & Zhang, Z. (2015). Forecast of stock index volatility using grey garch-type models. The Open
Cybernetics & Systemics Journal. doi:10.2174/1874110X01509010093.

Ghannadian, F., Alford, C., & Shonkwiler, R. (1996). Application of random restart to genetic algorithms.
Intelligent Systems, 95, 81–102.

Goldberg, D. E. (1989). Sizing populations for serial and parallel genetic algorithms. In J. D. Schafer (Ed.),
Proceedings of the 3d conference of genetic algorithms (pp. 70–79). San Mateo: Morgan Kaufman.

Grefenstette, J. J. (1992). Genetic algorithms for changing environments. In R. Manner & B. Manderick
(Eds.), Parallel problem solving from nature 2 (pp. 137–144). Amsterdam: Elsevier.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan
Press.

Hung, J. (2009). A fuzzy GARCHmodel applied to stock market scenario using a genetic algorithm. Expert
Systems with Applications, 36, 11710–11717.

Misevicius, A. (2009). Restart-based genetic algorithm for the quadratic assignment problem. InM. Bramer,
F. Coenen, & M. Petridis (Eds.), Research and development in intelligent systems XXV—proceedings
of AI-2008 (pp. 91–104). London: Springer.

Phanden, R. K., Jain, A., & Verma, R. (2012). A genetic algorithm-based approach for job-shop scheduling.
Journal of Manufacturing Technology Management, 23(7), 937–946.

R Core Team (2013) R: A language and environment for statistical computing. Vienna: R Foundation for
Statistical Computing. http://www.R-project.org/.

Rudolph, G. (1997). Convergence properties of evolutionary algorithms. Hamburg: Verlag Dr. Kovac.
Santamaría-Bonfil, G., Frausto-Solís, J., Vzquez-Rodarte, I., (2015). Volatility forecasting using sup-

port vector regression and a hybrid genetic algorithm. Computational Economics. doi:10.1007/
s10614-013-9411-x.

Wang, C., & Li, G. (2001). Improving the estimations of Var-GARCH using genetic algorithm. Journal of
Systems Science and Systems Engineering, 10(3), 281–290.

Winker, P. (2006). The stochastic of threshold accepting: analysis of an application to the uniform design
problem. In A. Rizzi & M. Vichi (Eds.), COMPSTAT 2006—Proceeding in Computational Statistics
(pp. 495–503). Heidelberg: Physica-Verlag.

Winker, P.,&Gilli,M. (2004).Applications of optimization heuristics to estimation andmodelling problems.
Computational Statistics & Data Analysis, 47, 211–223.

Winker, P., & Maringer, D. (2009). The convergence of estimators based on heuristics: Theory and appli-
cation to a GARCH model. Computational Statistics, 24, 533–550.

Wuertz, D., et al. (2013). fGarch: Rmetrics—Autoregressive conditional heteroskedastic modelling. R
package version 3010.82. http://CRAN.R-project.org/package=fGarch.

Zumbach, G. (2000). The pitfalls in fitting GARCH processes. In C. Dunis (Ed.), Advances in quantitative
asset management. Amsterdam: Kluver.

123

http://dx.doi.org/10.2174/1874110X01509010093
http://www.R-project.org/
http://dx.doi.org/10.1007/s10614-013-9411-x
http://dx.doi.org/10.1007/s10614-013-9411-x
http://CRAN.R-project.org/package=fGarch

	On the Choice of a Genetic Algorithm for Estimating GARCH Models
	Abstract
	1 Introduction
	2 GARCH(1,1) Estimation and GAs
	3 Problem Description
	3.1 GA's Implementation
	3.1.1 Coding
	3.1.2 Genetic Operators
	3.1.3 Fitness
	3.1.4 Restart Mechanism
	3.1.5 Data

	3.2 Time Allocation Problem

	4 Results
	5 Conclusions and Future Work
	Acknowledgments
	References




