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Introduction

In many scientific fields the researchers, as well as the end-users, may face and

analyze complex problems, in which difficulties may be due to computational con-

straints or may be intrinsic. There are, for example, many intractable optimization

problems not having an analytical solution or being computationally prohibitive.

Evolutionary Computation (EC) techniques have been introduced in the 1960s for

dealing with such questions. They are based on metaphors of Darwin’s principles,

biology, genetics, and propose heuristic solutions to approach intricate problems,

leading to methods named Evolutionary Algorithms (EAs). The easiness of imple-

mentation and the adaptability of such algorithms made EC a generally effective

tool in a large variety of application fields.

In statistics there are many situations where complex problems arise, in particular

concerning optimization. A general example is when the statistician needs to select,

inside a prohibitively large discrete set, just one element, which could be a model,

a partition, an experiment, or such: this would be the case of model selection,

cluster analysis or the design of experiment. In other situations there could be an

intractable function of data, such as a likelihood, which needs to be maximized, as

it happens in model parameters estimation. These kind of problems are naturally

well suited for EAs, and in the last 20 years a large number of papers has been

concerned with applications of EAs in tackling statistical issues.

The present dissertation is set in this part of literature, as it reports several

implementations of EAs for statistics, although being mainly focused on statistical

inference problems. Original results are proposed, as well as overviews and surveys

on several topics. EAs are employed and analyzed considering various statistical

points of view, showing and confirming their efficiency and flexibility.

An outline of the thesis will follow, which includes citations of papers and pub-

lications, concerned also with conference presentations.

In Chapter 1 a general overview of EC is provided. Starting from an historical

background of the field, structure of generic EAs is then discussed. The methods

1
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studied in the dissertation, Genetic Algorithms (GAs) above all, will be described

more in depth. Chapter ends with a wide review of statistical applications of EAs,

giving an idea of state-of-art.

In Chapter 2 EAs are applied to parametric estimation problems. When they

are employed in such analysis a novel form of variability, related to their stochastic

elements, is introduced. We shall analyze both variability due to sampling, associ-

ated with the selected estimator, and variability due to the EA. So in this chapter

the EA is studied from a frequentist inference point of view, and its behaviour is

asymptotically analyzed as the number of iterations increase. This analysis is set in

a framework of statistical and computational tradeoff question, crucial in nowadays

problems, by introducing cost functions related to both data acquisition and EA

iterations. The proposed method will be illustrated by means of some model build-

ing problem examples. The topics of this chapter can be also found in following

manuscripts:

2018 Statistical and Computational Tradeoff in Genetic Algorithm-Based Estima-

tion. Under review (arXiv:1703.08676) (with F. Battaglia)

2017 On Variability Analysis of Evolutionary Algorithm-Based Estimation. In F.

Greselin, F. Mola, M.A. Zenga (eds) Cladag 2017 Book of Short Papers. Uni-

versitas Studiorum. ISBN 978-88-99459-71-0

2016 Statistical and computational tradeoff in econometric models building by ge-

netic algorithms. In A. Blanco-Fernandez, G. Gonzalez-Rodriguez (eds) CFE-

CMStatistics 2016 Book of Abstracts. University of Seville. ISBN 978-9963-

2227-1-1 (with F. Battaglia)

Chapter 3 is concerned with EAs employed in Markov Chain Monte Carlo (MCMC)

sampling. When sampling from multimodal or highly correlated distribution is con-

cerned, a possible strategy suggests to run several chains in parallel, in order to

improve their mixing. If these chains are allowed to interact with each other then

many analogies with EC techniques can be observed, and this has led to research

in many fields. The chapter aims at reviewing various methods found in literature

which conjugates EC techniques and MCMC sampling, in order to identify the spe-

cific and common procedures, and unifying them in a framework of EC. Although

MCMC is a general topic, and this is confirmed by the diversity of research papers

analyzed in the overview, it is generally employed in Bayesian inference procedures

as far as statistical problems are concerned. The strength of EAs in this case is the

capability of exploring the support of target distributions, which can be a posterior
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for example, by use of its operators and strategies. This work has been presented

at conference:

2017 Evolutionary Computation and multiple chains MCMC sampling: an overview.

In G. Gonzalez-Rodriguez, M. Hofmann (eds) CFE-CMStatistics 2017 Book

of Abstracts. University of London. ISBN 978-9963-2227-4-2.

In Chapter 4 the GA is employed for building a complex statistical model. Here

the focus is on a specific field, that is time series analysis, and a model for dealing

with seasonality and structural changes is introduced. First issue is accounted by

use of Periodic AutoRegressive (PAR) models, characterized by a large number of

parameters; as far as structural changes can occur at each time instant, in our model

we allow several PAR models linked at different changepoints. GAs are employed

for identifying this model, as a complex combinatorial optimization problem is con-

cerned. Effectiveness of the procedure is shown on both simulated data and real

examples; these latter refer to river flow data in hydrology, for which also forecast-

ing accuracy of fitted model is evaluated. The topic of this chapter is included in

following papers:

2018 Periodic autoregressive models with multiple structural changes by genetic

algorithms. To appear. Mathematical and Statistical Methods for Actuarial

Sciences and Finance 2018 conference (with F. Battaglia and D. Cucina)

2018 Multiple changepoint detection in periodic autoregressive models with applica-

tions to river flow analysis. Under review (arXiv:1801.01697) (with D. Cucina

and E. Ursu)

Chapter 5 contains some concluding remarks, concerning also future work, and

a summary of the thesis.
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Chapter 1

Evolutionary Computation and

Statistics

1.1 Origins of Evolutionary Computation

Methods which are known today under the comprehensive name of Evolutionary

Computation (EC) originated in the second half of 20th century. There was no

single precursor, but rather several independent groups working on different lines of

research, having in common the problem of dealing with complex situations, that

would have converged during subsequent decades to a common EC framework.

One essential discussion originated in relation with the research that was creating

Artificial Intelligence paradigms. Researchers in this field, in fact, had to specify

concepts such as intelligence and learning in order to successfully build ”thinking”

machines. In a fundamental work, Lawrence Jerome Fogel and his group (Fogel et

al., 1966), basing on previous discussions by Alan Turing, Leonard Ornstein and

Walter B. Cannon among others, defined intelligence as ”the capability of a system

to adapt its behaviour to meet its goal in a range of environments”, which sug-

gested that both intelligence and learning concepts could have been set in a kind

of evolutionary flow process. In the same work they also developed a correspon-

dence between natural evolution, in the sense of Charles Darwin’s theories, and the

scientific method. This latter discussion supported the idea that an evolutionary

process could be mechanized and programmed on a computing machine in algorith-

mic form. Starting from these ideas, Fogel and his group introduced Evolutionary

Programming, the earliest EC method, in which a number of agents, called finite

state machines, are assigned to predict some outputs starting from certain inputs,

through a process which improves prediction at each iteration. This method has

5
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been refined through the years and has also been applied to other fields of science.

Along with Fogel’s, two more research groups are universally recognized as essen-

tial for the development of EC paradigms: Ingo Rechenberg and Hans-Paul Schwe-

fel worked on an algorithm called Evolution Strategies, designed to solve complex

real-valued optimization problems by use of evolutionary methaphors, which still

represents an established technique (Schwefel, 1975; Beyer & Schwefel, 2002); John

Henry Holland, instead, employed the concept of evolutionary process for analyzing

complex adaptive systems, capable of dealing with an uncertain and changing envi-

ronment, using metaphors of biological populations evolution and genetics (Holland,

1967). The result of subsequent years of research is the Genetic Algorithm, the most

successful EC technique, for simplicity and variety of applications. This latter algo-

rithm has been widely studied in this thesis, mostly for optimization purposes, and

it will be deepened in the next sections.

Across the decades EC has been deeply refined, leading to a huge number of

algorithms, named Evolutionary Algorithms (EAs), proposed for many different

problems and fields of science. A detailed review of these methods is beyond the

scope of this dissertation, which will rather consider a small selection of EAs em-

ployed in statistical applications. The reader interested in a global overview of EC

can refer to authoritative book references by, for example, Fogel (1995, 1998), Bäck

(1996), Eiben & Smith (2003), De Jong (2006).

1.2 Evolutionary Algorithms

Although no universally accepted formal definition of EA is available in literature,

there are some necessary key elements to contemplate when illustrating such algo-

rithm. De Jong (2006) proposes to consider Charles Darwin evolutionary system

as starting point, whose basic elements summarized in Table 1.1. These ingredients

are adopted as metaphor to approach computational problem at hand: the popula-

tion of individuals explores and exploits problem environment; birth/death process

and variational inheritance regulate dynamics of population through algorithm it-

erations; the fitness is an attribute of each individual, and it might be linked to its

goodness.

A simple EA structure is illustrated by the pseudocode in Table 1.2. This kind of

template is quite general and little informative from the practical point of view. In

this thesis, unless otherwise specified, we shall refer to EAs as optimization method,

because it is one of the most prominent fields of application (including the sub-

ject of this dissertation), even if this point of view has stimulated some discussion
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Individuals

One or more populations of individuals competing for limited resources

Reproduction

The notion of dynamically changing populations due to the birth and death of individuals

Fitness

A concept of fitness which reflects the ability of an individual to survive and reproduce

Inheritance

A concept of variational inheritance: offspring closely resemble their parents,

but are not identical

Table 1.1: Elements of an evolutionary system

in literature (see, for example, De Jong, 1993). In that case individuals represent

candidate problem solutions, the fitness is related to objective function of the prob-

lem, birth/death process and variational inheritance drive the population through

promising areas of search space. Before going any further, it is crucial to specify

that EAs are characterized by stochastic moving rules, meaning that a probability

distribution is built on possible solutions to be reached in subsequent steps; this also

allows to allocate EAs in the category of stochastic optimization methods.

That being said, we shall introduce some notation and describe the dynamics of

a simple EA: let f denote the fitness function, to be maximized (this can be easily

generalized by considering minimization of the additive inverse of f), taking values

on set Ω, which can be either discrete or continuous, and possibly multidimensional.

Each individual ψ represents a possible solution θ by convenient coding, and θ∗

denotes global optimum point of f . At each EA iteration (hereinafter referred to

as generation) the population of individuals is subject to random operators, which

allow to build an intermediate population: main operations are selection, based on

fitness, which discriminate solutions that will contribute to subsequent steps, and

reproduction, which effectively build new individuals (the offspring). The interme-

diate population is then handled in order to decide which and how many novel

solutions will replace old ones, possibly resulting in a general improvement. The

stopping criterion can be decided a priori, for example the reaching of a prefixed

number of generations, or it may depend on the behaviour of algorithm, that is the

case when no significant improvement is observed within a certain number of steps.

A useful strategy, named elitism, has been proposed, in particular for optimization

purposes, in order to maintain in population the best individual found up to current

generation, irrespective of the effect of operators. User interested in optimization
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1) Randomly generate an initial population

Do until some stopping criteria is met

2) Select individuals to be parents (biased by fitness)

3) Produce offsprings

4) Select individuals to die (biased by fitness)

End Do

Table 1.2: Basic EA pseudocode

may consider just the flow of these solutions, which is a monotonic non-decreasing

sequence with respect to fitness.

Once selected the specific EA to tackle problem at hand, many choices on struc-

ture and configurations of algorithm are possible. These latter are linked also to

the choice of probability rates of stochastic operators. This is a wide subject in

the field of EC: there has been research focused on analyzing configurations before

running the EA, an issue named parameter tuning (Eiben & Smit, 2011), and also

studies on eventuality of online modifications of configuration, and that is the case

of parameter control (Eiben et al., 1999; Lobo et al., 2007). In the present thesis we

shall generally consider basic EAs with, for example, fixed length solution coding,

fixed population size, basic operators with fixed probability. Also number of parents

and offspring size coincide, so that final intermediate population replaces previous

population. These choices have been made for the matter of simplicity and because

they have been found effective in literature of statistical applications, including this

dissertation.

1.3 Genetic Algorithms

The Genetic Algorithm (GA), is the most successful EA, for simplicity and variety of

applications, including statistics. Introduced by Holland (1975) it has been deepened

during decades, so that it is recognized as the main combinatorial optimization

technique among EAs, as many authoritative books on the subject can confirm

(Goldberg, 1989; Davis, 1991; Michalewicz, 1994; Mitchell, 1998; Vose, 1999; Reeves

& Rowe, 2003).

Standard binary GA relies on direct biological and genetic inspiration: in fact

solutions are coded in strings named chromosomes, composed by elements (genes)

representing the genetic heritage of individual. While information carried by genes

is called genotype, the practical meaning of solution, who is explicitly passed as
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argument to fitness function, is named as phenotype. Possible values of genes in this

algorithm are only 0 or 1, called bits like in computer science theory.

There are at least three basic genetic operators employed at each generation:

• Selection, which randomly chooses solutions for subsequent steps. Among

main type of selection we report: roulette wheel selection, for which individuals

are selected with repetition proportionally to their fitness value; rank selection,

similar to previous, but in this case selection probabilities are built on fitness

ranks rather than absolute values, in order to avoid premature convergence of

algorithm; tournament selection, for which an individual is compared with a

group or with a single solution: if it wins, namely it has a better fitness than

competitors, it is selected with probability p, and rejected with complementary

probability.

• Crossover, the pure reproduction operator. It allows pairs of solutions to

combine together, with a fixed rate pC, exchanging part of their genes and

creating two new individuals. Original proposal by Holland (1975), called

single point crossover, considers a common randomly chosen cutting point in

parents, and two children are built by taking the left part from the first parent

and the right part from the other, and vice versa. Other possible choices of

crossover are the k point, that generalizes previous method, or uniform, which

allows each individual gene of parents to be swapped, with probability 0.5 (also

a generic rate p can be adopted, leading to parametrized uniform crossover).

• Mutation operator allows every bit to flip its value from 0 to 1, or vice versa,

with a fixed probability pM , simulating random mutations in nature.

These operators are designed to balance two fundamental search strategies: ex-

ploitation, for which promising areas of search space are deepened, and it is assigned

to selection and crossover, and exploration, designed to avoid premature conver-

gence of algorithm, accomplished by allowing evaluation of random solutions (in-

dependently from fitness), possibly reaching unexplored areas of search space (task

assigned to mutation).

Considerable success of GA has encouraged researchers to apply its philosophy

also to non-discrete optimization problems. Wright (1991) and Goldberg (1991)

proposed a floating point GA in order to solve continuous optimization problems (see

also Herrera et al., 1998, for a comprehensive review). This new formulation employs

direct real coding, so that genotype and phenotype coincide and computation time
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needed for decoding is saved. Whilst selection operator is unaffected by change of

coding, mutation and crossover, as far as they operate on genotype, needs to be

reformulated.

Among crossover between two parents some proposals rely on generating off-

springs taking values, for each gene, from the real interval (flat crossover) or the

discrete set (discrete crossover) composed by parents corresponding parameters;

other authors introduced operators generating new genes basing on combinations be-

tween parents values (arithmetic and linear crossover); also a single-point crossover

analogous to binary case (simple crossover) has been studied.

Mutation strategies range from simple operations, like random sampling within

genes boundaries (random mutation), to more complex techniques, taking advantage

of informations on local optima (real number creep) or considering sophisticated

probability distributions (ebein’s mutation or modal mutation). Also the equivalent

of mutation operation in Evolution Strategies can be adopted.

A significant extension of standard GA proposes parallelization in order to save

computational time, leading to the Parallel GA (for a survey, see Cantù-Paz, 1998).

One special case is the Distributed GA (Tanese, 1989), for which the whole popula-

tion is divided into a set of subpopulations and algorithm runs on each subpopula-

tion. Information exchange between subpopulations is performed at selected steps

by allowing individuals called migrants to shift to a different subpopulation, in order

to prevent premature convergence. This strategy has shown good performances on

several scenarios compared with standard GA.

1.4 Other Evolutionary Algorithms

We shall now shortly describe Differential Evolution and Estimation of Distribution

Algorithm, two EAs which have been studied in this thesis along with GAs.

1.4.1 Differential Evolution

Rainer Storn and Kenneth Price introduced Differential Evolution (DE) in the 1990s

as a simple and powerful tool for continuous global optimization (Storn & Price,

1997; Price et al., 2006). In this algorithm solutions are directly coded as real

vectors, and the evolution consists of geometrical updating based on other vectors

in the population. Differential mutation operator, in fact, for each vector xi in the

population builds a mutant vi as follows:
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vi = xR0 + F (xR1 − xR2),

where xR0, xR1 and xR2 are solutions selected in such a way that i 6= R0 6= R1 6= R2,

and F is a positive scale factor. A trial vector is then built by parametrized uniform

crossover, for which each gene can be inherited by either original vector xi or mutant

vi, with fixed probability CR. Generation terminates with a selection step: if the

trial vector has a better fitness then original solution xi it is retained, otherwise it is

rejected and the original solution is maintained. This kind of selection mechanism

ensures elitist property in DE.

Like the majority of EAs, many modifications of standard DE algorithm have

been proposed in literature: the informed choice of vectors in differential mutation,

for example including the best individual of previous generation; adoption of a ran-

domized scale factor F , leading to so-called dither and jitter strategies, depending

on whether randomization is done with respect to individuals or parameters, can

make DE theoretically tractable (Zaharie, 2002).

1.4.2 Estimation of Distribution Algorithm

Estimation of Distribution Algorithm (EDA), or Probabilistic Model-Building Ge-

netic Algorithm, although being a standard EA is very different from methods de-

scribed previously. It has been introduced in a basic form by Mühlenbein & Paass

(1996), and since then many sophisticated methods have been introduced (for a

comprehensive account see Larrañaga & Lozano, 2001; Pelikan et al., 2002; Lozano

et al., 2006). In EDA philosophy new solutions are generated at each generation g

by a probability distribution P (g), estimated on the basis of population at generation

g as follows: a subset x = {x1, ..., xK} of population at time g is drawn according

to some selection operator; x is treated as a random sample from a multivariate

probability distribution P (g), and it is used to estimate its parameters. In such a

way features of selected individuals are used to ”inform” the probability distribution

of population, so that new generated individuals according to P (g) will be likely to

preserve them.

Choices on type of distribution P (g) discriminates the type of EDA: a simple

example is the Univariate Marginal Distribution Algorithm (Mühlenbein & Paas,

1996), in which P (g) is a multivariate normal with independent components; in Fac-

torized Distribution Algorithm (Mühlenbein et al., 1999) fitness function is assumed

to be additively decomposed in terms depending each on a subset of population, and

P (g) is factorized as a consequence by including marginal and conditional distribu-
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tions depending on these subsets; the Bayesian Optimization Algorithm (Pelikan,

2005) employs Bayesian networks in order to predict value of new solutions.

1.5 Convergence of Evolutionary Algorithms

Convergence of EAs is a difficult task to analyze, because probability distributions

of moving rules does not usually have a known form, except for simple test cases.

The main reference on the subject is Rudolph (1997), in which convergence prop-

erties of many classes of EAs under several simplificative hypothesis are analyzed.

Markov Chain theory is often employed for modeling algorithm dynamics, because

the behaviour of many EAs at a certain generation can be described by considering

only the population of solutions at previous step. In the same book Rudolph states

a fundamental theorem:

Theorem 1. Let us consider an EA with mutation probability pM ∈ (0, 1), arbitrary

crossover operator and an elitist selection rule. The sequence D(g) = f(X(g)) − f ∗,

where f(X(g)) is the fitness of best solution found up to generation g and f ∗ is the

global optimum of f , is a nonnegative supermartingale that converges almost surely

and in mean to zero.

This latter theorem includes a wide class of EAs because, informally, it states

that the convergence to global optimum is ensured if an elitist strategy is employed

and if there is a nonzero probability of reaching any point of search space. In

GAs, for example, it is trivial to satisfy these two properties. Hu et al. (2013),

recently, stated global convergence of a modified DE algorithm (see also Knobloch

et al., 2017) basing on Rudolph’s philosophy: as far as the standard DE is naturally

elitist, a mutation operator which consists in the random regeneration of solutions

is periodically included before selection step, allowing each point of search space to

be reached with nonzero probability. Studies concerning convergence of EDA can

be found in Mühlenbein & Mahnig (1999) and Zhang & Mühlenbein (2004).

As far as GAs are concerned, generalizations have been proposed for extending

Theorem 1 to time varying mutation or crossover rates (or both) by modeling the

algorithm as a non homogeneous Markov Chain (Rojas Cruz et al., 2013; Pereira et

al., 2015; Pereira et al., 2016). The latter reference includes also a review of other

methods of studying GA convergence by Markov Chain modeling.
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1.6 Evolutionary Algorithms in statistical appli-

cations

There are many situations in the statistical field where complex optimization prob-

lems arise, for multiple possible reasons: the objective function is non differentiable

or has many discontinuities, and an analytical optimal solution could not be avail-

able; search space is prohibitively large or irregular (or both); sometimes the number

of variables in statistical models or sample size may lead to dramatically time con-

suming procedures.

These kind of reported situations are sometimes beyond the means of standard

procedures, so EC methods, naturally suited for such issues, have been introduced

in statistical methodologies in the last decades (see book reference Baragona et al.,

2011). This is also reflected by the number of R packages (R Core Team, 2013)

introduced for dealing with EAs, as they include GA (GA, Scrucca, 2013), DE

(DEoptim, Mullen et al., 2011), EDA (copulaEDA, Gonzalez-Fernandez & Soto,

2012), Covariance Matrix Estimation-Evolution Strategies (cmaes, Trautmann et

al., 2011), Artificial Bee Colony Optimization (ABCoptim, Vega Yon & Muñoz,

2016), Self-Organising Migrating Algorithm (soma, Clayden, 2014) and other nature

inspired or hybrid algorithms such as Particle Swarm Optimization (pso, Bendtsen,

2012, and hydroPSO, Zambrano-Bigiarini & Rojas, 2014) or Memetic Algorithm

(Rmalschains, Bergmeier et al., 2016).

A non-exhaustive survey of statistical applications of EAs will follow, with the

scope of illustrating various possibilities of implementation (most of which involving

GAs) and giving an idea of state-of-art.

Parametric estimation

Paper by Chatterjee et al. (1996), employing GAs for model parametric estima-

tion, is generally considered the first proposal to employ EAs in pure statistical

applications. This kind of problem justifies EAs implementation when the objective

function, such as a likelihood, is difficult to analyze by standard methods. GAs are

favored researchers pick in this framework, although most of the problems consid-

ered refer to continuous supports. These works generally use a rule for representing

a parameter defined on a real interval by binary coding (see, for example, Wright,

1991), and the standard binary GA is then employed, usually adopting fitness as

a transformation of objective function. Here we report contributions on estimation

of nonlinear regression (Kapanoglu et al., 2007), Johnson distribution family (Nier-
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mann, 2006), logistic regression (Chatterjee et al., 1996; Pasia et al., 2005), switching

regression (Karavas & Moffitt, 2004), robust regression (Nunkesser & Morell, 2010),

least absolute regression with censored data (Zhou & Whang, 2005), support vector

regression (Santamar̀ıa-Bonfil et al., 2015), ARMA models (Abo-Hammour et al.,

2011), GARCH (Rizzo & Battaglia, 2016). Parametric estimation via EAs will be

the main topic of Chapter 2.

Model identification

A natural application of GAs in statistics is model selection (or identification), in

a both independent and dependent observations framework. The generic solution

is a possible model: in an independent framework it is generally encoded to denote

the presence or absence of variables; in time series also indications on model order

must be provided. Fitness function is usually linked to penalized likelihood criteria,

like AIC or BIC, or goodness of fit measures like the R2 coefficient. Proposals

in literature include identification of models such as linear regression (Minerva &

Paterlini, 2002; Kapetanios, 2007), logistic regression (Aly, 2016), graphical models

(Roverato & Poli, 1998). In time series analysis some contributions have been made

in order to identify ARIMA models (Gaetan, 2000; Ong et al., 2005), periodic

models (Ursu & Turkman, 2012; Ursu & Pereau, 2017), bilinear time series (Chen

et al., 2001) and also complex nonlinear and nonstationary models. A review of

such applications is included in Chapter 4, as its main subject is nonstationary time

series models identification by GAs.

Clustering

Clustering observations sharing similar features has always been a fundamental topic

in statistics and many other fields, because it implies considerable gain in simplicity

and interpretability. In an era where sample sizes are growing exponentially it is evi-

dently a highly demanding issue. These kind of problems are characterized by a very

large discrete set of solutions, each of which generally refers to a possible partition

of the considered dataset, often growing fast with problem dimension: this make

clustering problems suitable for EAs applications, in particular GAs. After seminal

papers by Raghavan & Birchand (1979), Bandyopadhyay et al. (1995) and Murthy

& Chowdhury (1996) among others, there have been many contributions tackling

clustering problem in different ways, although many of them do not generally refer

to the statistical field. Since GAs are naturally suitable for non hierarchical methods

and hard clustering, most of contributions have been made in this framework, even
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if also methods employing hierarchical strategies (Kuncheva, 1995; Tseng & Yang,

2001) and fuzzy logic (Choi & Moon, 2007; Maulik & Bandyopadhyay, 2003) have

been introduced. In Baragona et al. (2011, sec. 7.2.2) a GA version of quick par-

tition clustering was introduced; Falkenauer (1998) proposed the Grouping Genetic

Algorithm, which directly encodes candidate partition, and has been found essen-

tial in subsequent research (Hruschka & Ebecken, 2003; Mutingi & Mbohwa, 2017,

which provided a fuzzy version of method); model-based clustering by GAs has been

studied in Baragona & Battaglia (2003) and Paterlini & Minerva (2003); some com-

parative accounts can be found in Baragona et al. (2006) and Paterlini & Minerva

(2003); Paterlini & Krink (2006) proposed DE and Particle Swarm Optimization

for partitional clustering; recently Vo-Van et al. (2017) introduced a modified GA

for clustering probability density functions. Many contributions have been made

by S. Bandyopadhyay, U. Maulik and S. Saha research group, proposing to evolve

centroids and similar measures as in k-means algorithm (Maulik & Bandyopadhyay,

2000; Bandyopadhyay & Maulik, 2002), focusing on genetic multiobjective opti-

mization (Bandyopadhyay et al., 2007; Saha & Bandyopadhyay, 2013; Pal et al.,

2018) or basing on a novel distance measure based on symmetry as fitness function

(Bandyopadhyay & Saha, 2007; Saha & Bandyopadhyay, 2009; Saha, 2017).

Concerning hybrid EAs for clustering, Jank (2006) provided a review of links

between EAs and EM algorithm: an example is the case where EAs are employed

for providing promising starting point for EM. Also GAs for clustering time series

have been introduced (Baragona et al., 2001a; Bandyopadhyay et al., 2001).

Design of experiments

When designing experiments in areas such as biology or chemistry there is often

a wide variety of possible factors to be combined in the analysis. For example

the researcher must evaluate multiple combinations of factors (whose size may be

not fixed), their levels, and also interactions between these factors. As far as high

dimensional problems are concerned, standard experimentation may be economically

infeasible, so novel methods have been proposed, including designs based on EAs.

In these latter the evaluation of possible combinations of factor, levels and such

is driven by the evolutionary paradigm. For example, Broudiscou et al. (1996)

employed GAs for selecting D-optimal asymmetric designs; study in Angelis (2003)

is concerned with finding A-optimal incomplete block designs by EAs; for a recent

review of EAs for design of experiments see Lin et al. (2015). A generic framework

of Evolutionary Design of Experiments has been proposed in many papers such as

Poli (2006) or Forlin et al. (2007) (see Baragona et al., 2011, Chapter 5, for a
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summary of these contributions). Beside these proposals also an approach which

aim at exploiting features of data obtained for each experiment in algorithm has

been proposed: as far as a model is built to predict new candidate solutions, the

method has been named Evolutionary Model-Based Experimental Design. Among

the different models proposed in this framework we report Neural Networks (De

March et al., 2009) and Bayesian Networks (Slanzi et al., 2009; Slanzi & Poli, 2014).

Bayesian analysis

A different kind of application, with a non optimization purpose, is the problem of

sampling from complex distributions, mainly in a Bayesian inference framework. In

this case researchers take advantage of exploratory features of EAs, and implemen-

tation is different compared to previous contributions. An overview of literature

that proposes methods conjugating EC and Markov Chain Monte Carlo sampling is

provided in Chapter 3.

Among other Bayesian problems, Jung & Marjoram (2011) implemented GAs

for the choice of summary statistics weight in Approximate Bayesian Computation

analysis; Franconi & Jennison (1997) employed them for finding maximum a poste-

riori estimates in Bayesian image analysis, while some contributions have also been

made in the framework of Sequential Monte Carlo (or Particle Filtering): Higuchi

(1997) proposed a new filter method based on GA; Kwok et al. (2005) introduced

GA with purpose of mitigating the so-called sample impoverishment problem, very

common in Particle Filtering.

Other applications

Lastly we shall report some miscellanea statistical applications of EAs: GAs have

been proposed for optimal deletion of nodes in Bayesian networks (Larrañaga et

al., 1997) and influence diagrams (Gómez & Bielza, 2004), outlier detection in both

univariate (Baragona et al., 2001b) and multivariate time series (Cucina et al.,

2014), for designing optimal statistical quality control procedures (Hatjimihail &

Hatjimihail, 2002). Waagen et al. (1994) proposed hybrid Evolutionary Program-

ming algorithms for nonparametric multivariate mixture density estimation, with

classification purposes. In book by Palit & Popovic (2005, Chapter 5) a review of

forecasting methods based on EAs is provided.



Chapter 2

Statistical and Computational

Tradeoff in Evolutionary

Algorithm-Based Estimation

2.1 Variability analysis

According to estimation theory a parameter estimate is naturally subject to sampling

variability: in fact if we make inference using two different samples we obtain two

possibly different results. This issue had to be deepened in all statistical inference

approaches: here we refer to frequentist theory, for which sampling variability is

closely related to the variability of selected estimators. When EAs are employed

in the estimation process a new form of variability is introduced in the analysis,

due to the stochastic nature of the algorithm. It refers to elements like the starting

population, selection mechanism, stochastic reproduction rules: as a result of this,

if we run an EA several times using the same data we may obtain different results.

The total variability of an EA-based estimate can be easily decomposed in these two

forms of variability, as shown in Baragona et al. (2011, p. 50) for the univariate

case.

We shall adopt the following notation: y is a sample of observations, θ the pa-

rameter of generative statistical model, θ̂(y) the best theoretical value (for example

a maximum likelihood estimate), which can not be computed in practice, and θ∗(y)

the result of optimization obtained via EA, that is an approximation of θ̂(y) and

depends on the observed sample as well. We assume independence between the pro-

cess generating random seeds of the EA and data, and decompose the total error of

an EA estimate as follows:

17
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θ∗(y)− θ = [θ̂(y)− θ] + [θ∗(y)− θ̂(y)]. (2.1)

As we will see in the following, the first term in square brackets depends on

consistency of the estimates, while the second is related to EA convergence. Both of

these quantities, referring to statistical and computational elements of the analysis,

must be ensured to converge to zero in probability. A similar issue has been analyzed

in Winker & Maringer (2009), where a Threshold Accepting algorithm is employed

in a GARCH model estimation problem.

As long as we focus on models indexed by a vector θ = (θ1, ..., θk) then in practice

we shall consider the corresponding multiparametric of (2.1). This means that we

must define two random vectors θ̂(y) and θ∗(y), which are affected, respectively, by

sampling variability and EA variability. Whilst θ̂(y) is defined as the best statistical

estimator, the EA component, for which the sample y is held fixed, needs to be

defined.

If an elitist strategy is employed then we can define random vector θ∗(g)(y) as the

best estimate obtained up to generation g, which corresponds to the best individual

of generation g. In our method we shall evaluate EA variability by studying the

behaviour of this random vector among EA runs basing on Theorem 1 (Rudolph,

1997), which in our case it implies that sequence θ∗(g)(y), g = 1, ..., will converge

to θ̂(y) when g goes to infinity. This means that when g increases then each EA

run gets closer to convergence, so variability between runs tends to decrease as a

consequence. So in our framework evaluating EA variability is closely related with

studying convergence rate of the algorithm.

Having defined both random vectors θ̂(y) and θ∗(y), we shall also define their

variance-covariance matrices, respectively ΣS and ΣEA, in order to relate to (2.1).

Generic (i, j) elements of these matrices are:

σS
ij = ES[(θ̂i − θi)(θ̂j − θj)], i, j = 1, ...k,

σ∗

ij = EEA[(θ
∗

i − θ̂i)(θ
∗

j − θ̂j)], i, j = 1, ...k.

σS
ij and σ∗

ij measure the dependence between θi and θj induced, respectively, by

sampling and EA. As long as we need to get a scalar summary of these matrices,

a possible choice is to consider the traces, a strategy often adopted in literature.

This is reasonable in an optimization framework, because the optimum is reached

when variances σS
ii and σ∗

ii (i = 1, ..., k) go to zero, with no practical interest on
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covariances. Therefore, if ΣTOT is defined as the total variance-covariance matrix,

then, using linearity of trace and under the same independence assumption of (2.1),

we can write:

tr(ΣTOT ) = tr(ΣS) + tr(ΣEA). (2.2)

In next section we shall employ and study this equation in a situation where both

statistical observations recruiting and EA iterations have a certain and fixed cost.

2.2 Statistical and computational tradeoff

2.2.1 Problem specification

In recent years the huge growth in size of datasets and the increasing in computing

power have introduced many novel problems in the statistical field. Computational

elements, in fact, must now be carefully set in order to carry out successful statistical

analysis. These elements may include the choice of computational methodology and

must consider some resource or time constraints, which are crucial in real problems.

Questions like these are known in literature as statistical and computational tradeoff

(or time-data tradeoff) problems, which aim at balancing and optimizing statistical

efficiency and computational complexity. This is a very general topic, so many

different methodologies have been proposed in literature to deal with many different

applications. Chandrasekaran & Jordan (2013) considered a class of parameters

estimation problems for which they studied a theoretical relationship in the form of a

convex relaxation between number of statistical observations, runtime of the selected

algorithm and statistical risk. An algebraic hierarchy of these convex relaxations is

built to successfully achieve the time-data tradeoff for different algorithms. Dillon &

Lebanon (2010) studied consistency of intractable Stochastic Composite Likelihood

estimators, whose formula depends also on parameters related to computational

elements. Therefore they aimed at balancing statistical accuracy and computational

complexity. Shender & Lafferty (2013) studied the tradeoff in Ridge Regression

models introducing sparsity in the sample covariance matrix. Wang et al. (2016),

in a Sparse Principal Component Analysis framework, addressed the question of

whether is possible to find an estimator that is computable in polynomial time, and

then analyzed its minimax optimal rate of convergence. Several other studies can

be found in Yang et al. (2016), Jordan (2013), Berthet & Chandrasekaran (2016),

Bruer et al. (2013), Chen & Xu (2016), Agarwal (2012).

In our framework, assuming that both statistical estimator and EA configurations

are fixed, then we must figure out how to optimally balance statistical accuracy and
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EA efficiency. If we consider consistent estimators then statistical accuracy can be

naturally represented by sample size n, because if n increases then also estimator

precision increases (and, in contrast, variability decreases), under some regularity

conditions. As far as EA efficiency is concerned, we refer to Theorem 1. Informally,

an EA converges when g tends to infinity, but it is worth noting that in every EA

generation each of the N chromosomes in population is evaluated on the basis of

fitness function. Therefore, instead of considering the number of generations, we

represent EA efficiency component by the number of fitness function evaluations V ,

also because it is usually the most computationally expensive step.

That being said, we shall study the behaviour of tr(ΣS) and tr(ΣEA) when,

respectively, n → ∞ and V → ∞. Let us introduce two functions f(n) and h(V )

for which, respectively, f(n) → ∞ when n → ∞ and h(V ) → ∞ when V → ∞. If

we employ a consistent estimator and assumptions of Theorem 1 are fulfilled, then

we can write tr(ΣS) = O([f(n)]−1) and tr(ΣEA) = O([h(V )]−1). In that case:

tr(ΣTOT ) = tr(WS)
1

f(n)
+ tr(WEA)

1

h(V )
, (2.3)

where matrices WS and WEA are constant with respect to n and V , and depend,

respectively, from the statistical model and from the EA. It is possible that sample

size n may have an effect also on WEA, because fitness function will change as a

consequence. For this reason we shall include n in our fitness scaling procedure

(details will be given in Section 2.3). In such a way we can strongly restrict the

effect of n on the behaviour of algorithm and describe the total variability of an EA

estimate by considering decomposition (2.3).

The statistical and computational tradeoff will now be analyzed by introducing

some cost functions: S(n) is related to the cost of recruiting a sample of n obser-

vations, T (n) indicates the computational cost of one fitness function evaluation,

which depends on the number of observations as well, because a solution is evalu-

ated by analyzing the full sample. Hence, the total cost C of obtaining an estimate

θ∗(y) using n statistical observations and V fitness function evaluations is given by:

C = S(n)+V T (n). If total cost C is fixed and functions S(·) and T (·) are specified,
we can write the tradeoff question as an optimization problem:





min
n,V

tr(ΣTOT ) = tr(WS)
1

f(n)
+ tr(WEA)

1
h(V )

s.t.

C = S(n) + V T (n)





Therefore, in this framework we aim at minimizing the total variance-covariance
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matrix, which depends on intrinsic statistical and computational components. These

latter, represented by tr(WS), tr(WGA), f(·) and h(·), can be estimated if a known

form is not available (details will be given in the following sections). Afterwards we

search for optimal n and V minimizing tr(ΣTOT ), given the constraint on total cost.

A particular case that simplifies the analysis is the assumption of linearity in n

for cost functions T and S. This is reasonable because statistical observations are

usually collected in sequence and if fitness function includes a summation over the

considered sample. In such a case T (n) = nT , S(n) = nS and we can incorporate

the cost constraint into the objective function obtaining:

min
n

tr(ΣTOT ) = tr(WS)
1

f(n)
+ tr(WEA)

1

h([C − nS]/nT )
.

The optimal solution ñ can be found by minimizing numerically the latter con-

ditionally on the form of consistency and convergence rates f(·) and h(·). Ṽ is

obtained by constraint:

Ṽ =
C − ñS

ñT
. (2.4)

A particular case which allows to obtain a simple closed form expression for

optimal n is available when f(n) = n and h(V ) = V . In that case, computing the

derivative of objective function with respect to n, we obtain solutions:

ñ =
−SC tr(WS)± C

√
CT tr(WS)tr(WEA)

CT tr(WEA)− S2 tr(WS)
. (2.5)

As far as n is a sample size, then we are interested only in the positive solution

ñ of (2.5).

2.2.2 Consistency and convergence rates

Functions f(n) and h(V ) introduced in the previous subsection specify, respectively,

consistency rate of statistical part and convergence rate of algorithmic part in equa-

tion (2.2). The assumption of linearity is a particular case that simplifies the tradeoff

analysis. It is satisfied for f(n) if we consider asymptotic efficient estimators: in

that case, under some regularity conditions, f(n) = n.

On the other side, the behaviour of h(V ) is related to EA convergence rate.

This is an essential issue for any optimization algorithm, and in the field of EC

it has been analyzed in several ways. A part of literature focuses on comparing

EAs with different configurations, identifying the algorithm optimizing convergence
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time (Eiben & Smit, 2011; Derrac et al., 2014); other researchers have developed

more rigorous approaches, focusing on the convergence rate of single chromosome

bits, limited to standard test problems like OneMax (Oliveto & Witt, 2014; Auger

& Doerr, 2011); a different proposal inspired by statistical mechanics, studies GA

behaviour by modeling it as a complex system, and summarizing its probability

distribution through generations by considering cumulants (Prügel-Bennet et al.,

2001; Shapiro, 2001; Reeves & Rowe, 2003). In such a way GA convergence can be

evaluated by considering the limiting cumulants.

Recently, Clerc (2015) has proposed a theoretical framework for analyzing opti-

mization performances. For a general stochastic algorithm (deterministic algorithms

are considered as a particular case of this class) he introduced a bivariate proba-

bility density p(ψ, r), called Eff-Res, that is function of both optimization result r

and computational effort ψ, spent for obtaining r. By analyzing this function it is

possible to deepen several useful questions: for a given result r, the probability of

obtaining r with a generic effort ψ; for a given effort ψ, the probability of obtaining

a generic result r. Our interest is focused on the latter question because, if we fix a

computational effort related to the number of fitness evaluations, we are interested

in how the result r varies. The theoretical variance of results for fixed effort can be

written as:

σ2(ψ) = µ(ψ)

∫

R̃

(r − r̄(ψ))2 p(ψ, r)dr, (2.6)

where R̃ is the set of possible results, r̄(ψ) the theoretical mean result for fixed effort

and µ(ψ) the normalization coefficient of p(ψ, r). Expression (2.6) can be evaluated

empirically: conditioning on J observed results r(1), r(2), ..., r(J), obtained with

effort ψ, the estimated variance is given by:

σ̂2(ψ) =
1

J − 1

J∑

j=1

[r(j)− r̄J(ψ)]
2, (2.7)

where r̄J(ψ) is the empirical mean of results.

In our method we shall employ a very similar approach for evaluating EA vari-

ability. As far as we are interested in convergence of θ∗i to the optimum θ̂i (i =

1, ..., k), then in both (2.6) and (2.7) we plug θ̂i in place of theoretical and em-

pirical means, and θ∗i in place of results. In that case (2.6) corresponds to vari-

ance σ∗

ii = EEA[(θ
∗

i − θ̂i)
2] in matrix ΣEA. If we run an EA J times, obtaining

θ∗1,i, θ
∗

2,i, ..., θ
∗

J,i (i = 1, ..., k), then we get the estimates by:
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σ̂∗

ii =
1

J

J∑

j=1

[θ∗j,i − θ̂i]
2, i = 1, ..., k. (2.8)

The latter gives information on the generic EA result θ∗j . As long as we are

studying the behaviour of algorithm when number of generations increases, then we

shall specify an expression such as (2.8) for each generation g. That is, we obtain the

sequence of k dimensional parameter θ variances, given a fixed maximum number

of generations G:

σ̂∗(g) = (σ̂
∗(g)
11 , σ̂

∗(g)
22 , ..., σ̂

∗(g)
kk ), g = 1, ..., G. (2.9)

In order to study EA convergence rate, we shall conduct the following regression

analysis for each parameter indexed by i:

σ̂
∗(g)
ii = wEA,i

1

[V (g)]a
+ ǫg, g = 1, ..., G, (2.10)

where [V (g)]a is the a-th power of the number of fitness evaluations up to generation

g and wEA,i is the regression parameter. Out goal is to search for an a for which

[V (g)]a can be considered a reasonable EA convergence rate h(V ) for all components

θi, i = 1, ..., k. In that case wEA,i will become part of matrix WEA (2.3).

2.3 Applications

We shall now illustrate the proposed method with some examples: a Least Absolute

Deviation Regression estimation (code LAD), an Autoregressive model building

(code AR) and a g-and-k distribution maximum likelihood estimation (code gk)

problem. These problems will be tackled by GAs and DE. In order to discuss

the tradeoff question for each of these experiment, we shall now give details on

methods employed for obtaining variability estimates, motivations on choices of

estimators and issues on GA and DE implementation. Simulations and computations

were implemented by use of software R for all applications, and also R package gk

(Prangle, 2017) for the last application.

2.3.1 EA configurations issues

In all applications we adopted a scaled exponential fitness, with purpose of maxi-

mization, for both GA and DE:
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f(ψ) = exp{g(θ; y)/n} , (2.11)

where ψ is the chromosome and g(θ; y) is a problem dependent measure of goodness

for solution θ. This kind of scaling procedure may allow to modify the shape of

fitness function without changing solutions ranking and restrict the effect of sample

size on the behaviour of algorithm.

Concerning GA implementation, we employed the standard binary version of the

algorithm, with roulette wheel selection, single-point crossover, bit-flip mutation and

elitist strategy. We referred to the following rule for encoding a real parameter θ in

the real interval [a, b]:

θ = a+
b− a

2H − 1

H∑

j=1

2j−1xj ,

where H is the number of genes considered and xj is the j-th bit. As long as

our interest is focused on a vector θ = (θ1, ..., θk) then the chromosome of length

M = k ·H includes the coding of each component. Length H of each genes group

is constant, while coding interval [a, b] can vary for each parameter. Since we are

considering a kind of discretization of a continuous search space, we aim at building

a fine grid in such a way that fitness function is adequately smooth on that grid, so

that related loss of information is negligible.

Also basic DE has been considered, with standard differential mutation operator

and parametrized uniform crossover, but with the slight modification described in

Section 1.5, introduced for guaranteeing global convergence of procedure. Therefore

at each generation one individual in the population is regenerated uniformly at

random within parameter boundaries before the selection step.

A small preliminary simulation study limited to LAD experiment has been con-

ducted for analyzing the effect of choice of configurations on EA variability. In this

case we conducted regression (2.10) by: tr(Σ
(g)
EA) = tr(WEA)

1
[V (g)]

+ ǫg. We consid-

ered population sizes N = 50, 70 (with related maximum number of generations,

respectively, G = 2000, 1450) and analyzed following parameter choices:

• GA: pM = 0.01, 0.05, 0.10; pC = 0.5, 0.7, 0.9

• DE: F = 0.3, 0.5, 0.8; CR = 0.3, 0.5, 0.8,

so that 18 configurations have been implemented for each EA.

Figure 2.1 shows the curves of tr(Σ
(g)
EA) estimates for all scenarios. DE experi-

ments show a more homogeneous behaviour with respect to GAs (in particular CR
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seems to have a very low effect), and in both algorithms as N increases the differ-

ences between experiments in each panel tend to reduce. However DE estimation

seems to improve as F decreases, as the best behaviour is registered at 0.3. This

is in contrast with general indications on choice of F given in literature devoted to

standard DE, for which values of F lower than 0.4 are usually considered as not use-

ful (see Price et al., 2006). Concerning GA the same happens for low mutation rate

pM (with a worsening for low pC), possibly because if an elitist strategy is adopted

then effect of exploration (task assigned to mutation operator) become dominant in

the analysis.

In subsequent analysis a population of N = 50 individuals have been adopted in

both GA and DE, and a maximum number of generations G has been fixed at 1400.

Choices of specific configurations are pM = 0.1 and pC = 0.7 for GA and F = 0.3

and CR = 0.5 for DE. If not otherwise specified the initial population is generated

uniformly at random.

(a) DE, population size N = 50 (b) DE, population size N = 70

(c) GA, population size N = 50 (d) GA, population size N = 70

Figure 2.1: Estimates of EA covariance matrix trace for LAD experiment
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2.3.2 Simulation studies

As mentioned in subsection 2.2.2, if an estimator is asymptotically efficient then

f(n) = n in formula (2.3): we considered estimators which have this property. Af-

terwards we estimated sampling variability of estimators by simulating 104 samples

and computing mean squared deviation of estimates obtained by software optimiza-

tion routines from the true parameters, to get a quantification of WS in (2.3).

On the other side, EA variability have been estimated by considering 10 equally-

sized datasets. For each sample we computed variance estimates using J = 500

EA runs as shown in formulas (2.8) and (2.9); then we considered point-by-point

average of these estimates for each g, obtaining final estimates to conduct regression

analysis (2.10).

These regression analysis have been conducted for the three applications with

a = 1
3
, 1
2
, 1, 2, and goodness of fit results (R2 coefficient) are summarized in Table

2.1. In GA results a linear convergence rate is found dominant for experiments

LAD and gk, while a = 1/2 rate is fittest for experiment AR; concerning DE the

best rate is linear for all experiments. We adopted these convergence rates in tradeoff

analysis of next section. As an example, Figure 2.2 shows the fitted convergence

rate of parameter β2 in LAD experiment using GA.

Results of estimates of tr(WS) and tr(WEA) are summarized in Table 2.2: they

show that results on LAD and gk are similar in two algorithms, so we also expect

similar results in tradeoff analysis. For computing these estimates we used simulated

data of length n = 200 in all experiments.

The tradeoff will be discussed for the three applications by evaluating optimal ñ

on a common grid of values for linear cost functions S and T , assuming a fixed total

effort C = 105. Comments on optimal V can be derived by complement. We shall

make some remarks also for the case when computational cost T is estimated by time

(in seconds) needed in our computer to evaluate fitness in the three experiment, using

gk as corner point. In this way we can make more realistic comparative comments.

Least Absolute Deviation Estimation

LAD regression is an alternative to Ordinary Least Squares regression, proven to

be more robust to outliers (Bloomfield & Steiger, 1983, p.52). In this framework

the estimator, which is asymptotically efficient (Bloomfield & Steiger, 1983, p.44),

is the function that minimizes the sum of absolute values of errors. This function is

neither differentiable nor convex, so numerical methods must be employed to find an
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Table 2.1: R2 coefficient values related to four different regression analysis conducted

on each parameters of each experiment, in order to estimate convergence rate of ΣEA

GA

Exp Param a = 1/3 a = 1/2 a = 1 a = 2

LAD

β0 0.1883 0.4781 0.9775 0.7247

β1 0.1943 0.4835 0.9792 0.7298

β2 0.1910 0.4790 0.9763 0.7250

gk

A 0.3538 0.6635 0.9525 0.6370

B 0.2060 0.4949 0.9179 0.5984

g 0.2722 0.5883 0.7585 0.3511

k 0.1268 0.3563 0.9548 0.9071

AR

φ1 0.7806 0.9338 0.8864 0.4655

φ2 0.9101 0.9896 0.7083 0.2622

φ3 0.9164 0.9835 0.6645 0.2200

φ4 0.8998 0.9767 0.6762 0.2228

φ5 0.8869 0.9726 0.6878 0.2306

φ6 0.8801 0.9698 0.6921 0.2325

φ7 0.8569 0.9597 0.7104 0.2453

φ8 0.8576 0.9635 0.7311 0.2641

DE

Experiment Parameter a = 1/3 a = 1/2 a = 1 a = 2

LAD

β0 0.1069 0.3364 0.9282 0.7775

β1 0.1084 0.3322 0.9375 0.8133

β2 0.1067 0.3363 0.9356 0.7987

gk

A 0.1665 0.4472 0.8715 0.5361

B 0.1543 0.4180 0.8014 0.4573

g 0.1973 0.4837 0.7468 0.3631

k 0.1137 0.3516 0.9541 0.8174

AR

φ1 0.2292 0.4018 0.8847 0.9176

φ2 0.4782 0.6653 0.9336 0.6486

φ3 0.6619 0.8131 0.9003 0.5611

φ4 0.5079 0.6948 0.9330 0.6198

φ5 0.4562 0.6496 0.9330 0.6387

φ6 0.5049 0.6928 0.9339 0.6174

φ7 0.4504 0.6434 0.9285 0.6317

φ8 0.5515 0.7276 0.9141 0.5820
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Table 2.2: Sampling and EA variability components estimates

Experiment tr(WS) tr(WGA) Conv rate tr(WDE) Conv rate

LAD 5.38 23.18 1/V 20.28 1/V

AR 12.26 17.74 1/
√
V 1315.46 1/V

gk 103.39 3897.25 1/V 3972.70 1/V
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Figure 2.2: Observed (thick line) and estimated (dashed line) GA variability for

parameter β1 of LAD experiment (wGA = 7.9, R2 = 0.97)
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optimal solution. Zhou & Wang (2005) have already employed a real valued GA to

estimate the parameters of a LAD regression with censored data. Here we consider

a standard linear regression model:

yi = β0 + β1xi,1 + β2xi,2 + ǫi, i = 1, ..., n,

where (y, x) is the observed dataset. The errors are not Gaussian, but distributed

according to a heavy-tailed Student’s t distribution with 5 degrees of freedom.

As far as our goal is maximization, then the fitness function shall be:

f(ψ) = exp{−
n∑

i=1

|yi − β0 − β1xi,1 − β2xi,2| / n}.

True parameters vector will be β = (0.5, 0.5,−0.5), coding interval boundaries

will be [−2, 2] for all parameters and each chromosome length in GA shall beM = 24.

(a) GA (b) DE

Figure 2.3: Behaviour of optimal n for experiment LAD

Figure 2.3 shows the behaviour of optimal n (on z axis) with respect to a grid

of values for cost functions S and T . Results are identical in two algorithms, as

they show that ñ obviously increases to large values as costs S and T decrease, and

rapidly decreases as they increase.
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Autoregressive Models Building

GAs have been widely applied for time series models identification (see Section 1.6).

Here we address the problem of how to simultaneously identify and estimate subset

AR models, given a fixed maximum order.

The general equation of an AR model of order p is:

Yt = φ1Yt−1 + ...+ φpYt−p + ǫt, (2.12)

where Yt is a zero mean random process, ǫt a Gaussian white noise and φ =

(φ1, ..., φp) the parameters vector, for which some components may be constrained

to zero.

Model (2.12) is usually identified by minimizing penalized likelihood criteria like

AIC or BIC, to be minimized. In this work we shall consider BIC, because of its

property of consistency (Hannan, 1980):

BIC(φ; y) = n log σ̂2(p) + k logn, (2.13)

where y is the observed time series, σ̂2(p) =
∑n

i=1(yt − φ1yt−1 − ...− φpyt−p)
2/n and

k ≤ p is the number of free parameters in the model. Sampling variability will be

estimated on the basis of asymptotic efficiency property of AR models maximum

likelihood estimator (Brockwell & Davis, 1991, p.386).

As true model we will consider an AR(1) with φ1 = 0.8 and a maximum possible

order p = 8. In GA the chromosome length shall be M = 64. In order to facilitate

the identification of subset models we shall force the starting population of both GA

and DE to include a chromosome that corresponds to a white noise (all parameters

are zero), and also 8 chromosomes for which one of the parameters is zero, so that all

φi = 0 (i = 1, ..., 8) are represented. The remaining chromosomes will be generated

uniformly at random, coherently with other applications. This may be a reasonable

strategy in a situation of total lack of knowledge.

Fitness function shall be:

f(ψ) = exp{−BIC(φ; y) / n},

and coding interval will be [−2, 2] for each φi.

Figure 2.4 shows the analogous plot to Figure 2.3. Even in this case the two

perspective plots of optimal n are very similar: some differences arise for small

values of sampling cost S. Figure 2.5 highlights magnitude of these differences.
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(a) GA (b) DE

Figure 2.4: Behaviour of optimal n for experiment AR

Generally speaking, this experiment has lower values of ñ with respect to LAD,

possibly because fitness account also for model identification (e.g. estimating a φi

value slightly different from zero implies may implies a slight decrease of the residual

sum of squares, but a term k one unit larger in the penalization part of BIC). This

may have implied slower GA convergence rate and large DE variability.

g-and-k Distribution Estimation

The g-and-k distribution was introduced in Haynes et al. (1997) as a family of

distributions specified by a quantile function. It is a very flexible tool which has

been applied to statistical control charts techniques (Haynes et al., 2008) and non-

life insurance modeling (Peters et al., 2016). For a univariate random sample x =

(x1, ..., xn) the quantile function is:

QX(ui|A,B, g, k) = A+Bzui

(
1 + c

1− e−gzui

1 + e−gzui

)
(1 + z2ui

)k, i = 1, ..., n,

where zui
is the ui-th quantile of standard normal distribution, A and B > 0 are

location and scale parameters, g measures skewness in distribution, k > −0.5 is a

measure of kurtosis and c is a constant introduced to make the distribution proper.

By combining values of the four parameters several essential distributions like nor-

mal, Student’s t or Chi square can be derived.
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Figure 2.5: Optimal sample size with respect of T for both GA (in black) and DE (in

red), with sampling cost S fixed at 50 (solid lines), 100 (dashed lines), 500 (dotted

lines), 1000 (dashed and dotted lines)

Maximum Likelihood estimation of this distribution is a kind of so-called in-

tractable likelihood problem. The expression of likelihood is given by:

L(θ |x) =
(

n∏

i=1

Q′

X(Q
−1
X (xi |θ) |θ)

)
−1

, (2.14)

where x is the observed sample, θ = (A,B, g, k) and Q′

X(u |θ) = ∂QX/∂u. The main

difficulty in computing (2.14) is the lack of a closed form expression for Q−1
X (xi |θ),

that must be obtained numerically, for example with Brent’s method.

A lot of research on g-and-k distributions estimation has been made in a Bayesian

framework, using Markov Chain Monte Carlo (Haynes & Mengersen, 2005) or indi-

rect inference methods like Approximate Bayesian Computation (Allingham et al.,

2009; Grazian & Liseo, 2015). We shall follow the pure likelihood approach proposed

in Rayner & MacGillivray (2002). In this situation a numerical procedure has to

be selected to maximize (2.14). They proposed a Nelder-Mead simplex algorithm,

reporting some limitations, related also to the need of using several starting points.

In the final discussion they also observed that metaheuristic methods like GAs could

be more successful in this optimization problem.
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(a) GA (b) DE

Figure 2.6: Behaviour of optimal n for experiment gk

In our approach we shall consider the fitness:

f(ψ) = exp{ logL(θ |x)/n }.

We will simulate data using the typical parameters generator vector θ = (A,B, g, k) =

(3, 1, 2, 0.5), with c = 0.8, which leads to an ’interesting far-from-normal distribu-

tion’ (Allingham et al., 2009).

Each chromosome in GA implementation will have length M = 28, and coding

interval boundaries shall be: A ∈ [−10, 10], B ∈ [0, 10], g ∈ [−10, 10] and k ∈
[−0.5, 10]. If a decoded chromosome provides unacceptable values B = 0 or k = −0.5

then it is rejected and regenerated.

Concerning sampling variability, Rayner & MacGillivray (2002) investigated the

approximation of maximum likelihood estimator variability by Cramer-Rao variance

bound, which is of order O(n−1). In estimating sampling variability we shall allow

for this asymptotic approximation of ΣS.

Perspective plot for this experiment (Figure 2.6) shows a similar behaviour of

optimal n to AR, even if general lower values of ñ are observed, because also in this

case experiment is very complex (tr(WEA)/tr(WS) ratio is large).

Lastly we shall make some comments on the behaviour of ñ when sampling cost

S varies and fitness evaluation cost T is estimated in each experiment by elapsed

execution time (in seconds) of our computer for a single fitness evaluation, taking
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gk as corner point (being the most expensive one). Results are: TLAD/Tgk = 0.007

and TAR/Tgk = 0.101. Figure 2.7 shows the behaviour of ñ in this more realistic

scenario, for which each computational cost ratio has been multiplied by a constant

to highlight the behaviour of experiments. As GA and DE behaviour is identical,

in both graphs the three curves are ranked with respect of computational cost and

experiment complexity, that is related on both EA convergence rate and the mag-

nitude of variability ratio tr(WEA)/tr(WS). gk experiment shows lowest values of

ñ, but when S increases the three experiments tend to conform to common values,

suggesting that a large sampling cost could have a larger influence in the tradeoff

than model complexity.

2.4 Concluding remarks

This chapter proposed a method for evaluating variability of EAs when employed

in parametric estimation problems, valid for consistent estimators and convergent

EAs. A statistical and computational tradeoff analysis involving the above specified

variability analysis has been performed for three selected applications, in which

GAs and DE have been employed. Results showed how the behaviour of optimal

sample size changes with complexity of experiment and among two selected EAs.

A comparative analysis of the three experiments, in which computational cost is

estimated, also suggested that large sampling cost could influence optimal values

more than complexity of the model, represented by statistical and computational

variability. This is an interesting consideration, especially for real applications,

where often large costs can decisively restrict the analysis.

The present method could be improved by considering other scalar summaries of

statistical and computational variability. For example the determinant of ΣS and

ΣEA could be more appropriate than trace. An other direction for further research is

to generalize this framework to other statistical problems in which EAs are involved.

In fact there are many complex optimization problems in the statistical field, and

understanding variability and tradeoff more in deep could facilitate the integration

of EAs among standard statistical methods. Lastly, the discussion on statistical and

computational tradeoff can be naturally extended to other stochastic algorithms, like

Particle Swarm Optimization, which could imply different conclusions on variability

analysis and tradeoff.
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Figure 2.7: Optimal sample size with fixed estimated computational cost
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Chapter 3

Evolutionary Computation and

Multiple Chains MCMC

Sampling: an Overview

3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods have received a huge attention in

Bayesian statistics literature of the last decades because of the increasing availabil-

ity of computing power. In fact, the occurrence of obtaining posterior distributions

summaries is crucial in Bayesian inference, and most of times it implies to nu-

merically compute multiple integrals and sampling from multivariate distributions

not having an analytical form. In this framework MCMC represents the most es-

tablished method, and research on this topic has led to the development of many

variants (Robert & Casella, 2004).

The basic MCMC method can be summarized as follows: let us suppose we are

interested in sampling from a target distribution π(x) ∈ R
d, analytically intractable.

The MCMC consists in building a sequence of vectors xt ∈ R
d, t = 1, ... , that is

a realization of a Markov Chain having π(·) as equilibrium distribution. Usually a

certain number of iterations during first phases of algorithm is removed, in order

to get rid of the dependence on starting points (burn-in). The method does not

allow to sample directly from π(·), but it takes advantage of a proposal distribution

q(·) ∈ R
d, from which it is easier to sample. Two main MCMC algorithms have been

developed in literature: the Gibbs sampling and the Metropolis Hastings (MH). In

the Gibbs sampling algorithm the proposal coincides with the univariate distribution

of each component of π, given the other components, and it is called full conditional.

37
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So at each iteration t a new value xt+1 is generated using the d full conditionals.

The MH, on the other hand, does not have a standard specification of q. At each

iteration t a MH step is performed, for which a pseudo-realization y is generated

from q(·|xt) and it is accepted as a new chain state with probability:

α(y, xt) = min{1,
π(y) q(xt|y)
π(xt) q(y|xt)}.

If the proposed value y is not accepted then xt+1 = xt. Possible variants of the

algorithm are related to particular forms of the proposal: symmetrical proposals,

for which q(y|x) = q(x|y), lead to the Metropolis algorithm, whose acceptance prob-

ability α(y, xt) is equal to min{1, π(y)

π(xt)
}; the independence sampler is obtained by

choosing q(y|x) = q(y); if q(y|x) = q(y − x) then MH turns into the random walk

Metropolis algorithm.

The procedure can guarantee a sequence of pseudo-random values from π(·),
namely the Markov Chain has π(·) as equilibrium distribution, if the resulting mech-

anism is aperiodic, irreducible and reversible. A sufficient, but not necessary con-

dition, that ensures reversibility is that the mechanism satisfies the detailed balance

condition: π(y|xt) · π(xt) = π(xt|y) · π(y).

3.2 Multiple chains MCMC

When target distribution π(·) is multimodal or the components are strongly cor-

related then the values generated by a MCMC algorithm may tend to approach

each other or getting trapped in local optima. In that case the chain is said

not to be mixing well, and the resulting sampling would not adequately repre-

sent the support of target distribution. A possible approach proposes to let several

Markov Chains run in parallel, mimicking the multi-start strategies of optimiza-

tion algorithms to escape local optima. Each chain xi in the resulting population

X = {x1, ..., xM}, X ∈ R
d×M , is equipped with a possibly different equilibrium dis-

tribution πi(xi), and also a population distribution π∗(X) may be specified. At each

iteration the new chain states can be generated and accepted according to either the

individual π or the population π∗ distribution (or both). Detailed reviews of such

methods can be found in Jasra et al. (2007) and Liang et al. (2011)

This way of proceeding has inspired many researchers to study analogies with

EC. In fact, if the chains in the population are allowed to interact with each other

then it could be reasonable to take advantage of EC peculiarities, whose strength is

properly the interaction and combination between solutions. Although EC is mostly
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used for optimization, it can be easily introduced, at least in a basic form, in the

framework of MCMC sampling.

We shall now describe few approaches found essential in subsequent research

related with EAs, before surveying specific contributions on the framework.

Parallel Tempering

Parallel Tempering (PT), pioneered by Geyer (1991) and Hukushima & Nemoto

(1996), could be considered a generalization to multiple chains of popular Simulated

Tempering algorithm (ST; Marinari & Parisi, 1992, Geyer & Thompson, 1995). In

this latter proposal, inspired by Simulated Annealing (Kirkpatrick et al., 1983),

the target distribution law is given by π(x) ∝ exp{−H(x)}, but sampling refers

to a different distribution π(x) ∝ exp{−H(x)/T}, known as Boltzmann distribu-

tion, where T is an auxiliary variable called temperature, taking values from a finite

set named ladder. This so-called cooling strategy, for which T is updated at each

iteration along with x, may allow to facilitate the exploration of parameter space

and speed up convergence of MCMC in multimodal problems. PT generalizes this

approach by considering a population ofM Markov Chains, each with its own Boltz-

mann invariant distribution πi(x) ∝ exp{−H(x)/Ti}, i = 1, ...,M , where ladder T

is built as T1 > T2 > ... > TM = 1, so that πM(x) is the distribution of inter-

est π(x) ∝ exp{−H(x)}. At the generic iteration of this algorithm a MH step is

performed for each chain; then a swap step between two chains state, without in-

volving temperatures, is proposed and accepted by a further MH step. This kind of

mechanism may allow to speed up mixing of chains.

Snooker Algorithm

Snooker algorithm has been proposed in Gilks et al. (1994), along with a more gen-

eral method named Adaptive Direction Sampling, in order to improve convergence

of Gibbs sampling in many situations, for example multimodal problems. In the

generic updating procedure of Snooker two chains in the population are randomly

selected without replacement: first chain xc (current point) is designated to be up-

dated, while second chain xa, called anchor point, determines direction of updating.

Difference (xa − xc) specifies sampling direction so that the new chain y is built as

follows:

y = xc + r(xa − xc),
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where r is sampled from density: f(r) ∝ |1 − r|d−1 π(xc + r(xa − xc)), chosen in

order to guarantee convergence of each chain to the target distribution π (proof can

be found in Roberts & Gilks, 1994).

3.3 GA based approaches

Holmes & Mallick

The first proposal to explicitly introduce EC for improving MCMC is due to Holmes

& Mallick (1998). In their approach, called Parallel Adaptive Metropolis Sampling,

they suggest to take advantage of GAs features for MCMC sampling in presence of

high dimensionality and strong correlation between variables.

Here πi(·) = π(·), i = 1, ...,M, and only a single chain in the population is modi-

fied at each iteration (as happens in Steady State GAs; Syswerda, 1989). This chain

xa is selected uniformly at random, and it is subdued to mutation with probabil-

ity pM , or to crossover with complementary probability. The mutation operator

is analogous as Evolution Strategies method, so that the new solution is built as:

xa∗ = xa + q , with q ∼ Nd(0,Σ) and Σ is chosen to provide a moderate acceptance

probability. This move, as far as it is symmetrical, is then evaluated by a Metropolis

step, so it is accepted with probability: α(xa, xa∗) = min{1, π(xa∗)

π(xa)
}. The s4elected

crossover mechanism is in two step: at first, a standard uniform crossover is per-

formed on two chains xi and xj, randomly selected in such a way that i 6= j 6= a,

obtaining a new solution xu; then xu can be crossed with xa by either moving along

direction (xu−xa) or by performing the reflection of xa on xu (with probability pC).

The resulting solution is accepted by a Metropolis step. The above scheme turns out

to be irreducible, aperiodic and reversible. Several features of this algorithm have

been set considering computational complexity of method, for example the choice

of symmetrical proposals, the exclusive contrast between mutation and crossover

operators, the update involving a single chain at each generation.

The applications considered are a Bayesian estimation of neural networks (based

on real data), characterized by multimodality, and a problem of inferring the number

and location of knot points in Bayesian spline models, with strongly correlated

variables: results are compared with a standard MH algorithm. The results showed

that the proposed algorithm can traverse the state space much more widely than

MH, and it moves around high posterior regions with good acceptance rates and

reasonably sized updated proposals.
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Liang & Wong

Evolutionary Monte Carlo (EMC; Liang & Wong, 2000, 2001a, 2001b) is one of the

most important algorithm in the framework, and it is generally considered the orig-

inal proposal that conjugates EC and MCMC. Here we shall review the real coded

algorithm proposed in Liang & Wong (2001a); the other papers include analogous

binary or integer versions of the procedure.

The authors proposed a method that conjugates features of GAs and Simu-

lated Annealing, resulting in an algorithm that generalizes PT. In fact they adopt

Boltzmann distribution π(x) ∝ exp{−H(x)/τ} as distribution of interest, and re-

fer to function H(·) as fitness. Each chain has its own equilibrium distribution

πi(x) ∝ exp{−H(x)/Ti}, i = 1, ...,M , with ladder T = (T1, ..., TM), for which

T1 > T2 > ... > TM = τ . Operators of mutation, crossover (having more options)

and exchange are sequentially performed at each generation, and each intermediate

population including new proposed values is accepted via MH step involving the

population distribution π∗. Mutation operator, employed with probability pM , is

structured as in Holmes & Mallick (1998), except for the MH step involving π∗.

In crossover operations two chains xi and xj are selected uniformly at random or

by roulette wheel. Two choices of crossover operator are then considered: stan-

dard GA crossovers, like k-points and uniform, or a novel snooker crossover (similar

to the one introduced by Holmes & Mallick, 1998 and inspired by Snooker algo-

rithm). In the latter case new chromosome y
i
is obtained by: y

i
= xj + re, where

e = (xj−xi/)||xj−xi|| and r is sampled from density: f(r) ∝ |r|d−1π(xj+re). This

snooker crossover move has been proven to leave distribution π∗ invariant. After-

wards the exchange operation takes part, in which M individuals are selected to be

swapped with neighbor chains (in term of temperature), as in PT. Setting pM = 1

leads to PT algorithm, while fixing both pM = 1 and M = 1 EMC reduces to a

single-chain Metropolis Hasting algorithm.

Two kind of applications have been considered: Bayesian estimation of finite

mixture of normal distributions (various examples, with both simulated and real

data), that exhibit multimodality; Bayesian estimation of neural networks (with

both simulated and real data, including Box-Jenkins gas furnace data), as done

in Holmes & Mallick (1998), whose posterior distribution is both nonlinear and

multimodal. Results showed that the EMC, compared to methods like PT, conjugate

gradient Monte Carlo and Box-Jenkins approach, is a very good tool for sampling

from complex distributions: simulation at high temperatures facilitates exploration

of the search space and exchange operator can be viewed as a selection mechanism

for localizing possible modal zones, so it may support exploitation.
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EMC has been found successful in literature and has stimulated some research.

Goswami & Liu (2007) provided an extension of Liang and Wong’s algorithm called

Target Oriented Evolutionary Monte Carlo (TOEMC). They studied several new ex-

change moves, related to fitness H(·) and ladder T , in order to make the acceptance

probability more stable. Furthermore they analyzed methods to optimally construct

the ladder T , basing on preliminary EMC runs, in order to localize promising modal

regions. One of the authors also developed an R package providing EMC proce-

dure (Goswami, 2011). An adaptive version of EMC has been introduced in Ren et

al. (2008); Goswami et al. (2007) proposed some new operators for EMC in order

to perform clustering; Gupta (2014) employed EMC for purpose of biclustering in

Bayesian framework.

Battaglia

Another approach, proposed in parallel and independently from Liang and Wong’s,

is due to Battaglia (2001). The aim of this work was to develop a multiple chains

MCMC sampling procedure in a complete GA framework, using the early proposal

by Holmes & Mallick (1998) as a starting point. Also here πi(·) = π(·), but differ-
ences arise when genetic operators are concerned.

In fact a selection mechanism is introduced, subdued to a notion of fitness as

a measure of adaptation of chains population at time t, considered as a candidate

sample, to the target distribution π(·). In order to accomplish this, a finite par-

tition {Pj, j = 1, ..., J} of π(·) is built so that multivariate distribution of interest

is summarized in the form of discrete univariate distributions, assigning probability

πj =
∫
Pj
π(x)dx to values j = 1, ..., J . As a result of this, if s = (s1, ..., sJ) represents

frequencies of the discretized values in the population, a dissimilarity measure be-

tween s and the theoretical distribution Mπ = (Mπ1, ...,MπJ) can be computed for

evaluating the global adaption of current sample to the target distribution. In order

to characterize the specific contribution of each chain xi to global adaptation, which

is analogous to define a fitness function in GAs, a score related to the induction of

each partition is assigned as follows: it is equal to 1 if xi ∈ Pj, and to zero otherwise.

Sampling M chains leads to the following equality that characterizes individual fit-

ness: f(xi) = Mπj/sj, xi ∈ Pj, meaning that the goodness of each element of Pj

is uniformly shared between chromosomes belonging to that partition. This means

that the probability P (xi) of selecting chain xi is equal to
πj

sj
[
∑

k∈J πk]
−1, xi ∈ Pj,

where J = {j : sj > 0}.

The selected chromosomes undergo mutation and crossover, in order to guarantee

the possibility of covering different areas of the support of π(·). Mutation operator
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could be either a generic MH or a Gibbs step, and it could be executed on whole

chromosomes or on some genes. Author also observed that this kind of mutation

strategy allows many new solutions to be generated, compared to the usual role

of mutation in GAs. For this reason also a variant of algorithm is proposed, for

which selection operator as it has been described is absent and replaced by MCMC

procedure itself (each chain runs independently), so that only the reproduction is

performed. Single point crossover between two parents is introduced, to be accepted

with a Metropolis step (since the move is reversible) involving individual distribution

π. So this approach tries to exploit promising modal zones of π(·) by building a

partition and selecting chromosomes that mostly induce each partition; exploration

role is assigned to mutation and crossover. One drawback of this approach is that

π does not always allow for a natural partitioning, so it often needs to be estimated

(author proposed an exponential smoothing).

Applications consisted in comparisons of different algorithm configurations, for

example presence or absence of selection operators, in literature problems where

π has not a closed form or has highly correlated components. Results showed a

positive effect of crossover; also mutation was effective, but only when partition Pj

was provided exactly, and not estimated.

Hu, Tsui

Hu & Tsui (2010) proposed to employ a Distributed GA in the multiple chains

MCMC with multimodal or high dimensional target distributions, because it is

known to be less likely to converge prematurely then standard GA. The resulting

algorithm has been called Distributed Evolutionary Monte Carlo (DGMC).

Here the population X of chains is divided in J subpopulations {x1, ...,xJ} and

πi(·) = π(·) (but a PT style cooling scheme could be also introduced in each sub-

population). At the beginning of each iteration the migration operator is employed

with probability pm: k subpopulations i1, ..., ik are uniformly selected, and the so

called migration cycle Ok = (i1 → ... → ik → i1) is built. Then, in each sub-

population ij ∈ Ok, an emigrant x
ij
e is randomly chosen, so that yij+1

e
= x

ij
e + δ is

the proposed value for each subpopulation, where δ is called emigration noise. So

the new subpopulation yij+1
is built as: (xij+1

\ {xij+1
e }) ∪ {yij+1

e
}, and new popula-

tion Y = {y1, ...,yJ} is accepted via MH step involving population distribution π∗,

factorized with respect of subpopulations. After this step, in each subpopulation

an exclusive mutation/crossover operator is proposed with probability qm: stan-

dard floating point GAs mutation (as in previous contributions), or a snooker style

crossover. In the first case new solution is accepted via individual MH step; concern-
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ing crossover authors analyzed snooker crossover proposals by Liang & Wong (2001)

and ter Braak (2006) (to be described in next section), and employed a modification

of this latter, in which the proposal is always accepted. A rate of qc individuals is

crossed to get the final subpopulation.

Applications included sampling from bimodal and multimodal mixture of normal

distribuions (same as in ter Braak, 2006) and Bayesian estimation of a generalized

logistic function (real data), performing also comparisons with other algorithms

(EMC, PT and simple MH). Results showed faster and better mixing of DGMC

with respect to other analyzed methods, because it could move more efficiently

between far-separated modes.

Holloman, Lee, Higdon

An approach, proposed by Holloman et al. (2006), aimed to extend Simulated Sin-

tering procedure (Liu & Sabatti, 1999) to multiple chains. This latter method,

that generalizes ST and Gibbs Sampling, considers data whose continuous domain

is discretized and modeled on multiple scales (or resolutions). The procedure in-

corporates elements from other Monte Carlo and MCMC techniques, like multigrid

Monte Carlo (Goodman & Sokal, 1989), reversible jump MCMC (Green, 1995) and

dynamic weighting (Wong & Liang, 1997).

Authors motivated their multiple chains implementation by observing the effect

of data modeling at fine scale (high information but also many parameters and slow

fitting procedures) versus coarser scales (less information but also more parsimony

and less computational cost) for continuous phenomena measured on a discretized

grid. Moreover they observed that coarser scales could facilitate the exploration of

multimodal functions (for example a likelihood). Therefore they proposed a method

that simultaneously evaluates chains at different resolutions, taking advantage of

both fine and coarser scales benefits, analogously to what happens in multiple chains

algorithms with cooling schemes like PT or EMC.

A model involving I scales is introduced, so that data at scale i are denoted

by z(i), with parameters vector of interest ψ(i), i = 1, ..., I. This latter quantity

is written in terms of two variables θ(i) and λ(i) related, respectively, to the shar-

ing information process between scales and to the remaining parameters, linked to

ψ(i) by a generally deterministic function g(·). As far as a Bayesian framework is

concerned, model posterior distribution of interest π(·|Z) of the model, where Z

denotes all available data, is built as the product of posteriors of each scale, defined

as: π(i)(ψ(i)|z(i)) = π(i)(θ(i), λ(i)|z(i)) ∝ L(ψ(i)|z(i))π(i)(θ(i), λ(i)), where L(·|z(i)) and
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π(i)(·) are, respectively, likelihood and prior distribution at scale i. Both of these

quantities are problem dependent.

Authors described at first a novel Multiresolution GA, with purpose of likelihood

maximization; afterwards, the Multiresolution GA-Style MCMC, which allows to

sample from full posterior π(·|Z), is introduced. This algorithm considers M par-

allel chains, with M ≥ I, encoding parameters θ(i), λ(i) and resolution i. For a

fixed number of iterations all chains are independently mutated by generic MH or

Gibbs steps; after that, a swap is attempted between two selected individuals (either

uniformly at random or proportionally with respect to posterior densities, assuring

scales stratification if needed). These two paired chains undergo a standard uniform

crossover step, involving elements of vector θ(i) only; a proposal distribution ζ, pos-

sibly different for each scale, is needed to generate also new values of λ(i) given data

and proposed θ(i). In some cases it could be useful to swap all elements of θ(i) in

crossover (full swap). To ensure detailed balance of the swap a MH step involving

posterior densities π(i)(·|zi) of two selected scales, distributions ζ(i) and selection

probabilities of two chains are performed.

Application considered refers to single photon emission computed tomography

(SPECT), for which authors focused on reconstructing two-dimensional images given

data from various cameras, and an inverse problem in groundwater hydrology, in

which inference is done on flow data. They compared the proposed Multiresolu-

tion GA-Style MCMC algorithm, considering both crossover and full swaps, with

standard fine scale MCMC. Results showed superiority of proposed method over

standard MCMC and also a positive effect of using full swaps only.

3.4 DE based approaches

Strens

One of the most important proposal, in term of citations and applications, is directly

based on DE algorithm.

First studies are due to Strens (Strens et al., 2002; Strens, 2003), who introduced

Direct Search Optimization methods, which do not require information about ob-

jective function gradient, in the framework of sampling from complex distributions.

Procedure named Differential Evolution Sampler (DES), introduced in Strens et al.

(2002) for continuous distributions, considers πi(·) = π(·) as an improvement with

respect to algorithms with cooling scheme like PT or EMC, because in that case only

one chain is actually used for providing samples. the differential mutation operator
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is employed as a kind of geometrical proposal for each chain xi, which produces a

new solution y
i
as follows: y

i
= xi+γ(xR1−xR2), i 6= R1 6= R2, where scaling factor

γ is realization of a random variable (as happens in dither and jitter strategies of

DE). This differential mutation move, similar to snooker crossover, is proposed for

all chains, and it guides the exploration of parameters space toward modal zones. It

differs from standard differential mutation operator in DE algorithm, which includes

a further randomly chosen vector xR0 in place of xi, in order to ensure reversibility of

proposal. Vector difference (xR1−xR2) is optionally subject to a crossover operation

with 0 vector. The move from xi to yi is accepted via Metropolis step. Sampling

performance is assessed at each generation by use of Kullback-Leibler divergence

between true and estimated density. This procedure is expected to generate use-

ful proposals because chains population is likely to be adapted to the shape of π.

Authors also suggested that including subpopulations in the algorithm, as proposed

afterwards by Hu & Tsui (2010) in GA framework, could be beneficial, because local

geometry of π could be better exploited.

DES has been compared with algorithms like Metropolis, PT and EMC in a mix-

ture of normal distributions sampling with unequal variances, using Kullback-Leibler

divergence to measure distance between true density π(·) and empirical density esti-

mated by MCMC: results showed good performances of DES. A generally analogous

procedure has been studied in Strens (2003) for discrete distributions sampling.

ter Braak, Vrugt

Meaningful extensions have been made by ter Braak and Vrugt group (ter Braak,

2006; ter Braak & Vrugt, 2008; Vrugt et al., 2009). In ter Braak (2006) an al-

gorithm named Differential Evolution Markov Chain (DE-MC) is introduced for

high dimensional target distributions sampling, motivated by simplicity, because

the adopted mutation operator automatically provides information on scale and

orientation of the proposal distribution. It is generally analogous to contribution

in Strens et al. (2002), except for differential mutation operator, which has form:

y
i
= xi + γ(xR1 − xR2) + e, i 6= R1 6= R2, where γ is a scaling constant and e is ran-

dom vector drawn from a symmetric distribution with small variance, for example

a zero mean normal. A standard DE crossover operator can be included before the

proposed solution is compared with xi: in that case every gene of y
i
can be replaced

by the equivalent gene of xi with probability (1− pC). Author also suggested that

applying crossover on blocks of genes, which may refer to correlated variables, could

improve the effect of operator. Also a cooling scheme could be adopted, and initial

population could be generated from a prior distribution, if a Bayesian problem is
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taken into account. The convergence of algorithm is monitored by use of R̂ statistics

(Gelman & Rubin, 1992).

An extension of the algorithm, called DE-MCZ , has been provided in ter Braak

& Vrugt (2008). Extensions have been made in order to lower the computational

effort of the algorithm by decreasing the number of chains in population. In order

to accomplish this a large matrix Z is built in order to include all generated chro-

mosomes in generations: chains xR1 and xR2 for the mutation step will be selected

from such matrix. The latter feature turns the method into an adaptive Metropo-

lis sampler (Haario et al., 2001), as past chains state are involved. Furthermore

a snooker style crossover, called DE snooker update, is introduced in the proposal

mechanism, as it alternates with parallel direction updates, in order to diversify

jumping possibilities. In these two papers authors considered applications on both

known multivariate distributions sampling, like Student’s t or mixtures of normal

(as done in Liang & Wong, 2001a), and Bayesian problems like one-way random-

effects model and nonlinear mixed-effect model. Effectiveness of proposed methods

is shown to be comparable with respect to random walk Metropolis sampler. Fur-

thermore DE-MCZ is shown to improve convergence time (namely lower the burn-in

period) compared to standard DE-MC, and it is also parallelizable.

A further successful development, resulting in the most cited paper in this frame-

work, has been called DiffeRential Evolution Adaptive Metropolis (DREAM; Vrugt

et al., 2009). In this sophisticated algorithm the differential mutation step al-

lows to generate proposals using higher-order (say number δ) pairs of chains, for

increasing diversity, and also crossover of variable blocks (size d′), with proba-

bility CR, is proposed. Besides this, the burn-in period is crucial, because in

such iterations the so-called outlier chains, which are solutions that still not have

converged to modal zones, are handled; this issue, that can deteriorate quality

of MCMC sampling, is managed by use of Inter-Quartile-Range (IRQ) statistics.

During burn-in also a distribution of crossover probabilities CR is estimated for

the algorithm in order to favor large jumps over smaller ones and decrease au-

tocorrelation between two subsequent samples in each chain. Mutant is built as:

y
i
= xi + (1d + e)γ(δ, d′)[

∑δ

j=1 xr1(j) −
∑δ

k=1 xr2(k)] + ǫ, where ǫ is drawn from a

Uniform distribution and it is related to the scaling factor γ(δ, d′).

Selected applications include sampling from high dimensional multivariate nor-

mal distributions, twisted Gaussian and bimodal distributions, and also a squared

deviations likelihood function for dealing with a real dataset: DREAM algorithm

showed the best overall performances in all selected applications. This method has

received huge success in literature, especially in hydrological applications (see, for
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example, Laloy & Vrugt, 2013 and Brigode et al., 2013). Also an R package provid-

ing DREAM has been implemented by Guillaume et al. (2012).

3.5 EDA based approaches

Zhang, Cho

Zhang & Cho (2001) proposed an algorithm that conjugates efficiency of EAs and

robustness of MCMC methods in order to identify systems architecture. As far as

its main scope is maximization we will not dwell much on it.

The method, named evolutionary Markov Chain Monte Carlo (eMCMC), is set

in an explicit Bayesian framework to find the architecture minimizing a fitness func-

tion. Starting from an initial population generated from a prior distribution, in

fact, the problem dependent likelihood and then the posterior are computed for all

individuals. New solutions are generated basing on the resulting posterior distribu-

tion, employing a kind of mutation and recombination operators, and a selection of

best individuals is retained in subsequent generation. Drugan & Thierens (2004)

observed that this method shares a number of features with EDA algorithm.

Laskey, Myers

Laskey & Myers (2003) introduced Population Markov Chain Monte Carlo algorithm

(popMCMC), a variety of adaptive MCMC sampler in which chains use information

from other chains to adjust their proposal distributions. They appeal to EAs because

of their natural information exchange features between solutions and their ability

of avoiding to be trapped in local optima. Authors explicitly refer to a Bayesian

network learning problem with missing observations and hidden variables, for which

solution space is discrete.

The chains share a common target π(·) but have a different individual proposal

distribution q(xt+1
i ; xti, ξ), where ξ is a novel parameter. This latter quantity is

estimated by a proposal parameter function ξ̂(xt1, ..., x
t
M), which accounts for values

of entire population. For example, in the selected Bayesian network application ξ̂

includes information on frequencies of graph arcs and missing values. In general it

can be chosen to fit interesting features of π (lower order marginal distributions of

components are suggested). Each of the estimated models q(xt+1
i ; xti, ξ̂), i = 1, ...,M ,

generates a candidate, and the resulting population is evaluated via MH step. This

procedure is adaptive at the level of individual, because each proposal distribution
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depends on global information; on the other side, at the level of population it is

a Markov Chain with fixed transition probabilities. Heuristic comments are also

provided in order to illustrate convergence of each chain to π, depending on the

choice of ξ̂. Convergence diagnostic is performed by use of R̂ statistics.

popMCMC has been compared with a multiple chains MH algorithm with no

information exchange and an EA with mutation and crossover for the Bayesian

network learning problem. Results of application on literature data showed that

incorporating information exchange increased the rate of improvement of solutions,

and that MCMC algorithms had greater population diversity than EA, because of

post selection features of MH step. Authors observed that superiority in performance

of popMCMC with respect to MH could be due to the ability of incorporating

statistical information from the entire population into the proposal distribution q.

Also in this case similarities with EDA have been observed in Drugan & Thierens

(2004).

3.6 Discussion

In our overview we have proposed a sort of categorization with respect to the spe-

cific EA inspiring authors. Following definition of evolutionary system, outlined in

Section 1.2 and adopted in De Jong (2006) as basis for defining EAs, we shall now

discuss methods with respect of their algorithmic features.

Population of individuals

The multiple chains MCMC framework provides a population of solutions, in our

case running in parallel, for improving mixing and sampling from target distribution.

In EC based MCMC goals are the same, and so are sampling methodologies: if a

cooling scheme is adopted, as in EMC, only one chain will effectively provide samples

from π; in other cases, if correct ergodic properties are satisfied, each chain is able

to sample from the target. In this case the user may consider population states at

a certain generation as a candidate random sample and evaluate its adherence to

π (Battaglia, 2001; Strens et al., 2002). Concerning solutions coding, we mainly

took into account continuous target sampling problems, for which these algorithms

adopted direct encoding.
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Fitness

In this chapter no optimization issue is concerned, so fitness has a naturally different

purpose with respect to the rest of thesis. Up until now, in fact, it is defined as

a goodness measure, to be as large as possible (in maximization problems); here

there is a target distribution π to sample from, and it could be somehow related to

fitness. Now, in generic iteration values generated by most of considered MCMC

algorithms must be subdued to MH or Metropolis steps, in order to ensure them

to sample from the correct invariant distribution. This step naturally biases search

process towards high probability areas of invariant distribution, because they will

be selected with high probability as a consequence; it is somehow analogous (even

if less strong) to what happens with fitness function in optimization problems. In

our problem, however, we consider sampling from generally multimodal targets, so

other strategies must be adopted in order to let the algorithm efficiently sampling

from all the support, avoiding to get trapped in local optima areas. If methods

based on DE and EDA are naturally more capable of overcoming this drawback

because their operators involve several chains (more insights will be provided in

next subsection), GA based proposals, on the other hand, generally modify few

solution at each generation, so other strategies have been employed, some of which

operate directly on target distribution.

Liang and Wong’s EMC adopted PT style cooling scheme, which allows each

chain to have its own individual target distribution πi(·) ∝ exp{−H(·)/Ti}, where
H(·) is explicitly defined as fitness. By proceeding this way sampling at high temper-

atures facilitate broad exploration, and effective sampling from target distribution,

which has the coolest temperature, is performed by means of exchange operation.

There is an analogous reasoning behind Multiresolution GA by Holloman et al.

(2006), because distribution of interest is taken as product of distributions at each

scale. In this complex model, however, multiresolution scheme is applied also to

observed data, in such a way that data modeled at coarse scale can support broader

exploration of search space, while finer scales, on the other hand, allows to include

as mushc details on target as possible. DGMC by Hu & Tsui (2010) employs sub-

populations, which may separately explore and exploit possibly different portions of

target support. In Battaglia (2001) a finite partition of π is built and a notion of fit-

ness related to individuals contribution on inducing each partition is introduced. As

long as reproduction probability is shared between individuals belonging to the same

partition, several and possibly different zones of high probability can be detected in

such a way.
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Reproduction

Reproduction operators, which aim at building new solutions, play naturally the

role of proposal distributions in MCMC, as long as they have stochastic features.

This topic highlights distinctions between approaches based on GA, DE and EDA,

due to the number of individuals involved in process of building new solutions. In

generic iteration of GA based methods, in fact, a small number of individuals is

generally used to build new states: an Evolution Strategies style mutation operator,

which involves a single chain, is ofter employed, together (or sometimes in substitu-

tion) with few snooker crossover updates, involving two of three individuals; wide

exploration of the support is guaranteed by means of strategies described in previ-

ous subsection, like exchange (Liang & Wong, 2001a) or swapping (Holloman et al.,

2006) between chains at different temperatures or scale, and migration (Hu & Tsui,

2010) between subpopulations. In DE based approaches, as in original algorithm,

the new trial vector is proposed for each chain basing on values of other individuals

(by use of differential mutation), performing also uniform crossover in order to ac-

count for correlation between variables. EDA methods build a proposal distribution

basing on values of current population as a whole, so we can say that the magni-

tude of interaction is maximum in this case, with respect to other methods. A deep

and unifying analysis of possible reproduction operators involving various number of

chains in EC based MCMC has been provided in Drugan & Thierens (2005, 2010a,

2010b).

Turning to a computational point of view, it is interesting to mention the pos-

sibility of parallelizing these kind of MCMC methods (see Basse et al., 2016 for an

account). It is clear that methods which involve few moves in reproduction are more

suitable to be parallelized, because chains belonging to different cores need to have

reached the same number of generations in order to be assembled for reproduction.

This problem could be handled by employing some adaptive strategies, which allow

to use samples from past generations, as in ter Braak & Vrugt (2008) and Vrugt et

al. (2009).

Inheritance

Once that new individuals are generated by reproduction operators, it is necessary

to discriminate the ones who will be included in subsequent generation. In generic

MCMC this task is accomplished by strategies introduced to preserve ergodicity of

chains, like MH or Metropolis step, which may be defined as post selection operators

in EC terminology.
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These steps, depending on strategies, may involve individual d-dimensional target

distribution πi (possibly constant with respect to i) orM×d-dimensional population

distribution π∗, as in population-based MCMC. In fact there are algorithms which

evaluate acceptance of population as a whole after each reproduction (Liang &

Wong, 2001) or some specific one (migration operator in Hu & Tsui, 2010), in order

to preserve ergodicity of π∗. Most of methods, however, accept new proposed values

evaluating just individual target distributions involved in reproduction.

In general, MH and Metropolis step are are crucial, especially in multiple chains

algorithms, as long as computational complexity of procedures is taken into account.

In Metropolis step, concerned when symmetrical proposal distributions are selected,

acceptance probability does not include the proposal distribution (like mutation in

GA based approaches or differential mutation in methods based on DE), meaning

that some computational time is saved. These kind of issues have been studied, also

in the form of tradeoffs, in Drugan & Thierens (2010a, 2010b).

3.7 Concluding remarks

Methods outlined in this chapter have been proposed by researchers from differ-

ent fields of science, sometimes independently of each other. Therefore there have

been different motivations and points of view behind these proposals, and giving a

unifying framework to compare them is challenging.

M. Drugan and D. Thierens, both researchers in the field of EC, already cited

in the course of chapter, produced a series of papers (Drugan & Thierens, 2004;

2006; 2010a; 2010b) in which most of algorithms discussed in this dissertation are

reviewed. They provided general forms of proposal distributions, for example geo-

metrical moves like rotation or translation, which may involve two or more chains

in population. Moreover studies have been conducted for evaluating benefits of EAs

features, like fitness proportionate selection, elitism, sophisticated offspring surviv-

ing rules on speed of convergence to invariant distribution. They also gave the

following definition of Evolutionary MCMC (Drugan & Thierens, 2010a, 2010b):

Definition 1. An evolutionary Markov chain Monte Carlo (EMCMC) algorithm is

a population MCMC that exchanges information between individual states such that,

at the population level, the EMCMC is an MCMC.

Some of the algorithms in our survey fall into EMCMC category, but in general

the condition on population level is rather strict for characterizing MCMC sampling,

because many proposal moves can be evaluated individually for each chain.
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We observe that EMCMC is a particular case of Population-Based MCMC, a cat-

egory that includes methods in which multiple chains are allowed to run in a parallel

manner. Mathematical description of method (Liang et al., 2001, p.123) states that

if π(x) is the target distribution then user shall sample from an augmented invariant

distribution:

π∗(X) =
M∏

i=1

πi(xi), (3.1)

where X = {x1, ..., xM} belongs to a M -dimensional space and πi = π for at least

one i.

EMCMC is a Population-Based MCMC where chains are allowed to interact

with each other, as happens with individuals in EAs, but as we said before the

assumption that π∗ is the invariant distribution of the population is somewhat strict

for generalizing to all methods.

There is also no general agreement on how to evaluate method performance:

in fact, as in MCMC literature, effort is generally spent to monitor convergence of

chains to invariant distribution, while goodness of effective sampling is not deepened.

In some papers authors analyze adherence of candidate sample at certain generation

to target distribution (Battaglia, 2001; Strens et al., 2002; Drugan & Thierens,

2010a).

However, if a complex Bayesian problem is taken at hand a general indication

would suggest to generate initial chains population by selected prior distribution;

after that, methods based on DE, suggested to be simple and very effective in

capturing multimodality and correlation between parameters, could be employed.

The possibly large computational cost of these procedures, however, could deflect

and make users prefer refined GA based approaches, which are less expensive but

possibly competitive. However, the introduction of adaptive strategies can make

parallelization feasible and computational complexity more tractable (as in ter Braak

& Vrugt, 2008 and Vrugt et al., 2009). As far as this subject is concerned, we

believe that adaptive strategies, which are among main topics in nowadays MCMC

literature, will prove to be useful tools for improving EC based MCMC, from both

efficiency and computational side (see, for example, Milgo et al., 2017, for up-to-date

research, in which Covariance Matrix Adaptation-Evolution Strategies algorithm is

set in MCMC framework).
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Chapter 4

Multiple Changepoint Detection

in Periodic Autoregressive Models

by Means of Genetic Algorithms

4.1 Periodic models and regime changes

Many phenomena observed over time are subject to so-called seasonal effects, which

are variations occurring at specific and regular time intervals every year. An intuitive

example is the behaviour of a monthly business time series in the month of August,

which is often closing month in companies (August effect). In general, seasonality

needs to be conveniently accounted in a large variety of time series models in order

to get realistic estimates and forecasting.

Among linear modeling a classical procedure aims at modifying the standard Au-

toreRegressive Integrated Moving Average (ARIMA) model employing the seasonal

differencing operator : if the considered period magnitude is s, this operator sub-

tracts from each observation the corresponding value at s previous time instants,

obtaining Seasonal ARIMA (SARIMA). This way of proceeding, which involves rel-

atively few parameters, has been proven useful when the mean for a given season

is not stationary across years (Hipel & McLeod, 1994). It has also been observed,

however, that it tends to perform less well when covariances and correlations within

seasons are not stationary, because residuals could still disclose a seasonal behaviour.

For this reason different procedures of accounting for seasonality have been pro-

posed in literature, leading to periodic models (general overviews can be found in

Hipel & McLeod, 1994 and Franses & Paap, 2004). In this framework the simplest

model is the Periodic AutoRegression (PAR; Gladyshev, 1961; Jones & Brelsford,

55
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1967) which, as long as a seasonal time series of N years and period s is considered,

has the following structure:

Yns+k =

p(k)∑

i=1

φi(k)Yns+k−i + ǫns+k, n = 0, ..., N − 1, k = 1, ..., s, (4.1)

where series in season k follows an AR(p(k)), with parameters φi(k), i = 1, .., p(k).

Franses (1994) introduced also an unusual multivariate representation of model (4.1),

useful for analyzing stationarity properties of the model. Also periodic modifications

of other linear models, as Periodic Moving Average (PMA; Cipra, 1985) or Periodic

AutoRegressive Moving Average (PARMA; Vecchia, 1985), have been introduced in

literature, even if it has been observed that they do not generally add significant

benefits over PAR models (McLeod, 1994; Franses & Paap, 2004).

As far as PAR model building is concerned, the identification can generally be

performed in several ways. As a first step, non-periodic models are estimated and

seasonality evaluated in residuals. Similarly, also statistical tests in which null hy-

pothesis is the lack of periodic variation in model can be performed. A more general

approach is the selection of model order by conventional penalization criteria, like

AIC, BIC or MDL. Ordinary maximum likelihood or least squares estimation of

parameters can be then performed.

The diagnostic checking for PAR models has been proposed in McLeod (1994),

in which results on distribution of residual autocorrelations are derived and a novel

test statistics based on Ljung-Box portmanteau is introduced.

Let us now introduce a different source of deviation from basic linear models, due

to the fact that a time series could switch its behaviour, implying the existence of

several regimes. The change between one regime and an other could occur at every

time instant or be due to the reaching of a certain value of series. In the first case we

generally have a nonstationary but linear model (structural change; Bai & Perron,

1998), while the second falls in the field of threshold models (Tong, 2012), which

is characterized by nonlinearity but stationarity. These are two different situations

which require different modeling features: in this chapter we shall only focus on

structural changes, set in a periodic modeling framework.

A structural change (or changepoint) can be defined as a modification in the

structure of a time series occurring at a certain time instant. This kind of change

could affect mean, variance or model structure as a whole, and more than one change

could occur in the time series span. Real examples of structural change could be the

effect of a modification in governmental policies on a financial time series, or a change

in gauging location on climate and hydrological series. Ignoring the effect of these



57

changes, possibly located at unknown times, can lead to misleading estimation and

forecasting. Among approaches proposed in literature for dealing with structural

changes we focus on methods which aim at selecting an approximate model by

optimization of an appropriate objective function, like AIC (Kitagawa & Akaike,

1978; Ninomiya, 2015). In this framework there have also been proposals based on

GAs, which will be reviewed in Section 4.3.

4.2 Model description

We shall now describe in depth our proposal of simultaneously modeling seasonality

and regime changes in time series. Concerning the first point, we shall focus on

pure PAR models, allowing also subset selection; multiple structural changes can

segment the series into several PAR processes.

The period of time series is s and is assumed to be known. Observation in season

k of the n+ 1 year is denoted by Xns+k, with n = 0, 1, . . . , N − 1 and k = 1, . . . , s.

There are M different regimes, each of which contains an integer number of years,

and τj−1 denotes the first year of regime j. The first regime includes years from

τ0 = 1 to τ1 − 1, second regime contains years from τ1 to τ2 − 1, third regime

contains years from τ2 to τ3 − 1, and so on. The regime structure, specified by

m =M − 1 changepoints, is summarized as follows:

1 ≡ τ0 < τ1 < . . . < τm < τM ≡ N + 1.

In order to ensure reasonable estimates it is required that each regime contains

at least a minimum number mrl of years, therefore τj ≥ τj−1 + mrl, ∀j. We let

Rj = {τj−1, τj−1 + 1, . . . , τj − 1}, so that if year n belong to set Rj then the time

ns + k is in regime j. For the seek of simplicity we assume that total number of

observations T is a multiple of s.

The model driving our work is given by:

Xns+k = aj + bj(ns+ k) +Wns+k, n ∈ Rj, j = 1, 2, . . . ,M, 1 ≤ k ≤ s, (4.2)

where Wns+k = Yns+k + µj
k and process Yns+k is a PAR given by:

Yns+k =

pj(k)∑

i=1

φj
i (k)Yns+k−i + ǫns+k. (4.3)

We assume that trend parameters aj and bj depend only on the regime, whereas

means µj
k are allowed to change also with seasons. The autoregressive maximum
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model order at season k in the j-th segment is given by pj(k), so that φj
i (k), i =

1, . . . , p(k), represent the PAR coefficients of season k in the j-th segment; in our

procedure these latter will be allowed to be constrained to zero. For simplicity, we

assume that pj(k) = p, ∀j, k. Error process ǫns+k in equation (4.3) is a periodic

white noise, with E(ǫns+k) = 0 and V ar(ǫjns+k) = σ2
j,k > 0. Unless otherwise stated

we assume that each segment is periodic stationary with period s, in the sense that

Cov(Yn+s, Ym+s) = Cov(Yn, Ym),

for all integers n and m.

Summarizing, the proposed model is characterized by following parameters:

a) External parameters :

N number of years

s number of seasons

p maximum autoregressive order

M maximum number of regimes

mrl minimum number of observations per regime

b) Structural parameters :

m number of changepoints

τ1, τ2, . . . , τm changepoints location

PAR subset indicators denote constrained coefficients φj
i (k)

c) Regression parameters

a1, a2, . . . , aM constants

b1, b2, . . . , bM slopes

µj
k seasonal means; regime j, season k

φj
i (k) AR parameters; regime j, season k, lag i

σ2
j (k) residual variance; regime j, season k

In order to build our model, structural and regression parameters must be con-

veniently estimated. Conditionally on model structure, the regression parameters

are analytically estimated. The selection of optimal structural parameters, on the

other side, is a complex combinatorial problem for which no closed form solution

is available. As far as it involves the evaluation of a very large number of possible

combination, GAs are naturally suitable for this issue.
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4.3 Model building

As outlined in Section 1.6, model identification is among the most important and

natural applications of GAs to statistics. This issue is especially demanding in

time series models exhibiting nonlinearity or nonstationarity (or both), because the

search space is prohibitively large. GAs have been widely applied for identifying

threshold models among last 15 years: Wu & Chang (2002) proposed them for

two-regimes SETAR models; Yau et al. (2015) identified TAR models by GAs;

many contributions have been made by R. Baragona research group, as they involve

models such SETARMA (Baragona et al., 2004a), DTARCH (Baragona & Cucina,

2008), DTGARCH (Baragona & Battaglia, 2006), EXPAR (Baragona et al., 2002),

PLTAR (Baragona et al., 2004b), multivariate SETAR (Baragona & Cucina, 2013).

In the case of structural changes modeling, the time series exhibits a nonstationary

behaviour, as it could switch regime at each time instant. Davis et al. (2006)

employed a piecewise stationary AR process for modeling structural changes, and

used GAs for model identification; Jeong & Kim (2013) set changepoint detection by

GAs in a Bayesian modeling framework; recent paper by Doerr et al. (2017) provided

hints for saving computational time when GAs are employed in this identification

problem; Battaglia & Protopapas (2011, 2012) employed GAs for detecting regime

changes in time series exhibiting also nonlinear behaviour.

4.3.1 Identification and estimation

In our model the GA must account for both changepoints detection and subset

PAR selection. Work by Lund et al. (2007) and Lu et al. (2010) are concerned with

changepoint detection in periodic and autocorrelated time series, when only change

in mean are contemplated. Our results share a number of similarities with their

finding allowing in the same time a generalization of results, because a change can

cause model structure as whole to be modified. Details on our GA proposal, which

employ a standard binary coding, will follow.

The model structure of a generic solution is encoded in a binary chromosome

(genotype), which corresponds to a phenotype associated to the following vector:

m, τ1, τ2, . . . , τm, δ
1, ..., δM , (4.4)

where δ1, ..., δM are binary sequences specifying parameters φj
i (k) constrained to

zero for regime j, season k and lag i.

A candidate segmentation is encoded in a binary chromosome as follows: first
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two bits give number of changepoints m (limited to a maximum of 3 in our study, so

that a number of regimes up to 4 is allowed); subsequent bit intervals, whose length

is custom fixed, produce changepoint times τ1, ..., τm. This part of encoding must

ensure following constraints:

mrl+1 ≤ τ1, mrl+τ1 ≤ τ2, ..., mrl+τm−2 ≤ τm−1, mrl+τm−1 ≤ τm ≤ N−mrl−1,

due to the fact that a minimum number mrl of observations must be contained in

each regime. In order to accomplish this the bit intervals encode m real numbers

thi ∈ (0, 1), i = 1, ...,m, constructed to determine percentage of remaining values to

place a changepoint. In fact, when placing a new changepoint there are some illegal

positions, due to above specified constraints: this implies that mrl observations

must be left out from both the beginning and the end of considered segment. This

strategy depends on the candidate number of regimes, so that changepoints are

uniquely identified in these four possible ways:

• If m = 0 (one regime) then τ1 = N + 1.

• If m = 1 (two regimes) then τ1 = mrl + 1 + (N − 2mrl)× th1

• If m = 2 (three regimes) then:

– τ1 = mrl + 1 + (N − 3mrl)× th1

– τ2 = mrl + τ1 + (N − 2mrl − τ1 + 1)× th2

• If m = 3 (four regimes) then:

– τ1 = mrl + 1 + (N − 4mrl)× th1

– τ2 = mrl + τ1 + (N − 3mrl − τ1 + 1)× th2

– τ3 = mrl + τ2 + (N − 2mrl − τ2 + 1)× th3

Such an encoding procedure, introduced in Battaglia & Protopapas (2012), allows

each possible chromosome to be legal, so there is no computational time wasted on

evaluating infeasible solutions. Last bits in the chromosome directly produce vectors

of subset PAR indicators (δ1, ..., δM).

Conditioning on a candidate model structure, regression parameters estimation

is performed in the fitness evaluation step as follows:
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• Trend parameters estimates â and b̂ are obtained by Ordinary Least Squares

(OLS) method:

min
a,b

M∑

j=1

s∑

k=1

∑

n∈Rj

[
Xns+k − aj − bj(ns+ k)

]2
,

that leads to detrended data Ŵns+k = Xns+k − âj − b̂j(ns+ k),

n ∈ Rj, j = 1, ...,M, k = 1, ..., s

• Seasonal means µ̂ are computed as follows:

µ̂j
k =

1

τj − τj−1

∑

n∈Rj

Ŵns+k, j = 1, ...,M ; k = 1, ..., s,

which implies: Ŷns+k = Ŵns+k − µ̂j
k

• Autoregressive parameters estimation is performed separately for each regime

and season. Each of these series z is selected from Ŷ , and it is incorporated

in a design matrix Z of dimensions (τj − τj−1) × p, which includes lagged

observations. Parameter constraints are specified by a (p − q) × p matrix H,

where q is the number of free parameters. These constraints are designated

on the basis of PAR subset indicators δ as follows:

– For each lag i, the element [p(k − 1) + i] of δj vector is evaluated

– If value is equal to 1 then a row equal to the i-th row of Ip identity matrix

is added to H.

Final estimate φ̂ of φ is obtained by constrained optimization, with linear

constraint given by Hφ = 0. Explicitly, in matrix form:

φ̂ = φ̂
LS

− (Z ′Z)−1H ′[H(Z ′Z)−1H ′]−1Hφ̂
LS
,

where φ̂
LS

= (Z ′Z)−1Z ′z.

• Lastly, estimate of innovation variances σ̂2
j (k) is performed for each regime and

season on final residuals, considering that each regime has a possibly different

sample size.
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The fitness must include a term linked to the goodness of fit and a part related to a

penalization on number of parameters. Many options are available: we shall consider

a criterion inspired by NAIC, introduced by Tong (1990, p.379) for threshold models,

and given by:

g = {
M∑

j=1

s∑

k=1

nj(k) log[σ̂
2
j (k)] + IC

M∑

j=1

s∑

k=1

Pj(k)}/T, (4.5)

where σ̂2
j (k) is the model residual variance of series in regime j and season k, nj(k)

is related sample size, Pj,k is related number of parameters, IC is the penalization

term. Final fitness function is a scaled exponential transformation of g, for a purpose

of maximization: f = exp(−g/β), where β is a constant.

As far as the choice of genetic operators is concerned we propose standard roulette

wheel selection, bit-flip mutation, and a modified single-point crossover: the only

cutting points allowed to be selected are the ones which subdivide phenotype (4.4),

instead of genotype as usual. In such a way parameter structures can be naturally

inherited by offspring. Elitist strategy is also employed.

4.4 Applications

In this section the validity of proposed methodology is studied. In the first part

we shall focus on simulated data, while in the second real hydrological data will be

analyzed, employing a modified version of the GA and also evaluating forecasting

accuracy of fitted models. Computations will be performed by use of Matlab.

4.4.1 Simulations

The estimation procedure outlined in subsection 4.3.1 will be implemented in a

small simulation study. We shall focus on monthly data (period s = 12), observed

in N = 100 years. Such time series will be generated according to five possible

scenarios:

A) 3 regimes, with varying PAR parameters and trend

B) 2 regimes, with varying PAR parameters and trend

C) 2 regimes, where only trend varies with regime
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D) 2 regimes, where only innovation variances vary with regime

E) 1 regime

Time series generated according to these scenarios are shown in Figure 4.1. Sea-

sonal means µj
k are always fixed at zero and the trend is built to be piecewise linear

continuous. Innovation variances are equal to 1 in all experiments, except for sce-

nario D in which they are 1 in first regime and 2 in the second. PAR parameters vary

between regimes only in scenarios A and B, meaning that changepoints detection

will be more difficult in scenarios C and, in particular, D, where regime switch is due

only to innovations variance. These parameters are defined in following matrices:

φ1 =




0.3 0.3 0.3 0.42 0.42 0.42 −0.8 −0.8 −0.8 0.42 0.42 0.42

0.5 0.5 0.5 0 0 0 0.2 0.2 0.2 0 0 0

0 0 0 0 0 0 0.35 0.35 0.35 0 0 0




φ2 =




0.1 0.1 0.1 0.22 0.22 0.22 −0.24 −0.24 −0.24 −0.5 −0.5 −0.5

0.3 0.3 0.3 0 0 0 0.23 0.23 0.23 0 0 0

0 0 0 0 0 0 0.25 0.25 0.25 0 0 0




where number of columns is period s and rows number indicates maximum autore-

gressive order p = 3. Matrix φ1 denotes PAR parameters of first regime in all

experiments; φ2 is associated to the second regime only in experiments A and B,

while in C and D φ1 denotes also parameters of second regime. Third regime in

experiment A is generated according to a white noise.

Concerning GA configurations, we fixed minimum number of years per regime

mrl at 10, maximum number M of regimes at 4 and a maximum autoregressive

order p at 3. In the fitness function we fixed IC = 2 so that penalization structure

of AIC criterion is resembled. We adopted GA operators and configurations out-

lined in subsection 4.3.1, with crossover, mutation rate and population size fixed at,

respectively, 0.7, 0.2 and 50. Scaling constant β in fitness was equal to 10.

Table 4.1 shows results of computations, obtained with G = 1000 generations;

it reports true and estimated changepoints, along with the absolute value of bias

related to trend parameter estimates. Results are satisfactory in all models, par-

ticularly in tricky scenarios such as C and D. Plots of residual autocorrelations in

Figure 4.2 confirm adequacy of fitted models.
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Figure 4.1: Simulated time series of five scenarios
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Figure 4.2: Residual autocorrelations of the fitted models in five scenarios
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τ1, ..., τm τ̂1, ..., τ̂m Bias [â1, b̂1] Bias [â2, b̂2] Bias [â3, b̂3]

A) 31, 70 30, 70 [0.0069,0] [0.0850,0.0002] [0.0596,0]

B) 66 66 [0.0808,0] [0.0356,0] /

C) 66 68 [0.037,0] [0.1014,0] /

D) 66 64 [0.1710,0.0005] 0.3640,0.0005 /

E) / / [0.0367,0.0001] / /

Table 4.1: Results for simulated data

4.4.2 Real data

We shall now study the effectiveness of proposed methodology in river flow analy-

sis. Majority of hydrological time series, in fact, display seasonality and have been

extensively analyzed with periodic models (Hipel & McLeod, 1994). Moreover, dis-

continuities are often introduced in this kind of series as a result of anthropogenic

impacts or changes in instrumentation, location and climatic oscillations. Further

plausible reasons are modifications in reservoir system management or new water

pricing. In many cases, changepoints are located at known times (dam construction,

measure instrument change) and it is easy to take into account their effects. When

changepoints are located at unknown times and their features are ignored the time

series estimation can be misleading (Lu & Lund, 2007; Lund et al., 2007). In view

of all this, changepoint detection becomes a demanding job especially if its identifi-

cation is required soon after occurrence (e.g. flood predictions). Many authors have

considered the problem of detecting a single changepoint in hydrology (Cobb, 1978;

Buishand, 1984; Hipel & Mcleod, 1994), but more realistic multiple changepoints

situations should be considered.

We shall analyze monthly data related to two river flows, having different lengths,

means of annual flows and located in different regions. They consist of:

• flows of Garonne river measured at Tonneins, France;

• flows of Saugeen river measured at Walkerton, Canada.

The GA employed in these two analysis includes a modification with respect of ba-

sic algorithm described in subsection 4.3.1. Its phenotype considers onlym, τ1, ..., τm

as candidate structural parameters, and in the fitness evaluation step it enumerates

all 2p possible subset AR(p) models in each regime and season: only result on the

best one (in terms of fitness) is reported. This version allows to select the best

possible subset for each segmentation, but it is computationally feasible only when



67

Years of changepoint Fitness RMSE MAE MAPE

PAR(0;3) / 1.203 0.247 0.221 2.356

PAR(1;3;10) 1989 1.211 0.273 0.213 2.266

PAR(2;3;12) 1977, 1989 1.214 0.272 0.213 2.264

PAR(3;3;10) 1970, 1988, 1998 1.224 0.314 0.251 2.610

Table 4.2: Results of evaluation criteria of the logarithmic forecast errors for Garonne

number p is small. In our case it is reasonable because the autoregressive procedure

must capture short term dependence, while the underlying behaviour is mainly ac-

counted by analysis of regime changes. Genetic operators and rates are chosen as in

subsection 4.4.1.

Before running the GA time series are logarithmically transformed and last year

is removed, as it is used to evaluate forecasting, which is performed by standard

one-step-ahead procedure. Root Mean Square Error (RMSE), Mean Absolute Error

(MAE) and Mean Absolute Percentage Error (MAPE) have been selected as fore-

casting accuracy indicators (an account on these measures is given in Hyndman &

Koehler, 2006). Several experiments have been conducted considering various com-

binations of model external parameters p, mrl andM . Conditioning on four possible

values of M , which include stationary model (no changepoints) and situations with

possible structural changes up to, respectively, 1, 2 and 3, we selected four models

for which the best value of fitness function has been observed. Forecasting accuracy

of these models, labelled as PAR(M ;p;mrl) (M = 0, 1, 2, 3), will be then evaluated.

Garonne river

The Garonne river, which flows through Spain and France, is the third largest river

in France in terms of flow. Its total length is about 647 km with a catchment area

of 51500 km2 at Tonneins. It is the main contributor to the Gironde Estuary which

is the major European fluvial-estuarine system. Flow measures are recorded at the

Tonneins gauging station, where there is no tidal effect. Data are obtained from

daily discharge measurements in cubic meter per second (m3/s) from January 1959

to December 2010 (DIREN-Banque Hydro, French water monitoring). Daily data

flows are then transformed in monthly data consisting in flows averaged for one

month. The final time series of mean monthly flows of Garonne, from January 1959

to December 2010, including 624 observation (52 years), has been analyzed also in

Ursu & Pereau (2016). It is shown, along with log-transformed data, in Figure 4.3.
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Figure 4.3: Monthly flows (up) and logarithmic monthly flows (down) for the

Garonne river.
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Figure 4.4: Changepoints detected on years 1977 and 1989 for Garonne river

Table 4.2 shows results on changepoint detection, goodness of fit and forecasting

accuracy. We observe that years 1988 or 1989 are detected as possible changepoints

in all configurations. According to Caballero et al. (2007), years 1988-1989 seems

to be the driest in decade 1980-1990. Moreover, the air temperature over Western

Europe showed an abrupt shift at the end of 1980s. For a better understanding

of climatic changes and their impact on water resources, Brulebois et al. (2015)

studied a subset of 119 temperatures, 122 rainfall and 30 hydrometric stations over

the entire France. They detected a shift in annual mean air temperature in 1987-

1988 for more than 75% of the 119 temperature stations. They also detect a shift

between 1985 and 1990 for 18 hydrometric stations.

As far as goodness of fit is concerned, we observe that fitness values are increasing
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Figure 4.5: Logarithmic flows of Garonne (full line) and one-step PAR forecasts

(dashed line).
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Figure 4.6: Autocorrelation function (ACF) of the residuals of the fitted PAR model

with two changepoints to the Garonne flow.

with the number of regimes. Results on forecasting accuracy show that model with

no changepoints forecasts better in terms of RMSE with respect of other models,

while best values for MAE and MAPE are observed for three regimes model. In this

comparison we select this latter model considering both performances on estimation

and forecasting. Figure 4.4 shows the segmentation selected in this model, while in

Figure 4.5 the true and predicted logarithmic values of Garonne flows are reported.

As a diagnostic check, the residual autocorrelations for three regimes model up to

lag 36 have been computed. They are reported in Figure 4.6 and provide evidence

on adequacy of the proposed model.

Saugeen river

The Saugeen River is located in southern Ontario, Canada; it begins in the Osprey

Wetland Conservation Lands and flows generally north-west about 160 kilometres

(99 miles) before exiting into Lake Huron. Starting from 1950 it is served by Saugeen

Valley Conservation Authority (SVCA), a corporate body founded for managing and

preserving water and other natural resources in river watershed. Data analyzed are
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Years of changepoint Fitness RMSE MAE MAPE

PAR(0;1) / 1.187 0.485 0.371 11.184

PAR(1;1;7) 1970 1.191 0.352 0.286 9.017

PAR(2;3;5) 1965, 1970 1.207 0.375 0.296 9.338

PAR(3;2;7) 1950, 1958, 1970 1.201 0.376 0.296 9.264

Table 4.3: Results of evaluation criteria of the logarithmic forecast errors for Saugeen

river

average monthly riverflow from January 1915 until December 1976, measured at

Walkerton, Ontario, and are showed in Figure 4.7. This series, among many other

river flow data, is discussed in Noakes et al. (1985).
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Figure 4.7: Monthly flows (up) and logarithmic monthly flows for Saugeen river

Table 4.3 shows results of optimal models: year 1970 is always detected as possible

changepoint. One reason would be related to works aimed at reconstructing Denny’s

Dam, in which a popular conservation area for fishing is located. In fact, between

the end of 1960s and the beginning of 1970s, Great Lakes Fishery Commission

managed to rebuild Denny’s Dam in order to provide an effective bloackage against

parasites such as sea lamprey, preventing them from infiltrating in Saugeen river.

Being Denny’s Dam among the biggest dykes of river course this could have had a

non ignorable effect on its flow. There have also been important human work on
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Figure 4.8: Changepoint detected on year 1970 for Saugeen
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Figure 4.9: Autocorrelation function (ACF) of the residuals of fitted PAR model

with one changepoint to the Saugeen flow.

Saugeen in the 1950s: main reason of SVCA creation in 1950 was, indeed, flood

control management. Walkerton business district, which is the gauging station, has

been subject to major floods in early and mid 1900. This has led to the construction,

starting from 1956, of 2.4 km of dykes and floodwalls to protect the central business

district as well as residential neighborhoods from potential floods.

Concerning estimation and forecasting, the best fitness is obtained for model

with two changepoints, and forecasting accuracy is found best for model with single

changepoint considering all measures. Figure 4.8 plots time series with this change-

point. We shall also perform some comparison with results of literature. Wong et

al. (2007) proposed a functional-coefficient autoregression (NFCAR) model in order

to estimate and forecast monthly flows of Saugeen. Forecasting performance, mea-

sured on natural data, have been compared to PAR(1) model results by Noakes et

al. (1985), resulting in an improvement in terms of MAE from 10.8986 to 10.3689.

Corresponding value of our model PAR(1;1;7) (with one changepoint) computed on

natural data is 9.4827, which further improves performance of both standard PAR(1)

model and NFCAR. Residual analysis, shown in Figure 4.9, confirms adequacy of

our model.
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4.5 Concluding remarks

This chapter proposed a method to account for seasonality and structural changes

in time series by employing PAR models linked at different changepoints. GA based

identification showed promising results on both simulations and real data. Applica-

tion of procedure on river flows data of Garonne (France) and Saugeen (Canada),

for which changepoints could be possibly due to both human activities and cli-

matic oscillations, proved also good performances in terms of forecasting, a highly

demanding issue in hydrology.

In our study we examined monthly data with changepoints allowed only at the

end of the year (that is, a multiple of number of seasons). Modifications of the

method proposed in the present paper are under study: techniques for monthly,

weekly or daily time series with periodic structure allowing changepoints at any

season are worth pursuing. In fact, detecting a changepoint in the middle of a year

will prevent dispersing its effects over adjacent seasons. Moreover, as far as PAR

models are based on a large number of parameters, one could question on whether

it is necessary to consider a separate AR model for each season: we allowed to build

subset PAR models in order to conveniently decrease number of parameters, but a

considerable gain in parsimony would be achieved by reducing number of seasons

in PAR model (Hipel & McLeod, 1994 and Franses & Paap, 2004 proposed several

hypothesis tests). Lastly, it is known that a stationary autoregressive process has

a short memory (Brockwell & Davis, 1991; Robinson, 2003). Time series which

exhibit long range dependence are characterized by autocorrelations which decays

very slowly, while a stationary autoregressive process have rapidly decaying autocor-

relations. Focusing on our case study, hydrological data generally exhibit structural

changes and long range dependence (Song & Bondon, 2013). Therefore long memory

process with periodic structure could be appropriate for hydrological data.



Conclusions

In this thesis we analyzed a selection of statistical inference problems employing Evo-

lutionary Algorithms (EAs) as computational tool. In this field they are considered

a non-standard procedure, so their behaviour is not generally well understood and

there is lack of an established theoretical background. In the course of dissertation

we studied EAs from different statistical points of view, making our contributions

on the state-of-art many-sided.

Chapter 2 was concerned with model parametric estimation by EAs, from a

classical inference point of view. In fact we analyzed the behaviour of EA-based

estimators by evaluating their variability and asymptotic efficiency, as usually done

in classical inference theory. The non-standard element is that we consider the EA

as a random variable in the analysis, which introduces a further source of variabil-

ity. The statistical and computational tradeoff question allows to set the analysis

in realistic situations, which have become crucial as long as size of datasets is dra-

matically increasing. Our analysis is not restricted to EAs but is valid also for any

stochastic algorithm having property of global convergence, so natural future con-

tributions would be devoted to generalize this procedure to other algorithms, maybe

also related to an evolutionary behaviour (such as Particle Swarm Optimization). In

addiction, our method could be improved by summarizing the covariance matrices

in other possible ways (we considered trace of covariance matrix, but other choices,

like the determinant for example, are plausible).

In Chapter 3 an overview on algorithms that conjugates EC philosophy and

Markov Chain Monte Carlo (MCMC) methodology has been given. Although MCMC

is a general procedure, as statisticians we can set the problem in a Bayesian inference

framework, where problems of sampling from complex distributions are crucial. Con-

tributions reviewed in the course of chapter have introduced many EAs with many

different strategies for sampling from complex target distributions is on the agenda.

They have been proposed in different fields of science, sometimes independently on

each other: we analyzed them from an EC prospective, trying to unify them in a

common framework and highlighting the strengths and weaknesses. Future work is
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related to adaptive MCMC strategies, which have already been proven to be effec-

tive by some authors of our review, and could decisively improve EC based MCMC

methods on both the computational and efficiency side.

Chapter 4 focused on time series analysis. GAs have been employed for building

a complex model, which account for both seasonality, by use of PAR models, and

regime changes. Proposed methodology has been proven to be effective in capturing

both of these features in data, as shown in simulations and river flow data. As the

procedure seems promising it can be naturally improved: we assumed that structural

changes could fall only at the end of the year, but it would be worth pursuing to let

it occur at any season of the year, as it would be also prevent dispersing its effects

over adjacent seasons. Also a considerable gain in parsimony would be achieved by

reducing the number of seasons in PAR models, because they are possibly not all

essential. Lastly, beside hydrology, this kind of model could be successfully applied

in many other fields, like climatology (there are already some papers dealing with

periodic modeling and structural breaks detection) or also finance.

In conclusion, we truly hope that the topics proposed and analyzed in this work,

including discussions of literature, may stimulate new ideas of research.
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