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Introduction

In many scienti c elds the researchers, as well as the endsars, may face and
analyze complex problems, in which di culties may be due to @mputational con-
straints or may be intrinsic. There are, for example, many imactable optimization
problems not having an analytical solution or being comput@nally prohibitive.
Evolutionary Computation (EC) techniques have been introdced in the 1960s for
dealing with such questions. They are based on metaphors ocafin's principles,
biology, genetics, and propose heuristic solutions to apgch intricate problems,
leading to methods named Evolutionary Algorithms (EAsS). The asiness of imple-
mentation and the adaptability of such algorithms made EC a enerally e ective
tool in a large variety of application elds.

In statistics there are many situations where complex proéins arise, in particular
concerning optimization. A general example is when the siatician needs to select,
inside a prohibitively large discrete set, just one elememntvhich could be a model,
a partition, an experiment, or such: this would be the case ahodel selection,
cluster analysis or the design of experiment. In other sittians there could be an
intractable function of data, such as a likelihood, which redls to be maximized, as
it happens in model parameters estimation. These kind of prl#ms are naturally
well suited for EAs, and in the last 20 years a large number of pars has been
concerned with applications of EAs in tackling statisticalgsues.

The present dissertation is set in this part of literature, a it reports several
implementations of EAs for statistics, although being maiy focused on statistical
inference problems. Original results are proposed, as wadl overviews and surveys
on several topics. EAs are employed and analyzed considerwvagious statistical
points of view, showing and con rming their e ciency and exibility.

An outline of the thesis will follow, which includes citatiors of papers and pub-
lications, concerned also with conference presentations.

In Chapter 1 a general overview of EC is provided. Starting dm an historical
background of the eld, structure of generic EAs is then dis@sed. The methods



studied in the dissertation, Genetic Algorithms (GAs) above I§ will be described
more in depth. Chapter ends with a wide review of statisticahpplications of EAS,
giving an idea of state-of-art.

In Chapter 2 EAs are applied to parametric estimation problest When they
are employed in such analysis a novel form of variability, la&ted to their stochastic
elements, is introduced. We shall analyze both variabilitgue to sampling, associ-
ated with the selected estimator, and variability due to theEA. So in this chapter
the EA is studied from a frequentist inference point of viewand its behaviour is
asymptotically analyzed as the number of iterations incre®. This analysis is set in
a framework of statistical and computational tradeo quesbn, crucial in nowadays
problems, by introducing cost functions related to both dat acquisition and EA
iterations. The proposed method will be illustrated by meas of some model build-
ing problem examples. The topics of this chapter can be alsouhd in following
manuscripts:

2018 Statistical and Computational Tradeo in Genetic Algoithm-Based Estima-
tion. Under review (arXiv:1703.08676) (with F. Battaglia)

2017 On Variability Analysis of Evolutionary Algorithm-Basel Estimation. In F.
Greselin, F. Mola, M.A. Zenga (edsCladag 2017 Book of Short PapersJni-
versitas Studiorum. ISBN 978-88-99459-71-0

2016 Statistical and computational tradeo in econometrianodels building by ge-
netic algorithms. In A. Blanco-Fernandez, G. Gonzalez-Roujuez (eds)CFE-
CMStatistics 2016 Book of Abstracts University of Seville. ISBN 978-9963-
2227-1-1 (with F. Battaglia)

Chapter 3 is concerned with EAs employed in Markov Chain MogtCarlo (MCMC)
sampling. When sampling from multimodal or highly correlate distribution is con-
cerned, a possible strategy suggests to run several chainsparallel, in order to
improve their mixing. If these chains are allowed to interacwith each other then
many analogies with EC techniques can be observed, and thiashled to research
in many elds. The chapter aims at reviewing various methodsofind in literature
which conjugates EC techniques and MCMC sampling, in ordeotidentify the spe-
ci c and common procedures, and unifying them in a frameworkf EC. Although
MCMC is a general topic, and this is con rmed by the diversity dresearch papers
analyzed in the overview, it is generally employed in Bayesianference procedures
as far as statistical problems are concerned. The strength BAs in this case is the
capability of exploring the support of target distributions, which can be a posterior



for example, by use of its operators and strategies. This wohas been presented
at conference:

2017 Evolutionary Computation and multiple chains MCMC sam|ing: an overview.
In G. Gonzalez-Rodriguez, M. Hofmann (edsCFE-CMStatistics 2017 Book
of Abstracts University of London. ISBN 978-9963-2227-4-2.

In Chapter 4 the GA is employed for building a complex statistal model. Here
the focus is on a speci c eld, that is time series analysis,ra a model for dealing
with seasonality and structural changes is introduced. Fitsssue is accounted by
use of Periodic AutoRegressive (PAR) models, characterizeg b large number of
parameters; as far as structural changes can occur at eaamd instant, in our model
we allow several PAR models linked at di erent changepoints. & are employed
for identifying this model, as a complex combinatorial optnization problem is con-
cerned. E ectiveness of the procedure is shown on both simtgéd data and real
examples; these latter refer to river ow data in hydrology, dr which also forecast-
ing accuracy of tted model is evaluated. The topic of this chaer is included in
following papers:

2018 Periodic autoregressive models with multiple struatal changes by genetic
algorithms. To appear. Mathematical and Statistical Methds for Actuarial
Sciences and Finance 2018 conference (with F. Battaglia and Dudha)

2018 Multiple changepoint detection in periodic autoregssive models with applica-
tions to river ow analysis. Under review (arXiv:1801.01697jwith D. Cucina
and E. Ursu)

Chapter 5 contains some concluding remarks, concerning @liture work, and
a summary of the thesis.






Chapter 1

Evolutionary Computation and
Statistics

1.1 Origins of Evolutionary Computation

Methods which are known today under the comprehensive namé Bvolutionary
Computation (EC) originated in the second half of 20th century. There waso
single precursor, but rather several independent groups ong on di erent lines of
research, having in common the problem of dealing with comgX situations, that
would have converged during subsequent decades to a comma fEamework.

One essential discussion originated in relation with the search that was creating
Arti cial Intelligence paradigms. Researchers in this eld in fact, had to specify
concepts such amtelligence and learning in order to successfully build "thinking"
machines. In a fundamental work, Lawrence Jerome Fogel and lgoup (Fogel et
al., 1966), basing on previous discussions by Alan Turing, &ueard Ornstein and
Walter B. Cannon among others, de ned intelligence as "the gability of a system
to adapt its behaviour to meet its goal in a range of environmési’, which sug-
gested that both intelligence and learning concepts couldate been set in a kind
of evolutionary ow process. In the same work they also dewed a correspon-
dence between natural evolution, in the sense of Charles Dan's theories, and the
scienti c method. This latter discussion supported the ideahat an evolutionary
process could be mechanized and programmed on a computingchiae in algorith-
mic form. Starting from these ideas, Fogel and his group irdducedEvolutionary
Programming, the earliest EC method, in which a number of agents, calledite
state machines are assigned to predict some outputs starting from certaimputs,
through a process which improves prediction at each iteratio This method has

5



been re ned through the years and has also been applied to eth elds of science.

Along with Fogel's, two more research groups are universallgcognized as essen-
tial for the development of EC paradigms: Ingo Rechenberg drHans-Paul Schwe-
fel worked on an algorithm calledEvolution Strategies designed to solve complex
real-valued optimization problems by use of evolutionary athaphors, which still
represents an established technique (Schwefel, 1975; Be§eschwefel, 2002); John
Henry Holland, instead, employed the concept of evolutionaryrpcess for analyzing
complex adaptive systems, capable of dealing with an uncam and changing envi-
ronment, using metaphors of biological populations evolan and genetics (Holland,
1967). The result of subsequent years of research is tAenetic Algorithm, the most
successful EC technique, for simplicity and variety of apiglations. This latter algo-
rithm has been widely studied in this thesis, mostly for optinzation purposes, and
it will be deepened in the next sections.

Across the decades EC has been deeply re ned, leading to a hugenber of
algorithms, named Evolutionary Algorithms (EAs), proposed fo many di erent
problems and elds of science. A detailed review of these rheds is beyond the
scope of this dissertation, which will rather consider a sriaselection of EAs em-
ployed in statistical applications. The reader interestedh a global overview of EC
can refer to authoritative book references by, for exampl&pgel (1995, 1998), Back
(1996), Eiben & Smith (2003), De Jong (2006).

1.2 Evolutionary Algorithms

Although no universally accepted formal de nition of EA is aailable in literature,

there are some necessary key elements to contemplate whérsitating such algo-
rithm. De Jong (2006) proposes to consider Charles Darwin dutionary system

as starting point, whose basic elements summarized in Tablel1 These ingredients
are adopted as metaphor to approach computational problent hand: the popula-

tion of individuals explores and exploits problem environment; birth/death pocess
and variational inheritance regulate dynamics of populadn through algorithm it-

erations; the tness is an attribute of each individual, and it might be linked to ts

goodness.

A simple EA structure is illustrated by the pseudocode in Tale 1.2. This kind of
template is quite general and little informative from the pactical point of view. In
this thesis, unless otherwise speci ed, we shall refer to EAs optimization method,
because it is one of the most prominent elds of application rfcluding the sub-
ject of this dissertation), even if this point of view has sthulated some discussion



Individuals
One or more populations of individuals competing for limitedesources

Reproduction
The notion of dynamically changing populations due to the lbih and death of individuals

Fitness
A concept of tness which re ects the ability of an individud to survive and reproduce

Inheritance
A concept of variational inheritance: o spring closely resmble their parents,
but are not identical

Table 1.1: Elements of an evolutionary system

in literature (see, for example, De Jong, 1993). In that casedividuals represent
candidate problem solutions, the tness is related to objéwe function of the prob-
lem, birth/death process and variational inheritance drivethe population through
promising areas of search space. Before going any furthérjsi crucial to specify
that EAs are characterized by stochastic moving rules, meanrg that a probability
distribution is built on possible solutions to be reached isubsequent steps; this also
allows to allocate EAs in the category oftochastic optimizationmethods.

That being said, we shall introduce some notation and desba the dynamics of
a simple EA: letf denote the tness function, to be maximized (this can be eagil
generalized by considering minimization of the additive irerse off ), taking values
on set , which can be either discrete or continuous, and po#sy multidimensional.
Each individual represents a possible solution by convenient coding, and_
denotes global optimum point off . At each EA iteration (hereinafter referred to
as generation) the population of individuals is subject to randomoperators which
allow to build an intermediate population: main operations ege selection based on
tness, which discriminate solutions that will contribute to subsequent steps, and
reproduction, which e ectively build new individuals (the o spring ). The interme-
diate population is then handled in order to decide which antéiow many novel
solutions will replace old ones, possibly resulting in a geak improvement. The
stopping criterion can be decided a priori, for example thesaching of a pre xed
number of generations, or it may depend on the behaviour of algthm, that is the
case when no signi cant improvement is observed within a cainh number of steps.
A useful strategy, namedelitism, has been proposed, in particular for optimization
purposes, in order to maintain in population the best individal found up to current
generation, irrespective of the e ect of operators. User iatested in optimization



1) Randomly generate an initial population

Do until some stopping criteria is met

2) Select individuals to be parents (biased by tness)
3) Produce o springs

4) Select individuals to die (biased by tness)

End Do

Table 1.2: Basic EA pseudocode

may consider just the ow of these solutions, which is a monohic non-decreasing
sequence with respect to tness.

Once selected the speci c EA to tackle problem at hand, manyhoices on struc-
ture and con gurations of algorithm are possible. These l&dr are linked also to
the choice of probability rates of stochastic operators. Ti& is a wide subject in
the eld of EC: there has been research focused on analyzinghgyurations before
running the EA, an issue namedgarameter tuning (Eiben & Smit, 2011), and also
studies on eventuality of online modi cations of con guraton, and that is the case
of parameter control (Eiben et al., 1999; Lobo et al., 2007). In the present thesme
shall generally consider basic EAs with, for example, xed hgth solution coding,
xed population size, basic operators with xed probabiliy.. Also number of parents
and o spring size coincide, so that nal intermediate popudtion replaces previous
population. These choices have been made for the matter ahglicity and because
they have been found e ective in literature of statistical @plications, including this
dissertation.

1.3 Genetic Algorithms

The Genetic Algorithm (GA), is the most successful EA, for simjptity and variety of
applications, including statistics. Introduced by Holland1975) it has been deepened
during decades, so that it is recognized as the main combiaial optimization
technigue among EAs, as many authoritative books on the sulgfecan conrm
(Goldberg, 1989; Davis, 1991; Michalewicz, 1994; Mitchell998; Vose, 1999; Reeves
& Rowe, 2003).

Standard binary GA relies on direct biological and genetimgpiration: in fact
solutions are coded in strings namedhromosomescomposed by elementsgenes
representing the genetic heritage of individual. While infonation carried by genes
is called genotype the practical meaning of solution, who is explicitly passeas



argument to tness function, is named agphenotype Possible values of genes in this
algorithm are only O or 1, calledbits like in computer science theory.

There are at least three basigenetic operatorsemployed at each generation:

Selection which randomly chooses solutions for subsequent steps. Amgo
main type of selection we reportroulette wheel selectionfor which individuals
are selected with repetition proportionally to their tness value;rank selection
similar to previous, but in this case selection probabiligs are built on tness
ranks rather than absolute values, in order to avoid premate convergence of
algorithm; tournament selection for which an individual is compared with a
group or with a single solution: if it wins, namely it has a beaer tness than
competitors, it is selected with probabilityp, and rejected with complementary
probability.

Crossover the pure reproduction operator. It allows pairs of solutios to
combine together, with a xed rate pC, exchanging part of their genes and
creating two new individuals. Original proposal by Holland (275), called
single point crossoverconsiders a common randomly chosen cutting point in
parents, and two children are built by taking the left part from the rst parent
and the right part from the other, and vice versa. Other posble choices of
crossover are theék point, that generalizes previous method, anniform, which
allows each individual gene of parents to be swapped, withgirability 0:5 (also
a generic ratep can be adopted, leading tgarametrized uniform crossovey.

Mutation operator allows every bit to ip its value from 0 to 1, or vice ersa,
with a xed probability pM, simulating random mutations in nature.

These operators are designed to balance two fundamental s#astrategies: ex-
ploitation, for which promising areas of search space are deepened, iarglassigned
to selection and crossover, anéxploration designed to avoid premature conver-
gence of algorithm, accomplished by allowing evaluation edndom solutions (in-
dependently from tness), possibly reaching unexplored aas of search space (task
assigned to mutation).

Considerable success of GA has encouraged researchers fyaips philosophy
also to non-discrete optimization problems. Wright (1991pand Goldberg (1991)
proposed aoating point GA in order to solve continuous optimization problems (see
also Herrera et al., 1998, for a comprehensive review). Thiew formulation employs
direct real coding, so that genotype and phenotype coincidend computation time
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needed for decoding is saved. Whilst selection operator isauected by change of
coding, mutation and crossover, as far as they operate on g&ype, needs to be
reformulated.

Among crossover between two parents some proposals rely onegating o -
springs taking values, for each gene, from the real intervélat crossover) or the
discrete set (liscrete crossovey composed by parents corresponding parameters;
other authors introduced operators generating new genessidg on combinations be-
tween parents valuesdrithmetic and linear crossove); also a single-point crossover
analogous to binary casesfmple crossovey has been studied.

Mutation strategies range from simple operations, like rarmn sampling within
genes boundaries@ndom mutation), to more complex techniques, taking advantage
of informations on local optima (eal number creep or considering sophisticated
probability distributions ( ebein's mutation or modal mutation). Also the equivalent
of mutation operation in Evolution Strategies can be adopte

A signi cant extension of standard GA proposes parallelizadn in order to save
computational time, leading to theParallel GA (for a survey, see Canu-Paz, 1998).
One special case is the Distributed GA (Tanese, 1989), for whithe whole popula-
tion is divided into a set of subpopulations and algorithm ras on each subpopula-
tion. Information exchange between subpopulations is perimed at selected steps
by allowing individuals calledmigrants to shift to a di erent subpopulation, in order
to prevent premature convergence. This strategy has showoad performances on
several scenarios compared with standard GA.

1.4 Other Evolutionary Algorithms

We shall now shortly describe Di erential Evolution and Esimation of Distribution
Algorithm, two EAs which have been studied in this thesis along #h GAs.

1.4.1 Dierential Evolution

Rainer Storn and Kenneth Price introduced Di erential Evoltion (DE) in the 1990s
as a simple and powerful tool for continuous global optimizan (Storn & Price,
1997; Price et al., 2006). In this algorithm solutions are déctly coded as real
vectors, and the evolution consists of geometrical updatinbased on other vectors
in the population. Di erential mutation operator, in fact, for each vectorx; in the
population builds amutant v; as follows:
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Vi = Xgot F(XR1  Xgr2);

whereXxgo; Xg; and Xg, are solutions selected in such a way thaté RO6 R16 R2,
and F is a positive scale factor. Arial vector is then built by parametrized uniform
crossover, for which each gene can be inherited by eithergonial vector x; or mutant
v;, with xed probability CR. Generation terminates with a selection step: if the
trial vector has a better tness then original solutiony; it is retained, otherwise it is
rejected and the original solution is maintained. This kindbf selection mechanism
ensures elitist property in DE.

Like the majority of EAs, many modi cations of standard DE alggithm have
been proposed in literature: the informed choice of vectons di erential mutation,
for example including the best individual of previous genation; adoption of a ran-
domized scale factoF, leading to so-calleddither and jitter strategies, depending
on whether randomization is done with respect to individual®r parameters, can
make DE theoretically tractable (Zaharie, 2002).

1.4.2 Estimation of Distribution Algorithm

Estimation of Distribution Algorithm (EDA), or Probabilisti ¢ Model-Building Ge-
netic Algorithm, although being a standard EA is very di erert from methods de-
scribed previously. It has been introduced in a basic form bylshlenbein & Paass
(1996), and since then many sophisticated methods have bemtroduced (for a
comprehensive account see Larranaga & Lozano, 2001; Relikt al., 2002; Lozano
et al., 2006). In EDA philosophy new solutions are generatest each generationg
by a probability distribution P9, estimated on the basis of population at generation
g as follows: a subsek = fx;;:::; Xk g of population at time g is drawn according
to some selection operatorx is treated as a random sample from a multivariate
probability distribution P9, and it is used to estimate its parameters. In such a
way features of selected individuals are used to "inform" #hprobability distribution
of population, so that new generated individuals accordingptP (@ will be likely to
preserve them.

Choices on type of distributionP (@ discriminates the type of EDA: a simple
example is the Univariate Marginal Distribution Algorithm (Mwuhlenbein & Paas,
1996), in whichP (9 is a multivariate normal with independent components; in Fer
torized Distribution Algorithm (Mahlenbein et al., 1999) t ness function is assumed
to be additively decomposed in terms depending each on a suldfgopulation, and
P is factorized as a consequence by including marginal and ddional distribu-
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tions depending on these subsets; the Bayesian Optimizatidlgorithm (Pelikan,
2005) employs Bayesian networks in order to predict value néw solutions.

1.5 Convergence of Evolutionary Algorithms

Convergence of EAs is a di cult task to analyze, because probdity distributions
of moving rules does not usually have a known form, except famgple test cases.

The main reference on the subject is Rudolph (1997), in whidonvergence prop-
erties of many classes of EAs under several simpli cative hyphesis are analyzed.
Markov Chain theory is often employed for modeling algorithm yhamics, because
the behaviour of many EAs at a certain generation can be dedoed by considering
only the population of solutions at previous step. In the sambook Rudolph states
a fundamental theorem:

Theorem 1. Let us consider an EA with mutation probabilityoM 2 (0; 1), arbitrary
crossover operator and an elitist selection rule. The sequendéd = f (X @) f |
wheref (X (9) is the tness of best solution found up to generatiog and f is the
global optimum off , is a nonnegative supermartingale that converges almost surely
and in mean to zero.

This latter theorem includes a wide class of EAs because, infally, it states
that the convergence to global optimum is ensured if an el strategy is employed
and if there is a nonzero probability of reaching any point oearch space. In
GAs, for example, it is trivial to satisfy these two propertis. Hu et al. (2013),
recently, stated global convergence of a modi ed DE algorith (see also Knobloch
et al., 2017) basing on Rudolph's philosophy: as far as theasidard DE is naturally
elitist, a mutation operator which consists in the random rgeneration of solutions
is periodically included before selection step, allowingeh point of search space to
be reached with nonzero probability. Studies concerning meergence of EDA can
be found in Mahlenbein & Mahnig (1999) and Zhang & Mdhlenben (2004).

As far as GAs are concerned, generalizations have been propofe extending
Theorem 1 to time varying mutation or crossover rates (or bt by modeling the
algorithm as a non homogeneous Markov Chain (Rojas Cruz et,a2013; Pereira et
al., 2015; Pereira et al., 2016). The latter reference inclad also a review of other
methods of studying GA convergence by Markov Chain modeling
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1.6 Evolutionary Algorithms in statistical appli-
cations

There are many situations in the statistical eld where com|ex optimization prob-

lems arise, for multiple possible reasons: the objectiventttion is non di erentiable

or has many discontinuities, and an analytical optimal solion could not be avail-

able; search space is prohibitively large or irregular (ordbh); sometimes the number
of variables in statistical models or sample size may lead toainatically time con-

suming procedures.

These kind of reported situations are sometimes beyond theeans of standard
procedures, so EC methods, naturally suited for such issuésve been introduced
in statistical methodologies in the last decades (see booéference Baragona et al.,
2011). This is also re ected by the number of R packages (R GoiTeam, 2013)
introduced for dealing with EAs, as they include GA GA, Scrucca, 2013), DE
(DEoptim, Mullen et al., 2011), EDA (copulaEDA, Gonzalez-Fernandez & Soto,
2012), Covariance Matrix Estimation-Evolution Strategie (cmaes Trautmann et
al., 2011), Articial Bee Colony Optimization (ABCoptim, Vega Yon & Munoz,
2016), Self-Organising Migrating Algorithm §éoma Clayden, 2014) and other nature
inspired or hybrid algorithms such as Particle Swarm Optinzation (psq Bendtsen,
2012, andhydroPSQ Zambrano-Bigiarini & Rojas, 2014) or Memetic Algorithm
(Rmalschains Bergmeier et al., 2016).

A non-exhaustive survey of statistical applications of EAs iV follow, with the
scope of illustrating various possibilities of implementan (most of which involving
GAs) and giving an idea of state-of-art.

Parametric estimation

Paper by Chatterjee et al. (1996), employing GAs for model pametric estima-
tion, is generally considered the rst proposal to employ EAsn pure statistical

applications. This kind of problem justi es EAs implementaton when the objective
function, such as a likelihood, is di cult to analyze by standard methods. GAs are
favored researchers pick in this framework, although most the problems consid-
ered refer to continuous supports. These works generallyeua rule for representing
a parameter de ned on a real interval by binary coding (see, feexample, Wright,

1991), and the standard binary GA is then employed, usuallydapting tness as
a transformation of objective function. Here we report comtbutions on estimation
of nonlinear regression (Kapanoglu et al., 2007), Johnsorsttibution family (Nier-
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mann, 2006), logistic regression (Chatterjee et al., 199%8asia et al., 2005), switching
regression (Karavas & Mo tt, 2004), robust regression (Nunksser & Morell, 2010),
least absolute regression with censored data (Zhou & Whang,(), support vector
regression (Santamara-Bon | et al., 2015), ARMA models (Alm-Hammour et al.,
2011), GARCH (Rizzo & Battaglia, 2016). Parametric estimabn via EAs will be
the main topic of Chapter 2.

Model identi cation

A natural application of GAs in statistics is model selectior(or identi cation), in

a both independent and dependent observations framework. @&hgeneric solution
is a possible model: in an independent framework it is gendyaéncoded to denote
the presence or absence of variables; in time series alsdadations on model order
must be provided. Fitness function is usually linked to pengded likelihood criteria,

like AIC or BIC, or goodness of t measures like theR? coe cient. Proposals

in literature include identi cation of models such as linearegression (Minerva &
Paterlini, 2002; Kapetanios, 2007), logistic regressioilf, 2016), graphical models
(Roverato & Poli, 1998). In time series analysis some cortritions have been made
in order to identify ARIMA models (Gaetan, 2000; Ong et al., 208), periodic

models (Ursu & Turkman, 2012; Ursu & Pereau, 2017), bilinearrtie series (Chen
et al., 2001) and also complex nonlinear and nonstationaryadels. A review of
such applications is included in Chapter 4, as its main subjeis nonstationary time

series models identi cation by GAs.

Clustering

Clustering observations sharing similar features has aly@been a fundamental topic
in statistics and many other elds, because it implies conderable gain in simplicity
and interpretability. In an era where sample sizes are grovgrexponentially it is evi-
dently a highly demanding issue. These kind of problems areachcterized by a very
large discrete set of solutions, each of which generallyeef to a possible partition
of the considered dataset, often growing fast with problemimension: this make
clustering problems suitable for EAs applications, in partiular GAs. After seminal
papers by Raghavan & Birchand (1979), Bandyopadhyay et al1995) and Murthy
& Chowdhury (1996) among others, there have been many corutions tackling
clustering problem in di erent ways, although many of them daot generally refer
to the statistical eld. Since GAs are naturally suitable fornon hierarchical methods
and hard clustering, most of contributions have been made this framework, even
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if also methods employing hierarchical strategies (Kuncia, 1995; Tseng & Yang,
2001) and fuzzy logic (Choi & Moon, 2007; Maulik & Bandyopadiay, 2003) have
been introduced. In Baragona et al. (2011, sec. 7.2.2) a GArs®n of quick par-
tition clustering was introduced; Falkenauer (1998) propsed the Grouping Genetic
Algorithm, which directly encodes candidate partition, andhas been found essen-
tial in subsequent research (Hruschka & Ebecken, 2003; Mugin& Mbohwa, 2017,
which provided a fuzzy version of method); model-based ctasng by GAs has been
studied in Baragona & Battaglia (2003) and Paterlini & Minewra (2003); some com-
parative accounts can be found in Baragona et al. (2006) and tedini & Minerva
(2003); Paterlini & Krink (2006) proposed DE and Particle Swrm Optimization
for partitional clustering; recently Vo-Van et al. (2017) ntroduced a modi ed GA
for clustering probability density functions. Many contritutions have been made
by S. Bandyopadhyay, U. Maulik and S. Saha research group, pasing to evolve
centroids and similar measures as in k-means algorithm (Ma&ul& Bandyopadhyay,
2000; Bandyopadhyay & Maulik, 2002), focusing on genetic ttiobjective opti-
mization (Bandyopadhyay et al., 2007; Saha & Bandyopadhyag013; Pal et al.,
2018) or basing on a novel distance measure based on symmesytness function
(Bandyopadhyay & Saha, 2007; Saha & Bandyopadhyay, 2009;H8a2017).

Concerning hybrid EAs for clustering, Jank (2006) provided aewiew of links
between EAs and EM algorithm: an example is the case where EAamployed
for providing promising starting point for EM. Also GAs for clustering time series
have been introduced (Baragona et al., 2001a; Bandyopadkyet al., 2001).

Design of experiments

When designing experiments in areas such as biology or chdmighere is often
a wide variety of possible factors to be combined in the analg. For example
the researcher must evaluate multiple combinations of famts (whose size may be
not xed), their levels, and also interactions between thestctors. As far as high
dimensional problems are concerned, standard experimentat may be economically
infeasible, so novel methods have been proposed, includohggsigns based on EAs.
In these latter the evaluation of possible combinations ofaftor, levels and such
is driven by the evolutionary paradigm. For example, Broudism et al. (1996)
employed GAs for selecting D-optimal asymmetric designs;usty in Angelis (2003)
is concerned with nding A-optimal incomplete block design®y EAS; for a recent
review of EAs for design of experiments see Lin et al. (2015). generic framework
of Evolutionary Design of Experiments has been proposed inamy papers such as
Poli (2006) or Forlin et al. (2007) (see Baragona et al., 201Chapter 5, for a



16

summary of these contributions). Beside these proposalssalan approach which
aim at exploiting features of data obtained for each experimein algorithm has
been proposed: as far as a model is built to predict new candtd solutions, the
method has been named Evolutionary Model-Based ExperimahtDesign. Among
the di erent models proposed in this framework we report Neal Networks (De
March et al., 2009) and Bayesian Networks (Slanzi et al., 200Slanzi & Poli, 2014).

Bayesian analysis

A di erent kind of application, with a non optimization purpo se, is the problem of
sampling from complex distributions, mainly in a Bayesiannference framework. In
this case researchers take advantage of exploratory featarof EAs, and implemen-
tation is di erent compared to previous contributions. An owerview of literature

that proposes methods conjugating EC and Markov Chain Monte&lo sampling is
provided in Chapter 3.

Among other Bayesian problems, Jung & Marjoram (2011) implem&d GAs
for the choice of summary statistics weight in Approximate Bgesian Computation
analysis; Franconi & Jennison (1997) employed them for ndingnaximum a poste-
riori estimates in Bayesian image analysis, while some cabutions have also been
made in the framework of Sequential Monte Carlo (or Particle Rering): Higuchi
(1997) proposed a new Iter method based on GA; Kwok et al. (26 introduced
GA with purpose of mitigating the so-calledsample impoverishmenproblem, very
common in Particle Filtering.

Other applications

Lastly we shall report some miscellanea statistical appations of EAs: GAs have
been proposed for optimal deletion of nodes in Bayesian netk® (Larranaga et
al., 1997) and in uence diagrams (Gmez & Bielza, 2004), dlier detection in both

univariate (Baragona et al., 2001b) and multivariate time sges (Cucina et al.,
2014), for designing optimal statistical quality control pocedures (Hatjimihail &
Hatjimihail, 2002). Waagen et al. (1994) proposed hybrid Evationary Program-

ming algorithms for nonparametric multivariate mixture density estimation, with

classi cation purposes. In book by Palit & Popovic (2005, Chpter 5) a review of
forecasting methods based on EAs is provided.



Chapter 2

Statistical and Computational
Tradeo In Evolutionary
Algorithm-Based Estimation

2.1 Variability analysis

According to estimation theory a parameter estimate is natally subject to sampling
variability: in fact if we make inference using two di erent sanples we obtain two
possibly di erent results. This issue had to be deepened irl statistical inference
approaches: here we refer to frequentist theory, for whictampling variability is

closely related to the variability of selected estimators. Whe EAs are employed
in the estimation process a new form of variability is introdced in the analysis,
due to the stochastic nature of the algorithm. It refers to elments like the starting

population, selection mechanism, stochastic reproductiaules: as a result of this,
if we run an EA several times using the same data we may obtain elient results.

The total variability of an EA-based estimate can be easily decgposed in these two
forms of variability, as shown in Baragona et al. (2011, p. »@or the univariate

case.

We shall adopt the following notation: y is a sample of observations, the pa-
rameter of generative statistical model,b(x) the best theoretical value (for example
a maximum likelihood estimate), which can not be computed ipractice, and  (y)
the result of optimization obtained via EA, that is an approxmation of b(X) and
depends on the observed sample as well. We assume indepecel&etween the pro-
cess generating random seeds of the EA and data, and decompbsetotal error of
an EA estimate as follows:

17
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) =iy 1+ v Py (2.1)

As we will see in the following, the rst term in square bracket depends on
consistency of the estimates, while the second is relatedE#é convergence. Both of
these quantities, referring to statistical and computatioal elements of the analysis,
must be ensured to converge to zero in probability. A similassue has been analyzed
in Winker & Maringer (2009), where a Threshold Accepting algathm is employed
in a GARCH model estimation problem.

As long as we focus on models indexed by a vector ( 1;:::; k) thenin practice
we shall consider the corresponding multiparametric of (2.1 This means that we
must de ne two random vectors?(x) and _ (y), which are a ected, respectively, by
sampling variability and EA variability. Whilst P(X) is de ned as the best statistical
estimator, the EA component, for which the sampley is held xed, needs to be
de ned.

If an elitist strategy is employed then we can de ne random wor _ (9(y) as the
best estimate obtained up to generatiog, which corresponds to the best individual
of generationg. In our method we shall evaluate EA variability by studying he
behaviour of this random vector among EA runs basing on Theeam 1 (Rudolph,
1997), which in our case it implies that sequence @ (y); g = 1;:::; will converge
to *_J(X) when g goes to in nity. This means that when g increases then each EA
run gets closer to convergence, so variability between rutends to decrease as a
consequence. So in our framework evaluating EA variabilitig closely related with
studying convergence rate of the algorithm.

Having de ned both random vectors?(z) and _ (y), we shall also de ne their
variance-covariance matrices, respectivelys and ga, in order to relate to (2.1).
Generic (;] ) elements of these matrices are:

S=Es[® 0B L ki =1k

i = Eeal(s B, B i =150k
{1-5 and ; measure the dependence betweenand ; induced, respectively, by
sampling and EA. As long as we need to get a scalar summary of thewatrices,
a possible choice is to consider the traces, a strategy oftadopted in literature.
This is reasonable in an optimization framework, because@loptimum is reached
when variances © and ; (i = 1;::;k) go to zero, with no practical interest on
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covariances. Therefore, if 1o1 IS de ned as the total variance-covariance matrix,
then, using linearity of trace and under the same independes& assumption of (2.1),
we can write:

tr( tor)=1tr( s)+ tr( ea): (2.2)

In next section we shall employ and study this equation in atsiation where both
statistical observations recruiting and EA iterations hae a certain and xed cost.

2.2 Statistical and computational tradeo

2.2.1 Problem speci cation

In recent years the huge growth in size of datasets and the ieasing in computing
power have introduced many novel problems in the statistitaeld. Computational
elements, in fact, must now be carefully set in order to carryut successful statistical
analysis. These elements may include the choice of compudatal methodology and
must consider some resource or time constraints, which areicial in real problems.
Questions like these are known in literature astatistical and computational tradeo
(or time-data tradeo ) problems, which aim at balancing andoptimizing statistical
e ciency and computational complexity. This is a very geneal topic, so many
di erent methodologies have been proposed in literature tdeal with many di erent
applications. Chandrasekaran & Jordan (2013) considered éass of parameters
estimation problems for which they studied a theoretical tationship in the form of a
convex relaxation between number of statistical observaitns, runtime of the selected
algorithm and statistical risk. An algebraic hierarchy of thee convex relaxations is
built to successfully achieve the time-data tradeo for di eent algorithms. Dillon &
Lebanon (2010) studied consistency of intractable StocliesComposite Likelihood
estimators, whose formula depends also on parameters retht® computational
elements. Therefore they aimed at balancing statistical agacy and computational
complexity. Shender & Laerty (2013) studied the tradeo in Ridge Regression
models introducing sparsity in the sample covariance maki Wang et al. (2016),
in a Sparse Principal Component Analysis framework, address$ the question of
whether is possible to nd an estimator that is computable irpolynomial time, and
then analyzed its minimax optimal rate of convergence. Sewrother studies can
be found in Yang et al. (2016), Jordan (2013), Berthet & Chandsekaran (2016),
Bruer et al. (2013), Chen & Xu (2016), Agarwal (2012).

In our framework, assuming that both statistical estimatoand EA con gurations
are xed, then we must gure out how to optimally balance statstical accuracy and
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EA e ciency. If we consider consistent estimators then stastical accuracy can be
naturally represented by sample size, because ifn increases then also estimator
precision increases (and, in contrast, variability decrsas), under some regularity
conditions. As far as EA e ciency is concerned, we refer to Theem 1. Informally,
an EA converges wherg tends to in nity, but it is worth noting that in every EA
generation each of theN chromosomes in population is evaluated on the basis of
tness function. Therefore, instead of considering the nubrer of generations, we
represent EA e ciency component by the number of tness funtion evaluationsV,
also because it is usually the most computationally expensistep.

That being said, we shall study the behaviour ofr ( s) and tr( ga) when,
respectively,n!1 andV !1l . Let us introduce two functionsf (n) and h(V)
for which, respectively,f (n)!'1  whenn!1 andh(V)!1 whenV!1 . If
we employ a consistent estimator and assumptions of Theorelare ful lled, then
we can writetr ( 5) = O([f (N)] Y andtr( ga)= O(h(V)] 1). In that case:

1 1
W + tr (WEA)W, (23)

where matricesWs and Wg, are constant with respect ton and V, and depend,
respectively, from the statistical model and from the EA. It § possible that sample
sizen may have an e ect also onWg,, because tness function will change as a
consequence. For this reason we shall includein our tness scaling procedure
(details will be given in Section 2.3). In such a way we can singly restrict the
e ect of n on the behaviour of algorithm and describe the total variality of an EA
estimate by considering decomposition (2.3).

tr( tor)= tr(Ws)

The statistical and computational tradeo will now be analyzed by introducing
some cost functions:S(n) is related to the cost of recruiting a sample oh obser-
vations, T(n) indicates the computational cost of one tness function etuation,
which depends on the number of observations as well, becaassolution is evalu-
ated by analyzing the full sample. Hence, the total cost of obtaining an estimate
_ (y) using n statistical observations andV tness function evaluations is given by:
C = S(n)+ VT(n). If total cost C is xed and functions S( ) and T( ) are speci ed,
we can write the tradeo question as an optimization problem

8 9
3 T{/n tr( ror)=tr (Ws)ﬁ +1r (WEA)ﬁE
5 sit: 5
' C=5S(n)+ VT(n) :

Therefore, in this framework we aim at minimizing the total @ariance-covariance
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matrix, which depends on intrinsic statistical and computonal components. These
latter, represented bytr (Ws), tr (Wga), f () and h( ), can be estimated if a known
form is not available (details will be given in the followingsections). Afterwards we
search for optimaln and V minimizing tr ( tot), given the constraint on total cost.

A particular case that simpli es the analysis is the assumptin of linearity in n
for cost functionsT and S. This is reasonable because statistical observations are
usually collected in sequence and if tness function incle$ a summation over the
considered sample. In such a caggn) = nT, S(n) = nS and we can incorporate
the cost constraint into the objective function obtaining:

1 1 |
famy T Wer) fre—smny

The optimal solution A can be found by minimizing numerically the latter con-
ditionally on the form of consistency and convergence ratdq ) and h(). V is
obtained by constraint:

min tr ( tor) = tr(Ws)
n

C nS.

T (2.4)

A patrticular case which allows to obtain a simple closed formxpression for
optimal n is available whenf (n) = n and h(V) = V. In that case, computing the
derivative of objective function with respect ton, we obtain solutions:

SCtr(Ws) cp CTtr(Ws)tr (Wga)

/=
- CTtr (WE/_\) S2tr (Ws)

(2.5)

As far asn is a sample size, then we are interested only in the positivelstion
/ of (2.5).

2.2.2 Consistency and convergence rates

Functionsf (n) and h(V) introduced in the previous subsection specify, respectly,
consistency rate of statistical part and convergence raté algorithmic part in equa-
tion (2.2). The assumption of linearity is a particular caséhat simpli es the tradeo
analysis. It is satis ed for f (n) if we consider asymptotic e cient estimators: in
that case, under some regularity conditiond,(n) = n.

On the other side, the behaviour ofh(V) is related to EA convergence rate.
This is an essential issue for any optimization algorithm,rd in the eld of EC
it has been analyzed in several ways. A part of literature foses on comparing
EAs with di erent con gurations, identifying the algorithm optimizing convergence
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time (Eiben & Smit, 2011; Derrac et al., 2014); other resedrers have developed
more rigorous approaches, focusing on the convergence rattesingle chromosome
bits, limited to standard test problems likeOneMax (Oliveto & Witt, 2014; Auger
& Doerr, 2011); a di erent proposal inspired bystatistical mechanics studies GA
behaviour by modeling it as a complex system, and summarigirits probability
distribution through generations by considering cumularg (Prnagel-Bennet et al.,
2001; Shapiro, 2001; Reeves & Rowe, 2003). In such a way GAwemgence can be
evaluated by considering the limiting cumulants.

Recently, Clerc (2015) has proposed a theoretical framewdior analyzing opti-
mization performances. For a general stochastic algorith(deterministic algorithms
are considered as a particular case of this class) he introédca bivariate proba-
bility density p( ;r ), called E -Res, that is function of both optimization result r
and computationale ort , spent for obtainingr. By analyzing this function it is
possible to deepen several useful questions: for a giverutes, the probability of
obtaining r with a generic e ort ; for a given e ort , the probability of obtaining
a generic resultr. Our interest is focused on the latter question because, iewx a
computational e ort related to the number of tness evaluations, we are interested
in how the resultr varies. The theoretical variance of results for xed e ort @an be
written as:

Z
()= () Fz(f r( )?p(;r)dr; (2.6)

whereR is the set of possible results,( ) the theoretical mean result for xed e ort
and ( ) the normalization coe cient of p( ;r ). Expression (2.6) can be evaluated
empirically: conditioning on J observed resultsr(1);r(2);:::;r(J), obtained with
eort ,the estimated variance is given by:

X
[rG) ra( )% (2.7)
=1

1
N2 —
()= 3 1

wherer;( ) is the empirical mean of results.

In our method we shall employ a very similar approach for evating EA vari-
ability. As far as we are interested in convergence of to the optimum b (=
1; k), then in both (2.6) and (2.7) we plug? in place of theoretical and em-
pirical means, and ; in place of results. In that case (2.6) corresponds to vari-
ance ; = Egal( ; b.)z] in matrix ga. If we run an EA J times, obtaining
v 2iron 3 (E=15:5K), then we get the estimates by:
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A= Jl [ BRi=1mk (2.8)

The latter gives information on the generic EA result ;. As long as we are
studying the behaviour of algorithm when number of generains increases, then we
shall specify an expression such as (2.8) for each genematjo That is, we obtain the
sequence ok dimensional parameter_ variances, given a xed maximum number
of generations G:

2O = (DAY 9= 15 G (2.9)

In order to study EA convergence rate, we shall conduct thelfowing regression
analysis for each parameter indexed by

g=1;::;G; (2.10)

where V (9]2 is the a-th power of the number of tness evaluations up to generatio

g and wgp;i is the regression parameter. Out goal is to search for anfor which

[V(9]2 can be considered a reasonable EA convergence faf¥) for all components
i; 1=1;:5 K. In that casewga;; will become part of matrix Wea (2.3).

2.3 Applications

We shall now illustrate the proposed method with some exangd: a Least Absolute
Deviation Regression estimation (cod&AD ), an Autoregressive model building
(code AR) and a g-andk distribution maximum likelihood estimation (code gk)

problem. These problems will be tackled by GAs and DE. In ordeto discuss
the tradeo question for each of these experiment, we shall wogive details on
methods employed for obtaining variability estimates, motiations on choices of
estimators and issues on GA and DE implementation. Simulaths and computations
were implemented by use of software R for all applicationsnd also R packagegk
(Prangle, 2017) for the last application.

2.3.1 EA con gurations issues

In all applications we adopted a scaled exponential tnessyith purpose of maxi-
mization, for both GA and DE:
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f()=expfa(y)=ng; (2.11)
where is the chromosome angj(_;y) is a problem dependent measure of goodness
for solution _. This kind of scaling procedure may allow to modify the shapefo
tness function without changing solutions ranking and resict the e ect of sample
size on the behaviour of algorithm.

Concerning GA implementation, we employed the standard bamy version of the
algorithm, with roulette wheel selection, single-point @ssover, bit- ip mutation and
elitist strategy. We referred to the following rule for encding a real parameter in
the real interval [a; b:

- ar 22 alx* 2
j=1

where H is the number of genes considered and is the j-th bit. As long as
our interest is focused on a vector = ( 1;:::; k) then the chromosome of length
M = k H includes the coding of each component. Lengtd of each genes group
is constant, while coding interval §; j can vary for each parameter. Since we are
considering a kind of discretization of a continuous seardpace, we aim at building
a ne grid in such a way that tness function is adequately smoth on that grid, so

that related loss of information is negligible.

Also basic DE has been considered, with standard di erential atation operator
and parametrized uniform crossover, but with the slight modtation described in
Section 1.5, introduced for guaranteeing global converganof procedure. Therefore
at each generation one individual in the population is regereted uniformly at
random within parameter boundaries before the selection gte

A small preliminary simulation study limited to LAD experiment has been con-
ducted for analyzing the e ect of choice of con gurations oreA variability. In this
case we conducted regression (2.10) biy:( (Eg,l) = tr (WEA)ﬁ + 4. We consid-
ered population sizedN = 50;70 (with related maximum number of generations,
respectively,G = 2000; 1450) and analyzed following parameter choices:

GA: pM =0:01, 0:05,0:10; pC = 0:5;0:7,0:9
DE: F =0:3;0:5;0:8; CR = 0:3; 0:5; 0:8,
so that 18 con gurations have been implemented for each EA.

Figure 2.1 shows the curves df ( (Eg,l) estimates for all scenarios. DE experi-
ments show a more homogeneous behaviour with respect to GAs farticular CR
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seems to have a very low e ect), and in both algorithms all increases the di er-
ences between experiments in each panel tend to reduce. HmveDE estimation
seems to improve a$ decreases, as the best behaviour is registered a8.0This

is in contrast with general indications on choice df given in literature devoted to
standard DE, for which values of lower than 0.4 are usually considered as not use-
ful (see Price et al., 2006). Concerning GA the same happeiws fow mutation rate
pM (with a worsening for lowpC), possibly because if an elitist strategy is adopted
then e ect of exploration (task assigned to mutation operair) become dominant in
the analysis.

In subsequent analysis a population dfl =50 individuals have been adopted in
both GA and DE, and a maximum number of generation& has been xed at 1400.
Choices of speci ¢ con gurations aregpM = 0:1 andpC = 0:7 for GAandF =0:3
and CR = 0:5 for DE. If not otherwise speci ed the initial population is gnerated
uniformly at random.
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(a) DE, population size N =50 (b) DE, population size N =70
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(c) GA, population size N =50 (d) GA, population size N =70

Figure 2.1: Estimates of EA covariance matrix trace fotAD experiment
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2.3.2 Simulation studies

As mentioned in subsection 2.2.2, if an estimator is asympioally e cient then
f(n) = nin formula (2.3): we considered estimators which have this @perty. Af-
terwards we estimated sampling variability of estimators ysimulating 10* samples
and computing mean squared deviation of estimates obtainég software optimiza-
tion routines from the true parameters, to get a quanti caton of Ws in (2.3).

On the other side, EA variability have been estimated by comdering 10 equally-
sized datasets. For each sample we computed variance estiesatisingJ = 500
EA runs as shown in formulas (2.8) and (2.9); then we consiasr point-by-point
average of these estimates for eaghobtaining nal estimates to conduct regression
analysis (2.10).

These regression analysis have been conducted for the thegplications with
a= %; %; 1;2, and goodness of t results R? coe cient) are summarized in Table
2.1. In GA results a linear convergence rate is found dominafor experiments
LAD and gk while a = 1=2 rate is ttest for experiment AR; concerning DE the
best rate is linear for all experiments. We adopted these cmrgence rates in tradeo
analysis of next section. As an example, Figure 2.2 shows theetl convergence

rate of parameter , in LAD experiment using GA.

Results of estimates ofr (Ws) and tr (Wga ) are summarized in Table 2.2: they
show that results onLAD and gk are similar in two algorithms, so we also expect
similar results in tradeo analysis. For computing these ésnates we used simulated
data of lengthn = 200 in all experiments.

The tradeo will be discussed for the three applications bywaluating optimal r
on a common grid of values for linear cost functiorS and T, assuming a xed total
eort C =10° Comments on optimalV can be derived by complement. We shall
make some remarks also for the case when computational cbss estimated by time
(in seconds) needed in our computer to evaluate tness in thieree experiment, using
gk as corner point. In this way we can make more realistic comgive comments.

Least Absolute Deviation Estimation

LAD regression is an alternative to Ordinary Least Squares geession, proven to
be more robust to outliers (Bloom eld & Steiger, 1983, p.52) In this framework
the estimator, which is asymptotically e cient (Bloom eld & Steiger, 1983, p.44),
is the function that minimizes the sum of absolute values ofmrs. This function is
neither di erentiable nor convex, so numerical methods mugie employed to nd an
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Table 2.1: R? coe cient values related to four di erent regression analgis conducted
on each parameters of each experiment, in order to estimatenwergence rate of ga

GA

Exp Param a=1=3 a=1=2 a=1 a=2

0 0.1883 0.4781 0.9775 0.7247
LAD 1 0.1943 0.4835 0.9792 0.7298
0.1910 0.4790 0.9763 0.7250

N

A 0.3538 0.6635 0.9525 0.6370

gk B 0.2060 0.4949 0.9179 0.5984
g 0.2722 0.5883 0.7585 0.3511

k 0.1268 0.3563 0.9548 0.9071

1 0.7806 0.9338 0.8864 0.4655

2 0.9101 0.9896 0.7083 0.2622

3 0.9164 0.9835 0.6645 0.2200

AR 4 0.8998 0.9767 0.6762 0.2228

5 0.8869 0.9726 0.6878 0.2306
6 0.8801 0.9698 0.6921 0.2325
7 0.8569 0.9597 0.7104 0.2453
8 0.8576 0.9635 0.7311 0.2641

DE

Experiment Parameter a=1=3 a=1=2 a=1 a=2

0 0.1069 0.3364 0.9282 0.7775

LAD 1 0.1084 0.3322 0.9375 0.8133
2 0.1067 0.3363 0.9356 0.7987

A 0.1665 0.4472 0.8715 0.5361

gk B 0.1543 0.4180 0.8014 0.4573
g 0.1973 0.4837 0.7468 0.3631

k 0.1137 0.3516 0.9541 0.8174

1 0.2292 0.4018 0.8847 0.9176

2 0.4782 0.6653 0.9336 0.6486

3 0.6619 0.8131 0.9003 0.5611

AR 4 0.5079 0.6948 0.9330 0.6198
5 0.4562 0.6496 0.9330 0.6387

6 0.5049 0.6928 0.9339 0.6174

7 0.4504 0.6434 0.9285 0.6317

8 0.5515 0.7276 0.9141 0.5820
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Table 2.2: Sampling and EA variability components estimate

Experiment tr (Ws) tr (Wga) Conv rate tr (Wpe) Conv rate
LAD 5.38 23.18 %V 20.28 EV
AR 12.26 17.74 =3V 1315.46 £V
gk 103.39 3897.25 =\ 3972.70 £V

<t
o :
o - -- Estimated
| — Observed
58
n o
o
Q —
o T T T T T T
0 500 1000 1500 2000 2500
\%

Figure 2.2: Observed (thick line) and estimated (dashed linegGA variability for
parameter , of LAD experiment (Wga = 7:9, R? =0:97)
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optimal solution. Zhou & Wang (2005) have already employed i@al valued GA to
estimate the parameters of a LAD regression with censored datHere we consider
a standard linear regression model:

Yi= ot aXp1t+ o2Xiot o i=1;unn

where ;) is the observed dataset. The errors are not Gaussian, butstibuted
according to a heavy-tailed Student's t distribution with 5 degrees of freedom.

As far as our goal is maximization, then the tness function shhabe:

f (_) = expf Iyi 0 1Xi1 2Xi:2] =NQ:

True parameters vector will be = (0:5;0:5; 0:5), coding interval boundaries
willbe [ 2; 2] for all parameters and each chromosome length in GA shaé bl = 24.

(a) GA (b) DE

Figure 2.3: Behaviour of optimaln for experimentLAD

Figure 2.3 shows the behaviour of optimah (on z axis) with respect to a grid
of values for cost functionsS and T. Results are identical in two algorithms, as
they show that r- obviously increases to large values as co8sand T decrease, and
rapidly decreases as they increase.
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Autoregressive  Models Building

GAs have been widely applied for time series models identi tan (see Section 1.6).
Here we address the problem of how to simultaneously identiynd estimate subset
AR models, given a xed maximum order.

The general equation of an AR model of ordgy is:
Yt = 1Yt 1+ i+ th P+ ts (212)

where Y; is a zero mean random process; a Gaussian white noise and =
( 1;:% p) the parameters vector, for which some components may be strained
to zero.

Model (2.12) is usually identi ed by minimizing penalizedikelihood criteria like
AIC or BIC, to be minimized. In this work we shall consider BIC, ecause of its
property of consistency (Hannan, 1980):

BIC (_;y) = nlog"*(p) + klogn; (2.13)

wherey is the observed time series,*p) = P e Y1 i pYr p)?=nand
k pis the number of free parameters in the model. Sampling vabidity will be

estimated on the basis of asymptotic e ciency property of AR nedels maximum
likelihood estimator (Brockwell & Davis, 1991, p.386).

As true model we will consider arAR (1) with ; = 0:8 and a maximum possible
order p = 8. In GA the chromosome length shall bevl = 64. In order to facilitate
the identi cation of subset models we shall force the stanig population of both GA
and DE to include a chromosome that corresponds to a white neigall parameters
are zero), and also 8 chromosomes for which one of the paraensts zero, so that all

i =0 (i =1;:::;8) are represented. The remaining chromosomes will be geneda
uniformly at random, coherently with other applications. Ths may be a reasonable
strategy in a situation of total lack of knowledge.

Fitness function shall be:

f( )=expf BIC( ;y)=ng;
and coding interval will be [ 2;2] for each ;.

Figure 2.4 shows the analogous plot to Figure 2.3. Even in thisse the two
perspective plots of optimaln are very similar: some di erences arise for small
values of sampling cos8. Figure 2.5 highlights magnitude of these di erences.
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(@) GA (b) DE

Figure 2.4: Behaviour of optimaln for experimentAR

Generally speaking, this experiment has lower values ofwith respect to LAD ,
possibly because tness account also for model identi ca (e.g. estimating a ;
value slightly di erent from zero implies may implies a slight @crease of the residual
sum of squares, but a ternk one unit larger in the penalization part of BIC). This
may have implied slower GA convergence rate and large DE vdbihty.

g-and-k Distribution Estimation

The g-and-k distribution was introduced in Haynes et al. (1997) as a fanyil of
distributions speci ed by a quantile function. It is a very exible tool which has
been applied to statistical control charts techniques (Hayes et al., 2008) and non-
life insurance modeling (Peters et al., 2016). For a univati&a random samplex =
(X1; 1155 Xn) the quantile function is:

: 1 e 9% :

Qx (UijA;B;9;k) = A+ Bz, 1+ Cl e o @L+2z3) i=1mn
where z,, is the u;-th quantile of standard normal distribution, A and B > 0 are
location and scale parametersy measures skewness in distributiork > 0:5 is a
measure of kurtosis ana is a constant introduced to make the distribution proper.
By combining values of the four parameters several essehtistributions like nor-

mal, Student's t or Chi square can be derived.
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Figure 2.5: Optimal sample size with respect &f for both GA (in black) and DE (in
red), with sampling costS xed at 50 (solid lines), 100 (dashed lines), 500 (dotted
lines), 1000 (dashed and dotted lines)

Maximum Likelihood estimation of this distribution is a kind of so-calledin-
tractable likelihood problem. The expression of likelihood is given by:

y b
L(_jx) = QY (' (xij i) (2.14)

i=1

wherex is the observed sample, = (A; B;g;k) and Q% (uj_) = @ Q=@uThe main
di culty in computing (2.14) is the lack of a closed form expression forQ, *(xij_),
that must be obtained numerically, for example with Brent'smethod.

A lot of research ong-and-k distributions estimation has been made in a Bayesian
framework, using Markov Chain Monte Carlo (Haynes & Mengerae 2005) or indi-
rect inference methods like Approximate Bayesian Computatio(Allingham et al.,
2009; Grazian & Liseo, 2015). We shall follow the pure likalbod approach proposed
in Rayner & MacGillivray (2002). In this situation a numericd procedure has to
be selected to maximize (2.14). They proposed a Nelder-Medthglex algorithm,
reporting some limitations, related also to the need of usinseveral starting points.
In the nal discussion they also observed that metaheuristimethods like GAs could
be more successful in this optimization problem.
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(@) GA (b) DE

Figure 2.6: Behaviour of optimaln for experimentgk

In our approach we shall consider the tness:

f () =expflogL(_jx)=ng:

We will simulate data using the typical parameters generatovector _ = (A;B;g;k) =
(3;1;2,0:5), with ¢ = 0:8, which leads to an 'interesting far-from-normal distribu
tion' (Allingham et al., 2009).

Each chromosome in GA implementation will have lengttM = 28, and coding
interval boundaries shall be:A 2 [ 10,10],B 2 [0;10],g 2 [ 10,10] andk 2
[ 0:5;10]. If adecoded chromosome provides unacceptable valBes Oor k = 0:5
then it is rejected and regenerated.

Concerning sampling variability, Rayner & MacGillivray (2002) investigated the
approximation of maximum likelihood estimator variability by Cramer-Rao variance
bound, which is of orderO(n 1). In estimating sampling variability we shall allow
for this asymptotic approximation of s.

Perspective plot for this experiment (Figure 2.6) shows a sitar behaviour of
optimal n to AR, even if general lower values af are observed, because also in this
case experiment is very complexr((Wea )=tr (Ws) ratio is large).

Lastly we shall make some comments on the behaviour mfwhen sampling cost
S varies and tness evaluation cosfT is estimated in each experiment by elapsed
execution time (in seconds) of our computer for a single tres evaluation, taking
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gk as corner point (being the most expensive one). Results arf:ap =Tgx = 0:007
and Tar=Tgk = 0:101. Figure 2.7 shows the behaviour af i1 this more realistic
scenario, for which each computational cost ratio has beeruttiplied by a constant
to highlight the behaviour of experiments. As GA and DE behawaur is identical,
in both graphs the three curves are ranked with respect of cautational cost and
experiment complexity, that is related on both EA convergere rate and the mag-
nitude of variability ratio tr (Wga)=tr(Ws). gk experiment shows lowest values of
/, but when S increases the three experiments tend to conform to commonlwes,
suggesting that a large sampling cost could have a larger irence in the tradeo
than model complexity.

2.4 Concluding remarks

This chapter proposed a method for evaluating variability bEAs when employed
in parametric estimation problems, valid for consistent eshators and convergent
EAs. A statistical and computational tradeo analysis involing the above speci ed
variability analysis has been performed for three selectegp@lications, in which
GAs and DE have been employed. Results showed how the behaviofiroptimal
sample size changes with complexity of experiment and amongot selected EAs.
A comparative analysis of the three experiments, in which ogputational cost is
estimated, also suggested that large sampling cost coulduance optimal values
more than complexity of the model, represented by statistitaand computational
variability. This is an interesting consideration, especlly for real applications,
where often large costs can decisively restrict the analysis.
The present method could be improved by considering other $aasummaries of
statistical and computational variability. For example the determinant of s and
ea could be more appropriate than trace. An other direction forurther research is
to generalize this framework to other statistical problemsiiwhich EAs are involved.
In fact there are many complex optimization problems in the stistical eld, and
understanding variability and tradeo more in deep could failitate the integration
of EAs among standard statistical methods. Lastly, the dis@sion on statistical and
computational tradeo can be naturally extended to other sbchastic algorithms, like
Particle Swarm Optimization, which could imply di erent conclusions on variability
analysis and tradeo .
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Figure 2.7: Optimal sample size with xed estimated computabnal cost
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Chapter 3

Evolutionary Computation and
Multiple Chains MCMC
Sampling: an Overview

3.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods have received a hugattention in

Bayesian statistics literature of the last decades becauséthe increasing availabil-
ity of computing power. In fact, the occurrence of obtainingosterior distributions
summaries is crucial in Bayesian inference, and most of tisaét implies to nu-

merically compute multiple integrals and sampling from muivariate distributions

not having an analytical form. In this framework MCMC repregnts the most es-
tablished method, and research on this topic has led to the dgepment of many
variants (Robert & Casella, 2004).

The basic MCMC method can be summarized as follows: let us fgse we are
interested in sampling from a target distribution (x) 2 RY, analytically intractable.
The MCMC consists in building a sequence of vectoss 2 R%; t = 1;::: , that is
a realization of a Markov Chain having () as equilibrium distribution. Usually a
certain number of iterations during rst phases of algoritim is removed, in order
to get rid of the dependence on starting pointshurn-in). The method does not
allow to sample directly from (), but it takes advantage of aproposal distribution
q() 2 RY, from which it is easier to sample. Two main MCMC algorithms ave been
developed in literature: theGibbs samplingand the Metropolis Hastings (MH). In
the Gibbs sampling algorithm the proposal coincides with #aunivariate distribution
of each component of , given the other components, and it is calletull conditional.

37
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So at each iterationt a new valuex!*! is generated using thed full conditionals.
The MH, on the other hand, does not have a standard speci catioof g. At each
iteration t a MH step is performed, for which a pseudo-realizatioy is generated
from g( jx!) and it is accepted as a new chain state with probability:

(y) a(x'jy)

(y;x) = minfl;mg:

If the proposed valuey is not accepted thenx'*! = x!. Possible variants of the
algorithm are related to particular forms of the proposal:symmetrical proposals,
for which q(yjx) = q(xjy), lead to the Metropolis algorithm, whose acceptance prob-
ability  (y;x") is equal tominf1; %g; the independence sampleis obtained by
choosingq(yjx) = q(y); if a(yjx) = dly x) then MH turns into the random walk

Metropolis algorithm

The procedure can guarantee a sequence of pseudo-randonueglfrom (),
namely the Markov Chain has () as equilibrium distribution, if the resulting mech-
anism is aperiodic, irreducible and reversible. A su cient but not necessary con-
dition, that ensures reversibility is that the mechanism dis es the detailed balance

condition:  (yjx") (x)= (X'jy) (¥).

3.2 Multiple chains MCMC

When target distribution () is multimodal or the components are strongly cor-
related then the values generated by a MCMC algorithm may tehto approach

each other or getting trapped in local optima. In that case tb chain is said
not to be mixing well, and the resulting sampling would not adequately repre
sent the support of target distribution. A possible approach pposes to let several
Markov Chains run in parallel, mimicking the multi-start strategies of optimiza-
tion algorithms to escape local optima. Each chaiw; in the resulting population

X =fx;; 5%y 0, X 2 RY M is equipped with a possibly di erent equilibrium dis-
tribution ;(X;), and also a population distribution (X) may be speci ed. At each
iteration the new chain states can be generated and acceptextarding to either the

individual or the population  distribution (or both). Detailed reviews of such
methods can be found in Jasra et al. (2007) and Liang et al. (2D1

This way of proceeding has inspired many researchers to syudnalogies with
EC. In fact, if the chains in the population are allowed to inéract with each other
then it could be reasonable to take advantage of EC peculiass, whose strength is
properly the interaction and combination between solutios. Although EC is mostly
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used for optimization, it can be easily introduced, at leasin a basic form, in the
framework of MCMC sampling.

We shall now describe few approaches found essential in swjusnt research
related with EAs, before surveying speci ¢ contributions orthe framework.

Parallel Tempering

Parallel Tempering (PT), pioneered by Geyer (1991) and Hukbgna & Nemoto
(1996), could be considered a generalization to multiple &ims of popularSimulated
Tempering algorithm (ST; Marinari & Parisi, 1992, Geyer & Thompson, 195). In
this latter proposal, inspired by Simulated Annealing (Kirkpatrick et al., 1983),
the target distribution law is given by (x) / expf H(x)g, but sampling refers
to a dierent distribution (x) / expf H(x)=Tg, known asBoltzmann distribu-
tion, whereT is an auxiliary variable calledtemperature taking values from a nite
set namedladder. This so-calledcooling strategy, for which T is updated at each
iteration along with x, may allow to facilitate the exploration of parameter space
and speed up convergence of MCMC in multimodal problems. PTegeralizes this
approach by considering a population d# Markov Chains, each with its own Boltz-
mann invariant distribution (x) / expf H(X)=Tig; i = 1;::;M, where ladderT
is builtas T, > T, >::: > Ty =1, so that \ (x) is the distribution of inter-
est (x)/ expf H(x)g. At the generic iteration of this algorithm a MH step is
performed for each chain; then awap step between two chains state, without in-
volving temperatures, is proposed and accepted by a furth®tH step. This kind of
mechanism may allow to speed up mixing of chains.

Snooker Algorithm

Snooker algorithm has been proposed in Gilks et al. (1994)pag with a more gen-
eral method named Adaptive Direction Sampling, in order to imm@ve convergence
of Gibbs sampling in many situations, for example multimodaproblems. In the
generic updating procedure of Snooker two chains in the pdption are randomly
selected without replacement: rst chainx, (current point) is designated to be up-
dated, while second chaix,, calledanchor point determines direction of updating.
Dierence (x, X.) species sampling direction so that the new chaily is built as
follows:

Y= Xt (X, X
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wherer is sampled from density:f (r) /j 1 rj9 1 (x.+ r(x, X)), chosen in
order to guarantee convergence of each chain to the targestlibution (proof can
be found in Roberts & Gilks, 1994).

3.3 GA based approaches

Holmes & Mallick

The rst proposal to explicitly introduce EC for improving MC MC is due to Holmes
& Mallick (1998). In their approach, called Parallel AdaptiveMetropolis Sampling,
they suggest to take advantage of GAs features for MCMC samipdj in presence of
high dimensionality and strong correlation between variabk.

Here ()= ();i1=1;:: M; and only a single chain in the population is modi-
ed at each iteration (as happens in Steady State GAs; Syswead1989). This chain
X, is selected uniformly at random, and it is subdued to mutatio with probabil-
ity pM, or to crossover with complementary probability. The mutaibn operator
is analogous as Evolution Strategies method, so that the nesolution is built as:
Xy = Xa*+ g, with g Ng(0; ) and is chosen to provide a moderate acceptance
probability. This move, as far as it is symmetrical, is thenwaluated by a Metropolis
step, so it is accepted with probability: (X,;X, ) = minf1; %g. The s4elected
crossover mechanism is in two step: at rst, a standard unifan crossover is per-
formed on two chainsx; and x;, randomly selected in such a way that 6 | 6 a,
obtaining a new solutionx,,; then x,, can be crossed with, by either moving along
direction (x, X,) or by performing the re ection of x, on x,, (with probability pC).
The resulting solution is accepted by a Metropolis step. Thabove scheme turns out
to be irreducible, aperiodic and reversible. Several feats of this algorithm have
been set considering computational complexity of methodorf example the choice
of symmetrical proposals, the exclusive contrast betweenutation and crossover
operators, the update involving a single chain at each geaion.

The applications considered are a Bayesian estimation ofural networks (based
on real data), characterized by multimodality, and a proble of inferring the number
and location of knot points in Bayesian spline models, witht®ngly correlated
variables: results are compared with a standard MH algorithmThe results showed
that the proposed algorithm can traverse the state space nmugnore widely than
MH, and it moves around high posterior regions with good accemce rates and
reasonably sized updated proposals.
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Liang & Wong

Evolutionary Monte Carlo (EMC; Liang & Wong, 2000, 2001a, 201b) is one of the
most important algorithm in the framework, and it is generdly considered the orig-
inal proposal that conjugates EC and MCMC. Here we shall reviethe real coded
algorithm proposed in Liang & Wong (2001a); the other papersiclude analogous
binary or integer versions of the procedure.

The authors proposed a method that conjugates features of GAsd Simu-
lated Annealing, resulting in an algorithm that generalize®T. In fact they adopt
Boltzmann distribution (x) / expf H(x)= g as distribution of interest, and re-
fer to function H() as tness. Each chain has its own equilibrium distribution

i(x) I expf H(X)=Tig; 1 = 1;::; M, with ladder T = (Ty;:::;Tw), for which
T,>T,>::>Ty = . Operators ofmutation, crossover(having more options)
and exchangeare sequentially performed at each generation, and eachantinediate
population including new proposed values is accepted via Mstep involving the
population distribution . Mutation operator, employed with probability pM, is
structured as in Holmes & Mallick (1998), except for the MH stepnvolving
In crossover operations two chaing; and x; are selected uniformly at random or
by roulette wheel. Two choices of crossover operator are theonsidered: stan-
dard GA crossovers, likk-points and uniform, or a novelsnooker crossove(similar
to the one introduced by Holmes & Mallick, 1998 and inspired byr®oker algo-
rithm). In the latter case new chromosomeli is obtained by: Y. = X +re, where
e=(x; X9Jix; xjjandr is sampled from density:f (r) /| rjd 1 (X; +re). This
snooker crossover move has been proven to leave distribatio invariant. After-
wards the exchangeoperation takes part, in whichM individuals are selected to be
swapped with neighbor chains (in term of temperature), as iRT. Setting pM =1
leads to PT algorithm, while xing both pM =1 and M = 1 EMC reduces to a
single-chain Metropolis Hasting algorithm.

Two kind of applications have been considered: Bayesian iesation of nite
mixture of normal distributions (various examples, with boh simulated and real
data), that exhibit multimodality; Bayesian estimation of neural networks (with
both simulated and real data, including Box-Jenkins gas fuate data), as done
in Holmes & Mallick (1998), whose posterior distribution is bth nonlinear and
multimodal. Results showed that the EMC, compared to methagllike PT, conjugate
gradient Monte Carlo and Box-Jenkins approach, is a very goadol for sampling
from complex distributions: simulation at high temperatues facilitates exploration
of the search space and exchange operator can be viewed adecsen mechanism
for localizing possible modal zones, so it may support exjédion.
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EMC has been found successful in literature and has stimuét some research.
Goswami & Liu (2007) provided an extension of Liang and Wong'algorithm called
Target Oriented Evolutionary Monte Carlo (TOEMC). They studied several new ex-
change moves, related to tness$i () and ladderT, in order to make the acceptance
probability more stable. Furthermore they analyzed methodsotoptimally construct
the ladderT, basing on preliminary EMC runs, in order to localize promisig modal
regions. One of the authors also developed an R package pdavwy EMC proce-
dure (Goswami, 2011). An adaptive version of EMC has been induced in Ren et
al. (2008); Goswami et al. (2007) proposed some new operatéor EMC in order
to perform clustering; Gupta (2014) employed EMC for purpas of biclustering in
Bayesian framework.

Battaglia

Another approach, proposed in parallel and independentlydm Liang and Wong's,
is due to Battaglia (2001). The aim of this work was to develop eultiple chains
MCMC sampling procedure in a complete GA framework, using ¢hearly proposal
by Holmes & Mallick (1998) as a starting point. Also here() = (), but dier-
ences arise when genetic operators are concerned.

In fact a selection mechanism is introduced, subdued to a noti of tness as

a measure of adaptation of chains population at timé, considered as a candidate
sample, to the target distribution (). In order to accomplish this, a nite par-
tition fP;;j =1;:::;;Jgof () is built so that multivariate distribution of interest
is sunamarized in the form of discrete univariate distributns, assigning probability

i= p (x)dx to valuesj =1;:::;J. As aresult of this, ifs = (s1;:::; ;) represents
frequencies of the discretized values in the population, asgimilarity measure be-
tweens and the theoretical distributionM _ = (M 4;::;;M ;) can be computed for
evaluating the global adaption of current sample to the targedistribution. In order
to characterize the speci c contribution of each chaix; to global adaptation, which
is analogous to de ne a tness function in GAs, a score relatew the induction of
each partition is assigned as follows: it is equal to 1xf 2 P;, and to zero otherwise.
SamplingM chains leads to the following equality that characterizesidividual t-
ness:f (x;) = M ;=5; x; 2 P;, meaning that the goodness of each element Bf
is uniformly shared between chromosomes belonging to tha‘grﬁ&on. This means
that the probability P(x;) of selecting chainx; is equal to #[ vy Kkl hXxi 2 Py,
whereJ = fj :s; > 0g.

The selected chromosomes undergo mutation and crossovemiider to guarantee
the possibility of covering di erent areas of the support of (). Mutation operator
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could be either a generic MH or a Gibbs step, and it could be exdged on whole
chromosomes or on some genes. Author also observed that thisdkof mutation
strategy allows many new solutions to be generated, compdréo the usual role
of mutation in GAs. For this reason also a variant of algorithmis proposed, for
which selection operator as it has been described is absentaeplaced by MCMC
procedure itself (each chain runs independently), so thainty the reproduction is
performed. Single point crossover between two parents isrimduced, to be accepted
with a Metropolis step (since the move is reversible) involng individual distribution

. So this approach tries to exploit promising modal zones of( ) by building a
partition and selecting chromosomes that mostly induce eagartition; exploration
role is assigned to mutation and crossover. One drawback ofighapproach is that

does not always allow for a natural partitioning, so it oftemeeds to be estimated
(author proposed an exponential smoothing).

Applications consisted in comparisons of di erent algoritm con gurations, for
example presence or absence of selection operators, inrditere problems where

has not a closed form or has highly correlated components. Rks showed a
positive e ect of crossover; also mutation was e ective, duonly when partition P
was provided exactly, and not estimated.

Hu, Tsui

Hu & Tsui (2010) proposed to employ a Distributed GA in the muliple chains
MCMC with multimodal or high dimensional target distributions, because it is
known to be less likely to converge prematurely then standdrGA. The resulting

algorithm has been called Distributed Evolutionary Monte @rlo (DGMC).

Here the populationX of chains is divided inJ subpopulationsfx,;:::;x;9 and
i()= () (but a PT style cooling scheme could be also introduced in dasub-
population). At the beginning of each iteration themigration operator is employed
with probability p,: k subpopulationsiy;:::;ix are uniformly selected, and the so
called migration cycle Oy = (i ! ! ik ! i) is built. Then, in each sub-
population i; 2 Oy, an emigrant gie" is randomly chosen, so thau;_/“ei+1 = 52 + _is
the proposed value for each subpopulation, whereis called emigration noise. So
the new subpopulationyij+l is built as: (x; ,, nfgiej o [f Xié +1 g, and new popula-
tion Y = fy,;:;y;0is accepted via MH step involving population distribution
factorized with respect of subpopulations. After this stepin each subpopulation
an exclusive mutation/crossover operator is proposed witprobability q,: stan-
dard oating point GAs mutation (as in previous contributions), or a snooker style
crossover. In the rst case new solution is accepted via inddual MH step; concern-
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ing crossover authors analyzed snooker crossover propsdsl Liang & Wong (2001)
and ter Braak (2006) (to be described in next section), and etoyed a modi cation
of this latter, in which the proposal is always accepted. A ta of g. individuals is
crossed to get the nal subpopulation.

Applications included sampling from bimodal and multimodamixture of normal
distribuions (same as in ter Braak, 2006) and Bayesian estation of a generalized
logistic function (real data), performing also comparisonsvith other algorithms
(EMC, PT and simple MH). Results showed faster and better mixig of DGMC
with respect to other analyzed methods, because it could mowveore e ciently
between far-separated modes.

Holloman, Lee, Higdon

An approach, proposed by Holloman et al. (2006), aimed to exter®@imulated Sin-
tering procedure (Liu & Sabatti, 1999) to multiple chains. This latter method,

that generalizes ST and Gibbs Sampling, considers data whasmntinuous domain
is discretized and modeled on multiple scales (or resolutis). The procedure in-
corporates elements from other Monte Carlo and MCMC technigs, like multigrid

Monte Carlo (Goodman & Sokal, 1989), reversible jump MCMC (&en, 1995) and
dynamic weighting (Wong & Liang, 1997).

Authors motivated their multiple chains implementation by ob®rving the e ect
of data modeling at ne scale (high information but also manyparameters and slow
tting procedures) versus coarser scales (less informatidout also more parsimony
and less computational cost) for continuous phenomena meast on a discretized
grid. Moreover they observed that coarser scales could féeie the exploration of
multimodal functions (for example a likelihood). Therefoe they proposed a method
that simultaneously evaluates chains at di erent resolutins, taking advantage of
both ne and coarser scales bene ts, analogously to what happs in multiple chains
algorithms with cooling schemes like PT or EMC.

A model involving | scales is introduced, so that data at scale are denoted
by z, with parameters vector of interest ), i = 1;::;1. This latter quantity
is written in terms of two variables ) and () related, respectively, to the shar-
ing information process between scales and to the remainingrameters, linked to
_® by a generally deterministic functiong( ). As far as a Bayesian framework is
concerned, model posterior distribution of interest (jZ) of the model, whereZ
denotes all available data, is built as the product of postars of each scale, de ned
as: O Ojz0y = OCO: Ojz0y 1 L Djz®y O O: ) \whereL(jzM) and
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() () are, respectively, likelihood and prior distribution at salei. Both of these
guantities are problem dependent.

Authors described at rst a novel Multiresolution GA, with purpose of likelihood
maximization; afterwards, the Multiresolution GA-Style MCMC, which allows to
sample from full posterior (jZ), is introduced. This algorithm considersM par-
allel chains, withM |, encoding parameters ), () and resolutioni. For a
xed number of iterations all chains are independently mutatéd by generic MH or
Gibbs steps; after that, a swap is attempted between two seted individuals (either
uniformly at random or proportionally with respect to posteior densities, assuring
scales strati cation if needed). These two paired chains uedgo a standard uniform
crossover step, involving elements of vectof” only; a proposal distribution , pos-
sibly di erent for each scale, is needed to generate also nealues of () given data
and proposed ). In some cases it could be useful to swap all elements 8t in
crossover full swap). To ensure detailed balance of the swap a MH step invaig
posterior densities (V(jz,) of two selected scales, distributions() and selection
probabilities of two chains are performed.

Application considered refers to single photon emission cpoted tomography
(SPECT), for which authors focused on reconstructing twoithensional images given
data from various cameras, and an inverse problem in groundtgr hydrology, in
which inference is done on ow data. They compared the proped Multiresolu-
tion GA-Style MCMC algorithm, considering both crossover aa full swaps, with
standard ne scale MCMC. Results showed superiority of prased method over
standard MCMC and also a positive e ect of using full swaps dyn

3.4 DE based approaches

Strens

One of the most important proposal, in term of citations and pplications, is directly
based on DE algorithm.

First studies are due to Strens (Strens et al., 2002; Strens,(), who introduced
Direct Search Optimization methods, which do not require iformation about ob-
jective function gradient, in the framework of sampling froncomplex distributions.
Procedure named Di erential Evolution Sampler (DES), intoduced in Strens et al.
(2002) for continuous distributions, considersi() = () as an improvement with
respect to algorithms with cooling scheme like PT or EMC, betise in that case only
one chain is actually used for providing samples. the di erg¢ial mutation operator
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is employed as a kind of geometrical proposal for each chaiy which produces a
new solutiony. as follows:y. = x;+ (Xg; Xg,); i 6 R16 R2Z; where scaling factor

is realization of a random variable (as happens idither and jitter strategies of
DE). This di erential mutation move, similar to snooker crosover, is proposed for
all chains, and it guides the exploration of parameters spat@vard modal zones. It
di ers from standard di erential mutation operator in DE al gorithm, which includes
a further randomly chosen vectoky, in place ofx;, in order to ensure reversibility of
proposal. Vector di erence Kz, Xg,) IS optionally subject to a crossover operation
with O vector. The move fromx; to y, is accepted via Metropolis step. Sampling
performance is assessed at each generation by use of Kullbaelbler divergence
between true and estimated density. This procedure is exfged to generate use-
ful proposals because chains population is likely to be aded to the shape of .
Authors also suggested that including subpopulations in thalgorithm, as proposed
afterwards by Hu & Tsui (2010) in GA framework, could be bene ial, because local
geometry of could be better exploited.

DES has been compared with algorithms like Metropolis, PT anBMC in a mix-
ture of normal distributions sampling with unequal variancs, using Kullback-Leibler
divergence to measure distance between true densityy) and empirical density esti-
mated by MCMC: results showed good performances of DES. A geally analogous
procedure has been studied in Strens (2003) for discretetdisutions sampling.

ter Braak, Vrugt

Meaningful extensions have been made by ter Braak and Vrugtaup (ter Braak,

2006; ter Braak & Vrugt, 2008; Vrugt et al., 2009). In ter Bra& (2006) an al-
gorithm named Di erential Evolution Markov Chain (DE-MC) is introduced for

high dimensional target distributions sampling, motivatedby simplicity, because
the adopted mutation operator automatically provides infamation on scale and
orientation of the proposal distribution. It is generally aalogous to contribution
in Strens et al. (2002), except for di erential mutation opeator, which has form:
Y. = X+ (Xg1 Xgp)* €16 R16 R2 where is a scaling constant ane is ran-

dom vector drawn from a symmetric distribution with small vaiance, for example
a zero mean normal. A standard DE crossover operator can belinded before the
proposed solution is compared witlx;: in that case every gene q_fi can be replaced
by the equivalent gene ok; with probability (1  pC). Author also suggested that
applying crossover on blocks of genes, which may refer to adated variables, could
improve the e ect of operator. Also a cooling scheme could bea@pted, and initial

population could be generated from a prior distribution, ifa Bayesian problem is
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taken into account. The convergence of algorithm is monited by use ofR statistics
(Gelman & Rubin, 1992).

An extension of the algorithm, called DE-MG, has been provided in ter Braak
& Vrugt (2008). Extensions have been made in order to lower ¢hcomputational
e ort of the algorithm by decreasing the number of chains in paulation. In order
to accomplish this a large matrixZ is built in order to include all generated chro-
mosomes in generations: chainsg;; and Xz, for the mutation step will be selected
from such matrix. The latter feature turns the method into anadaptive Metropo-
lis sampler (Haario et al., 2001), as past chains state are inved. Furthermore
a snooker style crossover, calledE snooker update, is introduced in the proposal
mechanism, as it alternates with parallel direction updatesin order to diversify
jumping possibilities. In these two papers authors considedt applications on both
known multivariate distributions sampling, like Student's t or mixtures of normal
(as done in Liang & Wong, 2001a), and Bayesian problems like eway random-
e ects model and nonlinear mixed-e ect model. E ectivenes of proposed methods
is shown to be comparable with respect to random walk Metrops sampler. Fur-
thermore DE-MC; is shown to improve convergence time (namely lower the buimn-
period) compared to standard DE-MC, and it is also paralletable.

A further successful development, resulting in the most @t paper in this frame-
work, has been called Di eRential Evolution Adaptive Metromlis (DREAM; Vrugt
et al., 2009). In this sophisticated algorithm the dierental mutation step al-
lows to generate proposals using higher-order (say number pairs of chains, for
increasing diversity, and also crossover of variable blacksize d9, with proba-
bility CR, is proposed. Besides this, the burn-in period is crucial, bause in
such iterations the so-calledbutlier chains, which are solutions that still not have
converged to modal zones, are handled; this issue, that caeteriorate quality
of MCMC sampling, is managed by use of Inter-Quartile-RangdRQ) statistics.
During burn-in also a distribution of crossover probabilies CR is estimated for
the algorithm in order to favor large jumps over smaller oneand decrease au-
tocorrelation between twopsubsequentpsamples in each chaiMutant is built as:
Y. = X+ (Lqg+ ¢ (;d9[ i=1 Xr1(j) k=1 Xr (9] ¥ _, where _ is drawn from a
Uniform distribution and it is related to the scaling factor (;d9.

Selected applications include sampling from high dimensial multivariate nor-
mal distributions, twisted Gaussian and bimodal distributons, and also a squared
deviations likelihood function for dealing with a real dataet: DREAM algorithm
showed the best overall performances in all selected apptions. This method has
received huge success in literature, especially in hydrgical applications (see, for
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example, Laloy & Vrugt, 2013 and Brigode et al., 2013). Also aR package provid-
ing DREAM has been implemented by Guillaume et al. (2012).

3.5 EDA based approaches

Zhang, Cho

Zhang & Cho (2001) proposed an algorithm that conjugates eiency of EAs and
robustness of MCMC methods in order to identify systems arithcture. As far as
its main scope is maximization we will not dwell much on it.

The method, named evolutionary Markov Chain Monte Carlo (eMMC), is set
in an explicit Bayesian framework to nd the architecture mnimizing a tness func-
tion. Starting from an initial population generated from a pior distribution, in
fact, the problem dependent likelihood and then the postanr are computed for all
individuals. New solutions are generated basing on the resng) posterior distribu-
tion, employing a kind of mutation and recombination operairs, and a selection of
best individuals is retained in subsequent generation. Dgan & Thierens (2004)
observed that this method shares a number of features with EDalgorithm.

Laskey, Myers

Laskey & Myers (2003) introduced Population Markov Chain Mote Carlo algorithm
(popMCMC), a variety of adaptive MCMC sampler in which chainause information
from other chains to adjust their proposal distributions. They appeal to EAs because
of their natural information exchange features between sdlons and their ability
of avoiding to be trapped in local optima. Authors explicitlyrefer to a Bayesian
network learning problem with missing observations and ha&n variables, for which
solution space is discrete.

The chains share a common target( ) but have a di erent individual proposal
distribution q(x!**;x!; ), where is a novel parameter. This latter quantity is
estimated by a proposal parameter functiof(x}; :::; X}, ), which accounts for values
of entire population. For example, in the selected Bayesiametwork application "
includes information on frequencies of graph arcs and missiaglues. In general it
can be chosen to t interesting features of (lower order marginal distributions of
components are suggested). Each of the estimated modsfe ™ ; x!; Nii=1;M,
generates a candidate, and the resulting population is eualted via MH step. This
procedure is adaptive at the level of individual, because @aproposal distribution
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depends on global information; on the other side, at the lelvef population it is
a Markov Chain with xed transition probabilities. Heuristic comments are also
provided in order to illustrate convergence of each chain to, depending on the
choice of". Convergence diagnostic is performed by use Rfstatistics.

popMCMC has been compared with a multiple chains MH algoritin with no
information exchange and an EA with mutation and crossoverof the Bayesian
network learning problem. Results of application on literaure data showed that
incorporating information exchange increased the rate of pnovement of solutions,
and that MCMC algorithms had greater population diversity than EA, because of
post selectionfeatures of MH step. Authors observed that superiority in pdormance
of popMCMC with respect to MH could be due to the ability of incoporating
statistical information from the entire population into the proposal distribution g.
Also in this case similarities with EDA have been observed inrDgan & Thierens
(2004).

3.6 Discussion

In our overview we have proposed a sort of categorization Witespect to the spe-
ci ¢ EA inspiring authors. Following de nition of evolutio nary system, outlined in
Section 1.2 and adopted in De Jong (2006) as basis for de ning EAge shall now
discuss methods with respect of their algorithmic features

Population of individuals

The multiple chains MCMC framework provides a population ofolutions, in our
case running in parallel, for improving mixing and samplingrom target distribution.
In EC based MCMC goals are the same, and so are sampling metbtugjies: if a
cooling scheme is adopted, as in EMC, only one chain will e taeely provide samples
from ; in other cases, if correct ergodic properties are satis edach chain is able
to sample from the target. In this case the user may consideppulation states at
a certain generation as a candidate random sample and evakiats adherence to

(Battaglia, 2001; Strens et al., 2002). Concerning solutisncoding, we mainly
took into account continuous target sampling problems, fowhich these algorithms
adopted direct encoding.
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Fitness

In this chapter no optimization issue is concerned, so tneshas a naturally di erent
purpose with respect to the rest of thesis. Up until now, in fagtit is de ned as
a goodness measure, to be as large as possible (in maximizagproblems); here
there is a target distribution to sample from, and it could be somehow related to
tness. Now, in generic iteration values generated by most afonsidered MCMC
algorithms must be subdued to MH or Metropolis steps, in ordeo ensure them
to sample from the correct invariant distribution. This stgp naturally biases search
process towards high probability areas of invariant distbiution, because they will
be selected with high probability as a consequence; it is sehow analogous (even
if less strong) to what happens with tness function in optinization problems. In
our problem, however, we consider sampling from generally lionodal targets, so
other strategies must be adopted in order to let the algorithne ciently sampling
from all the support, avoiding to get trapped in local optima &as. If methods
based on DE and EDA are naturally more capable of overcomingishdrawback
because their operators involve several chains (more irtgig will be provided in
next subsection), GA based proposals, on the other hand, geally modify few
solution at each generation, so other strategies have beengoyed, some of which
operate directly on target distribution.

Liang and Wong's EMC adopted PT style cooling scheme, whichlaws each
chain to have its own individual target distribution () / expf H()=Tg, where
H () is explicitly de ned as tness. By proceeding this way samphg at high temper-
atures facilitate broad exploration, and e ective samplig from target distribution,
which has the coolest temperature, is performed by means ofckange operation.
There is an analogous reasoning behind Multiresolution GAybHolloman et al.
(2006), because distribution of interest is taken as produof distributions at each
scale. In this complex model, however, multiresolution same is applied also to
observed data, in such a way that data modeled at coarse scaén support broader
exploration of search space, while ner scales, on the othlkeand, allows to include
as mushc details on target as possible. DGMC by Hu & Tsui (201@mploys sub-
populations, which may separately explore and exploit pabsy di erent portions of
target support. In Battaglia (2001) a nite partition of is built and a notion of t-
ness related to individuals contribution on inducing eachaptition is introduced. As
long as reproduction probability is shared between individals belonging to the same
partition, several and possibly di erent zones of high proébility can be detected in
such a way.
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Reproduction

Reproduction operators, which aim at building new solutionsplay naturally the
role of proposal distributions in MCMC, as long as they havetachastic features.

This topic highlights distinctions between approaches bad on GA, DE and EDA,
due to the number of individuals involved in process of buildg new solutions. In
generic iteration of GA based methods, in fact, a small numbef individuals is
generally used to build new states: an Evolution Strategiestyle mutation operator,
which involves a single chain, is ofter employed, togetheor(sometimes in substitu-
tion) with few snooker crossover updates, involving two ofhtee individuals; wide
exploration of the support is guaranteed by means of stratexy described in previ-
ous subsection, like exchange (Liang & Wong, 2001a) or swapp (Holloman et al.,
2006) between chains at di erent temperatures or scale, amdigration (Hu & Tsui,
2010) between subpopulations. In DE based approaches, asonginal algorithm,
the new trial vector is proposed for each chain basing on vaisi of other individuals
(by use of di erential mutation), performing also uniform agossover in order to ac-
count for correlation between variables. EDA methods build proposal distribution
basing on values of current population as a whole, so we cary shat the magni-
tude of interaction is maximum in this case, with respect tother methods. A deep
and unifying analysis of possible reproduction operatorsvolving various number of
chains in EC based MCMC has been provided in Drugan & Thieref2005, 2010a,
2010b).

Turning to a computational point of view, it is interesting to mention the pos-
sibility of parallelizing these kind of MCMC methods (see Ba et al., 2016 for an
account). Itis clear that methods which involve few moves ineproduction are more
suitable to be parallelized, because chains belonging to drent cores need to have
reached the same number of generations in order to be assesdbiior reproduction.
This problem could be handled by employing some adaptive ategies, which allow
to use samples from past generations, as in ter Braak & VrugRQ08) and Vrugt et
al. (2009).

Inheritance

Once that new individuals are generated by reproduction opaors, it is necessary
to discriminate the ones who will be included in subsequent gemation. In generic
MCMC this task is accomplished by strategies introduced to pserve ergodicity of
chains, like MH or Metropolis step, which may be de ned as pbselection operators
in EC terminology.
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These steps, depending on strategies, may involve indivald-dimensional target
distribution ; (possibly constant with respecttd) or M  d-dimensional population
distribution | as in population-based MCMC. In fact there are algorithms tich
evaluate acceptance of population as a whole after each reguetion (Liang &
Wong, 2001) or some speci ¢ one (migration operator in Hu & T$u2010), in order
to preserve ergodicity of . Most of methods, however, accept new proposed values
evaluating just individual target distributions involved in reproduction.

In general, MH and Metropolis step are are crucial, espediain multiple chains
algorithms, as long as computational complexity of procedes is taken into account.
In Metropolis step, concerned when symmetrical proposaldtiiibutions are selected,
acceptance probability does not include the proposal digbution (like mutation in
GA based approaches or di erential mutation in methods baskeon DE), meaning
that some computational time is saved. These kind of issueave been studied, also
in the form of tradeo s, in Drugan & Thierens (2010a, 2010b).

3.7 Concluding remarks

Methods outlined in this chapter have been proposed by reselers from di er-
ent elds of science, sometimes independently of each othérherefore there have
been di erent motivations and points of view behind these pymosals, and giving a
unifying framework to compare them is challenging.

M. Drugan and D. Thierens, both researchers in the eld of ECalready cited
in the course of chapter, produced a series of papers (Drug&nThierens, 2004;
2006; 2010a; 2010b) in which most of algorithms discusseditlis dissertation are
reviewed. They provided general forms of proposal distribans, for example geo-
metrical moves like rotation or translation, which may invéve two or more chains
in population. Moreover studies have been conducted for dwating bene ts of EAs
features, like tness proportionate selection, elitism, guhisticated o spring surviv-
ing rules on speed of convergence to invariant distribution They also gave the
following de nition of Evolutionary MCMC (Drugan & Thierens, 2010a, 2010b):

De nition 1.  An evolutionary Markov chain Monte Carlo (EMCMC) algorithm is
a population MCMC that exchanges information between individual states such that,
at the population level, the EMCMC is an MCMC.

Some of the algorithms in our survey fall into EMCMC categorybut in general
the condition on population level is rather strict for charaterizing MCMC sampling,
because many proposal moves can be evaluated individually é&ach chain.
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We observe that EMCMC is a particular case oPopulation-Based MCMC a cat-
egory that includes methods in which multiple chains are aed to run in a parallel
manner. Mathematical description of method (Liang et al., @01, p.123) states that
if (x) is the target distribution then user shall sample from an agmented invariant
distribution:

N
(X) = i(X); (3.1)

i=1
where X = fx;;:::; Xy g belongs to aM -dimensional space and; = for at least
onei.

EMCMC is a Population-Based MCMC where chains are allowed tmteract
with each other, as happens with individuals in EAs, but as weasd before the
assumption that is the invariant distribution of the population is somewhatstrict
for generalizing to all methods.

There is also no general agreement on how to evaluate methodrfermance:
in fact, as in MCMC literature, e ort is generally spent to manitor convergence of
chains to invariant distribution, while goodness of e ectivessampling is not deepened.
In some papers authors analyze adherence of candidate sasrgdl certain generation
to target distribution (Battaglia, 2001; Strens et al., 2002 Drugan & Thierens,
2010a).

However, if a complex Bayesian problem is taken at hand a geakindication
would suggest to generate initial chains population by seled prior distribution;
after that, methods based on DE, suggested to be simple andryee ective in
capturing multimodality and correlation between parametes, could be employed.
The possibly large computational cost of these procedurdspwever, could de ect
and make users prefer re ned GA based approaches, which arsslexpensive but
possibly competitive. However, the introduction of adaptig strategies can make
parallelization feasible and computational complexity ma tractable (as in ter Braak
& Vrugt, 2008 and Vrugt et al., 2009). As far as this subject is ancerned, we
believe that adaptive strategies, which are among main tags in nowadays MCMC
literature, will prove to be useful tools for improving EC baed MCMC, from both
e ciency and computational side (see, for example, Milgo &dl., 2017, for up-to-date
research, in which Covariance Matrix Adaptation-Evolution &ategies algorithm is
set in MCMC framework).
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Chapter 4

Multiple Changepoint Detection
In Periodic Autoregressive Models
by Means of Genetic Algorithms

4.1 Periodic models and regime changes

Many phenomena observed over time are subject to so-callezhsonal e ects, which
are variations occurring at speci ¢ and regular time interals every year. An intuitive
example is the behaviour of a monthly business time seriestive month of August,
which is often closing month in companiesAugust e ect). In general, seasonality
needs to be conveniently accounted in a large variety of tinseries models in order
to get realistic estimates and forecasting.

Among linear modeling a classical procedure aims at modifyitige standard Au-
toreRegressive Integrated Moving AverageARIMA ) model employing theseasonal
di erencing operator: if the considered period magnitude is, this operator sub-
tracts from each observation the corresponding value &t previous time instants,
obtaining Seasonal ARIMA SARIMA). This way of proceeding, which involves rel-
atively few parameters, has been proven useful when the meam & given season
is not stationary across years (Hipel & McLeod, 1994). It hasisb been observed,
however, that it tends to perform less well when covariancesd correlations within
seasons are not stationary, because residuals could stiladose a seasonal behaviour.

For this reason di erent procedures of accounting for seasality have been pro-
posed in literature, leading toperiodic models (general overviews can be found in
Hipel & McLeod, 1994 and Franses & Paap, 2004). In this framevkothe simplest
model is the Periodic AutoRegression (PAR; Gladyshev, 1961; ies & Brelsford,
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1967) which, as long as a seasonal time seriedNof/ears and periods is considered,
has the following structure:

XK
Yos+k = i(K)Ynssk i+ ns+ko N=0;05N 1 k=150, (4.1)
i=1
where series in seasdnfollows an AR(p(k)), with parameters ;(k); i = 1;::; p(k).
Franses (1994) introduced also an unusual multivariate regsentation of model (4.1),
useful for analyzing stationarity properties of the modelAlso periodic modi cations
of other linear models, as Periodic Moving Average (PMA,; Cipral985) or Periodic
AutoRegressive Moving Average (PARMA; Vecchia, 1985), have beatroduced in
literature, even if it has been observed that they do not geraly add signi cant
bene ts over PAR models (McLeod, 1994; Franses & Paap, 2004).

As far as PAR model building is concerned, the identi cation ca generally be
performed in several ways. As a rst step, non-periodic modehre estimated and
seasonality evaluated in residuals. Similarly, also statical tests in which null hy-
pothesis is the lack of periodic variation in model can be germed. A more general
approach is the selection of model order by conventional pedization criteria, like
AIC, BIC or MDL. Ordinary maximum likelihood or least squaresestimation of
parameters can be then performed.

The diagnostic checking for PAR models has been proposed in [Mod (1994),
in which results on distribution of residual autocorrelatbns are derived and a novel
test statistics based on Ljung-Box portmanteau is introdued.

Let us now introduce a di erent source of deviation from basilinear models, due
to the fact that a time series could switch its behaviour, imlying the existence of
several regimes. The change between one regime and an otloerda occur at every
time instant or be due to the reaching of a certain value of ses. In the rst case we
generally have a nonstationary but linear modelstructural change Bai & Perron,
1998), while the second falls in the eld othreshold models(Tong, 2012), which
is characterized by nonlinearity but stationarity. These ae two di erent situations
which require di erent modeling features: in this chapter w shall only focus on
structural changes, set in a periodic modeling framework.

A structural change (or changepoint) can be de ned as a modiation in the
structure of a time series occurring at a certain time instan This kind of change
could a ect mean, variance or model structure as a whole, andare than one change
could occur in the time series span. Real examples of structuchange could be the
e ect of a modi cation in governmental policies on a nancialtime series, or a change
in gauging location on climate and hydrological series. Ignng the e ect of these
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changes, possibly located at unknown times, can lead to neiatling estimation and
forecasting. Among approaches proposed in literature for aleng with structural
changes we focus on methods which aim at selecting an appnoate model by
optimization of an appropriate objective function, like AIC (Kitagawa & Akaike,
1978; Ninomiya, 2015). In this framework there have also bepnoposals based on
GAs, which will be reviewed in Section 4.3.

4.2 Model description

We shall now describe in depth our proposal of simultaneoyshodeling seasonality
and regime changes in time series. Concerning the rst pointye shall focus on
pure PAR models, allowing also subset selection; multiplersttural changes can
segment the series into several PAR processes.

The period of time series i$ and is assumed to be known. Observation in season
k of the n + 1 year is denoted byX s+, With n=0;1;:::;N landk=1;:::;s.
There areM di erent regimes, each of which contains an integer numberf gears,
and ; ; denotes the rst year of regimej. The rst regime includes years from
o=1to ; 1, second regime contains years from to , 1, third regime
contains years from , to 3 1, and so on. The regime structure, specied by
m = M 1 changepoints, is summarized as follows:

1 0< 1<:'< m< w™m N +1:

In order to ensure reasonable estimates it is required thateh regime contains
at least a minimum numbermr! of years, therefore | i 1+ mrl; 8. We let
Ri=f; 15 1+1;::5;; 1g, so that if year n belong to setR’ then the time
ns + k is in regimej. For the seek of simplicity we assume that total number of
observationsT is a multiple of s.

The model driving our work is given by:
Xnssk = ad +B(ns+ K)+ Wpss; N2 R j=1;2::0:M: 1 k s; (4.2
whereW,s+k = Yns+k + ‘k and processYps+k IS a PAR given by:
N
Yns+k = P(K)Ynsek i+ ns+k: (4.3)

i=1

We assume that trend parameters! and b depend only on the regime, whereas
means | are allowed to change also with seasons. The autoregressivaximum
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model order at seasork in the j-th segment is given byp (k), so that J;(k), i =

procedure these latter will be allowed to be constrained to me For simplicity, we

assume thatp (k) = p, 8j;k. Error process ns:+k in equation (4.3) is a periodic
white noise, with E( ,s+x) = 0 and V ar( Ls+k) = jz;k > 0. Unless otherwise stated
we assume that each segment is periodic stationary with ped s, in the sense that

Cov(Yn+s; Ymes) = Cou(Yy; Yi);

for all integersn and m.

Summarizing, the proposed model is characterized by follows parameters:

a) External parameters

N number of years

S number of seasons

p maximum autoregressive order

M maximum number of regimes

mrl minimum number of observations per regime

b) Structural parameters :

m number of changepoints
1 2,00 m changepoints location
PAR subset indicators denote constrained coe cients ! (k)

c) Regression parameters

a;ay:l;ay constants

SHCIER Y slopes

; seasonal means; reginje seasork
(k) AR parameters; regimeg , seasork, lag i
J?(k) residual variance; regimg, seasork

In order to build our model, structural and regression paraeters must be con-
veniently estimated. Conditionally on model structure, tle regression parameters
are analytically estimated. The selection of optimal struetral parameters, on the
other side, is a complex combinatorial problem for which no ded form solution
is available. As far as it involves the evaluation of a very lge number of possible
combination, GAs are naturally suitable for this issue.
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4.3 Model building

As outlined in Section 1.6, model identi cation is among the mst important and
natural applications of GAs to statistics. This issue is espally demanding in
time series models exhibiting nonlinearity or nonstationay (or both), because the
search space is prohibitively large. GAs have been widely diggl for identifying
threshold models among last 15 years: Wu & Chang (2002) prcageal them for
two-regimes SETAR models; Yau et al. (2015) identied TAR mods by GAs;
many contributions have been made by R. Baragona researclogp, as they involve
models such SETARMA (Baragona et al., 2004a), DTARCH (Barag@& Cucina,
2008), DTGARCH (Baragona & Battaglia, 2006), EXPAR (Baragona eal., 2002),
PLTAR (Baragona et al., 2004b), multivariate SETAR (Baragona &Cucina, 2013).
In the case of structural changes modeling, the time serieshébits a nonstationary
behaviour, as it could switch regime at each time instant. Das et al. (2006)
employed a piecewise stationary AR process for modeling sttural changes, and
used GAs for model identi cation; Jeong & Kim (2013) set changmint detection by
GAs in a Bayesian modeling framework; recent paper by Doerr &t (2017) provided
hints for saving computational time when GAs are employed inhis identi cation
problem; Battaglia & Protopapas (2011, 2012) employed GAsifaletecting regime
changes in time series exhibiting also nonlinear behaviour.

4.3.1 Identi cation and estimation

In our model the GA must account for both changepoints deteiin and subset
PAR selection. Work by Lund et al. (2007) and Lu et al. (2010) areoncerned with
changepoint detection in periodic and autocorrelated timseries, when only change
in mean are contemplated. Our results share a number of sianiities with their
nding allowing in the same time a generalization of resultsbecause a change can
cause model structure as whole to be modi ed. Details on ourAGproposal, which
employ a standard binary coding, will follow.

The model structure of a generic solution is encoded in a biyachromosome
(genotype), which corresponds to a phenotype associatedtte following vector:

m; o4 o2 my hin M (4.4)

where _*;::;; " are binary sequences specifying parameteri,s(k) constrained to
zero for regimg, seasork and lagi.

A candidate segmentation is encoded in a binary chromosoms ®llows: rst
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two bits give number of changepointsn (limited to a maximum of 3 in our study, so
that a number of regimes up to 4 is allowed); subsequent bit iatvals, whose length
is custom xed, produce changepoint timesg;:::; . This part of encoding must
ensure following constraints:

mrl +1 omrl+ 4 onnmrl+ o, o m 1, mrl+ ., 1 m N mrl 1;

due to the fact that a minimum numbermr| of observations must be contained in
each regime. In order to accomplish this the bit intervals ende m real numbers
th; 2 (0;1); i =1;:::;m, constructed to determine percentage of remaining values t
place a changepoint. In fact, when placing a new changepothere are some illegal
positions, due to above specied constraints: this impliethat mrl observations
must be left out from both the beginning and the end of consided segment. This
strategy depends on the candidate number of regimes, so thettangepoints are
uniquely identi ed in these four possible ways:

If m =0 (one regime) then ; = N + 1.
If m =1 (two regimes) then ;= mrl +1+(N 2mrl) th;

If m =2 (three regimes) then:

{ 1
{ 2

mrl +1+(N 3mrl) th;

mrl + ;+(N 2mrl 1+1)  thy
If m =3 (four regimes) then:

{ 1=mrl+1+(N 4mrl) th,
{ 2:mr|+ 1+(N 3mrl 1+1) thz

{ 3:mr|+ 2+(N 2mrl 2+1) th3

Such an encoding procedure, introduced in Battaglia & Propmpas (2012), allows
each possible chromosome to be legal, so there is no compotal time wasted on
evaluating infeasible solutions. Last bits in the chromosee directly produce vectors
of subset PAR indicators (*;::;; M).

Conditioning on a candidate model structure, regression pameters estimation
is performed in the tness evaluation step as follows:
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Trend parameters estimateg’and B are obtained by Ordinary Least Squares
(OLS) method:
M oxs X _ _ )
min Xns+k @& B(ns+ k) ~;
7 j=1 k=1 n2Ri

that leads to detrended dataWns.x = Xnsix & B (ns+ k);
n2R; j=1;u5M; k=1;:5s

Seasonal means are computed as follows:

which implies: $nsix = Whsew

Autoregressive parameters estimation is performed sepagbt for each regime
and season. Each of these seriess selected from¥, and it is incorporated
in a design matrix Z of dimensions (| i 1) P, which includes lagged
observations. Parameter constraints are specied by @( g p matrix H,

where q is the number of free parameters. These constraints are dgsated

on the basis of PAR subset indicators as follows:

{ For each lagi, the element p(k 1)+ i] of | vector is evaluated

{ If value is equal to 1 then a row equal to the-th row of |, identity matrix
is added toH.

Final estimatei of is obtained by constrained optimization, with linear
constraint given byH = 0. Explicitly, in matrix form:

"=l (2%) HIHEZ%Z) HY H

where” _ =(2%Z) 2%

LS

Lastly, estimate of innovation variances (k) is performed for each regime and
season on nal residuals, considering that each regime hapa@ssibly di erent
sample size.
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The tness mustinclude a term linked to the goodness of t anc part related to a
penalization on number of parameters. Many options are alable: we shall consider
a criterion inspired by NAIC, introduced by Tong (1990, p.379jor threshold models,
and given by:

X X
g=f nj (k) log["/(k)] + 1C P (K)g=T; (4.5)
j=1 k=1 j=1 k=1
where ’}Z(k) is the model residual variance of series in regimeand seasork, n; (k)
is related sample sizePj is related number of parameters|C is the penalization
term. Final tness function is a scaled exponential transfonation of g, for a purpose
of maximization: f =exp( g= ), where is a constant.

As far as the choice of genetic operators is concerned we prapsisndard roulette
wheel selection, bit- ip mutation, and a modi ed single-pont crossover: the only
cutting points allowed to be selected are the ones which subidle phenotype (4.4),
instead of genotype as usual. In such a way parameter strucds can be naturally
inherited by o spring. Elitist strategy is also employed.

4.4  Applications

In this section the validity of proposed methodology is studd. In the rst part
we shall focus on simulated data, while in the second real hyibgical data will be
analyzed, employing a modi ed version of the GA and also ewalting forecasting
accuracy of tted models. Computations will be performed byise of Matlab.

4.4.1 Simulations

The estimation procedure outlined in subsection 4.3.1 wilbe implemented in a
small simulation study. We shall focus on monthly data (perid s = 12), observed
in N = 100 years. Such time series will be generated according toe\possible
scenarios:

A) 3 regimes, with varying PAR parameters and trend
B) 2 regimes, with varying PAR parameters and trend

C) 2 regimes, where only trend varies with regime
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D) 2 regimes, where only innovation variances vary with regie
E) 1 regime

Time series generated according to these scenarios are showrFigure 4.1. Sea-
sonal means ‘k are always xed at zero and the trend is built to be piecewisanlear
continuous. Innovation variances are equal to 1 in all expenents, except for sce-
nario D in which they are 1 in rstregime and 2 in the second. PARarameters vary
between regimes only in scenarios A and B, meaning that chapgits detection
will be more di cult in scenarios C and, in particular, D, where regime switch is due
only to innovations variance. These parameters are de ned following matrices:

2 3
03 03 03 (042 Q42 Q42 08 08 08 042 Q42 Q42

L= 9 05 05 05 O 0 0 02 062 02 0 0 0 g
0O 0 O 0 0 0O @5 035 035 O 0 0

2 3
01 G1 01 022 Q22 022 024 024 024 05 05

0:5
_2 = 2 03 63 03 O 0 0 023 023 (@23 0 0 0 g
O 0 O O 0 0 @5 025 025 0 0 0

where number of columns is period and rows number indicates maximum autore-
gressive orderp = 3. Matrix _1 denotes PAR parameters of rst regime in all
experiments;_2 is associated to the second regime only in experiments A and B,
while in C and D _1 denotes also parameters of second regime. Third regime in
experiment A is generated according to a white noise.

Concerning GA con gurations, we xed minimum number of yearger regime
mrl at 10, maximum numberM of regimes at 4 and a maximum autoregressive
order p at 3. In the tness function we xed IC = 2 so that penalization structure
of AIC criterion is resembled. We adopted GA operators and cajurations out-
lined in subsection 4.3.1, with crossover, mutation rate anglopulation size xed at,
respectively, 07, 0.2 and 50. Scaling constant in tness was equal to 10.

Table 4.1 shows results of computations, obtained wite = 1000 generations;
it reports true and estimated changepoints, along with the lzsolute value of bias
related to trend parameter estimates. Results are satisfacy in all models, par-
ticularly in tricky scenarios such as C and D. Plots of residal autocorrelations in
Figure 4.2 con rm adequacy of tted models.
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Figure 4.1: Simulated time series of ve scenarios
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LU om | MrunAn | Bias & BY Bias [@% 7] | Bias [&; D]
A) | 3170 | 30,70 | [0.0069,0] | [0.0850,0.0002] [0.0596,0]
B)| 66 66 [0.0808,0] [0.0356,0] /
)| 66 68 [0.037,0] [0.1014,0] /
D) 66 64 [0.1710,0.0005] 0.3640,0.0005 /
B | |/ /| 10.0367,0.0001] / /

Table 4.1: Results for simulated data

4.4.2 Real data

We shall now study the e ectiveness of proposed methodology river ow analy-
sis. Majority of hydrological time series, in fact, displayseasonality and have been
extensively analyzed with periodic models (Hipel & McLeod, 94). Moreover, dis-
continuities are often introduced in this kind of series as eesult of anthropogenic
impacts or changes in instrumentation, location and climat oscillations. Further
plausible reasons are modi cations in reservoir system magement or new water
pricing. In many cases, changepoints are located at knowmies (dam construction,
measure instrument change) and it is easy to take into accdutheir e ects. When
changepoints are located at unknown times and their featuseare ignored the time
series estimation can be misleading (Lu & Lund, 2007; Lund et.a2007). In view
of all this, changepoint detection becomes a demanding jobpecially if its identi -
cation is required soon after occurrence (e.g. ood predions). Many authors have
considered the problem of detecting a single changepoint igdrology (Cobb, 1978;
Buishand, 1984; Hipel & Mcleod, 1994), but more realistic miigple changepoints
situations should be considered.

We shall analyze monthly data related to two river ows, haung di erent lengths,
means of annual ows and located in di erent regions. They awist of:

ows of Garonne river measured at Tonneins, France;

ows of Saugeen river measured at Walkerton, Canada.

The GA employed in these two analysis includes a modi cationitih respect of ba-
sic algorithm described in subsection 4.3.1. Its phenotygensiders onlym; ;5
as candidate structural parameters, and in the tness evaltion step it enumerates
all 2° possible subset AR(p) models in each regime and season: omgult on the
best one (in terms of tness) is reported. This version allogvto select the best
possible subset for each segmentation, but it is computatialty feasible only when
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Years of changepoint{ Fitness| RMSE | MAE | MAPE

PAR (0:3) / 1.203 | 0.247 | 0.221| 2.356
PAR (1:3:10) 1989 1.211 | 0.273 | 0.213| 2.266
PAR (2:3.12) 1977, 1989 1.214 | 0.272 | 0.213| 2.264

PAR (3:3:10) 1970, 1988, 1998 | 1.224 | 0.314 | 0.251| 2.610

Table 4.2: Results of evaluation criteria of the logarithnu forecast errors for Garonne

number p is small. In our case it is reasonable because the autoregres procedure
must capture short term dependence, while the underlying bahiour is mainly ac-
counted by analysis of regime changes. Genetic operatorslaates are chosen as in
subsection 4.4.1.

Before running the GA time series are logarithmically trangifrmed and last year
is removed, as it is used to evaluate forecasting, which is pmed by standard
one-step-ahead procedure. Root Mean Square Error (RMSE), MeAbsolute Error
(MAE) and Mean Absolute Percentage Error (MAPE) have been selesd as fore-
casting accuracy indicators (an account on these measurssgiven in Hyndman &
Koehler, 2006). Several experiments have been conductedsidering various com-
binations of model external parameterp, mrl and M . Conditioning on four possible
values ofM , which include stationary model (no changepoints) and sitd@ns with
possible structural changes up to, respectively, 1, 2 and B¢ selected four models
for which the best value of tness function has been observedoiecasting accuracy
of these models, labelled as PAR .p.mi) (M = 0;1;2; 3), will be then evaluated.

Garonne river

The Garonne river, which ows through Spain and France, is th third largest river
in France in terms of ow. Its total length is about 647 km with a catchment area
of 51500 kn3 at Tonneins. It is the main contributor to the Gironde Estuarywhich
is the major European uvial-estuarine system. Flow measuseare recorded at the
Tonneins gauging station, where there is no tidal e ect. Datare obtained from
daily discharge measurements in cubic meter per second(s) from January 1959
to December 2010 (DIREN-Banque Hydro, French water monitorg). Daily data
ows are then transformed in monthly data consisting in ows a&eraged for one
month. The nal time series of mean monthly ows of Garonne,rbm January 1959
to December 2010, including 624 observation (52 years), Hasen analyzed also in
Ursu & Pereau (2016). It is shown, along with log-transformedata, in Figure 4.3.
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Table 4.2 shows results on changepoint detection, goodne$st and forecasting
accuracy. We observe that years 1988 or 1989 are detected assgimle changepoints
in all con gurations. According to Caballero et al. (2007), gars 1988-1989 seems
to be the driest in decade 1980-1990. Moreover, the air termptire over Western
Europe showed an abrupt shift at the end of 1980s. For a bettemderstanding
of climatic changes and their impact on water resources, Babois et al. (2015)
studied a subset of 119 temperatures, 122 rainfall and 30 hypdnetric stations over
the entire France. They detected a shift in annual mean air eperature in 1987-
1988 for more than 75% of the 119 temperature stations. Theysa detect a shift
between 1985 and 1990 for 18 hydrometric stations.

As far as goodness of tis concerned, we observe that tnesslwas are increasing
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Figure 4.5: Logarithmic ows of Garonne (full line) and onetep PAR forecasts
(dashed line).
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Figure 4.6: Autocorrelation function (ACF) of the residuals othe tted PAR model
with two changepoints to the Garonne ow.

with the number of regimes. Results on forecasting accurasjlow that model with
no changepoints forecasts better in terms of RMSE with respteof other models,
while best values for MAE and MAPE are observed for three regirmenodel. In this
comparison we select this latter model considering both germances on estimation
and forecasting. Figure 4.4 shows the segmentation selectedhis model, while in
Figure 4.5 the true and predicted logarithmic values of Garare ows are reported.
As a diagnostic check, the residual autocorrelations for the regimes model up to
lag 36 have been computed. They are reported in Figure 4.6 antbpide evidence
on adequacy of the proposed model.

Saugeen river

The Saugeen River is located in southern Ontario, Canada; litegins in the Osprey
Wetland Conservation Lands and ows generally north-westlzout 160 kilometres
(99 miles) before exiting into Lake Huron. Starting from 195@ is served by Saugeen
Valley Conservation Authority (SVCA), a corporate body founad for managing and
preserving water and other natural resources in river wateined. Data analyzed are
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Years of changepoint Fitness| RMSE | MAE | MAPE

PAR (0.1 / 1.187 | 0.485 | 0.371| 11.184
PAR (1.1.7) 1970 1.191 | 0.352 | 0.286| 9.017
PAR (2:3:5) 1965, 1970 1.207 | 0.375 | 0.296 | 9.338

PARg,7 | 1950, 1958, 1970 | 1.201 | 0.376 | 0.296 | 9.264

Table 4.3: Results of evaluation criteria of the logarithna forecast errors for Saugeen
river

average monthly river ow from January 1915 until December 185, measured at
Walkerton, Ontario, and are showed in Figure 4.7. This serieamong many other
river ow data, is discussed in Noakes et al. (1985).
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Figure 4.7: Monthly ows (up) and logarithmic monthly ows for Saugeen river

Table 4.3 shows results of optimal models: year 1970 is alwaletected as possible
changepoint. One reason would be related to works aimed atomstructing Denny's
Dam, in which a popular conservation area for shing is locad. In fact, between
the end of 1960s and the beginning of 1970s, Great Lakes Figh€ommission
managed to rebuild Denny's Dam in order to provide an e ecti® bloackage against
parasites such as sea lamprey, preventing them from in ltteng in Saugeen river.
Being Denny's Dam among the biggest dykes of river course shtould have had a
non ignorable e ect on its ow. There have also been importanhuman work on
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Figure 4.8: Changepoint detected on year 1970 for Saugeen
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Figure 4.9: Autocorrelation function (ACF) of the residuals oftted PAR model
with one changepoint to the Saugeen ow.

Saugeen in the 1950s: main reason of SVCA creation in 1950 wasleed, ood
control management. Walkerton business district, which ishie gauging station, has
been subject to major oods in early and mid 1900. This has l¢d the construction,
starting from 1956, of 2.4 km of dykes and oodwalls to protéthe central business
district as well as residential neighborhoods from poter oods.

Concerning estimation and forecasting, the best tness isbtained for model
with two changepoints, and forecasting accuracy is found stefor model with single
changepoint considering all measures. Figure 4.8 plots tirseries with this change-
point. We shall also perform some comparison with results éferature. Wong et
al. (2007) proposed a functional-coe cient autoregressio(NFCAR) model in order
to estimate and forecast monthly ows of Saugeen. Forecastj performance, mea-
sured on natural data, have been compared to PAR(1) model rdsuby Noakes et
al. (1985), resulting in an improvement in terms oMAE from 108986 to 103689.
Corresponding value of our modelP AR (1.1.7) (with one changepoint) computed on
natural data is 94827, which further improves performance of both standard¥R (1)
model and NFCAR. Residual analysis, shown in Figure 4.9, con renadequacy of
our model.
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4.5 Concluding remarks

This chapter proposed a method to account for seasonality @rstructural changes
in time series by employing PAR models linked at di erent chagepoints. GA based
identi cation showed promising results on both simulatios and real data. Applica-
tion of procedure on river ows data of Garonne (France) and $geen (Canada),
for which changepoints could be possibly due to both human tagties and cli-
matic oscillations, proved also good performances in terno$ forecasting, a highly
demanding issue in hydrology.

In our study we examined monthly data with changepoints alleed only at the
end of the year (that is, a multiple of nhumber of seasons). Modations of the
method proposed in the present paper are under study: teclyuies for monthly,
weekly or daily time series with periodic structure allowig changepoints at any
season are worth pursuing. In fact, detecting a changepoint the middle of a year
will prevent dispersing its e ects over adjacent seasons. dveover, as far as PAR
models are based on a large number of parameters, one coulésiion on whether
it is necessary to consider a separate AR model for each seaswe allowed to build
subset PAR models in order to conveniently decrease numberpdrameters, but a
considerable gain in parsimony would be achieved by redugimumber of seasons
in PAR model (Hipel & McLeod, 1994 and Franses & Paap, 2004 proped several
hypothesis tests). Lastly, it is known that a stationary aubregressive process has
a short memory (Brockwell & Davis, 1991; Robinson, 2003). e series which
exhibit long range dependence are characterized by autoeations which decays
very slowly, while a stationary autoregressive process lekapidly decaying autocor-
relations. Focusing on our case study, hydrological datamgrally exhibit structural
changes and long range dependence (Song & Bondon, 2013). réfae long memory
process with periodic structure could be appropriate for lirological data.



Conclusions

In this thesis we analyzed a selection of statistical infemee problems employing Evo-
lutionary Algorithms (EAs) as computational tool. In this eld they are considered
a non-standard procedure, so their behaviour is not generalyell understood and
there is lack of an established theoretical background. Imé course of dissertation
we studied EAs from di erent statistical points of view, makirg our contributions

on the state-of-art many-sided.

Chapter 2 was concerned with model parametric estimation biAs, from a
classical inference point of view. In fact we analyzed the lh&viour of EA-based
estimators by evaluating their variability and asymptotice ciency, as usually done
in classical inference theory. The non-standard elementtisat we consider the EA
as a random variable in the analysis, which introduces a furér source of variabil-
ity. The statistical and computational tradeo question allows to set the analysis
in realistic situations, which have become crucial as long &ize of datasets is dra-
matically increasing. Our analysis is not restricted to EAs Wt is valid also for any
stochastic algorithm having property of global convergee¢ so natural future con-
tributions would be devoted to generalize this procedure tother algorithms, maybe
also related to an evolutionary behaviour (such as Particlswarm Optimization). In
addiction, our method could be improved by summarizing theavariance matrices
in other possible ways (we considered trace of covariancetmg but other choices,
like the determinant for example, are plausible).

In Chapter 3 an overview on algorithms that conjugates EC plasophy and
Markov Chain Monte Carlo (MCMC) methodology has been given. Ahough MCMC
is a general procedure, as statisticians we can set the preinl in a Bayesian inference
framework, where problems of sampling from complex distultions are crucial. Con-
tributions reviewed in the course of chapter have introducemany EAs with many
di erent strategies for sampling from complex target distibutions is on the agenda.
They have been proposed in di erent elds of science, sometés independently on
each other: we analyzed them from an EC prospective, trying tunify them in a
common framework and highlighting the strengths and weaknsss. Future work is
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related to adaptive MCMC strategies, which have already beeproven to be e ec-
tive by some authors of our review, and could decisively impve EC based MCMC
methods on both the computational and e ciency side.

Chapter 4 focused on time series analysis. GAs have been emgtbfor building
a complex model, which account for both seasonality, by usé BAR models, and
regime changes. Proposed methodology has been proven to keetee in capturing
both of these features in data, as shown in simulations andver ow data. As the
procedure seems promising it can be naturally improved: wesasned that structural
changes could fall only at the end of the year, but it would be evth pursuing to let
it occur at any season of the year, as it would be also prevenisgersing its e ects
over adjacent seasons. Also a considerable gain in parsimowyuld be achieved by
reducing the number of seasons in PAR models, because they possibly not all
essential. Lastly, beside hydrology, this kind of model ctilibe successfully applied
in many other elds, like climatology (there are already som papers dealing with
periodic modeling and structural breaks detection) or alsmance.

In conclusion, we truly hope that the topics proposed and ahged in this work,
including discussions of literature, may stimulate new ideaof research.
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