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Abstract This paper proposes an extension of Peri-

odic AutoRegressive (PAR) modelling for time series

with evolving features. The large scale of modern datasets,

in fact, implies that the time span may subtend several

evolving patterns of the underlying series, affecting also

seasonality. The proposed model allows several regimes

in time and a possibly different PAR process with a

trend term in each regime. The means, autocorrela-

tions and residual variances may change both with the

regime and the season, resulting in a very large number

of parameters. Therefore as a second step we propose

a grouping procedure on the PAR parameters, in order

to obtain a more parsimonious and concise model. The

model selection procedure is a complex combinatorial

problem, and it is solved basing on Genetic Algorithms

that optimize an information criterion. The model is

tested in both simulation studies and real data analysis

from different fields, proving to be effective for a wide

range of series with evolving features, and competitive

with respect to more specific models.
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1 Introduction

In modern times an increasing amount of data is avail-

able. For time series this implies that both the obser-

vation period increases, and the time interval between

observations decreases. But series observed over a very

large time span are usually subject to changes of their

structure and features, concerning both the first order

(means) and the second order (variance and autocorre-

lations) properties. Moreover, due to the usually infra-

annual observation rate, seasonality is present and can-

not be disregarded. To analyse such a complex scenario,

sufficiently simple models are needed for describing, and

following in their evolution, both first and second order

behaviour of the time series.

The present research is concerned with time series

with trend and seasonality, and an evolving structure.

We shall consider a framework for which the seasonality

has a complex structure, and has an effect on means,

variances and autocorrelations of the underlying pro-

cess. We shall base our procedures on periodic mod-

elling (Gladyshev 1961). Such methods have been intro-

duced because standard linear filtering techniques have

been proven to be not adequate for dealing with sea-

sonality in the autocorrelation structure (see Franses

1995), so periodic modelling is suitable for our goals.

We shall focus on Periodic AutoRegressive (PAR) mod-

els, for which each season of the year follows a possibly

different AR process, with season-varying means and

residual variances (for an account see Franses and Paap

2004; Hipel and McLeod 1994).

The evolving structure will be analysed in the frame-

work of structural changes specifications (Bai and Per-

ron 1998; Zeileis et al. 2003; Davis et al. 2006; Capo-

rale et al. 2012). Therefore, we will assume the possible

presence of several regimes in time, where the trend
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slope, the means, the autocorrelations and the residual

variances can have a different behaviour. The resulting

model will naturally require a very large number of pa-

rameters, so its specification is a complex combinatorial

problem. We shall adopt a strategy based on Genetic

Algorithms (GAs) (Holland 1992) for optimizing an in-

formation criterion, a choice that has been often used

for analysing both independent data (Kapetanios 2007)

and time series (e. g. Baragona et al. 2004). Use of a

GA for identifying a PAR model was first introduced by

Ursu and Turkman (2012). An alternative, if extensive

parallel computing facilities are available, is complete

enumeration (e. g. Kontoghiorghes 2005).

The main contribution of this paper is to develop

a flexible procedure that allows to deal with evolving

seasonal variations in the most concise way. In fact, the

model outlined above is composed by many parame-

ters, referred to both the regimes and the seasonal pat-

terns, but may be not all of them are necessary. The

proposed procedure allows to build more parsimonious

representations of the model, in order to facilitate the

interpretation of results. We employ subset selection to

decrease the number of AR parameters, but a more de-

cisive gain in parsimony can be achieved by grouping

the seasonal parameters. For example, if we observe a

monthly hydrological time series we may find out that

the hottest and the coldest months share, respectively,

a similar behaviour as the mean level is considered: in

that case we could consider only two seasonal means in

the model instead of twelve, and the same may not hold

true for the autocorrelation structure. Another exam-

ple would be the so-called Monday effect in daily stock

exchange data: that specific day, as the stock market

re-opens, may require a set of parameters completely

different with respect to the other days. These kind

of problems have been generally accounted for in lit-

erature by means of hypothesis testing: in Franses and

Paap (2004) a test of equality among all the autoregres-

sive parameters is conducted to compare the PAR with

a non periodic AR process; a test proposed in Thomp-

stone et al. (1985) allows to group together the seasonal

means and AR parameters of two adjacent months bas-

ing on the equality of residual variances. Instead, our

proposal allows to compare all possible arrangements

of the seasonal positions (e. g. months) into groups and

to select the best according to a specific criterion.

The paper is structured as follows: Section 2 intro-

duces the models; Section 3 details the implementation

of the computational method; Section 4 is concerned

with a simulation study; Section 5 presents some appli-

cations and Section 6 concludes.

2 Model

We outline the model employed in the paper, which gen-

eralizes some procedures introduced in Cucina et al.

(2018) and Battaglia et al. (2018). It concerns a sea-

sonal time series Xt, (t = 1, ..., N) observed S times

a year, whose behaviour is not homogeneous during

the observation period. Thus m change times τ1, ..., τm
specify the existence of m + 1 regimes, in which the

model may change its structure.

In each regime j (j = 1, ...,m + 1) the model also

allows pooling the seasonal parameters, that regulate

both the first and the second order properties of the un-

derlying process. According to this parsimonious strat-

egy, the same parameters may be adopted for describ-

ing a number of adjacent seasonal positions, avoiding

a possible excess of detail. Let us consider the case of

monthly data, for which S = 12 and we label January

as month 1, February as month 2, and so on. We could

provide a description of the mean function using only

two parameters, for example the months from 11 to 3

and from 4 to 10: in that case the number of seasons

is decreased to s
(j)
M = 2. The labels of the months, to

be grouped, are taken relative to the seasonal position

of the first observation. But since we allow arbitrary

season grouping, an additional parameter is needed to

determine the starting months of each season. We in-

dicate with f
(j)
M the first month of the first completely

observed season for regime j. These parameters have an

influence on how the seasons will be grouped. The re-

sulting arrangement is unconstrained in terms of num-

ber (between 1 and S) and size of the groups, and will

be independently derived for the seasonal means and

the AR models, these latter including the autoregres-

sive parameters and the residual variances (for the sea-

son arrangement of the AR models we use the notation

s
(j)
AR for the number of seasons and f

(j)
AR for the first

observation of the first completely observed season of

regime j).

For each regime j (j = 1, . . . ,m + 1) we denote by

τj−1 the starting time and by τj−1 the last time, with:

1 ≡ τ0 < τ1 < . . . < τm < τm+1 ≡ N + 1.

In order to ensure reliable AR estimates, we require

at least L observations in each regime. The model for

regime j is defined by:

Xt = a(j) + b(j)t+ µ(j)(k∗) +Wt, τj−1 ≤ t < τj ,

Wt =

p∑
i=1

φ
(j)
k (i)Wt−i + εt, τj−1 ≤ t < τj ,

where a(j) and b(j) are trend parameters, µ(j)(k∗) are

the seasonal means, Wt is a PAR model, for which
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φ
(j)
k (i) (i = 1, ..., p) are the AR parameters and εt is a

periodic white noise with variance σ2
j,k. Indices k∗ and

k denote, respectively, the season for the mean and the

AR model at time t, and the number of seasonal groups

s
(j)
M and s

(j)
AR are possibly different for each regime j.

Our model is an extension of that introduced in

Franses and Paap (2004) because considers regime changes,

and an extension of the model proposed in Lu et al.

(2010) because allows regime-varying trend and PAR

structures. A similar model, but without regime changes,

was considered by So and Chung (2014): they assume a

non periodic AR model but allow each seasonal mean to

be stochastically varying around a long-term stationary

level, rather than deterministic as in our case.

The proposed model is composed by three kind of

parameters: the external parameters, which are chosen

by the user or are implicitly derived from the avail-

able data; the structural parameters, which include the

change times that specify the regime structure, the sea-

sonal arrangements features and the indicators of sub-

set models; the regression and autoregression parame-

ters.

The seasonal arrangement is specified by a vector

v
(j)
M (k∗) (v

(j)
AR(k) for the AR models) that indicates the

starting seasonal position of each group. The subset

models specification is indicated by binary vectors δ
(j)
k

of size p that denote presence (zero) or absence (one)

of the parameter at each lag. In summary, consider-

ing regime j = 1, . . . ,m + 1, season of the mean k∗ =

1 . . . s
(j)
M , season of the AR model k = 1 . . . s

(j)
AR, lag

i = 1, . . . , p, the parameters may be listed as follows:

– External parameters
N Number of observations

S Number of observations per year

p Maximum AR order

C Maximum number of regimes

L Minimum number of observations per regime
– Structural parameters

m Number of change times

τj Change times

δ
(j)
k Subset PAR indicators

s
(j)
M , s

(j)
AR Number of groups for the

means and the AR models

v
(j)
M (k∗), v

(j)
AR(k) Seasonal arrang. structure

for means and AR models

f
(j)
M , f

(j)
AR Starting observation for

means and AR models
– Regression parameters

a(j), b(j) Trend parameters

µ(j)(k∗) Seasonal means

φ
(j)
k (i) AR parameters

The main difficulty in building the model is the

specification of structural parameters, because it is a

complex combinatorial problem. We base our proce-

dure on information theoretic ideas for which, infor-

mally, a model dominates another if it has a better fit

while not being much more complex. It is a popular

approach to model selection and requires the adoption

of the model that optimizes a form of penalized likeli-

hood, often called information criterion (e. g. Sin and

White 1996). Such criteria are widely employed in lin-

ear and time series model building: most frequent is

Akaike’s AIC, but also others (e. g. Schwarz, Hannan

and Quinn) are adopted. A generic form of information

criterion (IC) for dealing with a multi-regime model

with seasonality like the present one may be written:

IC =

m+1∑
j=1

s
(j)
AR∑

k=1

[njk log σ̂2
jk + πjk · Pjk], (1)

where njk is the length of the subseries corresponding to

regime j and season k, σ̂2
jk is the average of the squared

estimated residuals of that subseries, Pjk is the number

of parameters of regime j and season k, and πjk is the

related penalization.

Following the famous Box’s dictum (Box 1976) All

models are wrong but some are useful we do not assume

an underlying data generating process, but rather as-

sign a score to each possible model, and the best one

according to such score shall be selected. A wide dis-

cussion on this topic is provided in Kapetanios (2007).

3 Implementation

A model is specified by external, structural and regres-

sion parameters and is evaluated by an information cri-

terion of the form (1). Given the structural parameters,

the best values of the regression parameters a(j), b(j),

µ(j)(k∗) and φ
(j)
k (i) may be estimated by least squares

and the residual variance estimate σ̂2
jk is obtained by

the average of the estimated squared residuals {ε̂2t} with

t belonging to regime j and season k. One referee sug-

gested to model the mean functions µ(j)(·) (that are

periodic functions with period s
(j)
M ) by trigonometric

polynomials. This may be done without difficulty by a

simple modification in the design matrix of the least

squares estimation, and may provide additional parsi-

mony, since not all the harmonic cycles may be neces-

sary, when the number of seasons for the mean s
(j)
M is

large.

The specification of structural parameters, on the

other hand, will be tackled by means of a Genetic Al-

gorithm (GA). The GA was introduced originally by
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Holland (1992) as a formal imitation of the evolution of

biological systems towards adaptation to the environ-

ment. It revealed soon its potential in solving statistical

problems (Chatterjee et al. 1996) and has been success-

fully employed for problems similar to the present one

(e. g. Baragona et al. 2004; Davis et al. 2006; Lu et al.

2010). A GA is a population-based evolutionary algo-

rithm and proceeds iteratively in rounds (called gen-

erations) through stochastic rules (called genetic op-

erators). Each possible solution is codified into a nu-

meric (generally binary) vector called chromosome, and

the goodness of that solution is expressed by a numer-

ical function of the chromosome, called fitness func-

tion. The population includes several chromosomes and

evolves through generations by reproduction of selected

chromosomes (a stochastic mechanism called selection),

better chromosomes in terms of fitness having a larger

probability to survive in the next generation. Moreover,

new chromosomes appear in the new population, origi-

nated by genetic operators: mutation (random changes

of any binary digit) and recombination of genetic ma-

terial (crossover operator: exchange of binary code por-

tions between two chromosomes).

The GA, like many metaheuristic algorithms, is a

stochastic search device for exploring a large discrete

space of solutions, instead of an exhaustive enumera-

tion. Under some assumptions the sequence of the best

chromosomes at each generation converges in proba-

bility to the optimum (assumed unique), but the GA

does not guarantee to reach the best solution in every

instance. However in some cases, like the present one,

the choice of some structural parameters, whose possi-

ble different values are not too many, may be done by

complete enumeration, reaching the best result surely.

This is possible for the subset indicators δ
(j)
k : they will

not be coded in the chromosome, but all the possible 2p

subset models, for any given arrangement of the other

structural parameters, will be estimated inside the fit-

ness function, and the most fit retained. It is suitable

because we consider relatively small orders p and the

least squares estimation of subset AR models is fast,

and it reduces the solution space by a factor 2p.

A further considerable simplification of the search

process may be achieved by observing that our struc-

tural parameters are related to two different structures:

the trend and change times on one side, and the seasons

arrangement and the PAR models on the other. These

two sets of parameters may be evolved by different GAs,

thus we shall adopt a procedure in two stages.

In the first stage a GA will be run to select the

number of change times m, the change times τj and the

trend parameters a(j) and b(j). To avoid interactions,

in this stage we consider full PAR models, different for

each seasonal position (e. g. months), i. e. with s
(j)
M =

s
(j)
AR = S for any j. This procedure is more effective than

the simpler sequential addition of change points like

forward or stepwise methods (as discussed e. g. by Davis

et al. 2006; Li and Lund 2012) because it approaches

the global optimum examining a much bigger portion

of the search space.

In the second stage, given the number of regimes

and the change times, a second GA runs for selecting

the optimal values of the remaining structural param-

eters: the number of different seasons in each regime,

the length of each season, the subset indicators, the first

observations f
(j)
M and f

(j)
AR. For these two last kinds of

parameters we shall adopt complete enumeration as it

will be explained in the next subsection. Thus our pro-

posed procedure uses partly a GA and partly complete

enumeration, so it may be considered a hybrid algo-

rithm.

An implementation of GAs requires three kinds of

critical choices: the coding procedure, the fitness func-

tion and the genetic operators. Moreover, the complex-

ity of the present model selection problem suggests to

derive some alternative, faster though sub-optimal, com-

putational strategies.

3.1 Coding

The task of encoding the values of the structural pa-

rameters into a binary vector (chromosome) is often

the most critical step in the implementation of a GA.

Ideally, there should be a one-to-one correspondence be-

tween chromosomes and admissible solutions, but this

is rarely possible when the solution space is not a carte-

sian product, or the values of the structural parameters

interact with each other (this is especially true in group-

ing problems, see Falkenauer 1998). In particular, an

efficient coding should avoid:

– Illegality: existence of chromosomes that do not cor-

respond to feasible sets of structural parameters

– Redundancy: existence of different chromosomes that

correspond to the same model.

In the GA of the first stage we encode the number of

regime changes m and the change times τj . For m we

can simply use the base 2 representation of its deci-

mal value, and if the maximum number of regimes C

is a multiple of 2 this solution is efficient and legal. On

the contrary, coding the change times τj is not so sim-

ple, because of the ordering constraints and the lower

limitation imposed by the minimum number of observa-

tions per regime L, that implies, given m, the following
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inequalities:

τ1 ≥ L + 1 ; τ2 ≥ τ1 + L ; . . .

τm ≥ τm−1 + L ; N + 1 ≥ τm + L.

We adopt the encoding method introduced by Battaglia

and Protopapas (2012) based on m real values between

zero and one that determine the length of each regime

as a portion of its maximum possible length. Through

this procedure any m-tuple of numbers between zero

and one (h1, . . . , hm) may be converted in a valid ar-

rangement of change times (τ1, . . . , τm). Therefore the

chromosome encodes the thresholds h1, . . . , hm, using

for each of them a n-bit sequence. The size n should be

large enough to allow that all integer values in the ad-

missible range are possible for each τj , but not too large

for avoiding excessive redundance. However redundance

cannot be completely avoided here, because in general

it cannot be avoided that two contiguously coded val-

ues of hj result in an identical integer value for τj , but

no illegality problem arises. The total number of binary

digits of the chromosome in the first stage is therefore

log2 C + n(C − 1).

For the second stage we have a known number of

regimes and the subseries belonging to each regime are

given, so we must evolve the arrangement of the ob-

servations into seasons, both for the mean and for the

AR structures. In each given regime j the S seasonal

positions should be grouped into s
(j)
M different seasons

for the mean and s
(j)
AR different seasons for the PAR

structure. We shall explain the coding procedure of the

possible season groupings only for the mean, for the

PAR structure the method is similar; for ease of ex-

position we consider monthly data (S = 12) starting
in January and label the months from the first obser-

vation: 1 = January, 2 = February, . . ., 12 = Decem-

ber. For any seasonal arrangement, we label with 1 the

first season that is completely observed. Suppose for the

moment that the first season starts at January (and is

therefore labeled as season 1). In this case the arrange-

ments may be described by the labels of the month of

the first observation of each season, through the vector

vM = [vM (1), vM (2), . . . , vM (s
(j)
M )] with

1 = vM (1) < vM (2) < . . . < vM (s
(j)
M ) ≤ S.

These vectors are in a one-to-one correspondence with

the combinations of the objects {2, 3, . . . , S} taken s
(j)
M

at a time. It follows that the total number of different

season arrangements is 2S−1, and they may be coded

directly and efficiently by a binary vector of S− 1 bits.

In such a vector the k-th bit equal to one denotes that a

season starts at the (k+ 1)-th month. Decoding the bi-

nary vector is immediate because vM (1) = 1 and vM (2),

. . . , vM (s
(j)
M ) are taken equal to one plus the positions

of the binary vector where the bit equals one.

As an example, let us consider the following seasonal

arrangement: first season includes months from January

to March (1-3), second season months from April to

July (4-7), third season months from August to Octo-

ber (8-10) and the fourth season includes November and

December (11-12). Here sM = 4, vM = [1, 4, 8, 11] and

the corresponding binary vector is (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0).

This procedure should be repeated for the seasonal

arrangements related to the means and to the PAR

structures, and for each regime. Therefore the over-

all length of the chromosome in the second stage is

2(S−1)(m+1). There is no need to code the number of

seasons s
(j)
M and s

(j)
AR because their values are implicit,

and no illegal chromosomes nor redundancy arise.

We now release the assumption that there is a sea-

son starting in January. Then any grouping associated

to a vector vM may be associated to more than one ac-

tual season arrangement, because the first position of

the first season, indicated by vM (1) = 1, could now be

associated to a month that is not the first of the ob-

served data (i. e. January). Our convention is to label

with 1 the first season which is completely observed,

and to denote by fM the starting month of that season.

It follows that the month of the first observation for

the first season, in the arrangement described by the

vector vM , equals fM and not 1. Consequently, each

season labeled k starts at month vM (k) + fM − 1 (al-

ways assuming that the first observation of the series

relates to month 1). The possible values of fM are de-

termined by the arrangement vM . First of all, if the

number of seasons is S or 1, the only possible value

for fM is 1. On the contrary, when 1 < sM < S,

more cases are possible. However, since the first com-

pletely observed season starts at fM rather than at 1,

it follows that the preceding season (whose label is sM )

was not completely observed, thus its starting month

was earlier than month 1, or vM (sM ) + fM − 1 ≤ S

that implies fM ≤ S − vM (sM ) + 1. We conclude that

for a given season arrangement vM , the possible values

for the first observation fM are contained in the range

[1 , S−vM (sM )+1]. Note further that there is a first ob-

servation fM for the means and one, fAR, for the PAR

structure, and they may be different in each regime.

In order to avoid excessive complexity in the GA, we

decided to completely enumerate all possible configura-

tions of fM and fAR into the fitness computation step,

and to retain the fittest solution.

In the second stage the trend parameters a(j) and

b(j) are estimated again by least squares together with

the seasonally grouped means (see next subsection).
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3.2 Fitness function

The fitness function measures adaptation to the envi-

ronment of each chromosome and has to be maximized,

therefore it is natural to take a monotonically decreas-

ing transformation of the information criterion IC. Our

choice is simply

fitness = exp{−IC/β}. (2)

The convergence speed of a GA usually depends on the

behaviour of the fitness function near the optimum, and

the constant β may be used for avoiding an excessive

flatness (for further details on this issue, also known as

fitness scaling, see e. g. Baragona et al. 2011, p. 53).

However, the most serious differences in the GA results

are determined by the choice of the information crite-

rion itself.

First of all, the value of IC, and consequently of the

fitness, is extremely sensible to the choice of the penaliz-

ing constants. The values corresponding to the original

Akaike criterion (constant equal to 2) may result in a

relatively large number of structural parameters; an al-

ternative may be linking the penalizing constant to the

sample size, in a similar way to the Schwarz criterion

(logN) or the Hannan-Quinn criterion (2c log logN).

Several implementations of model selection related to

structural breaks adopted the minimum description length

(MDL) criterion (e. g. Davis et al. 2006, 2008; Lu et al.

2010; Li and Lund 2012). A further option is selecting

the penalizing constant in such a way that the informa-

tion criterion behaves asymptotically like a hypothesis

test where the null model is nested into the alternative

model (for example testing the absence of seasonality,

or testing that seasonality is constant across regimes),

see Appendix.

For evaluating a model with m regime changes, s
(j)
M

seasons for the mean and s
(j)
AR for the PAR models in the

j−th regime, and the subset indicators δ
(j)
k , we use the

negative exponential transformation (2) of the following

criterion:

IC =

m+1∑
j=1

s
(j)
AR∑

k=1

[njk log(σ̂2
jk) + πjk(p− |δ(j)k |)]

+ π

m+1∑
j=1

s
(j)
M +m+ 1

 , (3)

where the last term of the right hand side accounts for

the seasonal means and the slopes.

In the first stage the chromosome includes only the

number of regimes and the change times, the number

of seasons is assumed equal to S (no season grouping

considered) and the PAR models are estimated with-

out subset constraints, thus we apply (3) with s
(j)
M =

s
(j)
AR = S and |δ(j)k | = 0, ∀ j, k. In order to simplify com-

putations, we regress the data on a linear homogeneous

trend with coefficient b(j) and S monthly averages c
(j)
k ,

then we give to the seasonal means µ(j)(k) the mean-

ing of deviations from the general regime trend letting

a(j) = (c
(j)
1 +c

(j)
2 +. . .+c

(j)
S )/S and µ(j)(k) = c

(j)
k −a(j).

In the second stage we assume the number of regimes

and the change times as given; the chromosome includes

only coding for the season arrangement, while the opti-

mal values of the subset indicators are obtained by com-

plete enumeration. Complete enumeration is also used

for computing the optimal values of the first observa-

tions f
(j)
M and f

(j)
AR, as illustrated previously. For the sec-

ond stage also only a homogeneous trend and s
(j)
M sea-

sonal averages c
(j)
k are estimated for each regime, the in-

tercept a(j) and the seasonal means µ(j)(k) are obtained

from the constraint µ(j)(1)+µ(j)(2)+. . .+µ(j)(s
(j)
M ) = 0.

Lastly, simple linear constraints may be added in the

least squares estimation of a(j), b(j), µ(j)(k) to ensure

that the piecewise linear trend is continuous, though al-

lowing discontinuity may help to identify possible level

changes in the series.

Among possible choices of the information crite-

rion, we shall apply that corresponding to the origi-

nal Akaike’s proposal, setting the penalizing constants

π = πjk = 2 ∀ j, k (labeled AIC) and a version cor-

responding to the Schwarz criterion obtained letting

πjk = log(njk) and π = logN (labeled BIC).

In any case, it is important to stress that different

choices of the penalizing constants (or the information

criterion itself) yield different optimal models (corre-
sponding to the largest fitness).

Finally we observe that the information criterion in

(3) is the simple average of the values for each sub-

series related to a regime and a season. In some cases

(for example when forecasting future observations is of

special interest) it may be appropriate to assign dif-

ferent weights to the different regimes and modify the

criterion accordingly.

3.3 Genetic operators

Both for the first and the second stage our GA imple-

mentation uses only the three classical operators of se-

lection, crossover and mutation. Other more elaborated

techniques introduced in the literature (e. g. inversion)

were not found necessary to obtain satisfactory results.

Like in all optimization applications of GA we adopted

the so-called elitism: the best chromosome in each pop-

ulation survives to the next generation surely.
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Selection is operated using the so-called roulette

wheel rule: each chromosome is assigned a survival prob-

ability equal to the ratio of its fitness to the sum of the

fitness on the entire current population. A simple al-

ternative is using, for computing survival probabilities,

not the fitness itself but its rank in the population (rank

selection).

For crossover we use two alternative types: random

one-cut-point and uniform. Both are applied to pairs

of chromosomes. The first one consists in choosing at

random one specific position (bit) in the two chromo-

somes, and exchanging between them the bits following

that position (cut-point). The uniform crossover, on the

contrary, acts on each single bit position, choosing the

bit value of one of the two chromosomes at random

(with probability 1/2). There is a predefined probabil-

ity (Pcross) that each unit of the population undergoes

a crossover.

The mutation operator is also applied in a standard

way: with a predefined probability (Pmut) each bit of

each chromosome in the population may be subject to

flip from 0 to 1 or from 1 to 0 (bit-flip mutation).

In our experience we found that the results are not

strongly influenced by the type of crossover operator,

while the probabilities Pmut and Pcross have a larger

effect on the performance. By means of a pilot experi-

ment we chose the values Pcross = 0.7 and Pmut = 0.2.

Two other important decisions concern the num-

ber of chromosomes in the population and the num-

ber of generations before stopping the algorithm. As

to the population size, we follow Reeves (1993) who

suggested to consider the probability that, in a ran-

dom population, both values 0 and 1 are represented at

each fixed bit position of the chromosome. If we want

that this probability be at least Q, and the chromo-

some length is G, the population size should be at least

1 + log(−G/ logQ)/ log 2. For a dimension similar to

our problems, and probability Q = 0.99, this rule gives

sizes around 20.

Lastly, the number of generations is also very im-

portant. Few theoretical guidelines are available, except

that the number of generations required for convergence

depends on the dimension of the solution space. Several

stopping rules were proposed, but is important basing

on pilot experiments or preceding experience on prob-

lems of a similar nature.

3.4 Computational strategies

The complexity of a GA and the computational time

required to converge depend on the size of the solution

space and generally increase exponentially, therefore it

is always advisable, whenever possible, to decompose

the optimization problem into subproblems with a so-

lution space of lower dimension.

In the algorithm of the first stage we use n = 10

bits for encoding the real thresholds hj ∈ (0, 1), as they

ensure a sufficient precision for series up to a few thou-

sands observations; with a maximum number of regimes

C, the chromosome length is 10(C − 1) + log2 C bits

and the solution space may be reasonably explored by

a standard GA implementation. Besides, there is no ob-

vious meaningful decomposition of the solution space.

On the contrary, in the second stage where the chro-

mosome length may be up to 2C(S−1), especially with

monthly data (S = 12), the solution space is large and

high-dimensional; moreover the fitness function is com-

putationally heavier, since it includes complete enumer-

ation of subset models and first observations fM and

fAR. Thus, the derivation of alternative sub-optimal

strategies, that may ensure a faster computation, ap-

pears advisable.

A first useful observation is that the information

criterion is additive in the regimes, and the seasonal

arrangement for one regime is independent from those

of the other regimes. Thus the second stage GA may

be applied independently and sequentially with respect

to the regimes. This splits a search in a 2(m+1)` space

into (m+ 1) independent searches in 2` spaces, and re-

duces considerably the required overall number of gen-

erations. To be more precise, there is a certain amount

of dependence between the model of one regime and

that of the preceding regime, because the estimation

of the AR parameters involves the detrended observa-

tions Wt of p preceding data: thus in the parameter

estimation of the model for regime j we use the last p

detrended observations Wt belonging to regime j − 1

(and depending on the model selected for regime j−1).

However we believe that the influence of such a feature

on the overall results is negligible, therefore the pro-

posed strategy may be considered essentially optimal

rather than sub-optimal.

Another possibility of modifying the search is to

evolve separately the seasonal arrangement for the means

and that for the AR structures. More precisely, we may

consider in a first step only chromosomes that encode

different seasonal arrangements for the mean and a full

seasonal splitting for the PAR models, i. e. S different

models for the S seasonal positions. Once obtained the

best seasonal grouping for the means, in a second step

a GA is run with chromosomes that encode the optimal

arrangement found for the means, and evolve the sea-

sonal arrangement for the AR structure. Such a strat-

egy, that we name conditional, requires the use of two

GAs in sequence, each operating on a solution space
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whose dimension is half the original. This idea may

be applied in two different ways: evolving simultane-

ously the season grouping for the means of all regimes,

and then, conditional on the results, finding the season

groupings for the PAR models of all regimes (we call it

a full conditional strategy), or applying the conditional

procedure separately and sequentially for each regime

(we call it a sequential conditional strategy). On a the-

oretical ground such strategies are sub-optimal because

in each step the search for new chromosomes is limited

to a linear subspace of the solution space. However in

our experience the sequential conditional strategy sel-

dom missed to find the optimal solution, and required

a considerably smaller computational time.

4 Simulation studies

We shall conduct five simulation experiments to eval-

uate the performance of the proposed procedure. The

first three simulations are designed to evaluate the abil-

ity of detecting change times, while the last two experi-

ments will be devoted to grouping seasons with similar

autocorrelation structure or seasonal means. A sum-

mary of the parameters used to generate the models

can be found in Table 1. In all the scenarios the {εt}
is generated from normal random variables with zero

mean and σ2
jk = 1,∀j, k. In the first experiment (Model

I) the data are simulated from a PAR(1) model with

two regimes: the seasonal means, indicated with µA(k)

in Table 1, are the same in the two regimes, whereas

both the trend and the AR parameters change at time

τ1 = 481. In the first regime there is no trend and

the PAR structure is given by the parameters φA1 (k),

while in the second the trend slope and intercept are

a(2) = −5 and b(2) = 0.007 and the PAR parame-

ters are all zero. In the second simulation (Model II)

the true model contains two change times located at

τ1 = 481 and τ2 = 841. The seasonal means and the

autocorrelation structures do not change in the three

regimes and are specified by µA(k) and φA1 (k) respec-

tively. The trend parameters in the three regimes are:

a = (0,−5, 1) and b = (0, 0.0138, 0.0033). In the third

simulation (Model III) the true process contains one

change time located at τ1 = 1801. This model has no

trend and a constant PAR(1) structure with respect

to the regimes specified by φA1 (k), while the seasonal

means are equal to µA(k) in the first regime and are

reduced by a factor of 0.25 in the second. In the fourth

simulation (Model IV) the data is simulated from a

PAR(1) with two regimes without trend: in the first

one there are 11 different seasonal means and 4 differ-

ent PAR models denoted by µA(k) and φB1 (k) (monthly

means of July and August are equal), whereas in the
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Fig. 1 Differences between the fitness of the selected model
and that of the actual data generating process for Model IV
and BIC criterion

second there are 4 different seasonal means specified by

µB(k) and a white noise autocorrelation structure. In

the last scenario (Model V) the true process is a sin-

gle regime PAR without trend with 3 different seasonal

means and 4 different PAR models specified by µC(k)

and φC1 (k).

From each model we simulate 500 monthly (S = 12)

time series of length N = 1200, except for the Model

III in which we use N = 3600, and apply our method

to each series with two different fitness functions based,

respectively, on the AIC and BIC criteria (see subsec-

tion 3.2).

As far as the GA settings are concerned, the popu-

lation size is fixed at 50 individuals, the roulette wheel

is used as selection operator, the uniform crossover as

recombination operator with rate 0.7 and the standard

bit-flip mutation with probability set to 0.2. The eli-
tist strategy is also employed, and the reaching of 500

generations is adopted as stopping criterion for the al-

gorithm.

We focus on an important aspect before describing

the simulation results. For some replications the best

model provided by the GA can achieve a larger fitness

than the one of the actual data generating process. Such

finding will not be considered an error, because the aim

of our proposal is not to discover the generating process

but rather to select the best parsimonious model both in

terms of fit and parsimony according to a specific crite-

rion. For example Figure 1 displays the histogram of the

observed differences between the best fitness reached in

each replication and fitness of the actual data generat-

ing process for Model IV and BIC criterion.

For the data simulated from Model I, the percentage

of simulations for which the correct number of regimes

is detected is 96.2% for AIC and 100.0% for the BIC.

The estimated change time locations are reported in

Figure 2. This plot reports the distribution of the de-
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Month µA(k) φA1 (k) µB(k) φB1 (k) µC(k) φC1 (k)
1 -0.61 0.30 0.0 0.5 0.0 0.7
2 0.99 0.30 0.0 0.5 0.0 0.7
3 2.35 0.50 0.0 0.5 0.0 0.7
4 4.91 0.30 8.0 0.3 0.0 0.3
5 8.74 0.35 8.0 0.3 6.0 0.3
6 12.15 0.30 8.0 0.3 6.0 0.3
7 15.55 0.25 15.0 0.3 6.0 0.3
8 15.47 0.10 15.0 -0.1 6.0 -0.2
9 12.79 0.10 15.0 -0.1 2.0 -0.2
10 7.82 0.10 3.0 -0.1 2.0 -0.2
11 2.32 0.20 3.0 0.2 2.0 0.0
12 -0.25 0.20 3.0 0.2 2.0 0.0

Table 1 Summary of the values of monthly means and AR
parameters used in simulations
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Fig. 2 Change times detected for Model I (continuous line:
BIC; dashed line: AIC)

tected change times in the 500 replications. We can ob-

serve that both the curve of AIC and the one related to

BIC have a mode around the true change time location

τ = 481 without large differences.

In the second simulation experiment, Model II has

three regimes different only for the trend, while the

seasonal means and the PAR structure do not change.

With the fitness based on AIC the number of regimes is

correctly specified nearly always (92.2%). The change

times τ1 = 481 and τ2 = 841 are correctly specified

(with an error of ±1) in 56.8% and 89.2% of the repli-

cations, respectively; it seems that the first change time

was more difficult to detect. With the fitness based

on the more parsimonious BIC criterion the number

of regimes is underestimated: a single regime is found

in 67.2% of the replications, two regimes in 19%, and

three regimes in 13.8%.

For the third scenario (Model III) the number of

regimes is always correctly specified for the BIC crite-

rion, and in 87.2% of the replications for AIC. Figure 3

displays a count plot of the detected change times for

the 500 replications with intervals size equal to 5. We

can see that, for example, approximately in 201 repli-

1780 1785 1790 1795 1800 1805 1810
0

50

100

150

200

250

Fig. 3 Change times detected for Model III (continuous line:
BIC; dashed line: AIC)

Number Model IV Model V

of seasons s
(1)
M s

(2)
M s

(1)
AR s

(2)
AR s

(1)
M s

(1)
AR

1 - - - 75 - -
2 - - 14 46 - -
3 - - 53 79 - -
4 - 21 104 117 101 38
5 - 88 135 83 158 145
6 - 152 107 60 139 178
7 - 139 63 28 74 102
8 - 60 18 9 21 33
9 - 26 1 3 6 2
10 64 5 - - 1 1
11 173 2 - - - 1
12 263 7 - - - -

Table 2 Number of estimated season groups, Models IV and
V, fitness based on AIC

Number Model IV Model V

of seasons s
(1)
M s

(2)
M s

(1)
AR s

(2)
AR s

(1)
M s

(1)
AR

1 - - 24 470 - -
2 - - 222 25 - -
3 - - 182 4 - 12
4 - 36 66 1 269 240
5 - 194 6 - 216 224
6 - 219 - - 14 22
7 - 50 - - 1 2
8 - 1 - - - -
9 - - - - - -
10 155 - - - - -
11 171 - - - - -
12 174 - - - - -

Table 3 Number of estimated season groups, Models IV and
V, fitness based on BIC

cations a time in the interval 1799−1803 is detected as

change time.

For Model IV the two regimes were nearly always

correctly selected (94% of the replications for AIC, 100%

for BIC) and similar findings for the single regime Model

V (97% of the replications for AIC, 100% for BIC). The

detailed results on the number of specified seasons for

means (sM ) and the PAR structure (sAR) are reported
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in Table 2 for AIC and Table 3 for BIC. It may be ob-

served that the number of specified seasons tends to be

larger than expected, slightly with the BIC and more

widely with the AIC criterion. Such over-selection is

more evident for the AR models than for the seasonal

means.

In order to evaluate the results on season group-

ing more synthetically, a measure of agreement between

the true arrangement and the estimated one is needed.

We adopt the Rand index (R) (Rand 1971), which is a

standard measure in the literature of cluster analysis.

It ranges from 0 (no pairs classified in the same way

under both arrangements) to 1 (identical groups). The

value of R depends on both the number of clusters and

the number of elements. A drawback of the Rand in-

dex is that its expected value does not take a constant

value under an appropriate null model. Therefore the

adjusted Rand index (R∗) (Hubert and Arabie 1985)

will be also computed. The expected value of R∗ under

a completely random classification is 0. Such measure

will be computed separately for the means and the PAR

structure.

Concerning Model IV, combining the GA with AIC

criterion the average (on 500 replications) of the Rand

index is 0.974 for the seasonal means and 0.778 for the

PAR structure. The Adjusted Rand index is 0.843 for

the seasonal means and is 0.491 for the PAR structure.

Using BIC criterion we obtain an average R equal to

0.982 for the seasonal means and equal to 0.939 for

the PAR structure. The corresponding average of R∗ is

0.899 for the seasonal means and is 0.875 for the PAR

structure.

For Model V, our methods combined with AIC cri-

terion provide an average R equal to 0.898 for the sea-

sonal means and equal to 0.932 for the PAR structure.

The average of R∗ is 0.749 for the seasonal means and

is 0.81 for the PAR structure. With BIC we obtain an

average R of 0.937 for the seasonal means and equal to

0.939 for the PAR structure, while the corresponding

values for R∗ are 0.852 and 0.849.

As an additional evaluation, we shall consider also

the differences between the estimated partition of the

observations set into seasons and that of the true mod-

els. If the former is a refinement of the latter, no pair of

observations is erroneously split into two true seasons.

We observe that the selected partition is always a re-

finement of the true one in the 500 replications for the

means in every simulation experiment, while the season

arrangement of the AR structures is less precise. To be

more specific, we computed (only for the seasonal ar-

rangement of the AR structure) for each replication the

percentage of observation pairs that, belonging to the

same true season, are correctly classified into the same

Criterion AIC BIC

Percentage Model IV Model V Model IV Model V
0− 60% 1 0 0 13
60− 70% 6 2 2 18
70− 80% 47 9 24 14
80− 90% 105 116 266 283
90− 100% 341 373 208 172

Table 4 Percentages for each replication of the observations
pairs belonging to the same true season for the AR structures
and classified into the same estimated season

estimated season. We report the results in Table 4 for

both Model IV and V. The frequencies are large, better

for the AIC than the BIC, and slightly better for Model

IV than Model V.

We considered also, for comparison, two standard

changepoint tests: the original Cusum test based on re-

cursive residual of Brown et al. (1975) and the Cusum

test based on ordinary least squares (ols) residuals of

Ploberger and Krämer (1992), including in the regres-

sion a constant and the index of time, with size 0.05.

We referred to the R package strucchange (Kleiber et al.

2002) for the computations. Such methods are not de-

signed for dealing with evolving seasonality, and the

results were not satisfactory. On the series simulated

according to Models I and IV all tests suggest no break

in more than 99% of the replications. For Model II

(3 regimes) the Cusum test based on recursive resid-

uals detects, in about 58% of the replications, a break

around the second actual change time (τ2 = 841) and

never the first one, while the ols-based Cusum test de-

tects a unique break around the first change time (τ1 =

481) but only for 24 of the 500 replications. For the sim-

ulations according to Model III, the ols-based Cusum

test detects a break around the actual date τ1 = 1801

in 43 series, while the Cusum based on recursive residu-

als suggests in 137 replications a break towards the last

observations (located between 2500 and 2900). Similar

results were found for Model V (that has no regime

change): the Cusum test based on recursive residuals

detected one break at the last observations in 210 se-

ries, while the ols-based test never suggested any break.

5 Applications

We used our proposed model to analyse time series in

various fields such as climatology, hydrology and eco-

nomics, and found that results are comparable with

more specific models presented in literature. The pro-

posed model privileges parsimony but allows for repro-

ducing both long term and seasonal inhomogeneity, and

the only critical decision left to the user is the choice of

the information criterion.
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In the present applications we adopted the hybrid

algorithm strategy: the regime changes are searched on

complete models, then the season groupings and subset

choices are evaluated by the second stage GA and the

best one retained. The GA population size was 50 and

the number of generations 200. We used roulette wheel

selection with elitist strategy and uniform crossover.

Various specifications of the proposed models were

fitted: a complete model with no restrictions on the

AR parameters and no season grouping; a subset model

with no season grouping but choosing the best subset

AR model for each month according to fitness; a grouped

model where the seasonal parameters for the mean and

for the AR parameters are grouped together in the best

arrangement with respect to fitness; a non periodic AR

model, where the AR parameters are assumed equal for

each month and regime; and finally (if more than one

regime is detected) a constant season grouped model

where we assume that the seasonal components (num-

ber and values of the seasonal means, number, structure

and parameter values of the AR models) are the same

in each regime. The fitness comparison of the different

models helps to highlight the importance of the season-

ality and its evolving behaviour.

5.1 Italian Industrial Production Index

We focus on the time series of monthly Industrial Pro-

duction Index (IPI) in Italy. It is among the most im-

portant macroeconomic indicators, so understanding and

forecasting its behaviour is a fundamental need for many

decision makers. Most of the recent research on this

topic (e. g. Bodo et al. 1991; Bruno and Lupi 2004;

Bulligan et al. 2010; Girardi et al. 2016) is devoted to

forecasting using various proposed leading indicators,

and the forecasts are compared with those of a uni-

variate linear model, generally a seasonal multiplicative

SARIMA(3, 0, 0)×(0, 1, 0)12 model (see Bulligan et al.

2010). We will show that our proposed procedure is su-

perior with respect to such univariate models which do

not use other indicators.

We considered the monthly time series of the IPI

(Ateco class 020, base 2015) from January 1990 to De-

cember 2017 (336 observations)1. The series is displayed

in Figure 4 (left panel). Our proposed models (with or-

der p = 3) were fitted under various specifications and

fitness based on BIC; the results are summarized in Ta-

ble 5.

In all cases two regimes are detected, with a change

point in November, 2008 (the Cusum test with ols resid-

uals detects a break around the same date and an ad-

1 Downloaded from http://dati-congiuntura.istat.it/

ditional break during 1996, while the test based on

recursive residuals does not suggest breaks). Group-

ing means does not provide a substantial advantage in

terms of fitness, since the only suggested merging is

May with June in the first regime and October with

November in the second regime (models with 11 differ-

ent monthly means). The estimated monthly means for

the two regimes are reported in Figure 4 (right panel).

The variance of the series is 313, the variance of the

detrended demeaned series Wt is 23.5, and the global

residual variance ranges from 8 to 9.8 (according to the

model), therefore the variability is explained for more

than 90% by trend and seasonal means, and the peri-

odic autoregression accounts for about 60% of the re-

maining variability.

The comparison of the non periodic AR and con-

stant season models with the other more flexible alter-

natives, both in terms of residual variance and of fitness,

suggests that as far as the second moments are con-

cerned, the seasonal pattern is also relevant and changes

according to the regime.

The best model in terms of fitness is the grouped

season model. For the first regime only four different

AR structures are specified, associated to the months of

April, May to October, November, December to March.

In the second regime, a more articulated PAR model

is suggested, with parameters equal only for December-

January, April-May, August-September. The usual port-

manteau tests applied to global residuals and residuals

of each season are not significant at level 0.05.

The last column in Table 5 shows the results ob-

tained for the SARIMA model (1− 0.167B − 0.269B2

−0.426B3)(1 − B12)Xt = −0.162 + εt that are uni-

formly far less satisfying.

The results of a small forecasting experiment appear

in the last two rows of Table 5. Employing also fresh

data from January to March 2018, we computed one

to six-step-ahead forecasts for origins from January to

September 2017, and the average square forecast errors

for the 9 forecasts at each fixed horizon are reported.

There is a large variability due to the reduced number

of instances, but in general we may conclude that the

forecast ability of the SARIMA and that of the constant

season models are smaller than the other models.

5.2 Central England Temperature monthly data

The CET series of monthly mean surface temperature

for a location in the Midlands region2 is one of the

longest time series available for monthly temperature.

2 Downloaded from http://www.metoffice.gov.uk/hadobs/
hatcet/data/download.html
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Fig. 4 Left panel: Italian industrial production index 1990-2017 (dotted line: estimated trend). Right panel: monthly means,
continuous line: first regime; dotted line: second regime

Model Complete Subset Grouped Const. season AR SARIMA
Regimes 2, 11/2008 2, 11/2008 2, 11/2008 2, 11/2008 2, 11/2008 1

Fitness (×100) 3.70 4.91 5.70 4.24 3.13 3.99
Means (12,12) (12,12) (11,11) 11 11

AR models (12,12) (12,12) (4,9) 8 1
Res. Var. 8.07 8.63 9.86 20.39 23.84 23.35

MSFE(1:3) 34.4, 27.4, 21.2 38.1, 26.1, 28.5 32.8, 27.9, 24.2 45.2, 42.5, 63.6 26.5, 20.3, 24.8 34.4, 36.5, 31.9
MSFE(4:6) 33.2, 42.3, 41.5 29.2, 42.8, 42.6 23.2, 34.2, 40.1 15.2, 35.5, 50.6 24.9, 29.0, 36.7 31.4, 33.7, 28.9

Table 5 Estimated models for the industrial production index series

It starts at year 1659, but since a quality issue arises

for data before 1772, we analysed data from January

1772 to December 2013 (2904 observations). This se-

ries was studied in a recent paper (Proietti and Hille-

brand 2017), where a detailed analysis and review of

the results in literature may also be found. The main

features of the series are a trend change around the be-

ginning of 20-th century, due to global warming, and an

evolving seasonal structure appearing as a shift of the

seasonal cycle toward an earlier inception of the Spring,

that has been identified in the literature as precession of

Earth’s axis of rotation. Proietti and Hillebrand (2017)

consider a state-space model with a separate stochastic

trend for each month and deviations from trend fol-

lowing a PAR(1) model with white noise variance dif-

ferent for each month. To achieve parsimony, for each

parameter type, the 12 monthly values are assumed

to be a linear combination of only five representative

months (January, March, July, October, December). As

a basic measure of goodness of fit, Proietti and Hille-

brand (2017) report the estimated one-step-ahead pre-

diction error variance (averaged over the 12 months)

equal to 1.8486, and the results of a forecasting exer-

cise for multi-step-ahead forecasts with origin moving

from January 1979 to December 2014; the observed av-

erage squared forecast errors appear in the last column

of Table 6. We fitted our proposed models (with order

p = 1 as used in Proietti and Hillebrand) under various

specifications. For the fitness the AIC information cri-

terion (π = 2) was used since the very large number of

observations makes the BIC exceedingly parsimonious.

The results are summarized in Table 6. Two regimes

were selected, with change time at October 1897 and

a larger positive slope in the second regime, agreeing

with the assessed increase in temperature starting at

the beginning of the 20-th century (the Cusum tests did

not detect any break). Most of the variability (around

90%) is accounted for by the trend and the monthly

means, and grouping the monthly means has not a pos-

itive effect on fitness. However, the fitness of the con-

stant season model and of the non periodic model are

smaller than those of the other models, suggesting that

the autocorrelation exhibits a seasonal pattern. Figure

5 (right panel) reports the graph of the monthly means

estimated in the two regimes, and partly supports the

hypothesis of a shift in the seasonal cycle. The effect

of the AR structure is limited, therefore the various

models do not yield much different results, but the best

model in terms of fitness is the grouped season model,

with only 5 different AR structures for the first regime

(months: March-April, May, June-September, October-

November, December-February) and 8 for the second
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Fig. 5 Left panel: CET series and trend (dotted line). Right panel: monthly means, continuous line: first regime; dotted line:
second regime

Model Complete Subset Grouped Const. season AR Proietti Hillebrand
Regimes 2, 10/1897 2, 10/1897 2, 10/1897 2, 10/1897 2, 10/1897 1
Fitness .566 .599 .603 .595 .557 .590
Means (12,12) (12,12) (12,11) 12 12 5

AR models (12,12) (12,12) (5,8) 8 1 5
Res. Var. 1.717 1.718 1.724 1.759 1.776 1.848

MSFE(1:3) 1.71, 1.81, 1.83 1.72, 1.81, 1.83 1.70, 1.80, 1.82 1.72, 1.81, 1.83 1.72, 1.81, 1.83 1.67, 1.79, 1.81
MSFE(4:6) 1.84, 1.85, 1.87 1.84, 1.85, 1.87 1.83, 1.84, 1.86 1.84, 1.85, 1.87 1.84, 1.85, 1.87 1.81, 1.81, 1.81

Table 6 Estimated models for the central England temperature series

regime (months: January-February, March, April-July,

August, September, October, November, December).

None of the usual portmanteau tests applied to global

residuals and residuals of each season suggests to reject

this model. The last rows for each model in Table 6

display the estimated residual variance and the 1 to 6-

step-ahead mean square forecast errors for the forecast

exercise proposed in Proietti and Hillebrand (2017), la-

beled MFSE(1-6). Results are similar, with our models

having a slightly better fit and a slightly worse forecast

ability.

5.3 Saugeen river flow

We shall analyse the Saugeen river flow data, mea-

sured at Walkerton, Ontario. Observations are average

monthly flows in m3/sec from January 1915 to Decem-

ber 19763.

River flows of Saugeen have already been analysed

in Noakes et al. (1985); Thompstone et al. (1985); Wong

et al. (2007). The third paper adapts a functional co-

efficient autoregression for the analysis, while the first

two employ PAR models. Thompstone et al. (1985) also

3 Downloaded from http://www.stats.uwo.ca/faculty/
mcleod/epubs/mhsets/MHSETS.zip

propose a parsimonious version of the PAR, introduced

to reduce the number of parameters, which allows to

group together pairs of adjacent months by means of

tests on equality of variances of fitted residuals. If two

months are joined, this is assumed both for the mean

and AR parameters; moreover, no trend is allowed. We

consider 708 observations from January 1915 to Decem-

ber 1973, order p = 3 and fitness based on BIC. Data

are plotted in Figure 6 (left panel).

No regime change was detected (also by the Cusum

tests) but a slowly increasing trend. Here also various

model specifications were fitted and the results are sum-

marized in Table 7. For this series, the total variance is

explained for nearly 60% by trend and seasonal means,

and the periodic autoregression accounts for about 35%

of the remaining variability.

First of all, the considerably smaller fitness (and

larger residual variance) of the non periodic model sug-

gests that the choice of periodic AR models for this

series is appropriate. It may also be seen that the sub-

set model provides a substantial advantage, in terms of

fitness, on the complete model. The best model is the

grouped seasonal, with 9 seasonal means (only means

of August-September, and December to February are

grouped) and only 5 different AR structures (months of

March, April, May to September, October-November,
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Model Complete Subset Grouped AR
Fitness 3.92 4.36 4.82 4.11
Means 12 12 9 12

AR models 12 12 5 1
Res. Var. 0.175 0.177 0.182 0.210

MSFE (×103) 175 158 163 212

Table 7 Estimated models for the Saugeen river flow series

December to February). None of the usual portman-

teau tests applied to global residuals and residuals of

each season suggests to reject this model. The monthly

means are reported in Figure 6, right panel. We have

also computed out-of-sample one-step-ahead forecasts

for the same range considered by Noakes et al. (1985):

36 months from January 1974 to December 1976, the

observed average square forecast errors are shown in

the last row of Table 7. Noakes et al. (1985) report cor-

responding figures of 186 for the SARIMA(1, 0, 0) ×
(0, 1, 1)12 model and 177 for their best fitted PAR by

BIC criterion (with no trend and no season grouping).

For their model, based on 8 seasons, Thompstone et al.

(1985) report a corresponding error equal to 182.

6 Conclusions

The idea of allowing different regimes in time where

both the trend, the seasonal means and the autocorrela-

tions may change seems adequate for modelling several

phenomena with evolving features inside a large time

span.

More parsimonious but satisfactorily fit models were

obtained by arbitrarily grouping the seasonal patterns.

The balance between goodness of fit and parsimony is

controlled by the information criterion on which the

fitness function is based. The choice of the information

criterion is very important and critical: we have con-

sidered the original Akaike’s and the Schwarz criterion,

but several other forms may be used.

For selecting and estimating a model inside the very

large space of solutions we proposed a procedure based

on genetic algorithms with an efficient coding, that proved

to be effective and successful. Alternative sub-optimal

strategies were also outlined in case the solution space

is exceedingly large and high-dimensional (as may be

the case with weekly or decadal observations).

Finally we observe that many extensions are pos-

sible. A natural generalization is considering smooth

transitions between regimes, as in Teräsvirta (1994). A

further interesting extension would be allowing regime

changes driven not by time, but by the values assumed

by a preceding observation (like in Tong 1990), or both

(like in Battaglia and Protopapas 2012).

Appendix Asymptotic equivalence of a test of

hypothesis and an information criterion

Let us consider two nested models M0 and M1, where M0

has p parameters and M1 has q additional parameters that
under the null hypothesis H0 are assumed equal to zero. A
standard F test under gaussianity for H0 is obtained by the
test statistic:

F =
(SS0 − SS1)/q

SS1/(N − p− q)
(4)

where SS0 and SS1 are the residual sum of squares of the
model M0 and M1 fitted to N observations.

Under the null hypothesis the statistic (4) follows a F
distribution with q and N − p− q degrees of freedom. Let Fα
denote the (1−α)-quantile of that distribution, then hypoth-
esis H0 is rejected at level 1− α whenever F > Fα, or

log(SS0)− log(SS1) > log

(
1 + Fα

q

N − p− q

)
.

For N large the right hand side may be approximated by
Fα q/(N − p− q) and rejection is equivalent to

log(SS0)− log(SS1) > Fα
q

N − p− q

that may be also written IC∗
0−IC∗

1 > 0 where IC∗
0 = log(SS0)+

π∗ p , IC∗
1 = log(SS1) + π∗ (p+ q) and

π∗ =
N

N − p− q
Fα. (5)

It follows that choosing a penalizing constant equal to π∗ in
(5), model M1 will be preferred to model M0 by the infor-
mation criterion whenever the test rejects the null hypothesis
H0.
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