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Abstract

The International Chess Federation (FIDE) imposes a volu-
minous and complex set of player pairing criteria in Swiss-
system chess tournaments and endorses computer programs
that are able to calculate the prescribed pairings. The purpose
of these formalities is to ensure that players are paired fairly
during the tournament and that the final ranking corresponds
to the players’ true strength order.
We contest the official FIDE player pairing routine by pre-
senting alternative pairing rules. These can be enforced by
computing maximum weight matchings in a carefully de-
signed graph. We demonstrate by extensive experiments that
a tournament format using our mechanism 1) yields fairer
pairings in the rounds of the tournament and 2) produces a fi-
nal ranking that reflects the players’ true strengths better than
the state-of-the-art FIDE pairing system.

Introduction
How can one determine the relative strength of players who
engage in a one-on-one competitive game? This is easy to
find out for a group of two players: just let them play a
match. For more players, tournaments solve this problem
by ranking the players after a limited number of pairwise
matches among the participants. The tournament format de-
fines a general structure of matches to be played and the
method for deriving a ranking from the results of those
matches.

Tournament Formats Most tournaments follow an elim-
ination, a round-robin, or a Swiss-system format. In each
round of an elimination tournament, such as the second stage
of the FIFA World Cup, only players who won their match
in the previous round are paired again. The last player stand-
ing wins the tournament, and the remaining players’ strength
can only be estimated very roughly from the round they were
eliminated in. Round-robin tournaments are also called all-
play-all tournaments, because each player plays against each
other player once. The player with the highest score at the
end of the tournament is declared the winner. The pool stage
of the FIFA World Cup consists of round-robin tournaments.

The Swiss-system tournament format is widely used in
competitive games like most e-sports, badminton, and chess,
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the last of which this paper focuses on. In such tournaments,
the number of rounds is predefined, but the pairing of play-
ers in each of these rounds depends on the results of previ-
ous rounds. This format offers a convenient golden middle
way between the earlier mentioned two tournament formats.
However, the features of the Swiss system challenge orga-
nizers greatly. Firstly, unlike in elimination tournaments, the
goal is to determine a whole ranking of the players and not
only to declare the winner. Secondly, the final ranking of
each player is greatly influenced by her assigned opponents,
which is not an issue in round-robin tournaments.

Therefore, a mechanism that computes suitable player
pairings for Swiss-system tournaments is crucially impor-
tant. However, designing such a system is a challenging task
as it boils down to solving a complex combinatorial opti-
mization problem. Interestingly, the state-of-the-art solution
to this problem in chess tournaments relies on a complex set
of declarative rules and not on a combinatorial optimization
algorithm. In this paper we provide an algorithmic approach
and we demonstrate that it outperforms the declarative state-
of-the-art solution. For this, we do not try to mimic the FIDE
solution but instead focus on the most important features of
the Swiss system and derive a maximum weight matching
formulation that enforces them.

The Swiss-System in Chess In Swiss-system chess tour-
naments, there are two well-defined and rigid absolute and
two milder quality pairing criteria.

(A1) No two players play against each other more than once.
(A2) In each round before the last one, the difference of

matches played with white and matches played with
black pieces is between −2 and 2 for every player.

(Q1) Opponents have equal or similar score.
(Q2) Each player has a balanced color distribution.

Criterion (A1) ensures variety, while criterion (A2) ensures
fairness, since the player with white pieces starts the game,
and thus has an advantage over her opponent. These absolute
criteria must be obeyed at any cost, which often enforces the
relaxation of the two quality criteria.

In order to implement criterion (Q1), players with equal
score are grouped into score groups. In each round, a cho-
sen pairing system allocates each player an opponent from
the same score group. If a complete pairing is not possible
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within a score group, then one or more players are moved to
another score group. Criterion (Q2) requires that after each
round of the tournament, the difference between matches
played with black and white pieces is small for each player.

Adhering to these four criteria makes pairing design truly
challenging. Pairings at FIDE tournaments were tradition-
ally calculated manually by so-called arbiters, often using
trial-and-error. Today, pairings are computed by decision-
making software, but the FIDE pairing criteria are still writ-
ten for human instead of computer execution. Over the years,
more and more criteria were added to resolve ambiguities,
which increased the complexity to a level at which pairing
decisions are very challenging to comprehend for most play-
ers and even arbiters.

Related Literature
Novel algorithms that assist tournament scheduling regu-
larly evoke interest in the AI community (Larson, Johans-
son, and Carlsson 2014; Kim and Williams 2015; Chatterjee,
Ibsen-Jensen, and Tkadlec 2016; Gupta et al. 2018; Hoshino
2018). We first elaborate on existing work on comparing
tournament formats, and then turn to approaches that utilize
matchings for scheduling tournaments.

Comparing Tournament Formats Appleton (1995)
gives an overview of tournament formats and compares
them with respect to how often the best player wins. Scarf,
Yusof, and Bilbao (2009) simulate different tournament
formats using team data from the UEFA champions league.
Elmenreich, Ibounig, and Fehérvári (2009) compare several
sorting algorithms, including one based on a Swiss-system
tournament, with respect to their robustness, which is
defined as the degree of similarity between the resulting
ranking and the true strength order of players. They find
round-robin sort, merge sort, and Swiss-system sort to be
the most robust overall.

Automated Matching Approaches A tournament sched-
ule can be seen as a set of matchings—one for each round.
Glickman and Jensen (2005) propose an algorithm based
on maximum weight perfect matchings to find the schedule.
This algorithm maximizes the information gain about play-
ers’ skill. The authors’ approach compares favorably against
random and Swiss-system pairing if at least 16 rounds are
played. However, almost all real-world Swiss-system chess
tournaments have less than 10 rounds according to chess-
results.com (Herzog 2020a).

Kujansuu, Lindberg, and Mäkinen (1999) use the stable
roommates problem, see (Irving 1985), to model a Swiss-
system tournament pairing decision. Each player p has a
preference list, which ranks the other players by how desir-
able a match between player p and each other player would
be. The desirability depends on score difference and color
balance. In comparison to the official FIDE pairing, this ap-
proach produces pairings with slightly better color balance
but higher score differences between paired players, or, in
other words, clearly favors criterion (Q2) over (Q1).

Weighted Matching Models for Chess Tournaments
The two papers closest to ours focus on modeling the exact

FIDE pairing criteria and computing the prescribed pairings.
Ólafsson (1990) pairs players using a maximum weight

matching algorithm on a graph, where players and possible
matches are represented by vertices and edges. Edge weights
are set so that they model the 1985 FIDE pairing criteria.
At that time, pairing criteria were more ambiguous than to-
day, and pairing was done by hand, which sometimes took
several hours. In contrast, using Ólafsson’s method, pairings
could be calculated fast. Pairings calculated with the com-
mercial software built by Ólafsson are claimed to be pre-
ferred by experts to manually calculated pairings. However,
Ólafsson only provides examples and does not present any
comparison based on formal criteria.

A more recent attempt to convert the FIDE pairing criteria
into a weighted matching instance was undertaken by Biró,
Fleiner, and Palincza (2017). Due to the extensive criterion
system, only a subset of the criteria were modeled. The au-
thors show that a pairing respecting these selected criteria
can be calculated in polynomial time, and leave it as a chal-
lenging open question whether the other FIDE criteria can
also be integrated into a single weighted matching model.
The contribution appears to be purely theoretical, since nei-
ther a comparison with other pairing programs, nor imple-
mentation details are provided.

Our work breaks the line of research that attempts to im-
plement the declarative FIDE pairing criteria via weighted
matchings. Instead, we design new pairing rules along with
a different mechanism to compute the pairings, and demon-
strate their superiority compared to the FIDE pairing criteria
and engine. This clearly differentiates our approach from the
one in (Ólafsson 1990; Biró, Fleiner, and Palincza 2017).

Preliminaries and FIDE Criteria
Players are entities participating in a Swiss-system tourna-
ment. Each player has an Elo rating, which is a measure
designed to capture her current playing strength from the
outcome of her earlier matches (Elo 1978). In a match two
players, a and b, play against each other. The three possible
match results are: a wins and b loses, a and b draw, a loses
and b wins. The winner receives 1 point, the loser 0 points,
while a draw is worth 0.5 points. A Swiss-system tourna-
ment consists of multiple rounds, each of which is defined
by a pairing: a set of disjoint pairs of players, where each
pair plays a match. At the end of the tournament, a strict
ranking of the players is derived from the match results.

Bye Allocation In general, each player plays exactly one
match per round. For an odd number of players, one of them
receives a so-called ‘bye’, which is a point rewarded with-
out a match. This is always the player currently ranked last
among those who have not yet received a bye.

Color Balance The FIDE Handbook (FIDE 2020, Chapter
C.04.1) states that ‘For each player the difference between
the number of black and the number of white games shall
not be greater than 2 or less than -2.’ This criterion may
only be relaxed in the last round. This corresponds to our
criterion (A2). Also, a ban on a color that is assigned to a
player three times consecutively, and further milder criteria
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are phrased to ensure a color assignment as close to an alter-
nating white-black sequence as possible (FIDE 2020, Chap-
ters C.04.3.A.6 and C.04.3.C).

Pairing Systems Players are always ranked by their cur-
rent tournament score. Furthermore, within each score group
the players are ranked by their Elo rank. The score groups
and this ranking are the input of the pairing system, which
assigns an opponent to each player. Three main pairing sys-
tems are defined for chess tournaments. Table 1 shows an
example pairing for each of them.

• Dutch: Each score group is cut into an upper and a
lower half. The upper half is then paired against the lower
half so that the ith ranked player in the upper half plays
against the ith ranked player in the lower half. Dutch is
the de facto standard for major chess tournaments.

• Burstein: For each score group, the highest ranked un-
paired player is paired against the lowest ranked unpaired
player repeatedly until all players are paired.

• Monrad: In ascending rank order each unpaired player
in a score group is paired against the next highest ranked
player in that score group.

Dutch Burstein Monrad
1–5 1–8 1–2
2–6 2–7 3–4
3–7 3–6 5–6
4–8 4–5 7–8

Table 1: Example pairing for each pairing system in a score
group of 8 players. Players are referenced by rank within the
score group, i.e., player 1 has the highest Elo rank.

For comparison, we propose two additional pairing systems
based on randomness.

• Random: Every player within a score group is paired
against a random player from her score group.

• Random2: Every player from the top half of her score
group is paired against a random player from the bottom
half of her score group.

Floating Players Players who are paired outside of their
own score group are called floaters. To ensure that oppo-
nents are of similar strength–our criterion (Q1)–, the FIDE
criteria require to minimize the number of such floaters and
aim to float them to a score group of similar score. However,
floating is unavoidable, e.g., in score groups with an odd
number of players, and also in score groups where the first
or second criterion eliminates too many possible matches.

The BBP Pairing Engine A pairing engine is used to
calculate the pairing for each round, based on the results
of previous rounds. The BBP pairing engine was devel-
oped by Bierema (2017). It implements the FIDE criteria
strictly (FIDE 2020, C.04.3 and C.04.4.2) for the Dutch and
Burstein pairing systems and outputs the unique pairing ad-
hering to each of them. BBP uses a weighted matching algo-
rithm, similarly as the approaches in (Ólafsson 1990; Biró,

Fleiner, and Palincza 2017). The main difference to our al-
gorithm is that while the weighted model of BBP was de-
signed to follow the declarative criteria of FIDE and output
the prescribed pairings, our pairing engine relies on a dif-
ferent weighted model, computes completely different pairs,
and while doing so, it is able to reach a better ranking qual-
ity and a higher degree of fairness. The output of Dutch BBP
will serve as a base for our comparisons throughout the pa-
per, because Dutch is the pairing system implemented by all
8 pairing programs currently endorsed by the FIDE (FIDE
2020, C.04.A.10.Annex-3).

Final Ranking The major organizing principle for the fi-
nal ranking of players is obviously the final score. Players
with the same final score are sorted by tiebreakers. The FIDE
(FIDE 2020, Chapter C.02.13) defines 14 types of tiebreak-
ers, and the tournament organizer lists some of them to be
used at the specific tournament. If all tiebreaks fail, the tie is
required to be broken by drawing of lots.

Our Contribution
In this paper, we present a novel mechanism for calculating
pairings in Swiss-system chess tournaments. With this, we
contest the state-of-the-art mechanism endorsed by FIDE.
We compare the two systems by three measures: ranking
quality, number of floaters, and color balance quality, in
accordance with the FIDE tournament schedule goals. Our
main findings are summarized in the following list.

1. We implemented the pairing systems Dutch, Burstein,
Monrad, Random, and Random2 with an extensible and
easy-to-understand approach that uses maximum weight
matchings.

2. The pairing systems in descending order by expected
ranking quality are: Burstein > Random2 > Dutch =
Dutch BBP > Random > Monrad. In particular, our
implementations of Burstein and Random2 both yield
higher ranking quality, while our implementation of
Dutch yields similar ranking quality as the one reached
by the Dutch BBP pairing engine.

3. We utilize our weighted matching model to define a novel
measure called ‘normalized strength difference’, which
we identify as the main reason for a good ranking quality.

4. The pairing systems in ascending order by expected
number of floaters are: Burstein < Random2 = Dutch
= Monrad<Dutch BBP<Random. Compared to Dutch
BBP, our mechanism is fairer in terms of matching more
players within their own score group.

5. All our pairing systems ensure the same color balance
quality as Dutch BBP, with Random even reaching a bet-
ter color balance. Moreover, we show that our approach
can easily be modified to enforce an even stronger color
balance. This does not significantly affect the ranking
quality—only the number of floaters increases slightly.

6. As the previous points demonstrate, our implementations
of Burstein and Random2 either outperform or are on a
par with Dutch BBP. Our implementation of Dutch leads
to pairings that perform just as well or even better than



the ones prescribed by the official FIDE (Dutch) criteria
and computed by Dutch BBP.

Pairings via Maximum Weight Matching
Our novel mechanism is based on computing a maximum
weight matching (MWM) in an auxiliary, suitably weighted
graph. The MWM engine is optimized for simplicity: score
groups, color balances, and the employed pairing system
are modeled by weights, so only a single computation of a
MWM is needed in each round. We now describe the MWM
engine.

Input
Each tournament has n players P = {p1, . . . , pn}, a cho-
sen pairing system (Dutch, Burstein, Monrad, Random, or
Random2), and a maximum allowed color difference β. As
criterion (A2) states, FIDE aims for β = 2. If n is odd, the
weakest performing player who has not received a bye yet is
given one, in accordance with the FIDE rules. In the MWM
engine we will exclude the same player while constructing
the auxiliary graph. Hence, from this point on we can as-
sume that n is even.

Before each round of the tournament, the following input
parameters are defined for each player pi ∈ P :
• Elo(pi): the Elo rating of pi prior to the tournament. This

remains unchanged for all rounds.
• s(pi): the current score of pi, defined as the sum of points

player pi collected so far.
• r(pi): the current rank of pi, calculated from ordering

all players in decreasing order according to their scores
and their Elo ratings. Higher score and higher Elo rating
yield better rank. Players with equal Elo rating are or-
dered randomly at the beginning, and their order is kept
for all rounds.

• cd(pi): the current color difference of pi, defined as the
number of matches played with white minus the number
of matches played with black pieces.

Graph Construction
With these parameters as input, we construct the correspond-
ing auxiliary weighted graph Gr = (V,E,w) for round r as
follows. Let V := P and for all pairs of players pi 6= pj , let
the edge set E contain the edge {pi, pj} if

(1) pi and pj have not yet played against each other, and
(2) |cd(pi) + cd(pj)| < 2β.
These rules ensure criteria (A1) and (A2). The second con-
dition in our model will enforce −2 ≤ cd(pi) ≤ 2 together
with our color assignment rule in Section . In the appendix
we additionally consider a variant where −1 ≤ cd(pi) ≤ 1
is enforced. This implements FIDE’s criterion that the color
assignment should be as close to an alternating white-black
sequence as possible and that no player can be assigned the
same color three times in a row.

The weight of an edge {pi, pj} ∈ E is defined as the tuple
w(pi, pj) := (−|s(pi)−s(pj)|,−|cd(pi)+cd(pj)|, π(pi, pj)),
where the value of π(pi, pj) depends on the pairing system
as follows.

• Monrad: π(pi, pj) := − |r(pi)− r(pj)|.
• Burstein: π(pi, pj) := |r(pi)− r(pj)|1.01.

• Dutch: π(pi, pj) := −
∣∣∣ sg size

2 − |r(pi)− r(pj)|
∣∣∣1.01,

where sg size is set to 0 if pi and pj belong to differ-
ent score groups, and it is the size of the score group of
pi and pj otherwise.

• Random: π(pi, pj) := random number in the interval
(0, 1).

• Random2: π(pi, pj) is set to a random number in the in-
terval (0, 1) if pi and pj belong to different halves of the
same score group, otherwise it is set to a random number
in the interval (−1, 0).

The exponent 1.01 in the function for Burstein rewards a
larger rank difference, i.e., the Burstein pairing in Table 1
indeed carries a larger weight than the Dutch pairing, which
has the same sum of rank differences. Similarly, the expo-
nent for Dutch penalizes a larger distance from sg size

2 . Notice
that this exponent could be an arbitrary number as long as it
is larger than 1.

Algorithm
The edge weights ofGr are compared lexicographically and
a maximum weight matching is sought for. This implies that
pairing players within their score groups has the highest pri-
ority, optimizing color balance is second, and adhering to
the pairing system is last. The comprehensive rules of our
framework consist of our two absolute rules for including an
edge in the graph Gr, and this priority ordering serving as
our quality rule. See Figure 1 for an illustration.

Before round r, we compute a maximum weight match-
ing M in graph Gr and derive the player pairing from the
edges in M . If {pi, pj} ∈ M then the players pi and pj
will play against each other in round r. Between them, the
respective player with the lower color difference will play
white. If they have the same color difference, then colors are
assigned randomly.

Assumptions and Experimental Setup
In our simulations we assume that each player pi ∈ P has
true playing strength str(pi) that is approximated by her Elo
rating Elo(pi) and we treat both values as constant through-
out the tournament. The probabilities of match results and
optimal rankings are defined by the playing strength. More
precisely, each player’s playing strength is a random number
drawn from a uniform distribution of values between 1400
and 2200. We also justified our claims on ranking quality
using other realistic player strength distributions. We elabo-
rate on these in the appendix. The results are in line with the
results for the uniform distribution.

Elo ratings are used for computing r(pi) and for breaking
ties in the final order. The Elo rating of player pi is ran-
domly drawn from a normal distribution with mean str(pi)
and standard deviation 3000−str(pi)

20 . This function mirrors
the assumption that a higher Elo rating estimates the strength
more accurately.



round 2
player rank score cd

p8 p1

p2

p3

p4p5

p6

p7

round 1
player rank score cd

p8 p1

p2

p3

p4p5

p6

p7

round 3
player rank score cd

round 4
player rank score cd

p1 1 1 −1 wp1 1 0 0 b p3 1 2 0 w p4 1 3 −1 w
p3 2 1 +1 bp2 2 0 0 b p4 2 2 0 b p1 2 2 −1 b
p4 3 1 −1 wp3 3 0 0 w p1 3 1 0 b p2 3 2 −1 w
p6 4 1 +1 bp4 4 0 0 b p2 4 1 0 b p3 4 2 +1 b
p2 5 0 −1 wp5 5 0 0 w p6 5 1 0 w p5 5 1 +1 b
p5 6 0 +1 bp6 6 0 0 w p8 6 1 0 w p6 6 1 +1 b
p7 7 0 −1 wp7 7 0 0 b p5 7 0 0 w p8 7 1 +1 w
p8 8 0 +1 bp8 8 0 0 w p7 8 0 0 b p7 8 0 −1 w

p8 p1

p2

p3

p4p5

p6

p7

p8 p1

p2

p3

p4p5

p6

p7

color color color color

G1 G2 G3 G4

Figure 1: Example pairings of a 4-round tournament with 8 players generated via the MWM engine using the Dutch pairing
system. Initially players are sorted decreasingly according to their Elo rating. Bold edges are possible matches within the
same score group whereas dashed edges are other possible matches. The maximum weight matchings are shown in red. Arrows
indicate the match outcomes (winner points to loser, no draws), and the color column shows the corresponding color distribution.
The table for round i + 1 is based on the table of round i. As score and color difference are equal, the pairing in round 1 is
enforced by the Dutch pairing system. The pairing in round 2 is the outcome of optimizing first for criterion (Q1) and then for
criterion (Q2), e.g., in G2 we have w(p1, p3) = w(p4, p6) = (0, 0,−1) and w(p1, p4) = w(p3, p6) = (0,−2, 0) so the MWM
picks the edges {p1, p3} and {p4, p6}. In G3 players p3 and p4 are paired since w(p3, p4) = (0, 0, 0) whereas the weight of any
other incident edge of both p3 and p4 has lexicographically lower weight. The matching in G4 is enforced by maximizing the
number of matches within score groups. If p1 and p2 would be paired, then, since p3 and p4 already played, player p4 would
float to a match with a player with score 1, which implies that no match within the group with score 1 is possible.

To avoid the noise introduced by byes, we assume that
the number of players n is even. The number of rounds is
chosen to lie between dlog2 ne and n

2 , as at least dlog2 ne
rounds ensure that a player who wins all matches is the
sole winner and at most n

2 rounds ensures that, according
to Dirac’s theorem (Dirac 1952), a perfect matching always
exists. The tiebreakers used for obtaining the final tourna-
ment ranking are based on the FIDE recommendation (FIDE
2020, C.02.13.16.5).

Computing the Maximum Weight Matching First we
transform each edge weight given as a tuple to a rational
number. In particular, w(pi, pj) is transformed to 10000 ·
(−|s(pi)− s(pj)|)+100 · (−|cd(pi)+ cd(pj)|)+π(pi, pj).
The factors 10000 and 100 ensure that each lexicographi-
cally maximum solution corresponds to a maximum weight
solution with the new weights and vice versa. We compute
pairings using the LEMON Graph Library (Dezső, Jüttner,
and Kovács 2011) implementation of the maximum weight
perfect matching algorithm, which is based on the blossom
algorithm of Edmonds (1965) and has the same time and
space complexity (Kolmogorov 2009). The implementation
we use has O(nm log n) time complexity, where n is the
number of players and m is the number of edges in the con-
structed graph Gr.

Realistic Probabilistic Model for Match Results The re-
sults of the individual matches are computed via a proba-
bilistic model that is designed to be as realistic as possible.
Match results are drawn at random from a suitably chosen

probability distribution based on the players’ strength and on
the assigned colors for that match. For this, we use the prob-
ability distribution proposed by Milvang (2016), which was
featured in a recent news article of the FIDE commission
System of Pairings and Programs (FIDE SPP Commission
2020). Milvang’s probability distribution was engineered via
a Data Science approach that used real-world data from al-
most 4 million real chess matches from 50 000 tournaments.
It is based on Elo ratings and color information, whereas we
use true strength values instead of Elo ratings to get unbiased
match result probabilities.

Using Milvang’s approach, the probability for a certain
outcome of a match depends on the actual strengths of the
involved players, not only on their strength difference. Draw
probability increases with mean strength of the players. The
probabilities also depend on colors, as the player playing
with white pieces has an advantage. See Table 2 for some
example values drawn from Milvang’s distribution.

Player Strengths Win White Win Black Draw
1200 (w) vs 1400 (b) 26 % 57 % 17 %
2200 (w) vs 2400 (b) 14 % 55 % 31 %
2400 (w) vs 2200 (b) 63 % 11 % 26 %

Table 2: Example match outcome probabilities drawn from
Milvang’s probability distribution (Milvang 2016).

Measuring Ranking Quality Ranking quality measures
how similar the tournament’s final ranking is to the ranking



that sorts the players by their strength. One popular mea-
sure for the difference between two rankings is the Kendall
τ distance (Kendall 1945). It counts the number of discor-
dant pairs: pairs of elements x and y, where x < y in one
ranking, but y < x in the other. We use its normalized vari-
ant, where τ ∈ [−1, 1], and τ = 1 means the rankings are
identical, while τ = −1 means one ranking is the inverse of
the other. A higher Kendall τ is better, because it indicates
a larger degree of similarity between the true and the output
ranking.

We also justify our claims on ranking quality using two
other well-known and possibly more sophisticated similar-
ity measures, the Spearman ρ distance (Spearman 1904) and
normalized discounted cumulative gain (NDCG). We elab-
orate on these measures and their behavior for our problem
in the appendix. The results are in line with the ones derived
for the Kendall τ distance.

Measuring Fairness We measure fairness in terms of the
two relaxable criteria of Swiss-system chess tournaments:
(Q1) on the equal score of opponents and (Q2) on the color
distribution balance. Adhering to (Q1) is measured by the
number of float pairs, which equals the number of matches
with opponents from different score groups throughout the
tournament. We measure the absolute color difference of a
round as the sum of color differences for all players: acd =∑

pi∈P |cd(pi)|. Note that as |cd(pi)| ≥ 1 for all players
after each odd round, acd ≥ n in those rounds.

Presentation of the Data Data is presented in the form
of violin plots (Hintze and Nelson 1998), letter value plots
(Hofmann, Wickham, and Kafadar 2017), and scatter plots
(Friendly and Denis 2005). For violin plots, kernel density
estimation is used to show a smoothed probability density
function of the underlying distribution. Additionally, simi-
lar to box plots, quartiles are shown by dashed lines. Letter
value plots are enhanced box plots that show more quantiles.
Unlike violin plots, they are suitable for discrete values, as
all shown values are actual observations without smoothing.

Our plots compare the MWM implementation of the five
pairing systems with the BBP implementation of Dutch.

Simulation Results
All simulations use the following parameters, unless noted
otherwise:

• number of players n: 32
• number of rounds: 7
• strength range: between 1400 and 2200
• maximum allowed color difference β: 2
• sample size: 100 000

These values were chosen to be as realistic as possible,
based on parameters of more than 320 000 real-world tour-
naments uploaded to the website chess-results.com.1 The
experiments were run on a compute server using version

1The data was kindly provided by Heinz Herzog, author of
the FIDE-endorsed tournament manager Swiss-Manager (Herzog
2020b) and chess-results.com (Herzog 2020a).

20.04.1 of the Ubuntu operating system. It is powered by
48 Intel Xeon Gold 5118 CPUs running at 2.3 GHz and 62.4
GiB of RAM. We emphasize that the standard real-life chal-
lenge at a tournament, that is, computing a single pairing via
a maximum weight matching for a tournament round can be
solved in a fraction of a second on a standard laptop.

Ranking Quality
The pairing system of a Swiss-system tournament has a
major impact on the obtained ranking quality, as Figure 2
shows. Burstein and Random2 achieve the best ranking qual-
ity, followed by Dutch and Dutch BBP. Random has a worse
ranking quality and Monrad performs by far the worst. For
other strength ranges, Figure 3 shows consistent results.

Burstein Dutch BBP Dutch Random2 Random Monrad
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0.6

0.8
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Figure 2: Ranking quality measured by normalized
Kendall τ . A higher value means a better ranking quality.
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Figure 3: Ranking quality measured by normalized
Kendall τ for different strength ranges.

Comparing Dutch to Dutch BBP shows that they behave
very similarly, with slight advantage for Dutch. This is re-
markable, since Dutch BBP is based on complex and rigid
declarative criteria that are time-tested, while Dutch is the
output of our easy-to-understand, purely matching-based ap-
proach. Together with the performance of Burstein and Ran-
dom2 this shows that more transparent pairing systems can
outperform the state-of-the-art Dutch BBP in terms of rank-
ing quality.

We provide additional experimental results on the ranking
quality in the appendix. There we present consistent results
also for fewer or more players, for other strength range sizes,
and for different player strength distributions. Additionally,
we elaborate on how our flexible maximum weight match-
ing model enabled us to detect the exact reason why certain
pairing systems produce better rankings, which might help
designing better pairing systems in the future.

chess-results.com
Swiss-Manager
chess-results.com


Fairness
The highly complex pairing criteria of the FIDE were de-
signed with a focus on two fairness goals phrased as qual-
ity criteria, (Q1): minimizing the number of float pairs and
(Q2): minimizing the absolute color difference.

Criterion (Q1) is at the heart of Swiss-system tournaments
as pairing players of equal score ensures well-balanced
matches. As Figure 4 shows, Burstein, Dutch, and Random2
beat Dutch BBP in terms of the number of float pairs. In the
appendix we show consistent results for other simulation pa-
rameters.
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Figure 4: Number of float pairs out of the 7 · 16 = 112
matches of the tournament. Recall that floating is often un-
avoidable due to the size of the score group. A lower number
indicates a better implementation of criterion (Q1).

Figure 5 focuses on criterion (Q2) and shows that an ab-
solute color difference very similar to the one guaranteed
by Dutch BBP can be achieved via our MWM engine. The
pairing system Random even outperforms Dutch BBP in this
regard. In the appendix, we provide additional experiments
with different numbers of rounds and numbers of players
that lead to consistent results. Also, we report there on exper-
iments in which an even stronger color difference constraint
is enforced, and observe the impact on the obtained ranking
quality and the number of float pairs. Interestingly, the ob-
tained ranking quality is almost the same but this comes at a
cost of a slightly increased number of float pairs.
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Figure 5: Absolute color difference after 6 rounds. A lower
acd means a better color distribution. Recall that a acd ≥ n
for each odd round, while acd = 0 is possible after each
even round.

Hence, our maximum weight matching approach with edge
weights that prioritize matches within score groups and sec-

ondly optimize for color balance is on a par with the so-
phisticated official FIDE criteria for criterion (Q2) and it
even outperforms them for criterion (Q1). Thus, our more
transparent approach ensures the same color balance quality
but achieves even fewer float pairs. Moreover, our approach
also allows for a different trade-off between criteria (Q1) and
(Q2) that does not affect the obtained ranking quality.

Conclusion

The experimental results of our MWM engine with Burstein
or Random2 demonstrate that it is possible to outperform the
state-of-the-art FIDE pairing criteria in terms of both rank-
ing quality and fairness, i.e., criteria (Q1) and (Q2), with a
novel efficient mechanism that is more transparent and in-
telligible to all participants. The direct comparison of our
MWM Dutch engine versus Dutch BBP shows that even if
the same pairing system is used, MWM achieves the same
ranking quality but is more powerful since it yields an im-
proved fairness. We believe that the key to this is the direct
formulation of the most important criteria as a maximum
weight matching problem.

The only scenario for which we might advise against us-
ing our mechanism is when the arbiter has no access to a
computing device. In order to manually produce pairings in
our framework, the arbiter would need to calculate the edge
weights and then execute Edmonds’ blossom algorithm. In-
stead, the FIDE (FIDE 2020, Chapter C.04.3.D) provides
manually executable rules. However, these rules include ex-
haustive search routines that can make the execution very
slow, i.e., highly exponential in the number of players (Biró,
Fleiner, and Palincza 2017). Therefore, the ill-fated arbiter
has to choose between learning to execute Edmonds’ blos-
som algorithm and following a cumbersome exponential-
time pairing routine.

A clear advantage of our mechanism is that it is easily ex-
tendable: as Random and Random2 already demonstrate, a
new pairing system can be implemented simply by specify-
ing how edge weights are calculated. Similarly, as we have
also demonstrated, the color balance can be adjusted by sim-
ply changing the parameter β. By thinning out the edge set in
our graph, we can also reach an alternating black-white se-
quence for each player instead of just minimizing the color
difference in each round. Also, the flexibility of the maxi-
mum weight matching approach proved to be essential for
uncovering the driving force behind the achieved high rank-
ing quality: the normalized strength difference. Hence, our
approach was not only valuable for computing better pair-
ings but also in the analysis of the obtained ranking quality.

Last but not least, the flexibility of the MWM engine
likely allows to incorporate additional quality criteria like
measuring fairness via the average opponent ratings. Also
quality criteria of other games and sports tournaments orga-
nized in the Swiss system can be integrated into the model.
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Appendix

Ranking Quality
In the following we discuss additional simulation experi-
ments that measure the obtained ranking quality for various
parameter settings.

Different Tournament Sizes
We start with experimental results demonstrating that our
findings on the ranking quality remain valid for tournaments
of different sizes in terms of number of players and number
of rounds.

Usually it is expected that a player who wins all matches
also wins the tournament, without being tied for the first
place. This can be ensured by playing at least dlog2 ne
rounds: four rounds for 16 players, five rounds for 32 players
and six rounds for 64 players. Most tournaments are five or
seven rounds long, according to data from chess-results.com
(Herzog 2020a).

In general, more rounds lead to higher ranking quality,
although with diminishing effect, as Figure 6 shows. In
terms of the achieved ranking quality, the MWM engine with
Burstein outperforms Dutch BBP in all cases, except for the
unrealistic case of a tournament with only two rounds.
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Figure 6: Ranking quality after 1-9 rounds, 32 or 64 play-
ers with strength range 1400-2200. Results for Burstein are
shown in blue, Dutch BBP results are shown in orange.

Different Strength Range Sizes
Here we vary the used strength range size, i.e., we sam-
ple the player strengths from different intervals. A smaller
strength range size corresponds to a tournament among play-
ers with similar strength and larger strength range sizes
model tournaments with more heterogeneous players. The
results depicted in Figure 7 show that also for different
strength range sizes the MWM engine with Burstein or Ran-
dom2 outperforms Dutch BBP in terms of ranking quality
and that Dutch is on a par with Dutch BBP.
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Figure 7: Ranking quality measured by normalized Kendall
τ for different strength range sizes.

A higher strength range size results in higher ranking
quality and less variance. The increasing ranking quality can
be explained by a higher mean strength difference, which re-
sults from a larger strength range size. Variance decreases,
because match results become more predictable.

The difference in ranking quality between Burstein and
Dutch BBP is much higher for a strength range size of 400
compared to 800 and 1200. For small strength range sizes in
all Dutch BBP paired matches it is more likely that a weaker
player wins against a stronger opponent, while for Burstein
at least some matches are still predictable.

Different Player Strength Distributions
We provide additional experimental results that indicate that
our findings hold independently of the employed player
strength distributions, i.e., we get the same behavior also
for non-uniform distributions. Since no data is available that
let’s us estimate how realistic player strength distributions
look like, we focus on several natural candidates that devi-
ate strongly from uniform distributions.

First, we considered player strength distributions that are
derived from exponential distributions. For this, we consider
in Figure 8 a case with many strong players and only a few
weak players and in Figure 9 a case with many weak players
and only a few strong players within the given strength range
size. We also considered player strength distributions de-
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Figure 8: Ranking quality measured by normalized Kendall
τ for 32 players with an exponential player strength distri-
bution in the range [1400, 2200] with mean at 2000.

rived from a normal distribution with a mean exactly in the
middle of the strength range size and a standard deviation
of a fourth of the strength range size. See Figure 10 for the
corresponding results.
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Figure 9: Ranking quality measured by normalized Kendall
τ for 32 players with an exponential player strength distri-
bution in the range [1400, 2200] with mean at 1600.
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Figure 10: Ranking quality measured by normalized Kendall
τ for 32 players with a normally distributed player strength
distribution in the range [1400, 2200] with mean at 1800 and
standard deviation of 200.

Finally, we investigated a player strength distribution that
is derived from uniformly sampling player strengths from
the real-world distribution of Elo scores of all 363 275 play-
ers listed by FIDE2, restricted to the desired strength range.
Figure 11 shows also very similar results for this case.
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Figure 11: Ranking quality measured by normalized Kendall
τ for 32 players uniformly sampled from the real-world dis-
tribution of Elo scores restricted to the range [1400, 2200].

Ranking Quality via Spearman ρ and NDCG
For comparison reasons, we provide an evaluation of the
achieved ranking quality via the Spearman ρ and the nor-
malized discounted cumulative gain (NDCG) measures.

Besides Kendall τ , Spearman ρ is commonly used for
comparing rankings. Here, we use a normalized variant of
Spearman ρ, similar to the normalized Kendall τ .

The NDCG measure is not commonly used for comparing
rankings. It is used to evaluate search engines, by assigning

2See https://ratings.fide.com/download lists.phtml for details.

a relevance rating to documents and awarding a higher score
if highly relevant documents are listed early. Applied to our
case, NDCG puts an emphasis on ranking the top players
correctly, while ranking the lowest ranked players correctly
is basically irrelevant.

As shown in Figure 12 and Figure 13, the results with
normalized Spearman ρ and NDCG look almost identical to
the results for normalized Kendall τ in Figure 2.
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Figure 12: Ranking quality measured by normalized Spear-
man ρ.
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Figure 13: Ranking quality measured by the normalized dis-
counted cumulative gain (NDCG).

Also for different strength ranges or range sizes we get con-
sistent results, as shown in Figures 14, 15, 16 and 17.
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Figure 14: Ranking quality measured by normalized Spear-
man ρ.

Reasons for High Ranking Quality
Here we provide experiments that shed light on why
Burstein, Random2, Dutch, and Dutch BBP reach a better
ranking quality than Random and Monrad and why Burstein
and Random2 outperform Dutch BBP.

In order to rank players correctly, their relative playing
strength must be approximated from match results. We call
a match result paradoxical if a weaker player wins against a

https://ratings.fide.com/download_lists.phtml
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Figure 15: Ranking quality measured by the normalized dis-
counted cumulative gain (NDCG).
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Figure 16: Ranking quality measured by normalized Spear-
man ρ.

stronger opponent. Paradoxical match results hinder the ap-
proximation of both players’ strengths, so pairing systems
should aim to minimize the number of paradoxical match
results. Figure 18 confirms this, by showing a strong neg-
ative correlation between the proportion of paradoxical re-
sults and ranking quality for Dutch BBP. A similar correla-
tion can be observed for all pairing systems.

The probability of a paradoxical match result increases as
the strength difference of paired players decreases because
the outcome of those matches is less predictable. In general,
a higher mean strength difference in a tournament lowers
the number of paradoxical match results, which then leads
to better ranking quality. Our results in Section justify the
observation that mean strength difference seems to be posi-
tively correlated with ranking quality, as mean strength dif-
ference is low when using Monrad, medium with Random,
and high for Burstein, Random2 and Dutch/Dutch BBP.

However, when looking at results from Dutch BBP only,
there is a small negative correlation instead, as Figure 19
shows. This is also true for Dutch, Burstein, and Random2.
This seemingly paradoxical correlation can be explained as
follows. A better ranking leads to a smaller mean strength
difference for these pairing systems. In an optimal ranking,
each player is in her correct score group, together with play-
ers of similar strength, so the mean strength difference will
be low. However, in a suboptimal ranking, some players are
in a score group that does not reflect their strength. There-
fore, these players are either stronger or weaker compared to
the other players in their score group, which results in higher
mean strength difference.

Figure 20 shows empirical evidence for this effect: the
pairing in round one is always the same, but paradoxical
match results due to randomness lead to different rankings,
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Figure 17: Ranking quality measured by the normalized dis-
counted cumulative gain (NDCG).
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Figure 18: Correlation between paradoxical results and nor-
malized Kendall τ after seven rounds, paired with Dutch
BBP.
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Figure 19: Correlation between mean strength difference
and normalized Kendall τ after seven rounds, paired with
Dutch BBP.

which then determine the mean strength difference in round
two. In our experiment, the same single randomly paired
first round was played 10 000 times. Each time the ranking
quality after round one and the mean strength difference of
the Dutch BBP pairing for round two was recorded. For the



250 300 350 400 450
Mean Strength Difference

0.4

0.5

0.6

0.7

0.8

Ke
nd

al
l 

Ranking Quality decreases Mean Strength Difference

Burstein Dutch BBP Dutch Random2 Random Monrad
Pairing System

0.8

0.6

0.4

0.2

0.0

0.2

Pe
ar

so
n 

Co
rre

la
tio

n

Figure 20: The scatter plot (top) shows the correlation be-
tween normalized Kendall τ and mean strength difference.
The violin plot (bottom) shows the distribution of Pearson
correlation coefficients if that experiment is repeated for
1 000 different tournaments, whose first round was simu-
lated 1 000 times.

analysis, we use the Pearson correlation coefficient that is
a standard measure for the linear dependence between two
variables. In our case, a negative Pearson correlation coef-
ficient indicates that on average, a higher Kendall τ is ob-
served together with a lower mean strength difference.

The problem with mean strength difference is that it does
not take into account whether a low mean strength difference
was the result of a pairing system’s choice or due to unfavor-
able score groups. This can be avoided by taking the maxi-
mum possible strength difference into account. For this, we
define the normalized strength difference as the total strength
difference divided by the maximum possible total strength
difference.

For computing the normalized strength difference it is es-
sential to calculate the maximum possible strength differ-
ence. For this, we again use our maximum weight match-
ing approach, but this time with a pairing system that max-
imizes strength difference. In particular, we use a modifica-
tion of our Burstein edge weights w(pi, pj) where we set
π(pi, pj) := |str(pi) − str(pj)|. Remember that str(pi)
and str(pj) are the true strength values of players i and
j, respectively. Of course, this new pairing system requires
knowledge of all true player strengths, so it cannot be used
in realistic settings. We only use it as an analytical tool.

Figure 21 compares the normalized strength difference for
Dutch BBP and for our maximum weight matching imple-
mentation of Burstein, which clearly beats Dutch BBP in

ranking quality. Firstly, this figure shows a positive corre-

Figure 21: Correlation between ranking quality and normal-
ized strength difference for Burstein and Dutch BBP after
seven rounds.

lation between normalized strength difference and normal-
ized Kendall τ for each of Burstein and Dutch BBP after
seven rounds. Simulations with each of Dutch, Random2,
Random, and Monrad also indicate a similar positive cor-
relation. Secondly, Figure 21 also demonstrates the posi-
tive correlation between the normalized strength difference
and the ranking quality across pairing systems. In particu-
lar, Burstein clearly beats Dutch BBP in normalized strength
difference and also in ranking quality. This correlation is true
in general: considering all pairing systems, exactly the ones
with a high normalized strength difference (Burstein, Ran-
dom2, Dutch, Dutch BBP) lead to a good ranking quality,
while the ones with medium and low normalized strength
difference (Random and Monrad) lead to medium and low
ranking quality.

To summarize, our flexible maximum weight matching
model enabled us to detect the exact reason why certain pair-
ing systems produce better rankings. Our surprising finding
is that even though at first sight, a high mean strength differ-
ence seems to be the pivotal factor, it is actually a high nor-
malized strength difference that results in a better ranking
quality. This discovery might help designing better pairing
systems in the future.

Fairness
Here we present additional simulation results that measure
the achieved fairness, i.e., results regarding the compliance
with the quality criteria (Q1) and (Q2).

Number of Float Pairs
We consider the obtained number of float pairs for differ-
ent strength ranges and different strength range sizes. Fig-
ures 22 and 23 show that we get consistent results for dif-
ferent strength ranges and different strength range sizes.
Burstein has by far the lowest number of float pairs, but
also Random2 and Dutch perform slightly better than Dutch
BBP.
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Figure 22: Number of float pairs for different strength
ranges.
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Figure 23: Number of float pairs for different strength range
sizes.

Figure 24 shows a direct comparison of the obtained num-
ber of float pairs for Burstein and Dutch BBP for different
numbers of players and different tournament lengths.
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Figure 24: Number of float pairs for different tournament
sizes and lengths. The results for Burstein are shown in blue,
results for Dutch BBP in orange.

Also here we consistently get that Burstein achieves much
fewer float pairs than Dutch BBP.

Absolute Color Difference
The measured absolute color difference increases slightly
with the number of rounds and also with the number of play-
ers, as Figure 25 shows.
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Figure 25: Absolute color difference in rounds 1-9, 16-64
players with strength range 1400-2200. Results for Burstein
are shown in blue, Dutch BBP results are shown in orange.

Note that in every odd round, the absolute color differ-
ence must be at least n, which can also be seen. All investi-
gated pairing systems almost always meet this lower bound
for odd rounds. Interestingly, Dutch BBP seems to perform
slightly better in tournaments with at most 4 rounds com-
pared to Burstein, but this tiny advantage vanishes for at
least six rounds. We get similar results when comparing with
Random2, Dutch, Random, and Monrad.

Lower Maximum Allowed Color Difference
So far, for all our experiments we assumed that the maxi-
mum allowed color difference β equals 2, i.e., the difference
of the number of matches played with white pieces and the
number of matches played with black pieces is at most 2.
This is in line with the official FIDE rules. However, due to
the flexibility of our maximum weight matching approach,
we can easily enforce an even stronger color difference con-
straint and observe the impact on the obtained ranking qual-
ity and the number of float pairs.

Interestingly, as Figure 26 shows, the obtained ranking
quality is almost the same even if we look at the extreme
case of setting β = 0.1, which is equivalent to enforcing an



alternating black-white sequence for all players. Notice that
setting β to anything in the interval (0, 0.5] implies that the
absolute color difference is 0 for all even rounds and n for
all odd rounds.

Figure 26: Ranking quality measured by normalized Kendall
τ . Results for β = 0.1 are shown in blue, results for β = 2
in orange.

Naturally, the high ranking quality for a much more re-
stricted β comes at a cost, which can be measured in the
number of float pairs. The obtained number of float pairs is
influenced by the maximum allowed color difference β, be-
cause for higher β it is easier to fulfill criterion (Q1), i.e., to
find suitable matches within the corresponding score group.
In our experiments we investigate the increase in the number
of float pairs when we assume the extreme case of β = 0.1.
Figure 27 shows that the number of float pairs increases for
all pairing systems, compared to the case with β = 2. How-
ever, the increase is only moderate. This result offers a novel
trade-off for tournament organizers: when using the MWM
engine, they have the choice between keeping the number of
floaters down at the cost of a standard color difference, as
advised by FIDE, or they opt for slightly more float pairs,
but can guarantee an alternating white-black color assign-
ment for each player. The ranking quality is equally high in
both variants.

Figure 27: Number of float pairs for 7 rounds. Results for
β = 0.1 are shown in blue, results for β = 2 in orange.
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