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Davide Bilò1 , Vittorio Bilò2 , Pascal Lenzner3 and Louise Molitor3
1University of L’Aquila, Italy, davide.bilo@univaq.it

2University of Salento, Italy, vittorio.bilo@unisalento.it
3Hasso Plattner Institute, University of Potsdam, Germany, {firstname.lastname}@hpi.de

Abstract
Residential segregation in metropolitan areas is
a phenomenon that can be observed all over the
world. Recently, this was investigated via game-
theoretic models. There, selfish agents of two types
are equipped with a monotone utility function that
ensures higher utility if an agent has more same-
type neighbors. The agents strategically choose
their location on a given graph that serves as resi-
dential area to maximize their utility. However, so-
ciological polls suggest that real-world agents are
actually favoring mixed-type neighborhoods, and
hence should be modeled via non-monotone util-
ity functions. To address this, we study Swap
Schelling Games with single-peaked utility func-
tions. Our main finding is that tolerance, i.e.,
agents favoring fifty-fifty neighborhoods or being
in the minority, is necessary for equilibrium exis-
tence on almost regular or bipartite graphs. Re-
garding the quality of equilibria, we derive (almost)
tight bounds on the Price of Anarchy and the Price
of Stability. In particular, we show that the latter is
constant on bipartite and almost regular graphs.

1 Introduction
Residential segregation is defined as the physical separation
of two or more groups into different neighborhoods [Massey
and Denton, 1988]. It is pervasive in metropolitan areas,
where large homogeneous regions inhabited by residents be-
longing to the same ethnic group emerged over time1.

For more than five decades, residential segregation has
been intensively studied by sociologists, as a high degree
of segregation has severe consequences for the inhabitants
of homogeneous neighborhoods. It negatively impacts their
health [Acevedo-Garcia and Lochner, 2003], their mortal-
ity [Jackson et al., 2000], and in general their socioeconomic
conditions [Massey and Denton, 1993]. While in the early
days of research on segregation the emergence of homoge-
neous neighborhoods was attributed to the individual intoler-
ance of the citizens, it was shown by Schelling [1971] that

1See the racial dot map [Cable, 2013] at https://demographics.
coopercenter.org/racial-dot-map/ for examples from the US.
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Figure 1: Left: example of the monotone utility functions employed
in recent related work. Middle and right: example of a single-peaked
utility function considered in this paper.

residential segregation also emerges in a tolerant population.
In his landmark model, he considers two types of agents that
live on a line or a grid as residential area. Every agent has a
tolerance level τ and is content with her position, if at least
a τ -fraction of her direct neighbors are of her type. Discon-
tent agents randomly jump to other empty positions or swap
positions with another discontent agent. Schelling found that
even for τ < 1

2 , i.e., even if everyone is content with being in
the minority within her neighborhood, random initial place-
ments are over time transformed to placements having large
homogeneous regions, i.e., many agents are surrounded by
same-type neighbors, by the individual random movements
of the agents. It is important to note that the agent behavior
is driven by a slight bias towards preferring a certain number
of same-type neighbors and that this bias on the microlevel
is enough to tip the macrolevel state towards segregation.
Schelling coined the term “micromotives versus macrobehav-
ior” for such phenomena [Schelling, 2006].

Since its inception, Schelling’s influential model was thor-
oughly studied by sociologists, mathematicians and physi-
cists via computer simulations. But only in the last decade
progress has been made to understand the involved random
process from a theoretical point of view. Even more recently,
the Algorithmic Game Theory and the AI communities be-
came interested in residential segregation and game-theoretic
variants of Schelling’s model were studied [Chauhan et al.,
2018; Echzell et al., 2019; Bilò et al., 2020; Agarwal et al.,
2021; Kanellopoulos et al., 2021a; Bullinger et al., 2021].
In these strategic games the agents do not perform random
moves but rather jump or swap to positions that maximize
their utility. These models incorporate utility functions that
are monotone in the fraction of same-type neighbors, i.e., the
utility of an agent is proportional to the fraction of same-type
neighbors in her neighborhood. See Figure 1 (left). However,
representative sociological polls, in particular data from the
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General Social Survey2 (GSS) [Smith et al., 2019], indicate
that this assumption of monotone utility functions should be
challenged. For example, in 1982 all black respondents where
asked “If you could find the housing that you would want and
like, would you rather live in a neighborhood that is all black;
mostly black; half black, half white; or mostly white?” and
54% responded with “half black, half white” while only 14%
chose “all black”. Later, starting from 1988 until 2018 all
respondents (of whom on average 78% were white) where
asked what they think of “Living in a neighborhood where
half of your neighbors were blacks?” a clear majority3 re-
sponded “strongly favor”, “favor” or “neither favor nor op-
pose”. This shows that the maximum utility should not be
attained in a homogeneous neighborhood.

Based on these real-world empirical observations, this pa-
per sets out to explore a game-theoretic variant of Schelling’s
model with non-monotone utility functions. In particular, we
will focus on single-peaked utility functions with maximum
utility at a Λ-fraction of same-type neighbors (see Figure 1
(middle and right)), with Λ ∈ (0, 1), satisfying mild assump-
tions. More precisely, we only require a function p(x) to be
zero-valued at x = 0, 1, to be strictly increasing in the in-
terval [0,Λ] and to be such that p(x) = p(Λ(1−x)

1−Λ ) for each
x ∈ [Λ, 1], that is, both sides of p approach the peak, one from
the left and the other from the right, in the same way, up to a
rescaling due to the width of their domains ([0,Λ], vs. [Λ, 1]).
Our main findings shed light on the existence of equilibrium
states and their quality in terms of the recently defined de-
gree of integration [Agarwal et al., 2021] that measures the
number of agents that live in a heterogeneous neighborhood.

Model We consider a strategic game played on a given un-
derlying connected graph G = (V,E), with |V | = n and
|E| = m.

For any node v ∈ V , let the closed neighborhood of v in G
be

N [v] = {v} ∪ {u ∈ V : {v, u} ∈ E}
where δ(v) = |N [v]| − 1 denotes the degree of v, and
δ(G) and ∆(G) denote the minimum and the maximum de-
gree over all nodes in G, respectively. We call a graph G
δ-regular, if δ(G) = ∆(G) = δ, and almost regular, if
∆(G) − δ(G) ≤ 1. We denote with α(G) the independence
number of G, i.e., the cardinality of the maximum indepen-
dent set in G.

A Single-Peaked Swap Schelling Game (G, b,Λ), called
the game, is defined by a graph G = (V,E), a positive in-
teger b ≤ n/2 and a peak position Λ. There are n strategic
agents who choose nodes in V such that every node is occu-
pied by exactly one agent. Every agent belongs to one of two
types that are associated with the colors blue and red. There
are b blue agents and r = n − b red agents, with blue being
the color of the minority type. Let c(i) be the color of agent i.

A strategy profile σ is an n-dimensional vector where all
strategies are pairwise disjoint, i.e., σ is a permutation of V .

2Since 50 years the GSS is regularly conducted in the US and it
is a valuable and widely used data set for social scientists.

3In numbers: 1988: 57%, 1998: 70%, 2008: 79%, 2018: 82%.
In 2018 33% answered with “favor” or “strongly favor”.

The i-th entry of σ corresponds to the strategy of the i-th
agent. We treat σ as a bijective function mapping agents to
nodes, with σ−1 being its inverse function. Thus, any strat-
egy profile σ corresponds to a bi-coloring of G in which ex-
actly b nodes of G are colored blue and n − b are colored
red. We say that agent i occupies node v in σ if the i-th entry
of σ, denoted as σ(i), is v and, equivalently, if σ−1(v) = i.
We use the notation 1ij(σ), with 1ij(σ) = 1 if agents i and j
occupy adjacent nodes in σ and 1ij(σ) = 0 otherwise. When
1ij(σ) = 1, we say that agents are adjacent.

For an agent i and a feasible strategy profile σ, we denote
the set of nodes of G which are occupied by agents having
the same color as agent i by

Ci(σ) = {v ∈ V : c(σ−1(v)) = c(i)}.

Observe that Ci(σ) includes node σ(i). Let

fi(σ) :=
|N [σ(i)] ∩ Ci(σ)|
|N [σ(i)]|

be the fraction of agents of her own color in i’s neighborhood
including herself. Thus, agents are aware of their own con-
tribution to the diversity of their neighborhood The utility of
an agent i in σ is defined as Ui(σ) = p(fi(σ)), where p
is a single-peaked function with domain [0, 1] and peak at
Λ ∈ (0, 1) that satisfies the following two properties:

(i) p is a strictly monotonically increasing function in the
interval [0,Λ] with p(0) = 0;

(ii) for each x ∈ [Λ, 1], p(x) = p(Λ(1−x)
1−Λ ) and p(Λ) = 1.

Each agent aims at maximizing her utility. We say an agent i
is below the peak when fi(σ) < Λ, above the peak when
fi(σ) > Λ, at the peak when fi(σ) = Λ, and segregated
when fi(σ) = 1. A game (G, b,Λ) depends also on the
choice of p. However, as all our results are independent of p,
we remove it from the notation for the sake of simplicity.

An agent can change her strategy only via a swap, i.e., ex-
changing node occupation with another agent. Consider two
agents i and j, on nodes σ(i) and σ(j), respectively, per-
forming a swap. This yields the new strategy profile σij .
As agents are strategic, we only consider profitable swaps,
i.e., swaps which strictly increase the utility of both agents.
Hence, profitable swaps can only occur between agents of dif-
ferent colors. A strategy profile σ is a swap equilibrium (SE),
if σ does not admit profitable swaps, i.e., if for each pair of
agents i, j, we have Ui(σ) ≥ Ui(σij) or Uj(σ) ≥ Uj(σij).

We measure the quality of a strategy profile σ via the
degree of integration (DoI), defined by the number of non-
segregated agents. The DoI is a simple segregation measure
that captures how many agents have contact with other-type
agents. We prefer it to the standard utilitarian welfare since
it measures segregation independently of the value of Λ. For
any fixed game (G, b,Λ) let σ∗ denote a feasible strategy pro-
file maximizing the DoI and let SE(G, b,Λ) denote the set
of swap equilibria for (G, b,Λ). We study the impact of the
agents’ selfishness by analyzing the Price of Anarchy (PoA),
which is defined as

PoA(G, b,Λ) =
DoI(σ∗)

minσ∈SE(G,b,Λ) DoI(σ)



and the Price of Stability (PoS), which is defined as

PoS(G, b,Λ) =
DoI(σ∗)

maxσ∈SE(G,b,Λ) DoI(σ)
.

We investigate the finite improvement property (FIP)
[Monderer and Shapley, 1996], i.e., if every sequence of prof-
itable swaps is finite, which is equivalent to the existence of
an ordinal potential function. For this, let

Φ(σ) =
∣∣{{u, v} ∈ E : c(σ−1(u)) = c(σ−1(v))

}∣∣ ,
counting the number of monochromatic edges of G under σ,
i.e., the edges whose endpoints are occupied by agents of the
same color, the potential function of σ.
Related Work In the last decade progress has been made
to thoroughly understand the involved random process in
Schelling’s influential model, e.g., [Brandt et al., 2012; Barm-
palias et al., 2014; Immorlica et al., 2017].

Zhang [2004a,b] investigated the random Schelling process
via evolutionary game theory. In particular, Zhang [2004b]
proposes a model that is similar to our model. There, agents
on a toroidal grid graph with degree 4 also have a non-
monotone single-peaked utility function. However, in con-
trast to our model, random noise is added to the utilities
and transferable utilities are assumed. Zhang analyzes the
Markov process of random swaps and shows that this process
converges with high probability to segregated states.

The investigation of game-theoretic models for residential
segregation was initiated by Chauhan et al. [2018]. There,
agents are equipped with a utility function as shown in Fig-
ure 1 (left) and the finite improvement property and the PoA
in terms of the number of content agents is studied. Later,
Echzell et al. [2019] significantly extended these results and
generalized them to games with more than two agent types.

Agarwal et al. [2021] introduce a simplified model with
τ = 1. They prove results on the existence of equilib-
ria, in particular that equilbria are not guaranteed to exist on
trees, and on the complexity of deciding equilibrium exis-
tence. Moreover, they study the PoA in terms of the utilitarian
social welfare and in terms of the newly introduced degree of
integration, that counts the number of non-segregated agents.
For the latter, they give a tight bound of n2 on the PoA and the
PoS that is achieved on a tree. In contrast, they derive a con-
stant PoS on paths. Bilò et al. [2020] strengthened the PoA
results for the simplified swap version w.r.t. the utilitarian
social welfare function and investigated the model on almost
regular graphs, grids and paths. Additionally, they introduce
a variant with locality. The complexity results were extended
by Kreisel et al. [2021]. Chan et al. [2020] and Kanellopou-
los et al. [2021b] considered generalized variants.

Recently, a model was introduced where the agent itself
is included in the computation of the fraction of same-type
neighbors [Kanellopoulos et al., 2021a]. We adopt this mod-
ified version also in our model. Bullinger et al. [2021] con-
sider the number of agents with non-zero utility as social wel-
fare function. They prove hardness results for computing the
social optimal state and they discuss other stability notations
such as Pareto optimality.

Also related are hedonic games [Drèze and Greenberg,
1980; Bogomolnaia and Jackson, 2002] where selfish agents

form coalitions and the utility of an agent only depends
on her coalition. Especially close are hedonic diversity
games [Bredereck et al., 2019; Boehmer and Elkind, 2020],
where agents of different types form coalitions and the utility
depends also on the type distribution in a coalition.

Our main focus is on single-peaked utility functions. This
can be understood as single-peaked preferences, which date
back to Black [1948] and are a common theme in the Eco-
nomics and Game Theory literature. In particular, such pref-
erences yield favorable behavior in the above mentioned he-
donic diversity games and in the realm of voting and social
choice [Walsh, 2007; Yu et al., 2013; Betzler et al., 2013;
Elkind et al., 2014; Brandt et al., 2015].

Our Contribution In this work we initiate the study of
game-theoretic models for residential segregation with non-
monotone utility functions. This departs from the recent
line of work focusing on monotone utility functions and it
opens up a promising research direction. Non-monotone util-
ity functions are well-justified by real-world data and hence
might be more suitable for modeling real-world segregation.

We focus on a broad class of non-monotone utility func-
tions well-known in Economics and Algorithmic Game The-
ory: single-peaked utilities. We emphasize that our results
hold for all such functions that satisfy our mild assumptions.
See Table 1 for a detailed result overview.

For games with integration-oriented agents, i.e., Λ ≤ 1/2,
we show that swap equilibria exist on almost regular graphs
and that improving response dynamics are guaranteed to con-
verge to such stable states. Moreover, for Λ = 1

2 swap equi-
libria exist on the broad class of graphs that admit an inde-
pendent set that is large enough to accommodate the minor-
ity type agents. In particular, this implies equilibrium exis-
tence and efficient computability on bipartite graphs, includ-
ing trees, which is in contrast to the non-existence results
by Agarwal et al. [2021].

Another contrast are our bounds on the PoA. On general
graphs we prove a tight bound on the PoA that depends on b,
the number of agents of the minority color, and we give a
bound of ∆(G) on all graphs G, that is asymptotically tight
on δ-regular graphs. Also for the PoS we get stronger positive
results compared to [Agarwal et al., 2021]. For Λ = 1

2 we
give a tight PoS bound of 2 on bipartite graphs and show that
the PoS is 1 on almost regular graphs with maximum degree
3, or if the size of the maximum independent set of the graph
is at most b. The latter implies a PoS of 1 on regular graphs
for balanced games, i.e., if there are equally many agents of
both colors. Even more general, for constant Λ ≤ 1

2 we prove
a constant PoS on almost regular graphs via a sophisticated
proof technique that relies on the greedy algorithm for the
K-MAX-CUT problem.

2 Preliminaries

In this section, we provide some facts and lemmas that will
be widely exploited throughout the paper. We start by observ-
ing the following fundamental relationship occurring between



graph classes Equilibrium Existence Finite Improvement Property

arbitrary × (Thm. 2) Λ > 1/2 × (Thm. 2, 3) Λ ≥ 1/2

X(Thm. 4) 1
δ(G)+1

≤ Λ ≤ 1/2, α(G) + 1 ≥ b
bipartite X(Cor. 1) Λ = 1/2

1-regular X(Thm. 1) Λ ≤ 1/2 X(Thm. 1) Λ ≤ 1/2

2-regular × (Thm. 2) Λ > 1/2 × (Thm. 2) Λ > 1/2

Price of Anarchy Price of Stability

arbitrary ≤ min
{

∆(G), n
b+1 ,

(∆+1)b
b+1

}
(Thm. 5) ≥ Ω

(√
nΛ
)

(Thm. 9)

bipartite ≥ n−1
3 (Thm. 5) b = 1 2 (Thm. 10, 11) Λ = 1/2

≥ n
b+1 (Thm. 5) b > 1

regular ≤ min
{

(δ + 1)/2, n/2b
}

(Thm. 6) Λ < 1/δ

≥ δ+1
2 − δ+1

4δ+2 (Thm. 7) Λ ≤ 1/2, δ ≥ 2

1-regular 1 (Thm. 12), 13) Λ ≤ 1/2, ∆(G) ≤ 3 or

Λ ∈
[

1
δ(G)+1

, 1/2
]

, b ≥ α(G)

min
{

∆(G) + 1,O(1/Λ)
}

(Thm. 14) Λ ≤ 1/2, b < α(G)

O(1) (Cor. 3) Λ ≤ 1/2

ring > 2− ε (Thm. 8)
> 3/2− ε (Thm. 8) Λ < 1/2

Table 1: Result overview. We investigate the existence of equilibria, the finite improvement property, the PoA and the PoS. The “X” symbol
denotes that the respective property holds, the “×” means the opposite. The respective conditions are stated next to the result. ε is a constant
larger than zero. “1-regular” stands for almost regular graphs. Note, PoS results for almost regular graphs hold for regular graphs as well.
For the PoA the stated lower bounds of other graph classes hold for arbitrary graphs as well.

fi(σ) and fj(σij) for two swapping agents i and j:

if fi(σ) =
x

y
, 4 then fj(σij) =

y + 1− x− 1ij(σ)

y
. (1)

Using property (1), we claim the following observation.
Observation 1. If fi(σ) = x/y < 1/2, then fj(σij) > 1/2.
If fi(σ) = x/y > 1/2, then fj(σij) ≤ 1/2 unless y = 2x−1
and 1ij(σ) = 0, for which fj(σij) = fi(σ) = x/y > 1/2.

Proof. If fi(σ) = x/y < 1/2, we have

fj(σij) =
y + 1− x− 1ij(σ)

y
= 1− x

y
+

1− 1ij(σ)

y
>

1

2
.

If fi(σ) = x/y > 1/2, we distinguish among different cases.
If 1ij(σ) = 1, we get

fj(σij) =
y + 1− x− 1ij(σ)

y
= 1− x

y
<

1

2
,

while, if y < 2x− 1, which implies x ≥ y+2
2 , it follows

fj(σij) =
y + 1− x− 1ij(σ)

y

= 1− x

y
+

1− 1ij(σ)

y

≤ 1

2
− 1ij(σ)

y
≤ 1

2
.

Finally, for y = 2x− 1 and 1ij(σ) = 0, we get

fj(σij) =
y + 1− x− 1ij(σ)

y
=
x

y
>

1

2
.

4For the sake of conciseness, from now on, whenever we write
fi(σ) = x/y for some agent i, we implicitly mean that x :=
|N [σ(i)] ∩ Ci(σ)| and y := |N [σ(i)]|. Observe that, under this
assumption, fi(σ) = 3/6 is different than fi(σ) = 1/2.

The following series of lemmas characterizes the conditions
under which a profitable swap can take place.

Lemma 1. For any Λ ≤ 1/2, no profitable swaps can occur
between agents below the peak.

Proof. Fix a strategy profile σ and two agents i and j, below
the peak, who can perform a profitable swap in σ. By Ob-
servation 1, both i and j are above the peak in σij . Assume,
w.l.o.g., that fi(σ) = x/y < Λ which yields

fj(σij) =
y + 1− x− 1ij(σ)

y
> Λ.

We claim that Uj(σij) ≤ Ui(σ). By the definition of p, this
holds whenever

x

y
≥ Λ

1− Λ

(
1− y + 1− x− 1ij(σ)

y

)
=

Λ

1− Λ

(
x

y
− 1− 1ij(σ)

y

)
which holds true as Λ

1−Λ ≤ 1 and 1− 1ij(σ) ≥ 0.
By applying the same argument, with i and j swapped, we

also get Ui(σij) ≤ Uj(σ). As the swap is profitable, we
have Ui(σ) < Ui(σij) and Uj(σ) < Uj(σij). Putting all
these inequalities together, we conclude that

Uj(σij) ≤ Ui(σ) < Ui(σij) ≤ Uj(σ) < Uj(σij),

which yields a contradiction.

Lemma 2. For any Λ ≤ 1/2, no profitable swaps can occur
between adjacent agents at different sides of the peak.

Proof. Assume towards a contradiction, that i and j can per-
form a profitable swap in σ, and, w.l.o.g., that fi(σ) =



x/y < Λ and fj(σ) = x′/y′ > Λ. By Observation 1, j
ends up above the peak in σij . As j improves after the swap,
we have

Uj(σij) = p(1− x/y) > Uj(σ) = p(x′/y′)

which, given that 1− x/y > Λ and x′/y′ > Λ, yields

1− x/y < x′/y′.

This implies that

fi(σij) = 1− x′/y′ < 1− 1 + x/y = x/y = fi(σ)

which, given that fi(σ) < Λ, contradicts the fact that i im-
proves after the swap.

In the following we present a technical result that will be
helpful in proving Lemma 4.

Lemma 3. For any Λ ≤ 1/2, any profitable swap occur-
ring between two agents i and j in a strategy profile σ, with
fi(σ) < Λ and fj(σ) > Λ, requires δ(σ(i)) > δ(σ(j)).

Proof. Assume towards a contradiction, that

δ(σ(i)) ≤ δ(σ(j))

and i and j can perform a profitable swap in σ, and, w.l.o.g.,
that fi(σ) = x/y < Λ and fj(σ) = x′/y′ > Λ.

By Lemma 2, it must be 1ij(σ) = 0. By Observation 1, j
ends up above the peak in σij . As j improves after the swap,
we have

Uj(σij) = p(1− x/y + 1/y) > Uj(σ) = p(x′/y′)

which, given that 1− x/y + 1/y > Λ and x′/y′ > Λ, yields

1− x/y + 1/y < x′/y′.

This implies that

fi(σij) = 1− x′/y′ + 1/y′

< 1− 1 + x/y − 1/y + 1/y′

= x/y + 1/y′ − 1/y.

Now, as the hypothesis δ(σ(i)) ≤ δ(σ(j)) can be restated as
y ≤ y′, we derive

fi(σij) < x/y + 1/y′ − 1/y ≤ x/y = fi(σ),

which, given that fi(σ) < Λ, contradicts the fact that i im-
proves after the swap.

Lemma 4. For any Λ ≤ 1/2, no profitable swaps can oc-
cur between agents at different sides of the peak in games on
almost regular graphs.

Proof. Fix a strategy profile σ and two agents i and j at dif-
ferent sides of the peak admitting a profitable swap in σ. As
the game is played on an almost regular graph, by Lemma 3,
it must be fi(σ) = x/(y + t) < Λ, fj(σ) = x′/y > Λ and
t ∈ {0, 1}. Moreover, by Lemma 2, we have 1ij(σ) = 0.

Since j improves after the swap, we have

Uj(σij) = p((y + t− x+ 1)/(y + t)) > Uj(σ) = p(x′/y)

which, given that (y+ t−x+ 1)/(y+ t) > Λ and x′/y > Λ,
yields

x′/y > (y + t− x+ 1)/(y + t).

We derive x′(y + t) > y(y + t − x + 1), which, given that
both sides of the inequality are integers, yields

x′(y + t) ≥ y(y + t− x+ 1) + 1. (2)

Since i improves after the swap, we have

Ui(σij) = p((y − x′ + 1)/y) > Ui(σ) = p(x/(y + t)).

We now distinguish between two possible cases:
(i) (y − x′ + 1)/y ≤ Λ and
(ii) (y − x′ + 1)/y > Λ.
If case (i) occurs, it must be

x/(y + t) < (y − x′ + 1)/y

which is equivalent to

x′(y + t) < (y + t)(y + 1)− xy.

Together with inequality (2), this yields

y(y + t− x+ 1) + 1 < (y + t)(y + 1)− xy

which is satisfied if and only if t > 1. Given that t ∈ {0, 1},
we derive a contradiction.

If case (ii) occurs, from (y − x′ + 1)/y > Λ, we get

x′ < y(1− Λ) + 1. (3)

Since Ui(σij) = p((y−x′+1)/y) > Ui(σ) = p(x/(y+ t)),
x/(y+ t) < Λ and (y−x′+1)/y > Λ, by the definition of p,
we derive

x/(y+ t) <
Λ

1− Λ
(1− (y−x′+ 1)/y) =

Λ

1− Λ
(x′−1)/y,

by which we get x < Λ(x′−1)(y+t)
(1−Λ)y . Together with inequal-

ity (3), this yields
x < Λ(y + t). (4)

By summing up inequalities (3) and (4), we get

x+ x′ < y + 1 + Λt.

As x, x′, y are integers, t ∈ {0, 1} and Λ ∈ [0, 1/2], we
derive

x+ x′ ≤ y + 1. (5)

Starting from inequality (2) and then using inequality (5), we
derive

x′t ≥ y(y + t− x− x′ + 1) + 1

≥ yt+ 1,

which, given that x′ ≤ y, is never satisfied when t ∈ {0, 1}.
Thus, also in this case, we derive a contradiction.



3 Existence of Equilibria
In this section, we provide existential results for games played
on some specific graph topologies. We start by showing that
games on almost regular graphs enjoy the FIP property and
converge to a SE in at most m swaps in any game in which
the peak does not exceed 1/2. This result does not hold when
the peak exceeds 1/2, as we prove the existence of a game
played on a 2-regular graph (i.e., a ring) admitting no SE.

Theorem 1. For any Λ ≤ 1/2, fix a game (G, b,Λ) on an
almost regular graph G and a strategy profile σ. Any se-
quence of profitable swaps starting from σ ends in a SE after
at most m swaps.

Proof. We show that, after a profitable swap, Φ decreases by
at least 1. Consider a profitable swap performed by agents i
and j such that fi(σ) = x/y and fj(σ) = x′/(y + t), with
t ∈ {0, 1} since G is almost regular. By Lemmas 1 and 4, we
have that both i and j are above the peak, i.e., x/y > Λ and
x′/(y + t) > Λ. Thus, a necessary condition for the swap to
be profitable is that fi(σij) < fi(σ) and fj(σij) < fj(σ).
By Observation 1, the latter yields

x′/(y + t) > 1− x/y + (1− 1ij(σ))/y,

which gives

x′ > y − x+ 1− 1ij(σ) + t(1− x/y + (1− 1ij(σ))/y)

≥ y − x+ 1− 1ij(σ).

Since x, x′, y and 1ij(σ) are integers, we derive

x′ ≥ y − x+ 2− 1ij(σ).

As it holds that Φ(σ)− Φ(σij) equals

x− 1 + x′ − 1−
(y − x− 1ij(σ) + y + t− x′ − 1ij(σ))

= 2(x+ x′ − 1 + 1ij(σ))− 2y − t,

we get Φ(σ)− Φ(σij) ≥ 1.

Theorem 2. For any Λ > 1/2, there exists a game played on
a 2-regular graph admitting no SE.

Proof. Consider an instance of a game played on a ring with 6
nodes, where b = r = 3. Only the following two complemen-
tary cases may occur:

Either, the blue agents occupy nodes that induce a path of
length 2. In this case, there are two segregated agents of dif-
ferent colors, both with utility 0. As p(0) = 0 and p(x) > 0
for x ∈ (0, 1), the two agents swap their positions.

Or, there are two neighboring agents i and j of differ-
ent colors being below the peak. In this case, as p(1/3) <
p(2/3), both i and j prefer to swap their positions.

A fundamental question is whether a SE always exists in
games with tolerant agents, i.e., for Λ ≤ 1/2. Next result
shows that Theorem 1 cannot be generalized to all graphs.

Theorem 3. There cannot exist an ordinal potential function
in games on arbitrary graphs for Λ = 1/2.

Proof. We prove the statement by providing an improving re-
sponse cycle where in every step a profitable swap is possi-
ble. The construction and arising strategy profiles are shown
in Figure 2. For the sake of simplicity we assume p(x) = x
for x ∈ [0, 1/2]. However, our result is independent of the
choice of p. Remember that, since Λ = 1

2 , p(x) = p(1 − x)
for x ∈ [1/2, 1].

In the initial placement, cf. Figure 2a, agents a and b can
swap. By swapping their positions, agent a can increase her
utility from 1− 5

7 = 2
7 to 1− 9

13 = 4
13 and agent b increases

her utility from 5
13 to 3

7 .
Next, agents c and d can swap, cf. Figure 2b. Swapping

with agent d increases agent c’s utility from 1− 4
7 = 3

7 to 6
13 ,

and agent d can increase her utility from 1− 8
13 = 5

13 to 1−
4
7 = 3

7 .
After this, cf. Figure 2c agents e and f , and agents g and h,

respectively, have the opportunity to swap and increase their
utility. Agent e increases her utility from 3

7 to 1
2 while agent f

increases her utility from 1 − 2
2 = 0 to 1 − 5

7 = 2
7 . Agent g

improves her utility from 1− 2
2 = 0 to 1− 3

5 = 2
5 and agent h

increases her utility from 1− 3
5 = 2

5 to 1
2 .

Next, cf. Figure 2d, swaps between the agents i and j,
and k and l, respectively, are possible. Agent i can increase
her utility from 1 − 2

2 = 0 to 1 − 4
5 = 1

5 and j can increase
her utility from 2

5 to 1
2 . Agent k improves her utility from

1− 2
2 = 0 to 1− 3

5 = 2
5 and agent l increases her utility from

1− 3
5 = 2

5 to 1
2 .

In the next step, agents e and m can swap. Agent e in-
creases her utility from 1 − 2

2 = 0 to 1 − 3
5 = 2

5 and m
increases her utility from 1− 3

5 = 2
5 to 1

2 .
In a final step agents n and o swap. Swapping with agent o

increases agent n’s utility from 1− 2
2 = 0 to 1− 8

13 = 5
13 and

agent o increases her utility from 6
13 to 1

2 . The now reached
placement, cf. Figure 2g is equivalent to the initial placement,
cf. Figure 2a.

However, note that although convergence is not guaranteed
there still exists a stable state, cf. Figure 2h.

For the special case of Λ = 1/2, however, existence of a SE
is guaranteed in any graph whose independence number is at
least the number of blue agents.

Theorem 4. Fix a game (G, b,Λ) with 1
δ(G)+1 ≤ Λ ≤ 1/2.

Any strategy profile in which all agents of a same color are
located on an independent set of G is a SE.

Proof. Let σ be a strategy profile in which all agents of a
same color are located on an independent set of G. Assume,
w.l.o.g., that all blue agents are assigned to the nodes of an
independent set of G and consider a profitable swap per-
formed by a blue agent i and a red agent j. If 1ij(σ) = 0,
since i is only adjacent to red agents other than j, it holds that
fj(σij) = 1, which gives Uj(σij) = 0, thus contradicting the
fact that j performs a profitable swap. If 1ij(σ) = 1, instead,
we obtain fi(σ) = 1

δ(σ(i))+1 ≤
1

δ(G)+1 ≤ Λ. The numera-
tor comes from the fact that i is only adjacent to red agents.
Knowing that i cannot be at the peak, we conclude that she is
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(e) Placement after the fifth and sixth swap of i and j,
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(g) Placement after the last swap of n and o.

(h) The SE for the same instance.

Figure 2: An IRC and the SE for a game (G, b, 1
2
).



below the peak. If j is also below the peak, Lemma 1 contra-
dicts the fact that the swap is profitable, while, if j is above
the peak, the contradiction comes from Lemma 2.

Corollary 1. For Λ = 1/2, games played on bipartite graphs
always admit a SE which can be efficiently computed.

4 Price of Anarchy
In this section, we give bounds on the PoA for games played
on different topologies, even in those cases for which exis-
tence of a SE in not guaranteed.
General Graphs Next lemmas provide a necessary condi-
tion that needs to be satisfied by any SE and an upper bound
of the value on the social optimum, respectively.
Lemma 5. In a SE for any game (G, b,Λ), no agents of dif-
ferent colors can be segregated.

Proof. Fix a strategy profile σ. If there exist two agents i
and j such that fi(σ) = fj(σ) = 1, they can perform a prof-
itable swap, as fi(σ) = fj(σ) = 1 and fi(σij) = fj(σij) /∈
{0, 1}. So, σ cannot be a SE for (G, b,Λ).

Lemma 6. For any game (G, b,Λ), we have

DoI(σ∗) ≤ min{(∆(G) + 1)b, n}.
Proof. As a blue node can be adjacent to at most ∆(G) red
ones, it follows that, in any strategy profile, there cannot
be more than (∆(G) + 1)b non-segregated agents, so that
DoI(σ∗) ≤ min{(∆(G) + 1)b, n}.

We now give (almost) tight bounds on the PoA for general
graphs.
Theorem 5. For any game (G, b,Λ),

PoA(G, b,Λ) ≤ min
{

∆(G),
n

b+ 1
,

(∆ + 1)b

b+ 1

}
.

Moreover, there exists a game on a bipartite graph such that
PoA(G, b,Λ) ≥ n

b+1 when b > 1 and PoA(G, b,Λ) ≥ n−1
3

when b = 1.

Proof. For the upper bound, fix a game (G, b,Λ) and a SE σ.
By Lemma 5, only agents of one color, say c, can be seg-
regated in σ. Thus, we get DoI(σ) ≥ b + 1. Let V be the
set of nodes of color c′ 6= c. Every node in V has to be ad-
jacent to a node of color c. So, there are at least |V | ≥ b
non-monochromatic edges in the coloring induced by σ. As
every node of color c can be adjacent to at most ∆(G) nodes
of color c′, there must be at least db/∆(G)e nodes of color c
incident to a non-monochromatic edge, that is, being non-
segregated in σ. Thus, we get

DoI(σ) ≥ (∆(G) + 1)b

∆(G)
.

We conclude that

DoI(σ) ≥ max
{ (∆(G) + 1)b

∆(G)
, b+ 1

}
.

The upper bounds follow from Lemma 6. For the lower
bounds, consider the games defined in Figure 3.

(a) An instance with b = 1 blue agents. Left: σ∗ with
DoI(σ∗) = n− 1. Right: a SE σ with DoI(σ) = 3.

}
K1,b}
K1,b−1}
Kb−1,n−2b

}
K1,b}
K1,b−1}
Kb−1,n−2b

(b) An instance with b ≥ 2 blue agents. Left: σ∗ with
DoI(σ∗) = n. Right: a SE σ with DoI(σ) = b+ 1.

Figure 3: Lower bounds for PoA(G, b,Λ) when (a) b = 1, and (b)
b > 1. Left: the socially optimal placement σ∗. Right: the SE σ
with minimum social welfare.

Regular Graphs For δ-regular graphs, we derive an upper
bound of δ on the PoA from Theorem 5. A better result is
possible when Λ is sufficiently small.

Theorem 6. For any game (G, b,Λ) on a δ-regular graph G
with Λ < 1/δ, PoA(G, b,Λ) ≤ min

{
(δ + 1)/2, n/2b

}
.

Proof. Fix a SE σ. By Lemma 5, only agents of a unique
color, say c, can be segregated in σ. Let V be the set of nodes
of color c′ 6= c. As Λ < 1/δ, every node in V has to be
adjacent to nodes of color c only. Otherwise, any agent in V
that is adjacent to an agent of color c′ can perform a prof-
itable swap with a segregated agent of color c. Thus, there
are at least δ|V | ≥ δb non-monochromatic edges in the col-
oring induced by σ. As every agent of one color can be ad-
jacent to at most δ agents of the other one, there are at least b
non-segregated agents of color c. Together with the at least b
agents of color c′, this gives DoI(σ) ≥ 2b which, together
with Lemma 6, yields the claim.

As a lower bound, we have the following.

Theorem 7. For every δ ≥ 2 and Λ ≤ 1/2, there exists a
game (G, b,Λ) on a δ-regular graph such that

PoA(G, b,Λ) ≥ δ(δ + 1)

2δ + 1
=
δ + 1

2
− δ + 1

4δ + 2
.

Proof. Consider graph G shown in Figure 4. G is made of
three combined gadgets that we call the left gadget, the upper
right gadget and the lower right gadget. The left gadget is
essentially the complete bipartite graph Kδ,δ with a missing
edge: the one connecting the last two nodes of the respective
partitions. These nodes are connected to the upper right gad-
get and the lower right one, respectively. So each node in the
left gadget has degree δ. The upper right gadget consists of
a clique Kδ−1 whose nodes are all connected to two special
nodes, one on the left ofKδ−1 and one on the right. The node
on the left is the one adjacent to the node from the left gad-
get, while the node on the right connects the gadget with the
lower right one. Thus, every node in this gadget has degree δ.
Finally, the lower right gadget is any δ-regular graph with n′



︸ ︷︷ ︸
Kδ−1,δ−1

︸︷︷︸
K1,δ−1

K1,δ−1︷︸︸︷

︸︷︷︸
Kδ−1

︸ ︷︷ ︸
δ−regular graph with n′>>0 vertices

Figure 4: Lower bound construction for the PoA on δ-regular
graphs. The SE σ has DoI(σ) = 2δ + 1.

nodes with a missing edge: the one connecting the node in-
cident to the edge coming from the left gadget with the node
incident to the edge coming from the upper right gadget. So,
every node in this gadget has degree equal to δ and we con-
clude that G is δ-regular.

Now set b = δ. We claim that the strategy profile σ de-
picted in Figure 4 is a SE. If a red agent i swaps with a non-
adjacent blue agent j, we have fi(σij) = 1 which results in a
non-profitable swap. So a red agent can profitably swap only
with an adjacent blue agent. Any blue agent j has fj(σ) =

1
δ+1 . By swapping with an adjacent red agent i, we have that
either fj(σij) = 1

δ+1 or fj(σij) = δ
δ+1 which never yields

an improvement when Λ ≤ 1/2 or fj(σij) = δ−1
δ+1 when

swapping one blue agent j with the rightmost red one of the
left gadget. In this case, it is red agent i that has no improve-
ment in swapping since fi(σ) = 2

δ+1 and fi(σij) = δ
δ+1

which never yields an improvement when Λ ≤ 1/2. So, σ is
a SE such that DoI(σ) = 2δ + 1.

By letting n′ go to infinity, it is always possible to select
b = δ nodes in the lower right gadget such that their closed
neighborhoods are pairwise disjoint, which yields DoI(σ∗) =
δ(δ + 1) and thus the desired lower bound.

The lower bound given in Theorem 7 holds for all values
of δ. It may be the case then that, for fixed values of δ, bet-
ter bounds are possible. For δ = 2 indeed, lower bounds
matching the upper bounds given in Theorems 5 and 6 can be
derived.

Theorem 8. For any ε > 0, there exists a game (G, b,Λ) on
a ring such that PoA(G, b, 1/2) > 2− ε and PoA(G, b,Λ) >
3/2− ε for Λ < 1/2.

Proof. For any even b ≥ 2, let G be a ring defined by the
sequence of nodes v1, v2, . . . , vn, with n = 3b.

Assume Λ = 1/2. In this case,

p(1/3) = p(2/3) > p(0) = p(1).

Let σ be the strategy profile obtained as follows: starting
from v1, assign two blue agents followed by a red as long as
this is possible. At this time, nodes up to vx, with x = 3b/2,
have been assigned an agent. All the remaining nodes are as-
signed the remaining red agents. Since for any blue agent i
we have fi(σ) = 2/3, all blue agents are getting the largest

}
(q − 1)b

}
(q − 1)b

}
Kb

︸ ︷︷ ︸
q−2

︸ ︷︷ ︸
q−2

Figure 5: The instance used in the proof of Theorem 9. Shown is the
socially optimal placement σ∗.

possible utility and are not interested in swapping. Thus, σ
is a SE. As all agents residing at nodes vn, v1, . . . , vx are not
segregated, we have DoI(σ) = 3b/2 + 1.

Now assume Λ < 1/2. In this case,

p(1/3) > p(2/3) > p(0) = p(1).

Let σ be the strategy profile obtained by alternating blue and
red agents for as much as possible. Since for any blue agent i
we have fi(σ) = 1/3, all blue agents are getting the largest
possible utility and are not interested in swapping. Thus, σ is
a SE. As all agents residing at nodes vn, v1, . . . , v2b are not
segregated, we have DoI(σ) = 2b+ 1.

A strategy profile of social value 3b can be obtained by
sequencing triplets made of two red agents with a blue one
in between. Both claims follow by choosing b sufficiently
large.

5 Price of Stability
In this section, we give bounds on the PoS for games played
on different topologies.

General Graphs We give a lower bound on the PoS on gen-
eral graphs which asymptotically matches the upper bound on
the PoA when b = Θ(

√
n) and Λ is a constant w.r.t n.

Theorem 9. For every Λ, there is a game (G, b,Λ) such that
PoS(G, b) = Ω(

√
nΛ).

Proof. Let q ≥ 2 be an integer such that 1
q ≤ Λ < 1

q−1 .
Consider the instance in Figure 5 in which there is a clique
of b nodes such that every node in the clique is additionally
adjacent to (q− 1)b leaves (depicted to the up) and to the leaf
of a star with q nodes (depicted at the bottom). It is easy to
check that n = (q−1)b2 + b+ bq. Letting b go to infinity, we
get n = Θ((q − 1)b2), by which b = Ω(

√
n
q−1 ) = Ω(

√
nΛ).

The socially optimal placement σ∗, depicted in Figure 5
has all blue agents on the nodes of the clique and thereby
achieves

DoI(σ∗) = (q − 1)b2 + 2b = Ω((q − 1)b2).

We claim that, in contrast, any SE σ can have at most one
blue agent in the clique. Assume, by way of contradiction,
that there are two or more blue agents in the clique, and let i



be one of these agents. Then, there is at least one center of a
star of q nodes that is occupied by a segregated red agent j.
If i and j swap, we have fj(σ) = 1 and fj(σij) /∈ {0, 1} so
that j improves, and

fi(σ) ≤ b

qb+ 1

and

fi(σij) =
1

q
∈
(

b

qb+ 1
,Λ

]
,

so that i improves too. This contradict that σ is a SE. Hence,
for any SE σ, it holds that

DoI(σ) ≤ (b− 1)q + qb+ 1 = O(2qb)

(the fact that a SE exists can be easily checked by considering
the strategy profile obtained by placing one blue agent in a
node v of the clique and all the remaining b − 1 ones to the
b − 1 center of a star of q nodes that are not appended to v).
It follows that the price of stability is

Ω((q − 1)b2)

O(2qb)
= Ω(b) = Ω(

√
nΛ).

Bipartite Graphs For bipartite graphs, we provide a tight
bound of 2 for the PoS of games for which the peak is at 1/2.
We start with the upper bound.

Theorem 10. For any game (G, b, 1/2) on a bipartite
graph G, we have PoS(G, b, 1/2) ≤ 2.

Proof. Let (V1, V2), with |V1| ≤ |V2|, be the bipartition of
the nodes of G. For a fixed optimal profile σ∗, denote by B1

(resp. B2) the set of nodes of V1 (resp. V2) occupied by a
blue agent in σ∗. Moreover, denote by R1 (resp. R2) the set
of nodes occupied by a red agent in σ∗ falling in the neigh-
borhood of some node in B2 (resp. B1). Clearly, we have
DoI(σ∗) ≤ b+ |R1|+ |R2|. We shall prove the existence of
two swap equilibria, namely σ1 and σ2, whose performance
compare nicely with that of σ∗.

To construct σ1, start from σ∗ and swap all blue agents
in B2 with red agents in V1 as long as this is possible. If all
blue agents end up in V1, we have that all blue agents occupy
the nodes of an independent set of G and so, by Theorem 4,
σ1 is an SE. If some blue agents are left out from V1, then all
red agents are located in V2. So, we have that all red agents
occupy the nodes of an independent set of G and, by Theo-
rem 4, σ1 is an SE also in this case. As the set of nodes in B1

are blue in both σ∗ and σ1, we obtain that DoI(σ1) ≥ |R2|.
Equilibrium σ2 is obtained symmetrically by swapping all

blue agents in B1 with red agents in V2 as long as this is
possible. In this case, as b ≤ n/2 ≤ |V2|, all blue agents
end up in V2 and, by Theorem 4, σ2 is an SE. As the set of
nodes in B2 are blue in both σ∗ and σ2 and all blue agents
are adjacent to some red agent in σ2, we obtain that

DoI(σ2) ≥ b+ |R1|.

Figure 6: Left: a game with its socially optimal strategy profile σ∗

shown. Right: the SE with maximum social welfare for the same
instance.

Thus, we conclude that

PoS(G, b, 1/2) ≤ DoI(σ∗)

max{DoI(σ1),DoI(σ2)}

≤ b+ |R1|+ |R2|
max{b+ |R1|, |R2|}

≤ 2.

We now give the matching lower bound.

Theorem 11. There exists a game (G, b, 1/2) on a bipartite
graph such that PoS(G, b, 1/2) ≥ 2.

Proof. Consider the instance (G, b, 1/2) defined in Figure 6.
G consists of a path of b nodes, that we call the base of the
graph. Any node in the base of the graph is additionally con-
nected to 2(b−1) leaves (depicted on the up) and to a 2-node
path (depicted on the bottom). For the socially optimal pro-
file σ∗, we get

DoI(σ∗) = 2(b− 1)b+ 2b.

However, this is not a SE. In any strategy profile σ in which
two blue agents are adjacent in the base of the graph, like
in the socially optimal profile σ∗, one of them, denote this
agent by i, can swap with a segregated red agent, denoted
by j, placed on a leaf node in the lower row. Observe that
agent j is always guaranteed to exists. Since we have

fi(σ) ≤ b

2b+ 1
< 1/2

and
fi(σij) = 1/2,

agent i improves her utility. For agent j, we have fj(σ) = 1
and fj(σij) /∈ {0, 1}, so the swap is profitable and σ can-
not be a SE. The maximum number of agents with non-zero
utility that can be obtained by respecting this necessary con-
straint is

DoI(σ) = b(b− 1) +
5b

2
,

achieved by the SE σ depicted in Figure 6 (right). The claim
follows by letting b go to infinity.

Almost Regular Graphs We provide upper bounds to the
PoS for games played on almost regular graphs. We start by
considering the case of graphs with small degree.

Theorem 12. For any game (G, b,Λ) on an almost regular
graph with ∆(G) ≤ 3 and Λ ≤ 1/2, PoS(G, b,Λ) = 1.



Proof. Let σ∗ be a socially optimal profile. Using Lemma 8
we have that there exists a SE σ satisfying DoI(σ) ≥
DoI(σ∗).

An analogous result holds for the case in which b ≥ α(G).

Theorem 13. For any game (G, b,Λ) on an almost regular
graph with b ≥ α(G) and 1

δ(G)+1 ≤ Λ ≤ 1/2, we have
PoS(G, b,Λ) = 1.

Proof. We prove the claim by showing the existence of a
SE σ such that DoI(σ) = n. Clearly, if b = α(G), then
the strategy profile σ in which the blue agents occupy all the
nodes of a maximum independent set of G is a SE by The-
orem 4, and thus, DoI(σ) = n, and the statement follows.
Therefore, in the following we assume that b, r > α(G).

Let σ be a strategy profile minimizing the value Φ(σ) (ties
are arbitrarily broken). By Theorem 1, σ is a SE. We now
prove that DoI(σ) = n. For the sake of contradiction, as-
sume that DoI(σ) < n, i.e., there is at least a segregated
agent, say i, in σ. Assume w.l.o.g. that i is blue. We claim
that all red agents are placed on nodes that form an indepen-
dent set, i.e., r ≤ α(G). This allows us to obtain the desired
contradiction as r > α(G). If the red agents are not placed
on nodes that form an independent set, then there exists a red
agent, say j, having at least a red neighbor in σ. The strategy
profile σij satisfies

Φ(σ)− Φ(σij) ≥ δ(σ(i)) + 1− (δ(σ(j))− 1) ≥ 1,

since |δ(σ(i)) − δ(σ(j))| ≤ 1. Therefore, Φ(σij) < Φ(σ),
thus contradicting the fact that σ minimizes Φ.

A game (G, b,Λ) is balanced if b = bn/2c. Using Theo-
rem 13, we show that the PoS is 1 in balanced games on reg-
ular graphs.

Corollary 2. For any balanced game (G, b,Λ) on a δ-regular
graph G and 1

δ+1 ≤ Λ ≤ 1/2, we have PoS(G, b,Λ) = 1.

Proof. We have that b = bn/2c. We show that α(G) ≤
bn/2c using a simple counting argument. This allows us to
use Theorem 13 to prove the claim.

To show the upper bound on α(G), we count all the edges
that are incident to the nodes of a fixed maximum independent
set of G and bound this value from above by the number of
edges of the graph, thus obtaining the following inequality
δα(G) ≤ δ

2n, i.e., α(G) ≤ n/2. Using the fact that α(G) is
an integer value, we derive α(G) ≤ bn/2c.

Before proving that the PoS is O(1/Λ) when b < α(G), we
need to introduce some new definitions and additional techni-
cal lemmas based on some well-known optimization cut prob-
lems.

For a given graph G and a subset of nodes of V , we denote
byG[U ] the subgraph ofG induced by U . More precisely, the
node set of G[U ] is U and, for every u, v ∈ U , G[U ] contains
the edge (u, v) iff G contains the edge (u, v).

The k-MAX-CUT problem is an optimization problem in
which, given a graph G as input, we want to compute a k-
partition {V1, . . . , Vk} of the nodes of G that maximizes the
number of edges that cross the cut induced by the k-partition,

that is, the number of edges (u, v) such that u ∈ Vt, v ∈ Vh,
and h 6= t. It is well-known that the greedy algorithm for the
k-MAX-CUT problem computes a k-partition {V1, . . . , Vk}
of the nodes of a graph such that, for every node v, the number
of edges incident to v that cross the cut induced by the k-
partition is at least d(1− 1

k )δ(v)e [Vazirani, 2013]. Using this
folklore result, we can derive the following useful lemma.
Observation 2. Let G be a graph and U ⊆ V such that
|U | ≥ k. There exists a k-partition {V1, . . . , Vk} of G[U ]
such that, for every t ∈ {1, . . . , k}, the degree of each vertex
v ∈ Vt in G[Vt] is at most b δ(v)

k c.

Proof. The greedy algorithm for the k-MAX-CUT problem
computes a k-partition {V1, . . . , Vk} of G[U ] such that, for
every node v of U , the number of edges incident to v that
cross the cut induced by the k-partition is at least

d(1− 1

k
)δ(v)e.

As a consequence, for any v ∈ Vt, with t ∈ {1, . . . , k}, the
number of edges that are incident to v in G[Vt] is at most

δ(v)− d(1− 1

k
)δ(v)e = bδ(v)/kc.

The BALANCED k-MAX-CUT problem is a k-MAX-CUT in
which we additionally require the k-partition {V1, . . . , Vk} to
be balanced, i.e., for every t ∈ {1, . . . , k}, |Vt| ≥ bn/kc.5
For the BALANCED k-MAX-CUT problem we can prove a
useful lemma that is analogous to Observation 2.
Lemma 7. Let G be a graph and U ⊆ V such that |U | ≥ 2.
There exists a balanced k-partition {V1, . . . , Vk} of U such
that, for at least one t ∈ {1, . . . , k}, |Vt| ≥ 1 and the degree
of every v ∈ Vt in G[Vt] is at most bδ(v)/kc.

Proof. In the remainder of this proof, for a given k-partition
{V1, . . . , Vk} of U and a bijective function

ρ : {v1, . . . , vk} → {v1, . . . , vk},

with vt ∈ Vt for every t ∈ {1, . . . , k}, we define the ρ-
swap as the k-partition {V ′1 , . . . , V ′k} in which, for every
t ∈ {1, . . . , k}, the set V ′t is obtained from Vt by replacing vt
with ρ(vt) (it may happen that ρ(vt) = vt). We say that the
ρ-swap is profitable if the number of edges crossing the cut
induced by {V ′1 , . . . , V ′k} is strictly larger than the number of
edges crossing the cut induced by {V1, . . . , Vk}. A balanced
k-partition {V1, . . . , Vk} is stable if there is no profitable ρ-
swap.

Let {V1, . . . , Vk} be a balanced k-partition of U that max-
imizes the number of edges in the cut (ties can be arbitrarily
broken). We claim that {V1, . . . , Vk} satisfies all the proper-
ties of the lemma statement. This is clearly true when |U | ≤ k
as all edges of G are in the cut (consider, for instance, the so-
lution in which each set of the k-partition contains at most
one node). Therefore, we only need to prove the claim when
|U | > k. This implies that |Vt| > 0 for every t ∈ {1, . . . , k}.

5When n < k, we might have empty sets in the k-partition.



As a consequence, we only need to prove that there exists
t ∈ {1, . . . , k} such that, for every node v ∈ Vt, the degree
of v in G[Vt] is at most bδ(v)/kc.

For the sake of contradiction, assume that there are k nodes
v1, . . . , vk, with vt ∈ Vt, such that, for every t ∈ {1, . . . , k},
the degree of vt in G[Vt] is strictly larger than bδ(vt)/kc.
Consider the graph H on the k nodes v1, . . . , vk, where we
add the direct edge (vt, vh) between vt and vh, with t 6= h,
iff the number of edges incident to vt whose other endpoints
are in Vh is at most bδ(vt)/kc. We observe that the outdegree
of each node in H is at least 1. As a consequence H contains
a directed cycle C. We define

ρ : {v1, . . . , vk} → {v1, . . . , vk}
as follows. For each edge (vt, vh) of C, we define

ρ(vt) = vh,

while
ρ(v`) = v`

for every ` ∈ {1, . . . , k} such that v` is not contained in C.
Clearly, ρ is a bijective function. Furthermore, the the ρ-swap
is profitable, as each node vt that is moved from Vt to V ′h, with
h 6= t, contributes with at least one more edge in the cut. This
contradicts the fact that {V1, . . . , Vk} maximizes the number
of edges in the cut.

We are now ready to prove the upper bound on the PoS for
games played on almost regular graphs when b < α(G).
Theorem 14. For any game (G, b,Λ) on an almost reg-
ular graph G with b < α(G) and Λ ≤ 1/2, we have
PoS(G, b,Λ) = min{∆(G) + 1,O(1/Λ)}.

Proof. Let ∆ = ∆(G). Let σ∗ be a strategy profile that
maximizes DoI(σ∗) for (G, b,Λ). Let B and R be the nodes
occupied by the non-segregated blue and red agents in σ∗,
respectively. Clearly, DoI(σ∗) = |B|+ |R|. Moreover, |B| ≥
1 iff |R| ≥ 1. We prove the claim by showing the existence
of a strategy profile σ such that σ is a SE and

DoI(σ) = Ω(Λ(|B|+ |R|)).
We first rule out the case in which b ≤ bΛ(∆ − 1)c − 1.

In fact, in this case G[B] has maximum degree of at most
bΛ(∆ − 1)c − 1, which implies that every blue agent is be-
low the peak in σ∗. As a consequence, from Lemma 1 and
Lemma 4, σ∗ is also a SE. Therefore, in the following we as-
sume that b > bΛ(∆ − 1)c − 1. As b is an integer, we have
that b ≥ Λ∆− Λ− 1, from which we derive

∆ ≤ b/Λ + 1 + 1/Λ. (6)

Next, we rule out the case in which |B| + |R| = O(b/Λ),
i.e., b = Ω(Λ(|B| + |R|)). In fact, in this case let σ be any
SE (that we know to exist by Theorem 1). By Lemma 5, there
is a color for which all agents of that color are not segregated
in σ. Therefore

DoI(σ) ≥ min{b, r} = b = ω(Λ(|B|+ |R|)).
Hence, for the rest of the proof, we assume that |B| + |R| =
ω(b/Λ). As |B| ≤ b, it holds

|R| = ω(b/Λ). (7)

Finally, we rule out the case in which ∆ = O(1/Λ). By
Theorem 5, PoS(G, b,Λ) ≤ ∆ + 1. In the following, for any
subset B′ of B, we denote by R(B′) the subset of nodes of
R that are dominated by B′, i.e., R(B′) contains all nodes
u ∈ R for which there exists a node v in B′ such that (u, v)
is an edge of G.

We iteratively use Observation 2 to compute hierarchical
k-partitions of B, with k = d ∆−1

Λ∆−1e. We observe that k ≥ 1

as Λ > 1/(∆ + 1).
Starting from B, we compute the k-partition

{B1
0 , . . . , B

k
0} of B that satisfies the premises of Ob-

servation 2. This is called the k-partition of level 0. For
the remaining part of this proof we use the shortcut Rt0 to
denote R(Bt0). W.l.o.g., we assume that |R1

0| ≥ maxt |Rt0|.
Now, given the k-partition {B1

h, . . . , B
k
h} of level h such that

|B1
h| ≥ 2 and |R1

h| ≥ maxt |Rth|, we compute a k-partition
{B1

h+1, . . . , B
k
h+1} of B1

h that satisfies the premises of
Observation 2. This is the k-partition of level h + 1 where,
again, we use the shortcut Rth+1 to denote R(Bth+1) and,
w.l.o.g., we assume that |R1

h+1| ≥ maxt |Rth+1|. Clearly, the
k-partition {B1

L, . . . , B
k
L} computed in the last level, say L,

satisfies |B1
L| = 1 and |R1

L| ≤ ∆. We observe that

|R| ≥ |R1
0| ≥ |R1

1| ≥ · · · ≥ |R1
L|

by construction.
Let ` be the minimum index such that |R\R1

` | ≥ k(b−1).
Such an index always exists because, using inequality, (7),
inequality (6), and the fact that ∆ = ω(1/Λ), we have

|R \R1
L| = |R| − |R1

L| ≥ |R| −∆ = ω(b/Λ) ≥ kb.

Let {R1, . . . , Rk} be a balanced k-partition of R \R1
` that

satisfies the premises of Lemma 7. We have that |Rt| ≥ b
for every t ∈ {1, . . . , k}. W.l.o.g., we assume that the degree
of each node v ∈ R1 in G[R1] is at most bδ(v)/kc. By con-
struction, also each node v ∈ B1

` has a degree in G[B1
` ] of at

most bδ(v)/kc. Since there is no edge (u, v) of G such that
u ∈ B1

` and v ∈ R \ R1
` , it follows that the degree of each

node v ∈ B1
` ∪ R1 in G[B1

` ∪ R1] is also upper bounded by
bδ(v)/kc.

Let σ be the strategy profile in which exactly |B1
` | blue

agents are placed on the nodes of B1
` and the remaining b −

|B1
` | blue agents are placed on a subset of nodes of R1 (ties

among nodes of R1 are arbitrarily broken). Let i be any blue
agent ane let v be the node occupied by i in σ. By the choice
of k we have k ≥ d δ(v)

Λ(δ(v)+1)−1e. This implies that

fi(σ) ≤ bδ(v)/kc+ 1

δ(v) + 1
≤ δ(v)/k + 1

(δ(v) + 1)
≤ Λ.

Therefore, the blue agent i is below the peak in σ. Since
every blue agent is below the peak in σ, from Lemma 1 and
Corollary 4, σ is a SE.

We conclude the proof by showing that

DoI(σ) = Ω(Λ(|B|+ |R|)).

By construction, each blue agent occupies a node that is ad-
jacent to at least one other node occupied by a red agent.
Moreover, each red agent that occupies a node of R1

` is in



the neighborhood of at least one node of B1
` that is occupied

by a blue agent). Therefore,

DoI(σ) ≥ b+ |R1
` |. (8)

For proof convenience, let us denote by R1
−1 the set R. By

the choice of `we know that |R|−|R1
`−1| = |R\R1

`−1| < kb,
which implies that |R1

`−1| > |R| − kb. As a consequence,
since

k∑
i=1

|Ri`| ≥ |R1
`−1| > |R| − kb

and |R1
` | ≥ maxi |Ri`|, we obtain

|R1
` | >

|R|
k
− b. (9)

Combining the inequalities (8) and (9) we obtain

DoI(σ) > |R|/k.

Using inequality (7) and the fact that k = O(1/Λ) we finally
obtain DoI(σ) = Ω(Λ(|B|+ |R|)), as desired.

We can derive the following upper bound to the PoS.
Corollary 3. For any game (G, b,Λ) on an almost regu-
lar graph with a constant value of Λ ≤ 1/2, we have
PoS(G, b,Λ) = O(1).

Proof. By Theorem 5, the PoS is constant if ∆(G) is con-
stant. The result when ∆(G) is not constant is divided into
two cases. For the case b ≥ α(G) the claim immediately
follows from Theorem 13. For the case b < α(G) the claim
follows from Theorem 14 and the fact that Λ is constant by
assumption.

6 Computational Complexity Results
In this section we analyze the computational complexity as-
pects of the game played on both bipartite and regular graphs.
More precisely, we provide hardness results for the two prob-
lems of computing a social optimum and a SE σ that maxi-
mizes the value DoI(σ), respectively.
Theorem 15. There is a constant c > 1 such that, given
a game (G, b,Λ) played on a cubic graph G, the prob-
lem of computing a social optimum strategy profile is not c-
approximable in polynomial time, unless P = NP.

Proof. The reduction is from MINIMUM DOMINATING SET
problem on cubic graphs, an optimization problem in which
the goal is to compute a minimum-size set D of nodes of a
given cubic graph G′ that dominates V (G′), i.e., for every
node v ∈ V (G′), v ∈ D or there is an edge (u, v) ∈ E(G′)
such that u ∈ D. It is known that a minimum dominating
set on cubic graphs is not approximable within some constant
c′ > 1, unless P = NP, see [Alimonti and Kann, 1997].

Let G be a cubic graph of n nodes that has a minimum
dominating set of size k∗ and let b = k∗. We claim that a
strategy profile σ∗ satisfies DoI(σ∗) = n iff the b blue agents
are placed on the nodes that form a minimum dominating set
of G. Indeed, a red agent placed on a node v is not segre-
gated in σ∗ iff there is a blue agent placed on a node that
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(a) A cubic graph G′ with n′ = 4, m′ = 6, with a minimum vertex
cover k∗ = 3.
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(b) An instance (G, b) of our game constructed from G′ with n =
n′ + 7m′ + 1 vertices and b = k∗ + 1 blue agents.

Figure 7: An example instance of the reduction from Vertex Cover
shown in Theorem 16.

dominates v. Furthermore, a blue agent placed on a node u is
never segregated in σ∗ because of the minimality of the dom-
inating set (i.e., each node of a minimum dominating set D
must dominate a node of the graph that is not in D).

Let c = 4
5−c′ . Since all the nodes of the graph trivially

form a dominating set of size n ≤ 4k∗ (each node of the
dominating set dominates 4 nodes), we have that c′ < 4 and
therefore, c > 1.

We complete the proof by showing that, if we were able to
compute, in polynomial time, a strategy profile σ such that

DoI(σ∗)

DoI(σ)
≤ c,

then we could compute, in polynomial time, a c′-approximate
dominating set of G.

Let σ be a strategy profile such that DoI(σ∗)
DoI(σ) ≤ c and let D

be the set of nodes that are occupied by the blue agents in σ.
Let n′ be the nodes of G that are not dominated by D. We
have that n

n−n′ ≤ c, from which we derive that

n′ ≤ c− 1

c
n =

4
5−c′ − 1

4
5−c′

n ≤ c′ − 1

4
4k∗ = (c′ − 1)k∗.

We now compute, in polynomial time, a dominating set D′
of G whose size is at most k∗ + (c′ − 1)k∗ = c′k∗. D′

contains D and all the n′ nodes of G that are not dominated
by D. Clearly, D′ is a dominating set of G that approximates
the value k∗ within a factor of c′. This completes the proof.

The following lemma allows us to convert any strategy pro-
file into an SE without increasing the number of segregated
agents.



Lemma 8. Given a game (G, b,Λ) on an almost regular
graph, with ∆(G) ≤ 3 and Λ ≤ 1/2, and given a strategy
profile σ, we can compute an SE σ′ such that DoI(σ′) ≥
DoI(σ) in polynomial time.

Proof. We shall prove the following claim: if a feasible strat-
egy profile σ is not a SE, then there exists a (not necessarily
profitable) swap decreasing the potential function Φ and not
creating new segregated agents. This implies that after a se-
quence of at most m = |E(G)| swaps of this type, we obtain
an SE σ′ such that DoI(σ′) ≥ DoI(σ). Therefore, given σ,
we have that σ′ can be computed in polynomial time.

It remains to prove the existence of a (not necessarily prof-
itable) swap σ′ such that Φ(σ′) < Φ(σ) and not creating new
segregated agents. Towards this end, fix a non-equilibrium
feasible strategy profile σ and consider a blue agent i and a
red agent j possessing a profitable swap in σ. If no segre-
gated agents are created in σij , then the claim holds. So as-
sume that a segregated agent k is created in σij . Clearly, by
definition of profitable swaps, it must be k /∈ {i, j}. Assume,
w.l.o.g, that k is red. Then, since we have

fk(σij) =
δ(σ(k)) + 1

δ(σ(k)) + 1
= 1,

k needs be adjacent to i in σ, i.e. 1ik(σ) = 1, and

fk(σ) =
δ(σ(k))

δ(σ(k)) + 1
.

Let xb (resp. xr) be the number of blue agents (resp. red
agents other than k) adjacent to i in σ. Since profitable swaps
in almost regular graphs can only occur between agents above
the peak, we have

xb + 1

xb + xr + 2
> Λ

which implies xr < xb as Λ ≤ 1/2. By swapping i and k, we
get

Φ(σ)− Φ(σik) = δ(σ(k))− 1 + xb − xr > 0.

Therefore σik is a swap such that Φ(σik) < Φ(σ).
We are left to prove that no segregated agents are created

in σik. The neighborhood of node σ(k) in σ is composed of
node σ(i) and a remaining set of red nodes. Thus, when σ(k)
and σ(i) exchange their colors in σik, no segregated agents
are created in the closed neighborhood of σ(k). The neigh-
borhood of node σ(i) in σ is composed of node σ(k) and a
remaining set of xb blue nodes and xr red nodes (not count-
ing σ(k)), with xb > xr. As the maximum degree of G is at
most 3 and σ(i) is adjacent to σ(k), we have xb + xr ≤ 2,
which, since xb > xr, implies xr = 0. Thus, when σ(k) and
σ(i) exchange their colors in σik, no segregated agents are
created in the closed neighborhood of σ(i). No other nodes
are affected by the swap, thus no segregated agents are cre-
ated.

Corollary 4. There is a constant c > 1 such that, given a
game (G, b,Λ) on a cubic graph G, with Λ ≤ 1/2, the prob-
lem of computing an SE σ that maximizes DoI(σ) is not c-
approximable in polynomial time, unless P = NP.

Proof. Let σ∗ be a strategy profile that maximizes the value
DoI(σ∗). Thanks to Lemma 8, we know that there is an SE σ
such that DoI(σ) ≥ DoI(σ∗). As a consequence, any SE that
approximates DoI(σ) within a factor of c would also approx-
imate DoI(σ∗) within a factor of c. The claim now follows
from Theorem 15.

We now provide analogous results for bipartite graphs.

Theorem 16. There is a constant c > 1 such that, given
a game (G, b,Λ) on a bipartite graph G, the problem
of computing a social optimum strategy profile is not c-
approximable in polynomial time, unless P = NP.

Proof. The reduction is from MINIMUM VERTEX COVER
problem on cubic graphs, an optimization problem in which
the goal is to compute a minimum-size set C of nodes of a
given cubic graphG′ such that every edge (u, v) of G′ is cov-
ered by C, i.e., {u, v} ∩ C 6= ∅. It is known that a minimum
vertex cover on cubic graphs is not approximable within some
constant c′ > 1, unless P = NP, see [Alimonti and Kann,
1997].

Let us assume that n′ andm′ = 3
2n
′ is the number of nodes

and edges of the input graph G′, respectively. We construct a
graph G as follows (see Figure 7 for an example). G contains
n = n′+7m′+1 nodes. More precisely, each node v ofG′ is
modeled by a node xv in G, while each edge e of G′ is mod-
eled by two nodes y1

e and y2
e in G. G also contains a special

node z and 5m′ additional dummy nodes. The special node z
is connected by an edge to each of the 5m′ dummy nodes and
the n′ nodes xv , with v being a node of G′. Finally, G con-
tains the two edges connecting xv with y1

e and y2
e iff v is an

endpoint of the edge e in G′.
By construction, we have thatG is a bipartite graph. Let k∗

denote the size of a minimum vertex cover ofG′. We consider
the game (G, b) played on the constructed graph G, where
b = k∗ + 1.

We claim that a social-optimal strategy profile σ∗ has a
DoI(σ∗) = n iff G′ admits a vertex cover of size k∗.

(⇐) LetC∗ be a vertex cover ofG′ of size k∗. Consider the
strategy profile σ∗ in which one blue agent is placed on the
special node z, while the remaining k∗ blue agents are placed
on the nodes xv , with v ∈ C∗. Clearly, the red agents are
placed on the remaining nodes of the graph. By construction,
one can check that no agent in G is segregated (see Figure 7
for an example). Therefore, DoI(σ∗) = n.

(⇒) Let σ∗ be a strategy profile such that DoI(σ∗) = n.
First of all, as k∗ + 1 ≤ n′ + 1 < 5m′, we have that no
dummy node can be occupied by a blue agent. This is be-
cause all edges that connect a dummy node with the special
node z must be bi-chromatic and the number of blue agents
is not sufficient to cover all the dummy nodes. Therefore, all
dummy nodes must be occupied by red agents and, as a con-
sequence, the special node z is occupied by a blue agent. We
claim that the set

C(σ∗) := {v ∈ V (G′) | xv is occupied by a blue agent}

has size k∗ and forms a vertex cover of G′. We observe that,
by construction, it is enough to prove that C(σ∗) has size k∗
as each node yie, with i ∈ {1, 2}, is adjacent to the nodes xv



such that v covers e in G′. For the sake of contradiction, as-
sume that |C(σ∗)| < k. We show the existence of a vertex
cover ofG′ of size strictly smaller than k∗. LetE′ be the sub-
set of the edges ofG′ such that, for each e ∈ E′, y1

e and y2
e are

both occupied by blue agents. Let C be a set of nodes of G′
that contains C(σ∗) plus any of the two endnodes of e, for
each e ∈ E′. We now show that |C| < k∗. As DoI(σ∗) = n,
each node yie that is occupied by a red agent should be adja-
cent to a node xv occupied by a blue agent. By construction v
covers e and v ∈ C(σ∗). Therefore, C(σ∗) covers all the
edges of E(G) \E′. Hence, C is a vertex cover of G′ of size
strictly smaller than k∗.

We complete the proof by showing that there is a constant
c > 1 such that the problem of computing, in polynomial
time, a strategy profile σ that approximates the social op-
timum σ∗ is not approximable within c, unless P = NP.
Let c′ > 1 be the constant such that the MINIMUM VERTEX
COVER problem on cubic graphs is not approximable within
a factor of c′ in polynomial time. As each node of G′ cov-
ers 3 edges, we have that k∗ ≥ m′

3 = n′

2 . This implies that
the MINIMUM VERTEX COVER problem on cubic graphs is
approximable within a factor of 2 (all nodes of the graph suf-
fice). Therefore, c′ < 2. We set c = 13/(14 − c′). Observe
that c > 1 as 1 < c′ < 2. We now prove that if we were
able to compute, in polynomial time, a strategy profile σ such
that DoI(σ∗)/DoI(σ) ≤ c, then we could c′-approximate
the MINIMUM VERTEX COVER problem on cubic graphs in
polynomial time.

For the sake of contradiction, let σ be strategy profile that
c-approximates DoI(σ∗) and assume that σ can be computed
in polynomial time. We use σ to define a new strategy profile
σ′ such that (i) DoI(σ′) ≥ DoI(σ), (ii) one blue agent is
placed on the special node z, and (iii) all the other blue agents
are placed on a subset of nodes xv with v ∈ V (G′).

First of all, we show that the special node z is occupied by
a blue agent in σ. If not, there would be at least

5m′ − k∗ − 1 ≥ 4m′

dummy nodes occupied by red agents and therefore
DoI(σ) ≤ n − 4m′. As a consequence, using also the fact
that m′ = 3

2n
′ and m′ ≥ 1, we would obtain

DoI(σ∗)

DoI(σ)
≥ n

n− 4m′
= 1 +

4m′

n− 4m′
= 1 +

4m′

n′ + 3m′ + 1

≥ 1 +
3m′

2
3m
′ + 3m′ +m′

=
23

14
> c,

thus contradicting the fact that our solution is c-approximate.
The strategy profile σ′ is obtained by modifying σ as fol-

lows. Blue agents that occupy dummy nodes exchange their
position with red agents occupying nodes of the form xv , with
v ∈ V (G′). At the same time, every blue agent that occu-
pies a node yie, with e ∈ E(G′) and i ∈ {1, 2}, exchanges
its position with a red agent occupying a node xv such that
v ∈ V (G′), where we give priority to nodes that cover e.
Clearly, given σ, strategy profile σ′ can be computed in poly-
nomial time and we have DoI(σ′) ≥ DoI(σ).

Let m′′ be the number of edges of G′ that are not covered
by
C(σ′) := {v ∈ V (G′) | xv is occupied by a blue agent}.

We show that m′′ ≤ (c′ − 1)k∗. First of all, we observe
all the 5m′ dummy nodes, the special node z and all the n′
nodes xv corresponding to the nodes v ∈ V (G′) are not seg-
regated in σ′. Therefore, the number of uncovered edges
of G′ equals twice the number of segregated red agents in G
(two red agents per uncovered edge e of G′ that occupy the
nodes y1

e and y2
e ). Therefore DoI(σ′) = n − 2m′′. As a

consequence

c >
DoI(σ∗)

DoI(σ′)
≥ n

n− 2m′′
,

from which we derive

m′′ ≤ c− 1

2c
n =

13
14−c′ − 1

2 13
14−c′

n =
c′ − 1

26
(n′ + 7m′ + 1)

≤ c′ − 1

26

(
2

3
m′ + 7m′ +m′

)
=
c′ − 1

3
m′

≤ (c′ − 1)k∗,

where we use the facts that m′ = 3
2n
′ (i.e., G′ is cubic) ,

1 ≤ m′, and k∗ ≥ m′

3 (each node of G′ covers 3 edges).
To complete the proof, let C be a vertex cover of G′ that

contains C(σ′) and a node that covers each of the edges
of G′ that are not covered by C(σ′). Clearly, given σ′, C
can be computed in polynomial time. The size of C is upper
bounded by the size of C(σ′) plus the number of uncovered
edges, i.e.,

|C| ≤ k∗ +m′′ ≤ c′k∗.
Hence, C is a c′-approximate vertex cover of G′. This com-
pletes the proof.

Theorem 17. There is a constant c > 1 such that, given a
game (G, b, 1/2) on a bipartite graphG, the problem of com-
puting an SE σ that maximizes DoI(σ) is not c-approximable
in polynomial time, unless P = NP.

Proof. We consider exactly the same reduction that we used
in the proof of Theorem 16 and show the existence of a strat-
egy profile σ∗ that maximizes DoI(σ∗) which is also an SE.
Observe that, once we prove that σ∗ is an SE, the rest of the
proof can be derived from Theorem 16.

Consider the strategy profile σ∗ in which a blue agent oc-
cupies the special node z, while the remaining k∗ blue agents
are placed on nodes of the form xv such that v ∈ C∗ and C∗
is an optimal vertex cover of G′ (see also Figure 7). In the
proof of Theorem 16 we already showed that DoI(σ∗) = n.
In the following we show that σ∗ is also a SE.

The red agents on the dummy nodes have maximum utility,
so they never swap.

Let j be a red agent that is placed on a node of the form xv ,
with v ∈ V (G′). The strategy σij where i is a blue agent
placed on a node xv , with v ∈ V (G′), is not a profitable
swap by Lemma 3. The strategy σij where i is the blue
agent placed on the special node z is not a profitable swap
by Lemma 2.

Finally, consider any red agent j that is placed on a node
of the form y`e with e ∈ E(G′) and ` ∈ {1, 2}. This agent
has a utility of either p(1/3) or p(2/3). But p(1/3) = p(2/3)



whenever Λ ≤ 1/2. The strategy σij , where i is a blue agent
placed on a node xv with v ∈ V (G′), is not a profitable swap
either by Lemma 2 (when σ(i) is adjacent to σ(j)) or sim-
ply because the utility of j in σij is p(7/8) < p(2/3). The
blue agent i on the special node z has a utility that is strictly
smaller than p(1/6) as

k∗ + 1

5m′ + n′ + 1
≤ n′

5n′ + n′ + 1
< 1/6.

Therefore, σij is not a profitable swap because the utility of j
in σij is upper bounded by p(5/6) < p(2/3).

7 Conclusion and Future Work
We study game-theoretic residential segregation with
integration-oriented agents and thereby open up the novel re-
search direction of considering non-monotone utility func-
tions. Our results clearly show that moving from monotone to
non-monotone utilities yields novel structural properties and
different results in terms of equilibrium existence and quality.
We have equilibrium existence for a larger class of graphs,
compared to [Agarwal et al., 2021], and it is an important
open problem to prove or disprove if swap equilibria for our
model with Λ ≤ 1

2 are guaranteed to exist on any graph.
So far we considered single-peaked utilities that are sup-

ported by data from real-world sociological polls. However,
also other natural types of non-monotone utilities could be
studied. Also ties in the utility function could be resolved by
breaking them consistently towards favoring being in the mi-
nority or being in the majority. The non-existence example of
swap equilibria used in the proof of Theorem 2 also applies
to the case with Λ = 1

2 and breaking ties towards being in the
majority. Interestingly, by breaking ties the other way we get
the same existence results as without tie-breaking and also
our other results hold in this case. This is another indication
that tolerance helps with stability.

Moreover, all our existence results also hold for utility
functions having a symmetric plateau shape around Λ. In-
vestigating the PoA for these utility functions is open.

Regarding the quality of the equilibria, we analyze the de-
gree of integration as social welfare function, as this is in-
line with considering integration-oriented agents. Of course,
studying the quality of the equilibria in terms of the stan-
dard utilitarian social welfare, i.e., SUM(σ) =

∑n
i=1 Ui(σ),

would also be interesting. We note in passing that on ring
topologies the PoA and the PoS with respect to both social
welfare functions coincide.

References
D. Acevedo-Garcia and K. A. Lochner. Residential segrega-

tion and health. Neighborhoods and Health, pages 265–87,
2003.

A. Agarwal, E. Elkind, J. Gan, A. Igarashi, W. Suksompong,
and A. A. Voudouris. Schelling games on graphs. Artif.
Intell., 301:103576, 2021.

P. Alimonti and V. Kann. Hardness of approximating prob-
lems on cubic graphs. In Algorithms and Complexity, pages
288–298, 1997.

G. Barmpalias, R. Elwes, and A. Lewis-Pye. Digital morpho-
genesis via schelling segregation. In FOCS 2014, pages
156–165, 2014.

N. Betzler, A. Slinko, and J. Uhlmann. On the computation of
fully proportional representation. JAIR, 47:475–519, 2013.
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