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Abstract

Network Creation Games are an important frame-
work for understanding the formation of real-world
networks. These games usually assume a set of in-
distinguishable agents strategically buying edges at
a uniform price leading to a network among them.
However, in real life, agents are heterogeneous and
their relationships often display a bias towards sim-
ilar agents, say of the same ethnic group. This ho-
mophilic behavior on the agent level can then lead
to the emergent global phenomenon of social seg-
regation. We initiate the study of Network Creation
Games with multiple types of homophilic agents
and non-uniform edge cost. Specifically, we in-
troduce and compare two models, focusing on the
perception of same-type and different-type neigh-
boring agents, respectively. Despite their different
initial conditions, both our theoretical and experi-
mental analysis show that the resulting stable net-
works are almost identical in the two models, indi-
cating a robust structure of social networks under
homophily. Moreover, we investigate the segrega-
tion strength of the formed networks and thereby
offer new insights on understanding segregation.

1 Introduction

Networks play an eminent role in today’s world. They are
crucial for our energy supply (power grid networks), our in-
formation exchange (the Internet and the World Wide Web),
and our social relationships (friendship networks, email ex-
change, or co-author networks). There exists an abundance
of approaches to provide formal frameworks for modeling
networks, see, for example, the books by Jackson (2010),
Newman (2018), and Barabási (2016). In many of these mod-
els, the nodes of the network correspond to agents that strate-
gically create connections which is particularly suitable for
our main focus of modeling social networks.

One such stream of research considers variants of the Net-
work Creation Game (NCG) as proposed by Fabrikant et al.
(2003). There, selfish agents create edges to form a network
among themselves. On the one hand, forming edges is costly
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and hence agents try to create only the most useful edges. On
the other hand, the force that causes agents to form edges at
all is well-connectivity within the network which is captured
by a desire to occupy a central position.

The NCG is a stylized model of social interaction, provid-
ing valuable insight to agents’ decision processes when in-
teracting with each other. However, it is important to refine
the basic model to spotlight specific details of this decision
making. In this sense, we study network creation under the
additional assumption that agents are separated into various
types that model ethnic groups or affiliations.

Our goal is to contribute a new perspective on the sim-
ple causes that lead to the segregation of a society, simi-
lar to Schelling’s checkerboard model for residential segre-
gation (Schelling, 1969, 1971). Therefore, our agents’ cost
functions have a bias towards the creation of relationships
with agents of the same type. Specifically, we study two mod-
els based on two seemingly orthogonal treatments of other
agents. In the first model, agents incur a fixed cost for ev-
ery created edge and a variable cost that only depends on the
number of edges towards same-type agents. In the second
model, edges towards different-type agents are initially more
expensive but their cost drops with an inverse linear decay.
Both models give a different point-of-view on the same un-
derlying principle, namely homophily of agents, i.e., the ten-
dency to form connections with like-minded people. This is
often summarized with the proverb “birds of a feather flock
together”, a dominant intrinsic force repeatedly observed in
the creation of social networks, see McPherson et al. (2001)
for a survey on the extensive sociological research on ho-
mophily in social networks. While our first model ex-
presses homophily explicitly by an increasing comfort among
friends, the second model incorporates homophily indirectly
by accounting for a decreasing effort of integration once first
contact is established. The latter paradigm is closely related
to the well-known effect in social sciences called the “con-
tact hypothesis” which states that stereotypes and prejudices
between ethnic groups can be weakened by intensified con-
tact (Allport et al., 1954; Amir, 1969; Dovidio et al., 2003).

We measure the desirability of networks by means of
stability. Since we consider social networks, we as-
sume a bilateral model where two agents have to coop-
erate to connect. Consequently, we use pairwise stabil-
ity (Jackson and Wolinsky, 1996) as solution concept, rather
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than, for instance, Nash stability which is more appropriate
for unilateral models.

Interestingly, we find an almost identical structure of sta-
ble networks for both models. This reveals their close rela-
tionship, hinting at a robust structure of networks created un-
der homophily incentives. Naturally, a very small edge cost
causes extremely high connectivity, treating agents as being
indistinguishable. For moderately small edge cost, we pro-
vide characterizations of stable networks which are all highly
segregated. We interpret this as identifying a sweet spot of
high sensitivity towards agent types. For larger edge cost, sta-
bility causes in theory a large spectrum of networks to form
with respect to segregation strength. We accompany this the-
oretical limitation with an average-case analysis by detailed
simulations of a simple distributed dynamics, where agents
perform improvements towards stable networks. It would be
plausible if a generally high edge cost causes less distinction
of agent types. While this is sometimes confirmed, we also
identify contrasting tendencies towards extreme segregation.
An important driver for the different behavior is the initial
segregation level, indicating that segregation can be avoided
by a high initial effort without constant further interaction.

2 Related Work

In the original NCG (Fabrikant et al., 2003) the cost of ev-
ery edge is α > 0, where α is a parameter of the game that
allows to adjust the tradeoff between the agents’ cost for cre-
ating edges and their cost resulting from their centrality in the
network, e.g., the sum of distances to all other nodes. Stable
networks always exist, in particular for α < 1 only cliques
are stable whereas for 1 ≤ α < n stars, other trees, and
also non-tree networks can be stable (Mamageishvili et al.,
2015). For α ≥ n it is conjectured that all stable networks
are trees and a recent line of works has proven this to hold for

α > 3n−3 (Àlvarez and Messegué, 2017; Bilò and Lenzner,
2020; Dippel and Vetta, 2021). Bilateral NCGs with uniform
edge price have been introduced by Corbo and Parkes (2005).

Also NCG variants with non-uniform edge cost have been
studied: a version where edges of differing quality can
be bought (Cord-Landwehr et al., 2014), and NCGs where
the edge cost depends on the node degrees (Chauhan et al.,
2017), on the length of the edges in a geometric set-
ting (Bilò et al., 2019), or on the hop-distance of the end-
points (Bilò et al., 2021). Especially the latter is also moti-
vated by social networks and also bilateral edge formation
with pairwise stability as solution concept is considered. The
NCG variant by Meirom et al. (2014) that focuses on the cre-
ation of communication networks features different types of
agents and different but fixed edge costs for each agent type.

Closest to our work is the model proposed by
De Martı́ and Zenou (2017) that is a variant of the con-
nections model (Jackson and Wolinsky, 1996) with different
types of agents. Similar to our model, the cost for maintain-
ing an inter-type connection depends on the homogeneity of
the neighborhoods of the involved agents. In contrast to us,
the cost for intra-type edges is fixed and the distance cost
is defined differently. The authors study the existence and
structure of equilibria but do not focus on investigating the

segregation strength. The latter has been done by Henry et al.
(2011) using a stochastic process that starts with a randomly
drawn network with nodes of different types and then edges
are randomly rewired with a built-in bias towards favoring
intra-type edges. As main result, the authors show that the
network strongly segregates over time, even if the built-in
bias is very low.

Residential segregation has recently received a lot
of attention by a stream of research developing a
game-theoretic framework based on Schelling’s checker-
board model (Chauhan et al., 2018; Agarwal et al., 2021;
Echzell et al., 2019; Bilò et al., 2020; Kanellopoulos et al.,
2021a; Bullinger et al., 2021; Kanellopoulos et al., 2021b;
Bilò et al., 2022). There, agents of several types strategi-
cally select positions on a given fixed network and try to
optimize the number of same-type agents in their neighbor-
hood. Also hedonic diversity games (Bredereck et al., 2019;
Boehmer and Elkind, 2020; Darmann, 2021) are similar.

3 Preliminaries and Model

We consider a set V = {1, . . . , n} of n agents partitioned
into k ≥ 2 disjoint types. The set of types is denoted by
T , and for every type T ∈ T , let VT be the set of agents of
type T , i.e., V =

⋃

T∈T VT and VT ∩ VT ′ = ∅ for T, T ′ ∈ T ,

with T 6= T ′. For an agent u ∈ V, we denote by T (u) her
type, i.e., u ∈ VT (u). Given a type T ∈ T , then nT = |VT |
denotes the number of agents of type T . We identify types
with colors and we assume that there are specific types B and
R of blue and red agents, respectively, which are associated
with an agent type having the smallest and largest number of
agents, respectively. Thus, for every type T ∈ T , we have
nB ≤ nT ≤ nR. In particular, with exactly two agent types
we have precisely a blue minority and a red majority type.

In a network creation game, agents will buy edges to even-
tually form a network, which is an undirected graph G =
(V,E). Therefore, it is useful to introduce some common
concepts and notation from graph theory. Consider an undi-
rected graph G = (V,E) together with vertices u, v ∈ V. We
denote the (potential) edge between u and v by uv (whether
it is present or not). For two agents u, v ∈ V, the edge uv
is called monochromatic if u and v are of the same type,
and bichromatic, otherwise. If uv ∈ E, we use the nota-
tion G − uv = (V,E \ {uv}), otherwise we use G + uv =
(V,E ∪ {uv}). Hence, G − uv and G + uv are the graphs
obtained from G by deleting or adding the edge uv, respec-
tively. Further, let NG(u) = {v ∈ V : uv ∈ E} denote
the neighborhood of u in G, let degG(u) = |NG(u)| be the
degree of u in G, i.e., the size of its neighborhood, and let
dG(u, v) be the distance from u to v in G, i.e., the length of
a shortest path from u to v in G. The diameter of G is de-
fined as diam(G) = maxu,v∈V dG(u, v), i.e., the maximum
length of any shortest path in G. Finally, a useful measure
for the centrality of a vertex in a network is its distance to
a set of vertices. Given a subset V ′ ⊆ V of vertices, let
dG(u, V

′) =
∑

v∈V ′ dG(u, v) denote the sum of distances

from u to all vertices in V ′. Also, given a subset of agents
C ⊆ V, we denote by G[C] the subgraph of G induced by C,
i.e., G[C] = (C,F ), where F = {uv ∈ E : u, v,∈ C}.



Before formally defining our network creation model, we
introduce some relevant special types of graphs. The graph
Kn = (V,E) is called complete if E = {uv : u, v,∈ V},
i.e., all possible edges are present. Further, Sn = (V,E) is
called star if some u ∈ V exists such that E = {uv : v ∈
V \ {u}}. We also define two networks for the special case of
2 types. Given two agents u ∈ VB and v ∈ VR, the network
DSn = (V,E) is called double star if E = uv ∪ {uw : w ∈
VB} ∪ {vw : w ∈ VR} and DSXn = (V,E) is called double
star with switched centers if E = uv ∪ {uw : w ∈ VR} ∪
{vw : w ∈ VB}. An undirected graph G is called complete,
star, double star, or double star with exchanged centers if it
is isomorphic1 to Kn, Sn, DSn, or DSXn, respectively.

Network Creation Games with Homophilic Agents We
study network creation within a cost-oriented bilateral model
à la Corbo and Parkes (2005), where the agent cost is sep-
arated into a neighborhood cost encompassing the cost of
sponsoring edges and a distance cost encompassing the cost
of the agents’ centrality. In both of our models, a created net-
workG has a distance cost for agent u of dG(u) := dG(u, V),
i.e., the sum of agent u’s distances to all other agents. The
neighborhood cost is different in our two models and will be
specified in the definition of our network creation games.

To model the cost dependency on the types of neighbors,
we define the set of same-type agents in the neighborhood
of agent u as FG(u) = VT ∩ NG(u), if u ∈ VT for some
type T ∈ T . Also, the set of other-type neighboring agents
is EG(u) = NG(u) \FG(u), and let the cardinalities of these
sets be fG(u) = |FG(u)| and eG(u) = |EG(u)|, respectively.

Now we define our network creation games. A network
creation game with increasing comfort among friends (ICF-
NCG) with cost parameter α > 0 is a network creation game
where the neighborhood cost is given by

aICF

G (u) = degG(u) · α
(

1 +
1

fG(u) + 1

)

,

i.e., there is a fixed cost of α for every edge and an additional
cost that decreases with an increasing number of friends.

A network creation game with decreasing effort of inte-
gration (DEI-NCG) with cost parameter α > 0 is a network
creation game where the neighborhood cost ist given by

aDEI

G (u) = α

(

degG(u) +

eG(u)
∑

k=1

1

k

)

.

Hence, there is a fixed edge cost of α for every edge to an
agent in the neighborhood together with a harmonically de-
creasing additional cost for edges towards other-type agents.
Note that the sum is empty for eG(u) = 0, and therefore, the
game is identical to the single-type bilateral network creation
game by Corbo and Parkes (2005) if k = 1.

For the neighborhood cost, we omit the superscript indicat-
ing the type of network creation game, whenever this is clear
from the context. Also, for both of our models, we define the
total cost as cG(u) = aG(u) + dG(u).

1Here, isomorphisms must preserve agent types, i.e., map ver-
tices associated to blue and red agents to such vertices, respectively.

The cost functions mimic the two effects that we want to
model, namely a general homophilic behavior via the ICF-
NCG and diminishing prejudices with intensified contact via
the DEI-NCG. In both models, edge costs are in the range
[α, 2α]. In the ICF-NCG, we assume that the cost of edges is
2α for each edge if an agent has no friends, and the edge cost
is approaching α when the number of neighboring friends is
growing. In the DEI-NCG, the cost for edges to friends is
always α and the variable cost only affects other-type agents,
where we approach α with a harmonic decay. Our cost func-
tions represent one way to capture these “monotonicities”,
having a similar decay structure and cost range to ensure their
comparability.

Measures for Desirable Networks We analyze networks
by the incentives of agents to maintain the network in terms
of stability and by the diversity of their neighborhood with re-
spect to other agent types. Following Jackson and Wolinsky
(1996), a network G = (V,E) is called pairwise stable if the
following two conditions are satisfied:

(i) For all agents u ∈ V and neighbors v ∈ NG(u), it holds
that cG(u) ≤ cG−uv(u), i.e., no agent can benefit from
unilaterally severing an edge, and

(ii) for all agents u ∈ V and non-neighbors v /∈ NG(u), it
holds that cG(u) ≤ cG+uv(u) or cG(v) ≤ cG+uv(v),
i.e., no pair of agents can bilaterally create an edge such
that the individual cost for both agents decreases.

Connectivity is an important aspect in network analysis. With
multiple agent types, the internal connectivity per type de-
serves special consideration. Formally, a network G =
(V,E) is called fully intra-connected if, for every pair of
same-type agents u, v ∈ V, it holds that uv ∈ E. Further,
G is fully connected if G is complete.

For the evaluation of diversity, we consider two segrega-
tion measures. Given a network G = (V,E), its local segre-
gation, denoted by LS(G), is defined as the average fraction

of agents of the same type, i.e., LS (G) = 1
|V|

∑

u∈V
fG(u)

degG(u) .

The global segregation, called GS (G), is the proportion of

monochromatic edges, i.e., GS (G) =
∑

u∈V
fG(u)

2|E| . Note that
1
2

∑

u∈V fG(u) is the number of monochromatic edges.2

Finally, the minimum willingness to integration by an
agent can be evaluated by checking if she entertains any
bichromatic edge. Therefore, we call an agent curious if she
is part of a bichromatic edge. Similarly, a type of agents is
called curious if it solely consists of curious agents. Note that
this concept is related to the degree of integration, which is
identical to the number of curious agents and has been studied
in game-theoretic segregation models (Agarwal et al., 2021).

4 Increasing Comfort among Friends

In this section we perform our theoretical analysis of the ICF-
NCG. Unless explicitly stated otherwise, all statements hold
for an arbitrary number of agent types. All missing proofs
can be found in the technical appendix.

2
LS and GS are (related to) standard measures in social sciences

to capture the agents’ exposure (Massey and Denton, 1988). LS is
used by Paolillo and Lorenz (2018) and GS is used in the simulation
framework Netlogo (Wilensky, 1997) and by Zhang (2011).



Figure 1: Pairwise stable networks for
nB

nB+1
≤ α < τ (left) and

τ ≤ α < 1 (right).

We start by gathering some statements concerning struc-
tural properties and simple pairwise stable networks. Their
proof follows by a careful analysis of the cost difference after
the creation and deletion of edges.

Proposition 4.1. For the ICF-NCG the following holds:

1. If α < 6
7 , then every pairwise stable network is fully

intra-connected.
2. If α < 4

3 , then diam(G) ≤ 2 for every pairwise stable
network G. In particular, G contains a curious type.

3. Let α < 1, G a pairwise stable network, and C ⊆ V
such that every agent in C is curious and C ⊆ VT for
some type T ∈ T . Then, G[C] is a clique. In particular,
every curious type of agents is fully intra-connected.

4. If α ≤ nB

nB+1 , then the complete network Kn is pairwise

stable. Moreover for α < min{ 67 , nB

nB+1}, Kn is the

unique pairwise stable network.
5. If α ≥ 1, then the star Sn is pairwise stable.

The uniqueness in Proposition 4.1(4) excludes the param-
eter range 6

7 ≤ α ≤ nB

nB+1 , which can only happen for suffi-

ciently many blue agents. In fact, there the uniqueness ceases
to hold, as we show in Example A.3 in the appendix.

For the existence of stable networks, we still have to con-
sider the intermediate parameter range nB

nB+1 < α < 1. We

provide the construction for two agent types. The general
case is covered in the appendix.

Proposition 4.2. In the ICF-NCG, there exists a pairwise sta-
ble network for every nB

nB+1 ≤ α < 1.

Construction for two agent types. Consider an instance of
the ICF-NCG and let nB

nB+1 ≤ α < 1. We will define a stable

network for α dependent on the threshold τ = nB(nB+1)
nB(nB+1)+1 .

Note that nB

nB+1 < τ < 1, as nB(nB + 1) > nB .

We assume VB = {b1, . . . , bnB
} and VR = {r1, . . . , rnR

}
and define the edge set of the graph G = (V,E) as follows:

• {xi, xj} ∈ E, for x ∈ {b, r}, i, j ∈ {1, . . . , nB},
• {ri, bi} ∈ E, for i ∈ {1, . . . , nB},
• {ri, rj} ∈ E, for i ∈ {1, . . . , nB} and j ∈ {nB +
1, . . . , nR},

• if α < τ , then {ri, rj} ∈ E, for i, j ∈ {nB +
1, . . . , nR}, and no further edges are in E;
otherwise, no further edges are in E.

The two cases for the network G are illustrated in Figure 1.
They can be shown to be pairwise stable for their respective
parameter range.

Interestingly, the stable networks constructed in the previ-
ous proof give an almost full characterization of stable net-
works for the considered range of edge costs when k = 2.

r∗

Figure 2: Pairwise stable network for
nB

nB+1
≤ α ≤

nR

nR+1
with

nB = 3 and nR = 5 blue and red agents, respectively.

Theorem 4.3. Consider the ICF-NCG with parameter α and
k = 2 agent types. Let nR

nR+1 < α < 1 and assume that

G is pairwise stable. Then, the blue agents are fully intra-
connected, the bichromatic edges form a matching of size nB ,
and curious red agents are connected to all other red agents.

Proof sketch. Let nR

nR+1 < α < 1 and assume that G is pair-

wise stable network in the ICF-NCG with cost parameter α.
By Proposition 4.1(2), the diameter of G is bounded by 2 and
there exists a curious type of agents. By Proposition 4.1(3),
the curious type of agents forms a clique C and the curious
agents of the other type form a clique as well.

Now, it can be shown that the bichromatic edges form
a matching by proving that any agent incident to two such
edges can sever one of them. Therefore, only a minority type
can be a curious type and we can conclude that the blue agents
are fully intra-connected and that the matching of bichromatic
edges is of size nB . It remains to show that all curious red
agents maintain edges with non-curious red agents. Assume
that y is a curious red agent forming a bichromatic edge to
the blue agent x and that there is no edge to a non-curious red
agent z, i.e., yz is not present in G. But then, dG(x, z) ≥ 3,
contradicting Proposition 4.1(2).

Example 4.4. The characterization encountered in Theo-
rem 4.3 does not cover the whole range of Proposition 4.2.
In fact, it does not hold for nB

nB+1 ≤ α ≤ nR

nR+1 . Hence, fur-

ther pairwise stable networks exist. Assume that nR ≥ 2 and
let r∗ ∈ VR. Consider the network G = (V,E), where E =
{{v, w} : v, w ∈ VR}∪{{v, w} : v, w ∈ VB}∪{{v, r∗} : v ∈
VB}, i.e., the network is fully intra-connected and there is a
special agent r∗ to which all blue agents are connected. The
structure of this network is depicted in Figure 2. It is straight-
forward to check that the network is pairwise stable. ⊳

Until now, we set our focus on the existence of pairwise
stable networks. In the remainder of the section, we want
to consider the segregation of pairwise stable networks. First,
Theorem 4.3 yields very high segregation for nR

nR+1 < α < 1.

Corollary 4.5. Consider the ICF-NCG with parameterα and
k = 2 agent types. Let nR

nR+1 < α < 1 and assume that G is

pairwise stable. Then, GS(G) ≥ 1− 1
n

and LS (G) ≥ 1− 2
n

.

Hence, we know that segregation is low for sufficiently low
parameter α, where cliques are (uniquely) pairwise stable.
Then, there is a transition at α = nR

nR+1 , where segregation

is provably high regardless of further parameters like the dis-
tribution of agents into types. Once, the cost parameter in-
creases to α ≥ 1, the picture becomes less clear. Stars can
have very high and very low segregation.



Proposition 4.6. Consider the ICF-NCG with parameter
α ≥ 1. Then, for every n ≥ 2, there exist pairwise stable net-
works G and G′ on n nodes such that GS(G) = LS(G) = 1
and GS (G′) = LS (G′) = 1

n−1 .

The networks in the previous proposition have the draw-
back that we need to fix the exact numbers of agents of each
type to obtain the desired segregation. By contrast, forα ≥ 4

3 ,
the double star is always highly segregated.

Proposition 4.7. Consider the ICF-NCG with α ≥ 4
3 .

Then, the double star DSn is a pairwise stable network with
GS (DSn) = 1− 1

n−1 and LS(DSn) ≥ 1− 2
n

.

5 Decreasing Effort of Integration

In this section, we consider the DEI-NCG. We start by col-
lecting some results determining simple stable networks for
sufficiently small and large values of α, respectively. Note
that we implicitly assume the restriction to two agent types
when considering the networks DSn and DSXn. All other
statements hold for an arbitrary number of agent types.

Proposition 5.1. For the DEI-NCG the following holds:
1. If α < 1

2 , then Kn is the unique pairwise stable network.
2. If α < 1, then every pairwise stable network is fully

intra-connected.
3. If α < 1, then every pairwise stable network G satisfies

diam(G) ≤ 2.
4. The network Kn is pairwise stable if α ≤ n−nR

n−nR+1 .

5. If α ≥ 1, then Sn and DSn are pairwise stable net-
works.

6. If α ≥ 4
3 , then DSXn is a pairwise stable network.

Proposition 5.1(2) and Proposition 5.1(3) imply that, for
α < 1, every pairwise stable network consists of two
monochromatic cliques and one type of agents is curious.
Still, there are highly segregated pairwise stable networks.
Also, note that the highly integrated clique investigated in
Proposition 5.1(4) is not the unique stable network, as the
next examples shows for the case k = 2.

Example 5.2. Assume k = 2 and 1
2 ≤ α ≤ nR

nR+1 . Recall

that nR is the size of the majority type of agents. In particular,
this covers the case α ≤ nB

nB+1 = n−nR

n−nR+1 . Assume that

nB ≥ 2 and let b∗ be some fixed blue agent, i.e., an agent
from the minority type. Consider the network G = (V,E)
with E = {vw : v, w ∈ R} ∪ {vw : v, w ∈ B} ∪ {vb∗ : v ∈
R}, i.e., the network is fully intra-connected and there is a
special blue agent b∗ to which all red agents are connected.
There are no further bichromatic edges. See Figure 3.

b∗

Figure 3: Pairwise stable network for 1

2
≤ α ≤

nR

nR+1
. The example

contains nB = 3 and nR = 5 blue and red agents, respectively.

This network is pairwise stable. Indeed, no agent can sever
a monochromatic edge. Red agents cannot sever the bichro-
matic edge, because this decreases the distance to every blue

agent by 1. The blue agent b∗ cannot sever a bichromatic
edge, because this increases her cost by 1 − αnR+1

nR
≥ 0.

Also, further bichromatic edges cannot be added since their
cost is more than 1 for a blue agent while decreasing the dis-
tance cost only by 1. ⊳

In the previous example, it was still possible to simulta-
neously have full intra-connectivity while there are agents
entertaining several bichromatic edges. This is not possible
anymore if we further increase α.

Lemma 5.3. Let k = 2 in the DEI-NCG. Consider a fully
intra-connected and pairwise stable network G.

1. If α > nB

nB+1 , then every red agent in G entertains at

most one bichromatic edge.
2. If α > nR

nR+1 , then every agent in G entertains at most

one bichromatic edge.

As a consequence, we can even characterize all pairwise
stable networks for nR

nR+1 < α < 1 and k = 2.

Theorem 5.4. Let k = 2 in the DEI-NCG. Assume that
nR

nR+1 < α < 1 and consider a network G. Then, G is pair-

wise stable if and only if it is fully intra-connected and its
bichromatic edges form a matching covering VB .

Proof. Clearly, if k = 2 and nR = 1, then the unique stable
network consists of a neighboring blue and red agent. Hence,
the assertion is true. Thus, we may assume that nR ≥ 2.

Let nR

nR+1 < α < 1 and assume first that G is a pairwise

stable network. By Proposition 5.1(2), the network is fully
intra-connected. By Lemma 5.3, the bichromatic edges form
a matching. Finally, by Proposition 5.1(3), one type of the
agents must be curious, and therefore the matching covers
the minority type of agents.

Conversely, assume that G is a fully intra-connected net-
work such that the bichromatic edges form a matching cov-
ering one type of agents. Then, no edge can be severed be-
cause monochromatic edges only decrease the neighborhood
cost by α < 1 while increasing the distance cost by 1. Also,
bichromatic edges decrease the neighborhood cost by 2α < 2
while increasing the distance cost by 2. Finally, it is impos-
sible to create another bichromatic edge. This edge would be
the second bichromatic edge incident to its endpoint from the
minority type of agents. This agent would only decrease her
distance cost by 1 while increasing her neighborhood cost by
3
2α ≥ 3

2
nR

nR+1 ≥ 1, where we use nR ≥ 2 in the last step.

The second part of the above proof shows that the networks
characterized in the theorem are even stable for 2

3 ≤ α < 1.
Putting together Proposition 5.1, Example 5.2, and Theo-
rem 5.4, we have proved the existence of pairwise stable net-
works for almost every DEI-NCG if k = 2 (except a limit
case when nB = 1). By generalizing the encountered net-
works, we can show their existence for an arbitrary number
of types. Interestingly, the generalization of the network in
Example 5.2 is straightforward, maintaining the property that
there exists one specific agent entertaining all bichromatic
edges. On the other hand, the generalization of the network
in Theorem 5.4 is a bit disguised. We define the network
by providing an efficient algorithm. This algorithm initially



considers a fully intra-connected network and adds edges by
having agents create bichromatic edges via specific better re-
sponses. In the special case of k = 2, this results precisely in
the matchings encountered in the previous theorem.

Theorem 5.5. In the DEI-NCG pairwise stable networks al-
ways exist.

Finally, we want to consider the segregation of pairwise
stable networks in the DEI-NCG. Clearly, the segregation
does only depend on the networks, not on the type of NCG.
Hence, we transfer from the investigation of ICF-NCGs that
cliques provide low segregation for small α, stars provide
high or low segregation for high α, but require a specific
distribution of agents. Independently of this distribution,
double stars provide high segregation and it is clear that
GS (DSXn) = LS (DSXn) = 0. Finally, for an interme-
diate range of α, high segregation is guaranteed.

Corollary 5.6. Let k = 2 and nR

nR+1 < α < 1. Then, every

pairwise stable network G in the DEI-NCG with parameter α
satisfies GS (G) ≥ 1− 2

n
and LS (G) ≥ 1− 2

n
.

6 Experimental Analysis

While our theoretical results indicate a clear structure of sta-
ble networks for α ≤ 1, there is a broad range of possibilities
for largerα. Therefore, we support the theoretical findings for
α > 1 by a detailed experimental analysis. To this end, we
simulate a simple dynamic process based on distributed and
strategic edge creation and deletion over time, incentivized
by optimizing the cost functions of our two models.

The dynamics start with sparse initial networks (spanning
tree or grid) and distribute agents of two equally-sized types
such that the segregation of the initial network is very low or
high. In each step, one agent is activated uniformly at random
and can either create or delete an edge, performing a best re-
sponse with respect to the cost function under consideration.
In particular, we study also an add-only variant of the model,
where agents can only create edges. This dynamics is partic-
ularly natural when modeling social networks, as confirmed
by the observation that many real-world social networks get
denser over time (Leskovec et al., 2005). The dynamics pro-
ceed until the consideration of no agent changes the network.

Appendix B contains a detailed discussion of our experi-
mental setup and further results. An exemplary consideration
of the dynamics based on the cost function of the DEI-NCG
can be found in Figure 4 and Figure 5 for the general and
add-only version, respectively.3 Interestingly, the results for
the ICF-NCG are qualitatively the same, regardless of mea-
suring segregation with the local or global segregation mea-
sure. The experiments indicate that the segregation strength
is proportional to α, with low segregation for low α, despite
the theoretical necessity of high segregation for α close to 1.4

3As discussed in Appendix B, for computational efficiency, we
consider convergence to 1.01-approximate pairwise stable states
which is qualitatively similar to pairwise stability. Also, note that
“random” means that the initial agent distribution is chosen uni-
formly at random, which implies low initial segregation.

4The provably high segregation for α < 1 close to 1 is not con-
tradicting the experimental results. Just before we transition to an

Moreover, except for high α, the initial agent distribution in-
fluences the segregation, with more observed segregation for
segregated initial states. On the other hand, the structure of
the initial network seems less important for the qualitative be-
havior. Interestingly, the add-only version displays a similar
behavior for low α, but the behavior changes drastically for
moderately high α. Instead of high segregation, we find that
initially integrated networks converge to only moderately seg-
regated states, whereas this is not true for initially segregated
networks, suggesting an escape route from segregation.
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Figure 4: Local segregation of 1.01-approximate networks in the
DEI-NCG obtained by iterative best response moves for n = 1000

over 50 runs starting from a random or segregated tree and grid.
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Figure 5: Local segregation of pairwise stable networks in the DEI-
NCG obtained by iterative best add-only moves for n = 1000 over
50 runs starting from a random or segregated tree and grid.

7 Conclusion

We have investigated two variants of network creation games
that consider heterogeneous edge creation of agents acting
according to homophily. Our main goal was to analyze segre-
gation within reasonable networks measured by pairwise sta-
bility. Our results are summarized in Figure 6. Even though
our two game models feature two seemingly orthogonal per-
spectives based on a direct and an indirect consideration of
homophily, their qualitative behavior is surprisingly similar.

Clearly, stable networks are highly integrated for a very
small edge cost, when agents can afford to buy all available
edges. Once our cost parameter reaches the sweet spot where
agents need to balance neighborhood and distance cost, there

edge parameter of at least α, we hit the sweet spot where buying
monochromatic edges is desirable while buying bichromatic edges
is not.
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Figure 6: Overview of our theoretical results. We display struc-
tural properties of pairwise stable networks, explicit pairwise stable
networks and findings about the segregation of pairwise stable net-
works. The two models behave surprisingly similar.

is provably high segregation, following from characteriza-
tions of stable networks. For slightly larger edge cost, our
theoretical results cannot give a clear tendency of the segre-
gation strength. In principle, both low and high segregation
can be achieved by stable networks. Therefore, we performed
an average-case analysis by running extensive simulation ex-
periments. These experiments provide general tendencies
about segregation contrasting the large theoretical spectrum
for α ≥ 1. Most importantly, we observe low segregation
under integrated initial conditions if edges cannot be deleted.
This yields an escape route from segregation by a high initial
investment establishing permanent integration.
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A Missing Proofs

In this appendix, we provide missing proofs.

A.1 Increasing Comfort among Friends

For the analysis of pairwise stability, we frequently have to
compute an agent’s cost change after creating or severing one
edge. To clarify the calculations, we gather the respective
formulae in a technical lemma.

Lemma A.1. Consider a network G = (V,E) and an agent
u ∈ V in the ICF-NCG. Consider an agent v ∈ VT (u) of the

same type and an agent w ∈ V \ VT (u) of a different type.
Then, the following statements hold:

1. aG+uv(u) − aG(u) = α
(

1 +
fG(u)−degG(u)+1
(fG(u)+1)(fG(u)+2)

)

if

uv /∈ E (creation of a monochromatic edge),

2. aG−uv(u) − aG(u) = −α
(

1 + fG(u)−degG(u)+1
(fG(u)+1)fG(u)

)

if

uv ∈ E (deletion of a monochromatic edge),

3. aG+uw(u)−aG(u) = α
(

1 + 1
fG(u)+1

)

if uw /∈ E (cre-

ation of a bichromatic edge), and

4. aG−uw(u) − aG(u) = −α
(

1 + 1
fG(u)+1

)

if uw ∈ E

(deletion of a bichromatic edge).

Proof. We perform the calculations for each case accord-
ingly. Let G′ be the network after the respective edge creation
or deletion.

1. Creation of a monochromatic edge: aG′(u) −
aG(u) = (degG(u)+ 1) ·α

(

1 + 1
fG(u)+2

)

−degG(u) ·
α
(

1 + 1
fG(u)+1

)

= α
(

1 + fG(u)−degG(u)+1
(fG(u)+1)(fG(u)+2)

)

.

2. Deletion of a monochromatic edge: aG′(u) −
aG(u) = (degG(u) − 1) · α

(

1 + 1
fG(u)

)

− degG(u) ·
α
(

1 + 1
fG(u)+1

)

= −α
(

1 +
fG(u)−degG(u)+1
(fG(u)+1)fG(u)

)

.

3. Creation of a bichromatic edge: aG′(u) − aG(u) =

(degG(u) + 1) · α
(

1 + 1
fG(u)+1

)

− degG(u) ·
α
(

1 + 1
fG(u)+1

)

= α
(

1 + 1
fG(u)+1

)

.

4. Deletion of a bichromatic edge: aG′(u) − aG(u) =

(degG(u) − 1) · α
(

1 + 1
fG(u)+1

)

− degG(u) ·
α
(

1 + 1
fG(u)+1

)

= −α
(

1 + 1
fG(u)+1

)

.

Next, we provide proofs for the collected statements about
ICF-NCGs concerning structural properties of pairwise stable
networks and simple pairwise stable networks.

Proposition 4.1. For the ICF-NCG the following holds:

1. If α < 6
7 , then every pairwise stable network is fully

intra-connected.
2. If α < 4

3 , then diam(G) ≤ 2 for every pairwise stable
network G. In particular, G contains a curious type.

3. Let α < 1, G a pairwise stable network, and C ⊆ V
such that every agent in C is curious and C ⊆ VT for
some type T ∈ T . Then, G[C] is a clique. In particular,
every curious type of agents is fully intra-connected.

4. If α ≤ nB

nB+1 , then the complete network Kn is pairwise

stable. Moreover for α < min{ 67 , nB

nB+1}, Kn is the

unique pairwise stable network.
5. If α ≥ 1, then the star Sn is pairwise stable.

Proof. We prove the statements one after another.

1. Let α < 6
7 . Assume that a network G = (V,E) is given

that is not fully intra-connected. Let u, v ∈ V be agents
of the same type with uv /∈ E. Define G′ = G + uv.
We will show that cG′(u)−cG(u) < 0 (the computation
for v is identical). We can assume that degG(u) ≥ 1,
because otherwise agent u’s cost would be infinite and
adding uv would be beneficial. We compute the differ-
ence in the neighborhood cost, using Lemma A.1 in the
first equality.



aG′(u)− aG(u) = α

(

1 +
fG(u)− degG(u) + 1

(fG(u) + 1)(fG(u) + 2)

)

= α

(

fG(u) + 3

fG(u) + 2
− degG(u)

1

(fG(u) + 2)(fG(u) + 1)

)

≤ α

(

fG(u) + 3

fG(u) + 2
− 1

(fG(u) + 2)(fG(u) + 1)

)

.

Now, consider the function f : R≥0 → R, f(x) =
x+3
x+2 − 1

(x+2)(x+1) . This function attains its maximum

for x =
√
2 and is monotonically increasing for 0 ≤

x ≤
√
2 and monotonically decreasing for x ≥

√
2.

Moreover, f(1) = f(2) = 7
6 . Hence, the maximum at-

tained by integer values is 7
6 . We conclude that aG′(u)−

aG(u) ≤ 7
6α < 1. Since dG′(u)− dG(u) ≤ −1, we ob-

tain cG′(u) − cG(u) < 0. Hence, creation of the edge
uv is beneficial for u.

2. Let α < 4
3 and consider a pairwise stable network G. In

particular, G is connected. Assume that there are agents
v and w of distance at least 3. We will show that G′ =
G + vw is better for both of these agents, contradicting
the pairwise stability of G.

The same computations as in the proof of the first prop-
erty show that the neighborhood cost increases by at
most 7

6α if vw is monochromatic. On the other hand, if
vw is bichromatic, then the neighborhood cost increases
by at most 3

2α. Since the distance cost decreases by at

least 2, we conclude that cG′(x)− cG(x) < 0 for α < 4
3

and x ∈ {v, w}.
The curiosity of one agent type follows from the fact
that two agents from different types, which are both not
curious, must have distance at least 3.

3. Let α < 1 and assume that v is a curious agent of a
network G = (V,E). Consider an agent w of the same
type such that vw /∈ E. Then,

aG′(u)− aG(u)

= α

(

fG(u) + 3

fG(u) + 2
− degG(u)

(fG(u) + 2)(fG(u) + 1)

)

≤ α

(

fG(u) + 3

fG(u) + 2
− fG(u) + 1

(fG(u) + 2)(fG(u) + 1)

)

= α < 1.

The first equality is derived by the same computations as
in the proof of the first property. Consequently, cG′(u)−
cG(u) < 0. Hence, if v and w are both curious agents of
the same type, then the edge vw must be present in any
pairwise stable network.

4. We start to show that Kn is pairwise stable for α ≤
nB

nB+1 .

To this end, we show that no edge can be deleted by one
of its endpoints. Consider a pair of agents u, v ∈ V. If
they are of the same type, then severing the edge uv by

u decreases her cost by

cG−uv(u)− cG(u) = −α
(

1 +
fG(u)− degG(u) + 1

(fG(u) + 1)fG(u)

)

= −α
(

1 +
fG(u) + 2− n

fG(u)(fG(u) + 1)

)

+ 1

≥ − nB

nB + 1
· n

2 − n+ 1

(n− 1)n
+ 1

≥ − n

n+ 1
· n

2 − n+ 1

(n− 1)n
+ 1 ≥ 0.

Hence, no agent can improve her strategy by severing an
edge to an agent of the same color.

If u and v have different colors, the cost decrease is

cG−uv(u)− cG(u) = −α
(

1 +
1

fG(u) + 1

)

+ 1

≥ −α
(

1 +
1

nB

)

+ 1 ≥ − nB

nB + 1
· nB + 1

nB

+ 1 = 0.

Therefore, there is no improving move for any agent in
the network, which implies that Kn is pairwise stable.

For the uniqueness, consider any pairwise stable net-
work G = (V,E) and assume that α < min{ 67 , nB

nB+1}.
Note that G is fully intra-connected according to Propo-
sition 4.1(1). Assume for contradiction that there are
two agents u, v ∈ V with uv /∈ E which have a different
type.

Then, creating the edge uv increases the neigh-
borhood cost for each involved agent by at most

α
(

1 + 1
fG(u)+1

)

≤ α
(

1 + 1
nB

)

< 1, while it de-

creases the distance to at least one node, a contradiction.
Hence, uv ∈ E, which implies that G is a clique.

5. Consider a star graph Sn with central node c. To show
that Sn is pairwise stable, we need to prove that no two
leaves can jointly create an edge. Consider two leafs u
and v. There can be a few possible situations. The first
two cases cover the case that c and one of u and v are
of the same color, say u ∈ VT (c). If v ∈ VT (c), then
creating uv causes an increase in neighborhood cost of
aSn+uv(u) − aSn

(u) = α
(

1 + 1
6

)

= 7
6α, while the

distance cost is only decreased by 1. Hence, for α ≥ 1,
creating the edge uv is not beneficial for u. If v has a
different color, then aSn+uv(u) − aSn

(u) = 3
2α, and u

would again prevent the creation of uv.

It remains that u and v both have a different color from
c. If v ∈ VT (u), then creating the edge uv increases the
neighborhood cost by α and decreases the distance cost
by 1 for both u and v. Thus, since α ≥ 1, this is not
beneficial.

If all three nodes u, v, and c have different colors, then
the creation of the edge uv increases the neighborhood
cost of u by 2α ≥ 2 and decreases her distance cost by
only 1.

Therefore, no pair of nodes can create an edge to im-
prove their cost. Clearly, also no edge can be unilaterally
deleted. The assertion follows.



The proof of existence of pairwise stable networks for mul-
tiple types and an intermediate range of α has a similar struc-
ture as the special case of two types. In particular, the struc-
ture of the subnetwork induced by the agents in VB ∪ VT for
any type T ∈ T with T 6= B is essentially the same. How-
ever, dependent on α, agents from larger communities might
have an incentive to maintain further bichromatic edges. For
completeness and to get acquainted with the relevant net-
works, we also provide the complete proof for two agent
types, for which we only provided the construction in the
body of the paper.

Proposition 4.2. In the ICF-NCG, there exists a pairwise sta-
ble network for every nB

nB+1 ≤ α < 1.

Complete proof for two agent types. Consider an instance of
the ICF-NCG and let nB

nB+1 ≤ α < 1. We will define a stable

network for α dependent on the threshold τ = nB(nB+1)
nB(nB+1)+1 .

Note that nB

nB+1 < τ < 1, as nB(nB + 1) > nB .

We assume VB = {b1, . . . , bnB
} and VR = {r1, . . . , rnR

}
and define the edge set of the graph G = (V,E) as follows:

• {xi, xj} ∈ E, for x ∈ {b, r}, i, j ∈ {1, . . . , nB},
• {ri, bi} ∈ E, for i ∈ {1, . . . , nB},
• {ri, rj} ∈ E, for i ∈ {1, . . . , nB} and j ∈ {nB +
1, . . . , nR},

• if α < τ , then {ri, rj} ∈ E, for i, j ∈ {nB +
1, . . . , nR}, and no further edges are in E,

• otherwise, no further edges are in E.

The network G is illustrated in Figure 7.

Figure 7: Pairwise stable networks for
nB

nB+1
≤ α < τ (left) and

τ ≤ α < 1 (right).

We claim that G is pairwise stable. First, we show that no
agent can sever an edge. Let i ∈ {1, . . . , nB} and j, k ∈
{nB + 1, . . . , nR}.

• If agent bi severs an edge to an agent of her type, the dis-
tance cost is increased by 1 while the neighborhood cost
is decreased by α < 1 (which can be computed using
Lemma A.1). If a connection to a red agent is severed,
then the distance to this neighbor increases by 2 while

the neighborhood cost is decreased by α
(

1 + 1
nB

)

<

2α < 2.

• The same considerations show that agents ri cannot
sever edges to red and blue agents, respectively.

• The red agent rj cannot sever the edge towards agent
ri, because this improves the neighborhood cost by less
than 2 while it increases the distance to both ri and bi by
1 each.

• Finally, consider the case that α < τ . Then, rj can-
not sever rjrk for k 6= j. Indeed, this would in-
crease the distance cost by 1 while saving a neighbor-

hood cost of α
(

1 + 1
nR(nR−1)

)

≤ α
(

1 + 1
(nB+1)nB

)

.

Here, we use that such an edge can only exist if nR ≥
nB + 1. Hence, the total increase in cost is at least

1 − α
(

1 + 1
(nB+1)nB

)

= 1 − αnB(nB+1)+1
(nB+1)nB

> 1 −
τ nB(nB+1)+1

(nB+1)nB
= 0.

Next, we show that it is also not possible to add edges.

• Let i ∈ {1, . . . , nB} and j ∈ {1, . . . , nR} with i 6= j.
Then, agent bi does not benefit from creating the edge
birj . Indeed, this decreases her distance cost by exactly

1 while it increases her neighborhood cost by αnB+1
nB
≥

1, using the lower bound on α.

• It remains the case of missing edges between red agents
for large edge cost. Assume therefore α ≥ τ and
let i, j ∈ {nB + 1, . . . , nR}. Adding the edge rirj
decreases the distance cost for ri by 1 while increas-

ing her neighborhood cost by α
(

1 + 1
nB(nB+1)

)

≥
τ nB(nB+1)+1

(nB+1)nB
= 1. Hence, creating this edge is not ben-

eficial for ri.

Thus, we have found stable networks for nB

nB+1 ≤ α < 1.

Now, we give the proof for an arbitrary number of agent
types.

Proof. Consider an instance of ICF-NCG and let nB

nB+1 ≤
α < 1. Assume that we have ordered the types in increas-
ing size, i.e., T = {T1, . . . , Tk} where T1 = B, Tk = R

and nT1 ≤ · · · ≤ nTk
. Suppose that VTj

= {t1j , . . . , t
nTj

j }.
We will define a stable network for α dependent on several
thresholds for α. In particular, there is a threshold τ =
nTk−1

(nTk−1
+1)

nTk−1
(nTk−1

+1)+1 , which plays a similar role as in the case

of 2 types. However, we have to consider further threshold

values. Let therefore 2 ≤ j ≤ k − 1, and define τj =
nTj

nTj
+1 .

Note that nB

nB+1 ≤ τ2 ≤ τ3 ≤ · · · ≤ τk−1 < τ < 1 as

nTk−1
(nTk−1

+ 1) > nTk−1
.

We define the network G = (V,E) with edges given as
follows:

• {tij , tlj} ∈ E for 1 ≤ j ≤ k, 1 ≤ i < l ≤
min{nTj

, nTk−1
},

• {tij , til} ∈ E for 1 ≤ j < l ≤ k, 1 ≤ i ≤ nTj
,

• {tik, tlk} ∈ E for 1 ≤ i ≤ nTk−1
and nTk−1

+ 1 ≤ l ≤
nTk

,

• for each 2 ≤ j ≤ k − 1, if α < τj , then {tij, tml } ∈ E
for j < l ≤ k, 1 ≤ i ≤ nTj

, and 1 ≤ m ≤ nTl
,

• if α < τ , then {tik, tlk} ∈ E for nTk−1
+ 1 ≤ i < l ≤

nTk
, and

• no further edges are in E.



Figure 8: Illustration of the proof of Proposition 4.2. We consider an ICF-NCG with 3 types containing 3, 4, and 6 agents, respectively.
Hence, we consider the parameter range

nB

nB+1
=

2

3
≤ α < 1. The pairwise stable networks are dependent on the thresholds τ2 =

3

4
and

τ =
12

13
. We then find the pairwise stable networks for

nB

nB+1
≤ α < τ2 (left), τ2 ≤ α < τ (middle), and τ ≤ α < 1 (right).

The two cases for the network G are illustrated in Figure 8.

We claim that G is pairwise stable. First, no agent can sever
an edge. Let 1 ≤ j ≤ k, 1 ≤ i ≤ nTk−1

, and nTk−1
+ 1 ≤

l,m ≤ nTk
.

• If agent tij severs an edge to an agent of her type, the
distance cost is increased by 1 while the neighborhood

cost is decreased by α
(

1 +
fG(u)−degG(u)+1
(fG(u)+1)fG(u)

)

≤ α < 1

(which can be computed with the aid of Lemma A.1).

• In the next two bullet points, we show that no agent can
sever a bichromatic edge between an agent in VTj

an

agent of type Tp for j + 1 ≤ p ≤ k. First, ti1 cannot
sever a bichromatic edge, because then the distance to
the adjacent neighbor increases by 2 while the neighbor-

hood cost is decreased by α
(

1 + 1
nT1

)

< 2α < 2. For

the same reason, the unique neighbor of ti1 in VTp
for

2 ≤ p ≤ k cannot sever the edge to ti1.

• Next consider the case that 2 ≤ j ≤ k − 1. If
α < τj , then severing an edge to a neighbor in VTp

for 2 ≤ p ≤ k, because this increases the distance
cost by 1 while saving only a neighborhood cost of

α
(

1 + 1
nTj

)

< τj

(

1 + 1
nTj

)

= 1. The neighbors in

VTp
have (weakly) more friends and would save even

less neighborhood cost. In the case α ≥ τj , there is
again a unique neighbor of type Tp and the case is anal-
ogous to the case for agents of type T1. Thus, we have
considered all bichromatic edges.

• The red agent tlk cannot sever the edge towards agent

tik, because this improves the neighborhood cost by less

than 2 while it increases the distance to both tik and ti1
by 1 each.

• Finally, consider the case that α < τ . Then, tlk can-

not sever tlkt
m
k for l 6= m. Indeed, this would increase

the distance cost by 1 while saving a neighborhood cost

of α
(

1 + 1
nTk

(nTk
−1)

)

≤ α
(

1 + 1
(nTk−1

+1)nTk−1

)

.

Here, we use that such an edge can only exist if nTk
≥

nTk−1
+1. Hence, the total increase in cost is at least 1−

α
(

1 + 1
(nTk−1

+1)nTk−1

)

= 1− α
nTk−1

(nTk−1
+1)+1

(nTk−1
+1)nTk−1

>

1− τ
nTk−1

(nTk−1
+1)+1

(nTk−1
+1)nTk−1

= 0.

Next, we show that it is also not possible to add edges.

• As a first step, we show that agents cannot create bichro-
matic edges. Let therefore 1 ≤ j < p ≤ k and let
1 ≤ i ≤ nTj

and 1 ≤ l ≤ nTp
with i 6= j. Note that tijt

l
p

is present if α < τj and j ≥ 2. Hence, we assume that

α ≥ τj if j ≥ 2. Then, tij does not benefit from creating

the edge tijt
l
p. Indeed, this decreases her distance cost

by exactly 1 while it increases her neighborhood cost by

α
nTj

+1

nTj

≥ 1. There, we use that α ≥ nB

nB+1 if j = 1

and α ≥ τj if j ≥ 2.

• It remains the case of missing edges between red agents
for large edge cost. Assume therefore α ≥ τ and let
nTk−1

+ 1 ≤ i, l ∈ nTk
. Adding the edge tikt

l
k de-

creases the distance cost for tik by 1 while increasing

her neighborhood cost by α
(

1 + 1
nTk−1

(nTk−1
+1)

)

≥

τ
nTk−1

(nTk−1
+1)+1

(nTk−1
+1)nTk−1

= 1. Hence, creating this edge is

not beneficial for tik.

Together, we have found stable networks for α in the desired
range.

Now, we provide the complete proof of the uniqueness
statement about pairwise stable networks for an intermediate
parameter range.

Theorem 4.3. Consider the ICF-NCG with parameter α and
k = 2 agent types. Let nR

nR+1 < α < 1 and assume that

G is pairwise stable. Then, the blue agents are fully intra-
connected, the bichromatic edges form a matching of size nB ,
and curious red agents are connected to all other red agents.

Proof. Let nR

nR+1 < α < 1 and assume that G is pairwise

stable network in the ICF-NCG with cost parameter α. By
Proposition 4.1(2), the diameter of G is bounded by 2 and
there exists a curious type of agents. By Proposition 4.1(3),
the curious type of agents forms a clique C and the curious
agents of the other type form a clique as well.



Assume towards a contradiction that the bichromatic edges
form no matching. Assume that there is an agent x ∈ C
that maintains bichromatic edges with two different agents y
and z. We will show that agent y has an incentive to sever the
edge xy. Consider therefore the network G′ = G−xy. First,
the distance cost of y decreases by at most 1. Indeed, since
all agents of the type of x are still curious in G′ and since
y forms edges to all curious agents of her type, the distance
to all these agents is 2 in G′ and 1 to agents other than x to
which a bichromatic edge exists in G. Also, since y is con-
nected to all curious agents of her type, the shortest paths to
agents of her own type in G cannot use x and still exist after
severing the edge xy. Now, the neighborhood cost decreases

by α
(

1 + 1
fG(y)+1

)

≥ α
(

1 + 1
nR

)

> 1. Hence, no agent

in C maintains more than one bichromatic edge. Now, as-
sume that two agents w, x ∈ C maintain a bichromatic edge
to the same agent y. It is quickly checked that severing xy
increases the distance cost by 1 for y and her neighborhood
cost decreases by more than 1, as above.

Together, the bichromatic edges form a matching. Hence,
only a minority type can be a curious type and we can con-
clude that the blue agents are fully intra-connected and that
the matching of bichromatic edges is of size nB . It remains
to show that all curious red agents maintain edges with non-
curious red agents. Assume that y is a curious red agent form-
ing a bichromatic edge to the blue agent x and that there is no
edge to a non-curious red agent z, i.e., yz is not present in G.
But then, dG(x, z) ≥ 3, contradicting Proposition 4.1(2).

We provide the computations of pairwise stability of Ex-
ample 4.4.

Example A.2 (Example 4.4 continued). We check that the
network is pairwise stable.

Blue agents cannot sever a bichromatic edge, because this
increases the distance cost by |R| ≥ 2 while saving a neigh-
borhood cost of less than 2α. Also, they cannot sever a
monochromatic edge, because this reduces the neighborhood
cost only by α < 1. They would also not agree to create
another edge with a red agent as this reduces the distance
cost only by 1 while it increases the neighborhood cost by
αnB+1

nB
≥ 1.

Red agents cannot sever a monochromatic edge. Using the
computation in Lemma A.1, this decreases the neighborhood

cost only by α
(

1 + 1
nR(nR−1)

)

≤ α
(

1 + 1
nR

)

≤ 1. Fi-

nally, agent r∗ cannot sever a bichromatic edge as this saves
her only a neighborhood cost of α nR

nR+1 ≤ 1. ⊳

The segregation of pairwise stable networks for interme-
diate parameter range is a direct computation based on the
characterization of Theorem 4.3.

Corollary 4.5. Consider the ICF-NCG with parameterα and
k = 2 agent types. Let nR

nR+1 < α < 1 and assume that G is

pairwise stable. Then, GS(G) ≥ 1− 1
n

and LS (G) ≥ 1− 2
n

.

Proof. Let nR

nR+1 < α < 1 and assume that G = (V,E) is

a pairwise stable network for an ICF-NCG with cost parame-
ter α.

We start with computing the global segregation. By The-
orem 4.3, there are nB bichromatic edges. Additionally,
|E| ≥ nB + 2

(

nB

2

)

+ nB(n − nB) = nBn. Hence,

GS = |E|−nB

|E| ≥ 1− 1
n

.

For the local segregation, we need to compute the quantity
fG(u)

degG(u) for every agent u. We can apply the characterization

of Theorem 4.3 again to find

fG(u)

degG(u)
=











nB−1
nB

if u blue,
nR−1
nR

if u red and curious,

1 otherwise.

Consequently,

LS (G) =
1

n

(

nB

nB − 1

nB

+ nB

nR − 1

nR

+ (nR − nB)

)

=
1

n

(

n− 1− nB

nR

)

≥ 1− 2

n
.

Next, we show that stars yield extremal segregation and
double stars high segregation.

Proposition 4.6. Consider the ICF-NCG with parameter
α ≥ 1. Then, for every n ≥ 2, there exist pairwise stable net-
works G and G′ on n nodes such that GS(G) = LS(G) = 1
and GS (G′) = LS (G′) = 1

n−1 .

Proof. Note that in the considered parameter range, the star
Sn is pairwise stable according to Proposition 4.1(5). If
there are only agents of one type, then G = Sn fulfills
GS (G),LS (G) = 1. On the other hand, if there are 2 blue
agents and n − 2 red agents, consider G′ = Sn where the
center agent is blue. Then GS (G′),LS (G′) = 1

n−1 .

Proposition 4.7. Consider the ICF-NCG with α ≥ 4
3 .

Then, the double star DSn is a pairwise stable network with
GS (DSn) = 1− 1

n−1 and LS(DSn) ≥ 1− 2
n

.

Proof. Consider the double star DSn and let cB and cR be
the blue and red star center, respectively.

Note that no agent can sever an edge, because this would
disconnect the network. Also, no edge between a star center
and a leaf node can be created, because it is not profitable for
the center node. Indeed, consider a pair of nodes v ∈ VR

and the central node cB . Adding the edge cBv improves the
distance to only one node for the agent cB , while the neigh-
borhood cost increases by

aDSn+cBv(cB)− aDSn
(cB)

= α

(

(degDSn
(cB) + 1)

(

1 +
1

nB

)

−degDSn
(cB) ·

(

1 +
1

nB

))

= α

(

nB + 1

nB

)

≥ 1.

Hence, the edge cBv will be rejected by the agent cB . Anal-
ogously, a new edge between the center node cR and a node
v ∈ VB is not profitable for the center node cR, because it

increases the neighborhood cost by α
(

1 + 1
nR

)

≥ 1 an de-

creases the distance cost by 1.



Next, consider the case of creating a bichromatic edge.
Then, the distance cost is decreased by 2, while the neigh-
borhood cost is increased by 3

2α ≥ 2.
Finally, consider the creation of an edge between two

nodes u, v of the same type, say type R. The new edge im-
proves the distance cost by 1 for both agents but increases the

neighborhood cost by α
(

2 ·
(

1 + 1
2+1

)

− 1− 1
2

)

= 7α
6 ≥

1. Hence, DSn is pairwise stable for any α ≥ 4
3 .

It remains to compute the segregation measures for the
double star.

First, GS (DSn) = nB−1+nR−1
n−1 = 1 − 1

n−1 . Second,

LS (DSn) = 1
n

(

nB − 1 + nR − 1 + nB−1
nB

+ nR−1
nR

)

=

1− 1
n

(

1
nB

+ 1
nR

)

≥ 1− 2
n

.

In addition to the results in the body of the paper, we pro-
vide an example where the uniqueness of Proposition 4.1(4)
does not hold anymore.

Example A.3. Consider an ICF-NCG with two agent types.
Let nB ≥ 6 and 6

7 ≤ α ≤ nR

nR+1 . We fix a specific red

agent r∗ ∈ VR and consider the network G = (V,E) with
E = {vw : v, w ∈ VR} ∪ {vr∗ : v ∈ V \ {r∗}}, i.e., the red
type is fully intra-connected and there is a special agent r∗ to
which all agents are connected. The structure of this network
is depicted in Figure 9. If 6

7 ≤ α ≤ nB

nB+1 , it is even possible

r∗

Figure 9: Pairwise stable network for 6

7
≤ α ≤

nR

nR+1
with nB = 6

and nR = 6 blue and red agents, respectively.

to interchange the roles of the two agent types.
Pairwise stability of this network follows by straightfor-

ward considerations, similar to the computations in Exam-
ple 4.4. ⊳

A.2 Decreasing Effort of Integration

We start with the proofs of the statements collected in Propo-
sition 5.1.

Proposition 5.1. For the DEI-NCG the following holds:
1. If α < 1

2 , then Kn is the unique pairwise stable network.
2. If α < 1, then every pairwise stable network is fully

intra-connected.
3. If α < 1, then every pairwise stable network G satisfies

diam(G) ≤ 2.
4. The network Kn is pairwise stable if α ≤ n−nR

n−nR+1 .

5. If α ≥ 1, then Sn and DSn are pairwise stable net-
works.

6. If α ≥ 4
3 , then DSXn is a pairwise stable network.

Proof. We prove the statements one by one.

1. If some edge is not present, it has cost at most 2α < 1
and creating it decreases the distance cost by at least 1.

2. Creating a monochromatic edge has cost α < 1 and de-
creases the distance cost by at least 1.

3. Let α < 1. Assume that there are agents u, v ∈ V with
dG(u, v) ≥ 3. Then, creating uv increases the neighbor-
hood cost by at most 2α < 2, while decreasing the dis-
tance cost by at least 2 for each of its endpoints. Hence,
G is not pairwise stable.

4. Clearly, no monochromatic edge can be severed. Now,
consider a bichromatic edge uv. Then, severing uv in-

creases the total cost for v by 1 − α
(

1 + 1
n−nT (v)

)

≥
1 − α

(

1 + 1
n−nR

)

≥ 1 − n−nR

n−nR+1

(

1 + 1
n−nR

)

= 0.

Hence, also bichromatic edges cannot be severed.

5. No edge can be severed, because these networks are
trees. Due to the large distance cost, no agent favors
to create an edge if this only improves the distance cost
by 1. Hence, Sn is stable, the two centers of DSn will
not agree to build further edges, and leaves of DSn will
not agree to create further monochromatic edges. Fi-
nally, the cost for creating an edge between two leaves
of different types is 2α ≥ 2 which does not make up for
a distance improvement of 2.

6. As for DSn, no edges can be severed, and the centers
will not benefit from creating further edges. Also, leaves
have no incentive to create monochromatic edges. Fi-
nally, the cost for a bichromatic edge between leaves of
different types is 3

2α ≥ 2, but creating such an edge
yields only a distance improvement of 2.

Lemma 5.3. Let k = 2 in the DEI-NCG. Consider a fully
intra-connected and pairwise stable network G.

1. If α > nB

nB+1 , then every red agent in G entertains at

most one bichromatic edge.
2. If α > nR

nR+1 , then every agent in G entertains at most

one bichromatic edge.

Proof. The proof of both statements follows from a uni-
fied approach. Let G = (V,E) be a fully intra-connected
and pairwise stable network. Let u ∈ V. By full intra-
connectivity, severing one of several bichromatic edges in-
cident to u, increases the distance cost of u by exactly 1

while decreasing the neighborhood cost by ∆ = α eG(u)+1
eG(u) .

If α > nR

nR+1 , then ∆ > 1 and severing a bichromatic edge

is beneficial for u. This proves the second statement. If
even α > nB

nB+1 and u is an agent of the majority type, then

eG(u) ≤ nB , and ∆ ≥ αnB+1
nB

> 1.

Theorem 5.5. In the DEI-NCG pairwise stable networks al-
ways exist.

Proof. Suppose that T = {T1, . . . , Tk} with nT1 ≤ · · · ≤
nTk

and, for each 1 ≤ j ≤ k, VTj
= {t1j , . . . , t

nTj

j }. By
Proposition 5.1, it suffices to consider the parameter range
n−nR

n−nR+1 < α < 1. We will even provide pairwise stable

networks whose parameter ranges overlap.
First, we will generalize the network of Example 5.2 to

an arbitrary number of agent types. Let j∗ = min({1 ≤ j ≤



k : nTj
≥ 2}∪{k}), i.e., the index of the smallest type of size

at least 2 or the index of the last type if there exists exactly
one agent per type. Consider the network G = (V,E) with
edge set defined by

• {tij , tlj} ∈ E for 1 ≤ j ≤ k, 1 ≤ i < l ≤ nTj
,

• {t1j∗ , tij} ∈ E for 1 ≤ j ≤ k, j 6= j∗, 1 ≤ i ≤ nTj
, and

• no further edges are in E.

We provide now conditions, under which the network G is
pairwise stable.

Lemma A.4. The network G is pairwise stable if

(i) j∗ = k and 2
3 ≤ α ≤ 1,

(ii) k = 2, j∗ = k, nTk
≥ 2 and 1

2 ≤ α ≤ 1, or

(iii) 2
3 ≤ α ≤ n−nTj∗

n−nTj∗
+1 .

Proof. (i) If j∗ = k and 2
3 ≤ α ≤ 1, then no monochro-

matic edge can be severed because of α ≤ 1. Bichro-
matic edges cannot be severed due to connectivity, and
creating an edge costs 3

2α ≥ 1 for an agent of type dif-
ferent to k while it decreases her distance cost by ex-
actly 1.

(ii) Next, consider the case that k = 2, j∗ = k, nTk
≥ 2 and

1
2 ≤ α ≤ 1. Then, again, no monochromatic edge can be
severed because of α ≤ 1. The unique bichromatic edge
cannot be severed as this would disconnect the network.
Also, adding another bichromatic edge must include a
non-curious red agent. This agent would increase her
neighborhood cost by 2α ≥ 1 while only decreasing her
distance cost by 1.

(iii) Now, assume that 2
3 ≤ α ≤ n−nTj∗

n−nTj∗
+1 . Again,

monochromatic edges cannot be severed as α < 1.
Further, bichromatic edges incident to an agent t1j for
1 ≤ j ≤ j∗ − 1 cannot be severed as this would discon-
nect the network. Next, agent t1j∗ cannot sever another
bichromatic edge, because this would increase her cost

by 1 − α
n−nTj∗

+1

n−nTj∗
≥ 0. Further, for j∗ < j ≤ k and

1 ≤ i ≤ nTj
, agent i

j cannot sever {t1j∗ , tij}, because
this increases the distance to at least nTj∗

≥ 2 agents (in
Tj∗ ) by 1 while decreasing the neighborhood cost by 2.

It remains to consider the creation of edges. Every agent
in V\VTj∗

entertains exactly one bichromatic edge. Cre-

ating a second bichromatic edge costs 3
2α ≥ 1 while it

decreases the distance cost by exactly 1. Together, the
network is pairwise stable.

Second, we generalize the network from Theorem 5.4. To
this end, we design an algorithm that constructs pairwise sta-
ble networks. In the special case of 2 agent types, it yields the
networks encountered in Theorem 5.4. Note that this must
already hold specifically for the parameter range where the
uniqueness of the theorem applies.

Therefore, consider the network G′ = (V,E′) where the
edge set E′ is computed according to Algorithm 1.

Input: Set of agents V.
Output: Edge set E′.

E′ ← {{tij, tlj} : 1 ≤ j ≤ k, 1 ≤ i < l ≤ nTj
}

while there exist u, v ∈ V with d(V,E′)(u, v) ≥ 3 do

E′ ← E′ ∪ {uv}
end while
return E′

Algorithm 1: Determination of edge set for network G
′.

The algorithm starts with the fully intra-connected network
without any bichromatic edges. Then, bichromatic edges are
added whenever the distance between two agents is too large.
Clearly, this algorithm has to terminate by returning E′ after
at most

(

n

2

)

executions of the while loop.

Lemma A.5. The following properties are valid.

• The diameter of G′ satisfies diam(G′) ≤ 2.

• Every triangle5 in G′ consists of monochromatic edges
only.

• Every agent incident to at most k− 1 bichromatic edges
in G′.

Proof. The first property is immediate from the definition of
the while loop. We show the second property by induction.
More precisely, we show that, during the whole algorithm, ev-
ery triangle in (V,E′) contains only monochromatic edges by
induction over the number w of executions of the while loop.
If w = 0, then there are no bichromatic edges and the asser-
tion is true. Now let w ≥ 1 and assume that no triangle in
the network (V,E′) before adding the w-th edge in the while
loop contains a bichromatic edge. Assume that we add the
bichromatic edge uv as the w-th bichromatic edge. By induc-
tion, only a triangle containing uv can contain a bichromatic
edge. But then, there exists an agent x ∈ V with ux, xv ∈ E′,
contradicting the distance condition of the while loop.

For the third property, we observe that every agent can add
at most one bichromatic edge to an agent of each fixed type.
Once this edge is added, the distance to all agents of this type
is at most 2 due to the intra-connectivity of the network. As
there are at most k− 1 other types, the assertion follows.

It is easy to deduce the pairwise stability of G′.

Lemma A.6. The network G′ is pairwise stable for k
k+1 ≤

α ≤ 1.

Proof. As in previous networks, monochromatic edges can-
not be severed because of α ≤ 1. Now, consider a bichro-
matic edge uv. Then, dG−uv(u, v) ≥ 3. Indeed, if
dG−uv(u, v) = 2, then uv is part of a triangle, contradict-
ing the second statement in Lemma A.5. Hence, severing uv
increases the distance cost for uv by at least 2 while saving a
neighborhood cost of at most 2.

5A triangle is defined as a complete subnetwork induced by three
vertices.



It remains to consider the creation of edges. As the network
is fully intra-connected, only bichromatic edges can be cre-
ated. Hence, consider the creation of a bichromatic edge uv.
Its creation decreases the distance cost for u by exactly 1.
Indeed, as diam(G′) ≤ 2, the distance to v is decreased by
exactly 1, and the distance to other agents is no shorter. On
the other hand, as u is incident to at most k − 1 bichromatic
edges, the creation of uv costs at least α

(

1 + 1
k

)

≥ 1. Hence,
the total cost for u cannot have decreased.

To conclude the proof, we want to argue that we can cover
the whole parameter range of α. First, we cover the range
until α = 2

3 . According to Proposition 5.1(4), this is covered
by Kn if n − nTk

≥ 2. In particular, this is the case if k ≥ 3
or nT1 ≥ 2. If k = 2 and nT1 = 1, we can apply case (ii)
of Lemma A.4 if nTk

≥ 2. If nTk
= 1, then the network

consisting of two agents of different types, connected by an
edge, is pairwise stable.

Finally, consider the parameter range 2
3 ≤ α ≤ 1. If

j∗ = k, then case (i) of Lemma A.4 applies. Otherwise,
j∗ < k, and therefore n − nTj∗

≥ k. This implies that
n−nTj∗

n−nTj∗
+1 ≥ k

k+1 , and the parameter range is covered by

case (iii) of Lemma A.4 and Lemma A.6.

Corollary 5.6. Let k = 2 and nR

nR+1 < α < 1. Then, every

pairwise stable network G in the DEI-NCG with parameter α
satisfies GS (G) ≥ 1− 2

n
and LS (G) ≥ 1− 2

n
.

Proof. Consider a network G = (V,E) satisfying the as-
sumptions of the corollary. We start with the global segre-
gation measure. According to Theorem 5.4, there are nB

bichromatic edges and a total of nB + nB(nB − 1)/2 +
nR(nR − 1)/2 ≥ nB + nB(nB − 1)/2 + nB(nR − 1)/2 =
nBn/2 edges. Hence,

GS (G) =
|E| − nB

|E| = 1− nB

|E| ≥ 1− nB

nBn/2
= 1− 2

n
.

Using the characterization in Theorem 5.4 once again, the
computation of the local segregation measure is identical as
in the proof of Corollary 4.5.

B Detailed Experimental Analysis

In this section we provide more detailed experimental analy-
sis complementing Section 6.

B.1 Details about the Experimental Setup

For our simulation experiments we first generated an initial
network and an intitial agent distribution. Then agents are
activated and compute a best possible edge addition or edge
deletion. This sequential activation process is then run until
no agent has an improving move and a pairwise stable net-
work is found. We now discuss the details of this setup.

General Setup Our experiments considered 1000 agents
partitioned into two types with 500 agents each. For each
run we chose

• a random spanning tree or a grid as initial network,

• an integrated or perfectly segregated inital agent distri-
bution,

• if best response moves or if best add-only moves are per-
formed,

• if the segregation strength is measured via the local seg-
regation measure LS or via the global segregation mea-
sure GS , and

• the value of α in 15 steps between 5 and 255.

In total this yielded 24 ∗ 15 = 240 different configurations
and for every configuration we simulated 50 runs, yielding a
total number of 12000 considered networks.

Generating the Initial Networks We considered random
spanning trees and grids as initial networks. We used grids
of size 20× 50. Moreover, we sampled the random spanning
trees by the following scheme: starting from a single node, we
add nodes one-by-one, and each new arriving node attaches
to one of the existing nodes chosen uniformly at random.

Generating the Initial Agent Distribution We focus on
two cases: perfectly segregated and integrated initial state.
An integrated state is sampled by a uniformly random type
assignment to each node. To generate a perfectly segregated
spanning tree, we generate two one-type spanning trees of
500 nodes and join them by connecting the initial nodes of
each tree. A perfectly segregated grid is sampled by assigning
one type to all 500 nodes in the first ten rows and another type
to the rest.

Random Activation of the Agents We start with marking
all nodes as willing to improve. In each step of the algorithm,
one agent is chosen from the set of the marked nodes uni-
formly at random. This active agent is searching for a best-
allowed move. If no move is possible, the agent is unmarked.
If the agent has an improving move, the new strategy is ap-
plied to the network, and all agents move back to the set of
the marked nodes to be ready to become activated again. The
algorithm stops when the last agent is unmarked.

Convergence Criteria Figure 10 shows a representative
timeline of the local segregation of the obtained networks in
each step of the best move dynamics starting from a random
tree with a random color distribution. We observe that the
segregation value quickly reaches a high value and remains
in the interval [0.8, 1] until the end of the execution of the
dynamics. It illustrates the need for relaxation of the solution
concept to avoid long calculations. Therefore, our experimen-
tal study of the best move dynamics uses 1.01-approximate
pairwise stable states as solution concept. We say that a net-
work is a 1.01-approximate pairwise stable if no agent can
improve her cost by more than a factor of 1.01. The approx-
imation factor is chosen empirically to minimize the conver-
gence time and the approximation gap.

Note that for the add-only move dynamics, the process nat-
urally stops at the latest when a complete network is reached.
Hence, the computation time is rather low compared to the
best move dynamics and we could consider perfect pairwise
stable networks.



0 0.2 0.4 0.6 0.8 1

·106

0.4

0.6

0.8

1

time

lo
ca

l
se

g
re

g
at

io
n

ICF-NCG

DEI-NCG

Figure 10: A timeline of the local segregation of a network obtained
by the best response dynamic for n = 50, α = 15 starting from a
tree with random color distribution in the ICF-NCG and DEI-NCG.

Visualization of Our Results In the next section we show
box-and-whiskers plots of the local and global segregation
for the networks obtained by the best move dynamics for
n = 1000 over 50 runs. Lower and upper whiskers are the
minimal and maximal local segregation values over 50 runs
of the algorithm. The middle lines are the median values,
while the bottom and top of the boxes represent the first and
the third quartiles.

B.2 Additional Experiments Regarding the Local
Segregation Measure

This section provides additional empirical results for the local
segregation measure for the ICF-NCG and the DEI-NCG.

Results for the ICF-NCG

The following figures are box-and-whiskers plots showing the
obtained local segregation in our experiments for the sequen-
tial process of the ICF-NCG. All plots show high segregation
of stable networks can be avoided by the lower cost of the
connections (α < 30) and if the add-only process starts from
a sparse low-segregated network.
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Figure 11: Local segregation of 1.01-approximate networks in the
ICF-NCG obtained by the best move dynamic for n = 1000 over 50
runs starting from a random or segregated tree and grid.

Results for the DEI-NCG

For sake of comparison, we include the results for the local
segregation measure for the DEI-NCG again. The follow-
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Figure 12: Local segregation of pairwise stable networks in the add-
only ICF-NCG obtained by the best move dynamic for n = 1000

over 50 runs starting from a random or segregated tree and grid.

ing two plots are identical to the respective plots in the main
body of the paper. This shows clearly the similarities of the
respective results. In particular, the tendency of decreasing
segregation in case of the add-only version of the dynamics
with random initial networks is observed for both games.
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Figure 13: Local segregation of 1.01-approximate networks in the
DEI-NCG obtained by the best move dynamic for n = 1000 over
50 runs starting from a random or segregated tree and grid.
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Figure 14: Local segregation of pairwise stable networks in the add-
only DEI-NCG obtained by the best move dynamic for n = 1000

over 50 runs starting from a random or segregated tree and grid.

B.3 Experiments Regarding the Global
Segregation Measure

This section illustrates the dependence of the global segrega-
tion measure on the parameter α and the initial state in the
DEI-NCG and ICF-NCG. The observations are similar as for
the local segregation measure, showing the robustness of our
results.



Results for the ICF-NCG

The results for the global segregation measure for 1.01-
approximate networks in the ICF-NCG and pairwise stable
networks in the add-only ICF-NCG are presented in Figure 15
and Figure 16.
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Figure 15: Global segregation of 1.01-approximate networks in the
ICF-NCG obtained by the best move dynamic for n = 1000 over 50
runs starting from a random or segregated tree and grid.
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Figure 16: Global segregation of pairwise stable networks in the
add-only ICF-NCG obtained by the best move dynamic for n =

1000 over 50 runs starting from a random or segregated tree and
grid.

Results for the DEI-NCG

The results for the global segregation measure for 1.01-
approximate networks in the DEI-NCG and pairwise stable
networks in the add-only DEI-NCG are presented in Fig-
ure 17 and Figure 18.
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Figure 17: Global segregation of 1.01-approximate networks in the
DEI-NCG obtained by the best move dynamic for n = 1000 over
50 runs starting from a random or segregated tree and grid.
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Figure 18: Global segregation of pairwise stable networks in the
add-only DEI-NCG obtained by the best move dynamic for n =

1000 over 50 runs starting from a random or segregated tree and
grid.
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