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Abstract
Network Creation Games (NCGs) model the cre-
ation of decentralized communication networks
like the Internet. In such games strategic agents
corresponding to network nodes selfishly decide
with whom to connect to optimize some objec-
tive function. Past research intensively analyzed
models where the agents strive for a central posi-
tion in the network. This models agents optimizing
the network for low-latency applications like VoIP.
However, with today’s abundance of streaming ser-
vices it is important to ensure that the created net-
work can satisfy the increased bandwidth demand.
To the best of our knowledge, this natural problem
of the decentralized strategic creation of networks
with sufficient bandwidth has not yet been studied.
We introduce Flow-Based NCGs where the selfish
agents focus on bandwidth instead of latency. In
essence, budget-constrained agents create network
links to maximize their minimum or average net-
work flow value to all other network nodes. Equiv-
alently, this can also be understood as agents who
create links to increase their connectivity and thus
also the robustness of the network. For this novel
type of NCG we prove that pure Nash equilibria ex-
ist, we give a simple algorithm for computing op-
timal networks, we show that the Price of Stability
is 1 and we prove an (almost) tight bound of 2 on
the Price of Anarchy. Last but not least, we show
that our models do not admit a potential function.

1 Introduction
Many of the networks we crucially rely on nowadays have
evolved from small centrally designed networks into huge
networks created and decentrally controlled by many self-
ish agents with possibly conflicting goals. For example,
the structure of the Internet is essentially the outcome of
a repeated strategic interaction by many selfish economic
agents [Papadimitriou, 2001; Tardos, 2004], e.g., Internet ser-
vice providers (ISPs). Hence, such Internet-like networks
can be analyzed by considering a strategic game which mod-
els the interaction of the involved agents. This insight has
inspired researchers to propose game-theoretic models for

the decentralized formation of networks, most prominently
the models in [Myerson, 2013; Jackson and Wolinsky, 1996;
Bala and Goyal, 2000a; Fabrikant et al., 2003] and many vari-
ants of them. In these models selfish agents select strategies
to maximize their utility in the created network. Thus, the
structure of the created network and corresponding agent util-
ities depend on the selfishly chosen strategies of all agents.

To the best of our knowledge, the utility of the involved
agents in all the existing models depends on the agents’ cen-
trality or the size of their connected component and the cost
spent for creating links. Striving for centrality, e.g., for low
hop-distances to all other nodes in the created network, cer-
tainly plays an important role for the involved selfish agents,
e.g., ISPs, but it is not the only driving force. What has been
completely neglected so far are bandwidth considerations.

In this paper we take the first steps into this largely unex-
plored area of game-theoretic network formation with band-
width maximization. In particular, we consider budget-
constrained agents that strategically form links to other agents
to maximize their flow value towards all other nodes. This
models agents that optimize the networks for data-intensive
applications like online streaming instead of low-latency ap-
plications like VoIP. Interestingly, by the Max Flow Min Cut
Theorem [Ford and Fulkerson, 1956], flow maximization cor-
responds to connectivity maximization which is tightly re-
lated to network robustness. While there have been works
which consider robustness aspects as side constraints, also
the aspect of maximizing the created network’s robustness is,
to the best of our knowledge, entirely unexplored.

While classical network formation models with focus on
centrality yield equilibrium networks that are sparse and
have low diameter, our work shows that focusing on band-
width/connectivity may explain why densely connected sub-
networks, like k-core structures, and larger cycles appear in
real-world networks: they are essential for its connectivity.

1.1 Model and Notation
We propose the Flow-Based Network Creation Game
(flowNCG), which is a variant of the well-known Network
Creation Game [Fabrikant et al., 2003] where the agents cre-
ate edges to maximize their flow value as defined by the clas-
sical Max-Flow Problem [Ford and Fulkerson, 1956]. Given
a set of n selfish agents which corresponds to the set of nodes
V of a weighted directed network G = (V,E). Each agent



has a uniform budget of k ∈ N, with k < n, to establish
connections to other agents. In the created graph G each
edge has a capacity c : E(G) → N. We define the degree
of a node v in G as degG(v) =

∑
(x,v)∈E,x∈V c(x, v) +∑

(v,y)∈E,y∈V c(v, y), i.e., as the sum of the capacities of all
incoming and outgoing edges.

The edge set and capacities are defined by the strategies of
the agents. In particular, each agent strategically decides how
to spend its budget, i.e., which subset of incident edges to buy
and for each bought edge its capacity. Therefore, the strategy
Sv of an agent v is a set of tuples (x, c(v, x)) ∈ V \{v}× [k],
where [k] = {1, . . . , k}. Here x denotes the node to which an
edge is formed and c(v, x) the capacity of that edge bought
by agent v. For nodes w ∈ V to which no edge is formed, we
assume that c(v, w) = 0. A strategy Sv is feasible if the total
capacity of all edges in Sv does not exceed the given budget
k, i.e.,

∑
x∈V \{v} c(v, x) ≤ k. If (x, c(v, x)) ∈ Sv , we call v

the owner of the edge (v, x) with capacity c(v, x). The vector
of all agents’ strategies s = (Sv1 , . . . , Svn) is denoted as a
strategy profile. Any strategy profile s uniquely specifies the
weighted directed network G(s) = (V,E(s)) where (v, x) ∈
E(s) of capacity c(v, x) if and only if agent v buys the edge
to x with non-zero capacity c(v, x).

For sending flow in the network G(s), we assume its undi-
rected version F (s) = (V,EF (s)) where {v, x} ∈ EF (s) if
(v, x) ∈ E(s) or (x, v) ∈ E(s) and the capacity c({v, x})
is defined as c({v, x}) = c(v, x) + c(x, v). Thus, for send-
ing flow, any edge of G(s) can be used in both directions.
See Figure 1 for an illustration of G(s) and its correspond-
ing undirected version F (s). Note that throughout the paper
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Figure 1: Graph G(s) and its undirected version F (s) for s =
(Sv, Sx, Sy, Sz) with Sv = {(x, 1), (z, 1)}, Sx = {(v, 1), (z, 1)},
Sy = {(x, 1), (z, 1)}, Sz = {(y, 2)}. Agent z has degree 5 and can
send a flow of value 3, 3 and 4 to the agents v, x and y respectively.

we only work with G(s) and we will always assume its undi-
rected version F (s) when computing flow values.

We call a directed weighted network G feasible if the sum
over the weights of all incident outgoing edges for each node
is at most k. Thus, we have a bijection between the set of
feasible networks and the set of strategy profiles. Therefore,
we will further omit s in G(s) if it is clear from the context
and we will use G and s interchangeably if G = G(s).

Let λG(s)(v, x) =
∑
v1∈V1,v2∈V2,{v1,v2}∈EF (s) c({v1, v2})

be the capacity of a minimum v-x-cut (V1, V2) disconnect-
ing node v from x in F (s) which we also call the local edge
connectivity between x and v. The minimum over all pair-
wise local edge connectivities in G(s) is called the edge con-
nectivity of G(s) and is denoted as λ(G(s)). A cut (V1, V2)
in G(s), where V1 ∪ V2 = V and V1 ∩ V2 = ∅, such that
λ(G(s)) =

∑
v1∈V1,v2∈V2,{v1,v2}∈EF (s) c({v1, v2}) is called

a minimum cut (min-cut) of G(s). Note that cuts in G(s) are

always defined on its undirected version F (s). By the Max
Flow Min Cut Theorem [Ford and Fulkerson, 1956], the size
of the min-v-x-cut equals the value of the max-flow between
nodes v and x. Hence, we use the local edge connectivity of v
and x interchangeably with the value of maximum v-x-flow.

We define two versions of the flowNCG. The first is called
the Average Flow NCG (avg-flowNCG). For a given strategy
profile s, the utility function of an agent v is defined as the av-
erage maximum flow value to each other node in the network:
u(v, s) =

∑
i∈V \{v}

λG(s)(v,i)

n−1 . The social utility of network

G(s) is the average agent utility, i.e., u(s) =
∑
v∈V

u(v,s)
n .

The second variant is called the Minimum Flow NCG (min-
flowNCG). The utility of an agent in network G(s) is the size
of the min-cut of the network λ(G(s)). Note that this value
is the same for all agents in G(s). We define a tie-breaking
between strategies for an agent which yield the same min-
cut of G(s): agents try to maximize the number of nodes
with local edge connectivity exceeding λ(G(s)), i.e., to in-
crease the number of highly robust connections. In partic-
ular, we define the agent’s utility as the following vector:
u(v, s) = (u1(v, s), u2(v, s)), where u1(v, s) = λ(G(s))
and u2(v, s) = |{i ∈ V \{v} : λG(s)(i, v) > λ(G(s))}|. We
call the second component of the utility function u2(v, s) as
the number of well-connected nodes. We assume that agents
aim for maximizing their utility vector lexicographically. We
define the social utility of a network in the min-flowNCG as
the edge connectivity of the network: u(s) = λ(G(s)). The
social optimum (OPT) is a network G(s∗) which maximizes
the social utility u(s∗) over all feasible strategy profiles.

We say agent v reduces the capacity of the v-x edge by `
if it either decreases the capacity c(v, x) by ` (if c(v, x) > `)
or if it deletes the edge (v, x) (if c(v, x) = `). Analogously,
agent v increases the capacity of the v-x edge if it either in-
creases the capacity c(v, x) by ` (if (x, c(v, x)) ∈ Sv) or if it
buys the edge (v, x) with capacity `.

An improving move for agent vi is a strategy change from
Svi to S′vi such that u(vi, (s′vi , s−vi)) > u(vi, s), where
(s′vi , s−vi) is a new strategy profile which only differs from
s in the strategy of agent vi. We say that agent v plays its
best response Sv if there is no improving move for agent v.
A strategy change towards a best response is called best re-
sponse move. A sequence of best response moves which starts
and ends with the same network is called a best response cy-
cle. If every sequence of improving moves is finite, then the
game has the finite improving property (FIP) or, equivalently,
the game is a potential game [Monderer and Shapley, 1996].

We say that a network G(s) is in pure Nash equilibrium
(NE) if all agents play a best response in G(s). We mea-
sure the loss of social utility due to the lack of a central
authority and the agents’ selfishness with the Price of An-
archy (PoA) [Koutsoupias and Papadimitriou, 1999]. Let
minNE(n, k)(maxNE(n, k)) be the minimum (maximum)
social utility of a NE with n agents with budget k, and let
opt(n, k) be the corresponding utility of the social optimum.
For given n and k the PoA is opt(n,k)

minNE(n,k) and the Price of

Stability (PoS) is opt(n,k)
maxNE(n,k) . The latter measures the mini-

mum sacrifice in social utility for obtaining a NE network.



1.2 Related Work
The NCG was proposed in [Fabrikant et al., 2003] and has
been an object of intensive study for almost two decades.
The model depends on an edge-price parameter α which de-
fines the cost of any edge of the network and the agents’
objective function is to minimize their closeness centrality,
i.e., their average hop-distance to all other nodes in the cre-
ated network. A constant PoA was shown for almost all val-
ues of α, except for the range where α ≈ n, where only
an upper bound of o(nε), for any ε > 0, is known [De-
maine et al., 2012]. See [Àlvarez and Messegué, 2019;
Bilò and Lenzner, 2020] for the latest improvements on the
PoA and a more detailed discussion. Moreover, [Kawald and
Lenzner, 2013] proved that the NCG does not have the FIP.

Many variants of the NCG have been proposed and an-
alyzed but so far all of them consider agents which strive
for centrality or only for creating a connected network.
Related to our model are versions where agents can only
swap edges [Alon et al., 2013; Mihalák and Schlegel,
2012], bounded-budget versions [Laoutaris et al., ; Ehsani
et al., 2015] and two versions which focus on robustness:
in [Meirom et al., 2015] agents maintain two vertex-disjoint
paths to any other node and in [Chauhan et al., 2016] agents
consider their expected centrality with respect to a single ran-
dom edge failure. Thus agents in these models enforce 2-
vertex-connectivity or 2-edge-connectivity in the created net-
work which are much weaker robustness concepts compared
to our approach. Another line of research are Network For-
mation Games [Bala and Goyal, 2000a] where agents only
strive for being connected to all other nodes. Several vari-
ants with focus on robustness have been introduced: In [Bala
and Goyal, 2000b] a model with probabilistic edge failures,
in [Kliemann, 2011; Kliemann et al., 2017] adversarial mod-
els where a single edge is removed after the network is
formed, in [Goyal et al., 2016; Friedrich et al., 2017] a ver-
sion where a node is attacked with deterministic spread to
neighboring nodes, and in [Chen et al., 2019] a model with
probabilistic spread. To the best of our knowledge, no related
model exists where agents try to maximize their connectivity.

In the realm of classical optimization, maximizing the ro-
bustness of a network with a given budget is a frequently
studied network augmentation problem, see, e.g., [Watanabe
and Nakamura, 1987; Frank, 1994; Nagamochi and Ibaraki,
2008] for surveys. However, due to the centralized optimiza-
tion view, these problems are very different from our model.

1.3 Our Contribution
By incorporating bandwidth considerations into the classical
NCG we shed light on a largely unexplored area of research.
In our Flow-Based NCG agents strategically create links un-
der a budget constraint to maximize their average or mini-
mum flow value to all other agents. This is in stark contrast
to existing models which focus on agents aiming for central-
ity or for maximizing the size of their connected component.

For our novel modes, we provide an efficient algorithm to
compute a social optimum network and we uncover impor-
tant structural properties of it. A major part of our research
is a rigorous study of the structure and quality of the induced

equilibrium networks. We show that NE networks are guar-
anteed to be connected and that they contains a subgraph that
is at least (k + 1)-edge-connected. Moreover, any NE in the
min-flowNCG is always (k + 1)-edge-connected. Most im-
portantly, we prove that the social utility of all NE networks
is close to optimum. More precisely, our PoA results for both
models guarantee that the social utility of any NE is at least
half the optimal utility, i.e., PoA ≤ 2, and this bound is tight
for the min-flowNCG and almost tight for the avg-flowNCG.
Besides this, we prove for both versions that the PoS = 1 and
that the FIP does not hold. See Table 1 for an overview.

Due to limited space, some proofs are sketched or omitted.

2 Social Optimum
We analyze the structure of the OPT networks. In particu-
lar, we show a generic network construction with maximum
social utility 2k for both game models.

Algorithm 1: Algorithm for computing the OPT
input : unweighted directed clique Kn=(V,E)
output: social optimum network G

1 G← (V, ∅);
2 for i← 1 to k do
3 find a directed Hamiltonian cycle Cn in Kn;
4 add the cycle to the output graph G← G ∪ Cn,

i.e., increase capacity of each (u, v)-connection
in G by 1 if (u, v) ∈ Cn;

Theorem 1. Algorithm 1 computes an optimal network with
social utility 2k for the avg-flowNCG and min-flowNCG in
polynomial time.

Proof. First, we prove a general upper bound on the social
utility of OPT. Let G be an optimal network in the min-
flowNCG. The social utility of G equals the edge connectiv-
ity of G which is at most minv∈V degG(v). The handshake
lemma yields

∑
v∈V degG(v) = 2

∑
e∈E(G) c(e) ≤ 2nk,

where the last inequality holds because every agent can build
edges of the total capacity of at most k. Since the minimum
degree is at most the average degree in the network, we get
u(s) = λ(G(s)) ≤ minv∈V degG(v) ≤ 2k.

In the avg-flowNCG, the social utility is u(s) =
1
n

∑
v∈V u(v, s) where u(v, s) is the average local edge

connectivity over all pairs (v, V \ {v}). The local
edge connectivity of any pair of nodes v, w is at most
min{degG(v), degG(w)}. Thus, u(s) ≤ 1

n

∑
v∈V deg(v) ≤

2k, again by the handshake lemma.
Now we show that the social utility of the graph G pro-

duced by the algorithm matches the upper bound which im-
plies thatG is optimal. Since each node inG has an outdegree
of k and no self-loops,G is a feasible network for both games.
For any two nodes v, w ∈ V the minimum v-w-cut contains
two edges of each Hamiltonian cycle added to G during the
algorithm’s run. Thus, the local edge connectivity of any pair
of nodes equals 2k which implies u(G) = 2k in both games.

It is easy to see that the algorithm runs in polynomial time
since the Hamiltonian cycle can be constructed greedily.



Model u(OPT) PoS PoA FIP
min-flowNCG 2k (Thm. 1) 1 (Thm. 6) 2k

k+1 (Thm. 9) no (Thm. 15)

avg-flowNCG 2k (Thm. 1) 1 (Thm. 6)
< 2 (Thm. 13)

no (Thm. 15)≥ 2k

k+
k(k−1)
n−1

if k ≤ 0.5 +
√
n− 0.75 (Thm. 14)

≥ 2k
k+1 if k > 0.5 +

√
n− 0.75 (Thm. 14)

Table 1: Overview of our results

Theorem 2. In the min-flowNCG and the avg-flowNCG OPT
is a connected 2k-regular network.

3 Structural Properties of Equilibria
In this section we prove structural properties of NE networks,
which we will use later on to derive our PoA bounds.
Theorem 3. In the min-flowNCG and the avg-flowNCG all
agents use all of their k budget units in an NE network.

Proof. Consider a network G = G(s) which is in NE. As-
sume towards a contradiction that there is an agent v ∈ V
which spends strictly less than k units of its budget in G(s).

For the min-flowNCG, we have, by definition, u(v, s) =
(u1(v, s), u2(v, s)) = (λ(G), u2(v, s)). Let w ∈ V be
an agent such that λG(v, w) = λ(G). Then agent v
can improve its strategy by increasing the capacity of the
edge (v, w). Indeed, after the strategy change (s to s′ =
(s′v, s−v)) either the edge connectivity of the network in-
creases, i.e., λ(G(s′)) > λ(G(s)) or the edge connectiv-
ity does not change but u(v, s′) = (u1(v, s), u2(v, s

′)) ≥
(u1(v, s), u2(v, s) + 1) > u(v, s). In both cases agent v im-
proves, which contradicts that G is in NE.

For the avg-flowNCG it is easy to see, that building an ad-
ditional edge towards any agent w ∈ V \ {v} increases their
local edge connectivity, while not decreasing the local edge
connectivity between any pair of agents, and thus this results
in a strategy s′ = (s′v, s−v) such that uv(s′) > uv(s). Thus,
agent v can improve, which contradicts that G is in NE.

Theorem 4. In the min-flowNCG and the avg-flowNCG any
equilibrium network is connected.

Proof. For both games assume towards a contradiction that
there is a disconnected equilibrium network G. Note that
λ(G) = 0. By Theorem 3 all agents use all of their bud-
gets, thus, every vertex has an outgoing edge in G. As the
number of nodes is finite, there must be a directed cycle in
every weakly connected component of G. Thus, any agent v
in such a cycle can remove an existing outgoing cycle-edge
without disconnecting the weakly connected component and
add the edge to any node of another component in G.

In the min-flowNCG, this move either increases the edge-
connectivity of the network, i.e., it increases u1(v,G), or it
increases the number of well-connected agents, i.e., it in-
creases u2(v,G) and u1(v,G) remains unchanged. Thus,
agent v can improve which contradicts that G is in NE.

For the avg-flowNCG, consider two weakly connected
components X,Y ⊆ V in G such that |X| ≤ |Y |. Thus

there must be an agent v in X which can reduce the capacity
of one connection in X by 1 and add an edge of capacity 1
to some other node in Y . This move changes only the local
edge-connectivity between v and any other node by at most 1.
Thus, its utility changes by at least− |X|−1n−1 + |Y |

n−1 > 0. Thus,
agent v can improve which contradicts that G is in NE.

The next property will be about j-clusters, which are subset
of nodes C ⊆ V, |C| ≥ 2, from G such that the C-induced
subgraph of G has edge connectivity of at least j.

Theorem 5. For the min-flowNCG and the avg-flowNCG, if
G is in NE, there is a (k + 1)-cluster in G.

Proof. Consider a NE network G(s). We partition G(s), or
more precisely its undirected version F (s), into components
by the following method: As long as there is a cut (X,Y )
of size at most k, remove all edges of (X,Y ) from G. At
each step of the algorithm either the algorithm terminates,
i.e., there is a (k + 1)-cluster in G, or the number of con-
nected components increases by at least 1 while the number
of edges decreases by at most k. By Theorem 3 the sum of
edge weights in the initial graph is nk. Hence, if a (k + 1)-
cluster was not found, the algorithm produces a network con-
taining n components and a set of edges of the total capacity
of at least k. Since self-loops are not allowed, we have a con-
tradiction. Thus, the process must find a (k + 1)-cluster.

4 Price of Stability
Theorem 6. The PoS is 1 in the min-flowNCG and the avg-
flowNCG.

Proof. Consider a directed cycle C where every edge has ca-
pacity k. We will show that C is a NE in both games.

For the min-flowNCG, consider a node, say v1, in C =
G(s). Agent v1 owns one edge, w.l.o.g., (v1, v2) of capacity
k. The only strategy change that v1 can perform is to re-
duce the capacity of the edge (v1, v2) and to spend the rest of
the budget on new edges to other nodes. This move strictly
decreases the degree of the node v2. Since the edge connec-
tivity of any network is at most its minimum degree, which
then is the degree of v2, this implies that the strategy change
decreases v1’s utility. Hence, there is no improving move for
agent v1, which, by symmetry, implies that every agent plays
best response in C which proves that C is in NE.

Analogously, in the avg-flowNCG the same strategy
change by any of the agents, say v1, decreases the degree of
the respective neighbor v2. Thus, the local edge connectivity



of this pair of nodes decreases. At the same time, the lo-
cal edge connectivity of v1 with other nodes does not change
since it does not exceed the minimum degree of the pair, i.e.,
the degree of node v1. This implies a decrease of the average
local edge connectivity for agent v1, i.e., the decrease of v1’s
utility. Thus, all agents play best response and C is a NE.

By Theorem 1 the social utility of OPT is 2k. We have
proved the existence of a NE network with the same social
utility for both models. Thus, PoS = 1 for both games.

5 Price of Anarchy
In this section we present our main results, which are a tight
bound in the PoA for the min-flowNCG and an almost tight
PoA bound for the avg-flowNCG. Moreover, whereas all pre-
vious results show the similarity of the min-flowNCG and the
avg-flowNCG we will now highlight their differences. In par-
ticular, we show that NE networks in the min-flowNCG may
not be NE networks in the avg-flowNCG and vice versa.

5.1 PoA of the Min-FlowNCG
We start by providing a NE network for the min-flowNCG
with minimum social utility.

Theorem 7. For a given n and k such that k < n, there is a
NE network G such that u(G) = k + 1 in the min-flowNCG.

Proofsketch. We consider the following generic construction
for a given number of agents n and budget k < n. Consider
a set of nodes {v1, . . . , vn} = V (G) and a set of edges E(G)
where for all 1 ≤ i < k each node vi is connected with a node
vi+1 by an edge (vi, vi+1) with capacity c(vi, vi+1) = k −
(i− 1) and by an edge (vi+1, vi) with capacity c(vi+1, vi) =
i. Moreover, there is an edge (vk, vn) with capacity 1 and a
set of sequential edges, for all k ≤ i ≤ n− 1, (vi+1, vi) with
capacity k. See Figure 2 for illustration of the construction.
We claim that G is in NE in the min-flowNCG. We omit the
proof due to the space restrictions.

vn-1
k

v1 v2
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2
vk

k − 1
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k vk+1
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Figure 2: NE network in the min-flowNCG. Note that this network
is not a NE in the avg-flowNCG. Indeed, agent v2 can delete the
edge (v2, v1) and create the edge (v2, vn) with capacity 1.

The next result shows that any NE network in the min-
flowNCG is (k + 1)-edge-connected.

Theorem 8. The social utility of any NE network is at least
k + 1 in the min-flowNCG.

Proof. Assume towards a contradiction that there is a NE
G = (V,E) such that it contains a cut (A,B) such that
λ(G) =

∑
e∈(A,B) c(e) ≤ k. By Theorem 5 there is an

induced subgraph K = (C,E(K)) ⊆ G such that C is a
(k + 1)-cluster in G. W.l.o.g., let C ⊆ A. Consider two

nodes v ∈ C and w ∈ B. Since k + 1 ≤ λ(K) ≤ degK(v),
there is a node x ∈ K which has an edge to v in K.

We will show that agent x can significantly improve on
its strategy by reducing the capacity of the edge (x, v) by 1
and creating the edge (x,w) with capacity 1 (or increasing
its capacity by 1 if it already exists). We denote the obtained
networks as G′ = (V ′, E′) and K ′ = (C,E′′). Note that
λG′(x, v) ≥ λK′(x, v) + 1 ≥ λK(x, v)− 1 + 1 ≥ k + 1.

If λ(G′) > λ(G), then agent x improved on its strategy
since u1(x,G′) > u1(x,G). Thus, G is not a NE.

If λ(G′) < λ(G), there is a cut (X,Y ), x ∈ X, v ∈ Y in
G′ of size strictly less than λ(G) ≤ k. On the other hand, the
size of the (X,Y )-cut is at least λG′(x, v) ≥ k + 1 > λ(G).
Hence, we have a contradiction.

Finally, we consider the case λ(G′) = λ(G). We will
show that u2(x,G′) > u2(x,G). First, note that for any node
a ∈ V \ {x} such that λG(x, a) > λ(G), λ′G(x, a) > λ(G′)
holds. Indeed, in case λG′(x, a) < λG(x, a), we have
λG′(x, a) = λG′(x, v) ≥ k + 1 > λ(G) = λ(G′). In
case λG′(x, a) ≥ λG(x, a), and since λG(x, a) > λ(G),
we have λG′(x, a) > λ(G) = λ(G′). Therefore, after
the strategy change u2(x,G′) ≥ u2(x,G) holds. Second,
λG(x,w) = λ(G), since x ∈ A and w ∈ B, whereas
λG′(x,w) > λ(G′), i.e., u2(x,G′) > u2(x,G). Hence,
u(x,G′) = (u1(x,G), u2(x,G

′)) > u(x,G), i.e., agent x
does not play a best response in G. This contradicts the as-
sumption that G is a NE.

Now we put the pieces together to derive our tight bound.
Theorem 9. The PoA in the min-flowNCG is 2k

k+1 .

Proof. By Theorem 1 and Theorem 8 we get that PoA ≤
2k
k+1 . By Theorem 7 there is a NE network that meets the
social utility lower bound, hence the PoA bound is tight.

5.2 PoA of the Avg-FlowNCG
We start with providing constructions for two NE network
with almost minimum social utility.
Theorem 10. For n and k with 2 ≤ k < n, there is a NE
networkG such that u(G) = k+ k(k−1)

n−1 in the avg-flowNCG.

Proofsketch. We construct the following network G =
(V,E). We arrange k nodes in a circle such that each node
has one edge with capacity k to the subsequent node. The
remaining n− k nodes each have a unit-weight edge to each
node of the circle. See Figure 3 for an illustration of the con-
struction. We omit the proof due to space constraints.

k

· · · vk+2 vk+1 v1

v2

v3

vk

k

k

vn

Figure 3: NE network in the avg-flowNCG. Note that this network is
not a NE in the min-flowNCG since it is not (k+1)-edge-connected,
e.g., v1 can improve by reducing the capacity of the edge (v2, v3)
by 1 and increasing the capacity of the edge (v2, vk+1) by 1.



Theorem 11. For a given n and k such that k < n, there is a
NE network G such that u(G) = k + 1 in the avg-flowNCG.

Proofsketch. Consider the following star-like network G =
(V,E) with the set of nodes V = {c} ∪ {a1, . . . , ak−1} ∪
{b1, . . . , bn−k}. Here c is a central node connected with all ai
nodes by an edge with capacity 1. All ai nodes are connected
with the central node by edges with capacity k. Each node
bi, i = 1, . . . , n−k−1 has an edge (bi, c) with capacity k−1,
and only one node bn−k has an edge (bn−k, c) of capacity k.
Also, there is an edge (c, b1) with capacity 1. Finally, all
bi nodes are sequentially connected by edges (bi, bi+1) with
capacity 1. See Figure 4 for illustration of the construction.
The proof of the statement is rather technical, so we omit it
due to the space constrains.
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b2

bn-k

k

k-1
1

1

1

k
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k

1

k-1

1

b2

1
k-1

Figure 4: NE network in the avg-flowNCG.

A similar technique as in the proof of Theorem 8 can be ap-
plied to prove that the edge connectivity of any NE network
in the avg-flowNCG is at least k.
Theorem 12. For k ≥ 2, the edge connectivity of any NE
network in the avg-flowNCG is at least k.

Proofsketch. Assume G is a NE and λ(G) < k. Consider a
min-cut (A,B) of size λ(G). By performing the same pro-
cedure as in the proof of Theorem 5 in each set A and B, we
get two sets X ⊆ A and Y ⊆ B of a maximum size such that
for each pair of nodes v1, v2 in the same set, λG(v1, v2) ≥ k.
W.l.o.g., |Y | ≥ |X|. For some edge (v, w) in a k-cluster in
X , agent v can reduce its capacity by 1 and create a new edge
(v, y) with capacity 1 to y ∈ Y (or increase its capacity by
1 if it exists). The local edge connectivity decreases by at
most 1 only between u and nodes in X , and increases by 1
between u and all nodes in Y . Thus, the utility changes by at
least − |X|−1n−1 + |Y |

n−1 > 0, i.e., it is an improving move.

Theorem 13. For the avg-flowNCG we have PoA< 2.

Proof. For k = 1 a trivial NE of social utility 2 is a directed
cycle with all edge capacities equal 1.

For general k ≥ 2, by Theorem 12, any NE is at least k-
edge-connected. On the other hand, by Theorem 5, any NE
contains a (k+1)-cluster of at least two nodes. Thus, at least
two nodes have their utility of at least k+1+k(n−2)

n−1 > k and
all other nodes have the utility of at least k. Hence the social
utility is strictly grater than k(n−2)+2k

n = k.

Now we provide an almost matching lower bound on the PoA.
Theorem 14. For the avg-flowNCG, we have PoA ≥
max

{
2k

k+k(k−1)/(n−1) ,
2k
k+1

}
.

Proof. By Theorem 10 and Theorem 11 the social utility
of a worst-case equilibrium network is at most min{k +
k(k−1)
n−1 , k+1}. Therefore, for k ≤ 0.5+

√
n− 0.75 the PoA

is at least 2k/
(
k + k(k−1)

n−1

)
= 2(n−1)

n+k−2 . Thus, for large n,
the PoA tends to 2, i.e., the upper bound. With a high budget,
i.e., for k > 0.5 +

√
n− 0.75, the PoA is at least 2k

k+1 .

6 Game Dynamics
We analyze whether our games are guaranteed to converge to
an NE under improving response dynamics. Unfortunately,
this is not true for the min-flowNCG and the avg-flowNCG.
Theorem 15. The min-flowNCG and the avg-flowNCG do
not admit the FIP.

Proofsketch. We provide an improving response cycle (IRC)
for each variant of the game depicted in Figure 5 and Figure 6.
Note that the first and the last networks are isomorphic in both
sequences, which implies that we indeed have IRCs.
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2

2

2 2

2
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1
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1

1

1
1

Figure 5: An IRC for the min-flowNCG with k = 2. Since G and G′

are isomorphic, the sequence of the improving moves recurs to G.
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Figure 6: An IRC for the avg-flowNCG with k = 3. Since G and G′′

are isomorphic, the sequence of the improving moves recurs to G.

7 Conclusion
We made the first steps into the promising direction
of investigating network formation games with band-
width/connectivity considerations. For this, we proposed two
versions: the min-flowNCG where agents strive to maximize
the connectivity of the entire network; and the avg-flowNCG
where agents try to maximize their average flow value to-
wards all other agents. For both versions our main focus was
the analysis of equilibrium networks. In particular, we proved
that NE networks contain a highly-connected component in
the avg-flowNCG, while in the min-flowNCG the entire NE
network must be highly-connected. This may explain the oc-
currence of k-core structures in many real-world networks.

Our main results are (almost) tight bounds of less than 2 on
the PoA which shows that NE networks are close to optimum
and no external coordination is needed in our games.

An important direction for future work is a generalization
of the presented model to non-uniform budgets, non-integer
edge capacities and a combination of bandwidth and central-
ity objectives for the agents.
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