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Abstract. We introduce and analyze greedy equilibria (GE) for the well-
known model of selfish network creation by Fabrikant et al. [PODC’03].
GE are interesting for two reasons: (1) they model outcomes found by
agents which prefer smooth adaptations over radical strategy-changes,
(2) GE are outcomes found by agents which do not have enough com-
putational resources to play optimally. In the model of Fabrikant et al.
agents correspond to Internet Service Providers which buy network links
to improve their quality of network usage. It is known that computing a
best response in this model is NP-hard. Hence, poly-time agents are likely
not to play optimally. But how good are networks created by such agents?
We answer this question for very simple agents. Quite surprisingly, naive
greedy play suffices to create remarkably stable networks. Specifically, we
show that in the Sum version, where agents attempt to minimize their
average distance to all other agents, GE capture Nash equilibria (NE)
on trees and that any GE is in 3-approximate NE on general networks.
For the latter we also provide a lower bound of 3

2
on the approxima-

tion ratio. For the Max version, where agents attempt to minimize their
maximum distance, we show that any GE-star is in 2-approximate NE
and any GE-tree having larger diameter is in 6

5
-approximate NE. Both

bounds are tight. We contrast these positive results by providing a linear
lower bound on the approximation ratio for the Max version on general
networks in GE. This result implies a locality gap of Ω(n) for the metric
min-max facility location problem, where n is the number of clients.

1 Introduction

The area of Network Design is one of the classical and still very active fields in
the realm of Theoretical Computer Science and Operations Research. But there
is this curious fact: One of the most important networks which is increasingly
shaping our everyday life – the Internet – cannot be fully explained by classical
Network Design theory. Unlike centrally designed and optimized networks, the
Internet was and still is created by a multitude of selfish agents (Internet Service
Providers (ISPs)), who control and modify varying sized portions of the network
structure (“autonomous systems”). This decentralized nature is an obstacle to
approaching the design and analysis of the Internet as a classical optimization
problem. Interestingly, each agent does face classical Network Design problems,
i.e. minimizing the cost of connecting the own network to the rest of the Internet
while ensuring a high quality of service. The Internet is the result of the interplay
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of such local strategies and can be considered as an equilibrium state of a game
played by selfish agents.

The classical and most popular solution concept of such games is the (pure)
Nash equilibrium [15], which is a stable state, where no agent unilaterally wants
to change her current (pure) strategy. However, Nash equilibria (NE) have their
difficulties. Besides their purely descriptive, non-algorithmic nature, there are
two problems: (1) With NE as solution concept agents only care if there is a
better strategy and would perform radical strategy-changes even if they only
yield a tiny improvement. (2) In some games it is computationally hard to even
tell if a stable state is reached because computing the best possible strategy of
an agent is hard. Thus, for such games NE only predict stable states found by
supernatural agents.

But what solutions are actually found by more realistic players, i.e. by agents
who prefer smooth strategy-changes and who can only perform polynomial-time
computations? And what impact on the stability has this transition from super-
natural to realistic players?

In this paper, we take the first steps towards answering these questions for one
of the most popular models of selfish network creation. This model, called the
Network Creation Game (NCG), was introduced a decade ago by Fabrikant
et al. [9]. In NCGs agents correspond to ISPs who create links towards other
ISPs while minimizing cost and maximizing their quality of network usage. It
seems reasonable that ISPs prefer greedy refinements of their current strategy
(network architecture) over a strategy-change which involves a radical re-design
of their infrastructure. Furthermore, computing the best strategy in NCGs is NP-
hard. Hence, it seems realistic to assume that agents perform smooth strategy-
changes and that they do not play optimally. We take this idea to the extreme
by considering very simple agents and by introducing and analyzing a natural
solution concept, called greedy equilibrium, for which agents can easily compute
whether a stable state is reached and which models an ISP’s preference for
smooth strategy-changes.

1.1 Model and Definitions

In NCGs [9] there is a set of n agents V and each agent v ∈ V can buy an edge
{v, u} to any agent u ∈ V for the price of α > 0. Here α is a fixed parameter
of the game which specifies the cost of creating any link. The strategy Sv of an
agent v is the set of vertices towards which v buys an edge. Let G = (V, E) be the
induced network, where an edge {x, y} ∈ E is present if x ∈ Sy or y ∈ Sx. The
network G will depend heavily on the parameter α. To state this explicitly, we
let (G, α) denote the network induced by the strategies of all agents V . In a NCG
agents selfishly choose strategies to minimize their cost. There are basically two
versions of NCGs, depending on the definition of an agent’s cost-function. In the
Sum version [9], agents try to minimize the sum of their shortest path lengths
to all other nodes in the network, while in the Max version [7], agents try to
minimize their maximum shortest path distance to any other network node. The
precise definitions are as follows: Let Sv denote agent v’s strategy in (G, α),
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then we have for the Sum version that the cost of agent v is cv(G, α) = α|Sv|+∑
w∈V (G) dG(v, w), if G is connected and cv(G, α) = ∞, otherwise. For the Max

version we define agent v’s cost as c′v(G, α) = α|Sv| + maxw∈V (G) dG(v, w), if
G is connected and c′v(G, α) = ∞, otherwise. In both cases dG(·, ·) denotes
the shortest path distance in the graph G. Note that both cost functions nicely
incorporate two conflicting objectives: Agents want to pay as little as possible for
being connected to the network while at the same time they want to have good
connection quality. For NCGs we are naturally interested in networks where no
agent unilaterally wants to change her strategy. Clearly, such outcomes are pure
NE and we let Sum-NE denote the set of all pure NE of NCGs for the Sum
version and Max-NE denotes the corresponding set for the Max version.

Another important notion is the concept of approximate Nash equilibria. Let
(G, α) be any network in a NCG. For all u ∈ V (G) let c(u) and c∗(u) denote
agent u’s cost induced by her current pure strategy in (G, α) and by her best
possible pure strategy, respectively. We say that (G, α) is a β-approximate Nash
equilibrium if for all agents u ∈ V (G) we have c(u) ≤ βc∗(u), for some β ≥ 1.

1.2 Related Work

The work of Fabrikant et al. [9] did not only introduce the very elegant model
described above. Among other results, the authors showed that computing a
best possible strategy of an agent is NP-hard.

To remove the quite intricate dependence on the parameter α, Alon et al. [3]
recently introduced the Basic Network Creation Game (BNCG), in which
a network G is given and agents can only “swap” incident edges to decrease their
cost. Here, a swap is the exchange of an incident edge with a non-existing incident
edge. The cost of an agent is defined like in NCGs but without the edge-cost
term. The authors of [3] proposed the swap equilibrium (SE) as solution concept
for BNCGs. A network is in SE, if no agent unilaterally wants to swap an edge
to decrease her cost. This solution concept has the nice property that agents can
check in polynomial time if they can perform an improving strategy-change. The
greedy equilibrium, which we analyze later, can be understood as an extension
of the swap equilibrium which has similar properties but provides agents more
freedom to act. Note, that in BNCGs an agent can swap any incident edge,
whereas in NCGs only edges which are bought by agent v can be modified by
agent v. This problem, first observed by Mihalák and Schlegel [13], can easily
be circumvented, as recently proposed by the same authors in [14]: BNCGs
are modified such that every edge is owned by exactly one agent and agents
can only swap own edges. The corresponding stable networks of this modified
version are called asymmetric swap equilibrium (ASE). However, independent of
the ownership, edges are still two-way. These simplified versions of NCGs are an
interesting object of study since (asymmetric) swap equilibria model the local
weighing of decisions of agents and despite their innocent statement they tend
to be quite complicated structures. In [12] it was shown that greedy dynamics in
a BNCG converge very quickly to a stable state if played on a tree. The authors
of [5] analyzed BNCGs on trees with agents having communication interests.
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However, simplifying the model as in [3] is not without its problems. Allowing
only edge-swaps implies that the number of edges remains constant. Hence, this
model seems too limited to explain the creation of rapidly growing networks.

A part of our work focuses on tree networks. Such topologies are common out-
comes of NCGs if edges are expensive, which led the authors of [9] to conjecture
that all (non-transient) stable networks of NCGs are trees if α is greater than
some constant. The conjecture was later disproved by Albers et al. [1] but it was
shown to be true for high edge-cost. In particular, the authors of [13] proved
that all stable networks are trees if α > 273n in the Sum version or if α > 129
in the Max version. Experimental evidence suggests that this transition to tree
networks already happens at much lower edge-cost and it is an interesting open
problem to improve on these bounds.

Demaine et al. [6] investigated NCGs, where agents cannot buy every possible
edge. Furthermore, Ehsani et al. [8] recently analyzed a bounded-budget version.
Both versions seem realistic, but in the following we do not restrict the set of
edges which can be bought or the budget of an agent. Clearly, such restrictions
reduce the qualitative gap between simple and arbitrary strategy-changes and
would lead to weaker results for our analysis. Note, that this indicates that
outcomes found by simple agents in the edge or budget-restricted version may
be even more stable than we show in the following sections.

To the best of our knowledge, approximate Nash equilibria have not been
studied before in the context of selfish network creation. Closest to our approach
here may be the work of Albers et al. [2], which analyzes for a related game how
tolerant the agents have to be in order to accept a centrally designed solution.
We adopt a similar point of view by asking how tolerant agents have to be to
accept a solution found by greedy play.

Guylás et al. [10] recently published a paper having a very similar title to
ours. They investigate networks created by agents who use the length of “greedy
paths” as communication cost and show that the resulting equilibria are sub-
stantially different to the ones we consider here. Their term “greedy” refers to
the distances whereas our term “greedy” refers to the behavior of the agents.

1.3 Our Contribution

We introduce and analyze greedy equilibria (GE) as a new solution concept
for NCGs. This solution concept is based on the idea that agents (ISPs) pre-
fer greedy refinements of their current strategy (network architecture) over a
strategy-change which involves a radical re-design of their infrastructure. Fur-
thermore, GE represent solutions found by very simple agents, which are com-
putationally bounded. We show in Section 2 that such greedy refinements can
be computed efficiently and clarify the relation of GE to other known solution
concepts for NCGs.

Our main contribution follows in Section 3 and Section 4, where we analyze
the stability of solutions found by greedily playing agents. For the Sum version
we show the rather surprising result that, despite the fact that greedy strategy-
changes may be sub-optimal from an agent’s point of view, Sum-GE capture
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Sum-NE on trees. That is, in any tree network which is in Sum-GE no agent
can decrease her cost by performing any strategy-change. For general networks
we prove that any network in Sum-GE is in 3-approximate Sum-NE and we
provide a lower bound of 3

2 for this approximation ratio. Hence, we are able to
show that greedy play almost suffices to create perfectly stable networks.

For the Max version we show that these games have a strong non-local flavor
which yields diminished stability. Here even GE-trees may be susceptible to non-
greedy improving strategy-changes. Interestingly, susceptible trees can be fully
characterized and we show that their stability is very close to being perfect.
Specifically, we show that any GE-star is in 2-approximate Max-NE and that
any GE-tree having larger diameter is in 6

5 -approximate Max-NE. We give a
matching lower bound for both cases. For non-tree networks in GE the picture
changes drastically. We show that for GE-networks having a very small α the
approximation ratio is related to their diameter and we provide a lower bound
of 4. For α ≥ 1, we show that there are non-tree networks in Max-GE, which
are only in Ω(n)-approximate Max-NE. The latter result yields that the locality
gap of uncapacitated metric min-max facility location is in Ω(n).

Regarding the complexity of deciding Nash-stability, we show that there are
simple polynomial time algorithms for tree networks in both versions. Further-
more, greedy-stability represents an easy to check certificate for 3-approximate
Nash-stability in the Sum version.

2 Greedy Agents and Greedy Equilibria

We consider agents which check three simple ways to improve their current
infrastructure. The three operations are

– greedy augmentation, which is the creation of one new own link,
– greedy deletion, which is the removal of one own link,
– greedy swap, which is a swap of one own link.

Computing the best augmentation/deletion/swap for one agent can be done in
O(n2(n + m)) steps by trying all possibilities and re-computing the incurred
cost. Observe, that these smooth strategy-changes induce some kind of organic
evolution of the whole network which seems highly adequate in modeling the
Internet. This greedy behavior naturally leads us to a new solution concept:

Definition 1 (Greedy Equilibrium). (G, α) is in greedy equilibrium if no
agent in G can decrease her cost by buying, deleting or swapping one own edge.

Note, that GE can be understood as solutions which are obtained by a distributed
local search procedure performed by selfish agents.

The next theorem relates GE to other solution concepts in the Sum version.
See Fig. 1 for an illustration. Relationships are similar in the Max version.

Theorem 1. For the Sum version it is true that NE ⊂ GE ⊂ ASE and that
SE ⊂ ASE. Furthermore, we have NE\SE �= ∅, GE\SE �= ∅, (GE\SE)\NE �= ∅,
(GE\NE) ∩ SE �= ∅ and NE ∩ GE ∩ SE �= ∅.
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Fabrikant et al.[9] Alon et al.[3]

Mihalák & Schlegel[14]

Fig. 1. Relations between solution concepts for NCGs in the Sum version. Edge-
directions indicate edge-ownership, edges point away from its owner.

3 The Quality of Sum Greedy Equilibria

This section is devoted to discussing the quality of greedy equilibrium networks
in the Sum version. We begin with a simple but very useful property.

Lemma 1. If an agent v cannot decrease her cost by buying one edge in the
Sum version, then buying k > 1 edges cannot decrease agent v’s cost.

3.1 Tree Networks in Sum Greedy Equilibrium

We show that in a NCG all stable trees found by greedily behaving agents are
even stable against any strategy-change. Hence, in case of a tree equilibrium no
loss in stability occurs by greedy play. This is a counter-intuitive result, since
for each agent alone being greedy is clearly sub-optimal (the network in Fig. 2
with α = 6 is an example). Thus, the following theorem shows the emergence of
an optimal outcome out of a combination of sub-optimal strategies.

Theorem 2. If (T, α) is in Sum-GE and T is a tree, then (T, α) is in Sum-NE.

Before we prove Theorem 2, we first provide some useful observations. The well-
known notion of a 1-median [11] is used: A 1-median of a connected graph G is
a vertex x ∈ V (G), where x ∈ arg minu∈V (G)

∑
w∈V (G) d(u, w).

Lemma 2. Let (T, α) be a tree network in Sum-GE. If agent u owns edge {u, w}
in (T, α), then w must be a 1-median of its tree in the forest T − {u}.
Let (T, α) be any tree network in Sum-GE and let T u be the forest induced by
removing all edges owned by agent u from T . Let Fu be the forest T u without
the tree containing vertex u. The above lemma directly implies the following:

Corollary 1. Let (T, α) be in Sum-GE, and let Fu be defined as above. Agent
u’s strategy in (T, α) is the optimal strategy among all strategies that buy exactly
one edge into each tree of Fu.
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Let x ∈ V (T ) be a 1-median of the tree T . Let u /∈ V (T ) be a special vertex. We
consider the network (Gu

T , α), which is obtained by adding vertex u and inserting
edge {u, x}, which is owned by u, in T and by assigning the ownership of all
other edges arbitrarily among the respective endpoints of any other edge in Gu

T .
Furthermore, let y1, . . . , yl denote the neighbors of vertex x in T and let Tyi , for
1 ≤ i ≤ l, denote the maximal subtree of T which is rooted at yi and which does
not contain vertex x. See Fig. 2 (left) for an illustration. We consider a special

x u x ux1

x2

x3

y2

y1

y3

Ty2

Ty1

Ty3

Fig. 2. The network (Gu
T , α) before and after agent u changes her strategy to S∗

u

strategy of agent u in (Gu
T , α): Let S∗

u = {x1, . . . , xk} be the best strategy of
agent u which purchases at least two edges. The situation with agent u playing
strategy S∗

u is depicted in Fig. 2 (right).

Lemma 3. Let (Gu
T , α), S∗

u = {x1, . . . , xk} and the subtrees Tyi, for 1 ≤ i ≤ l be
specified as above. There is no subtree Tyi, which contains all vertices x1, . . . , xk.

Next, let us consider two special strategies of agent u. Let S1
u be agent u’s best

strategy, which buys at least two edges including one edge towards vertex x.
Furthermore, let S2

u be agent u’s best strategy, which buys at least two edges,
but no edge towards vertex x.

Lemma 4. Let (Gu
T , α), S1

u, S2
u and vertex x be specified as above. Let xj ∈ S2

u

be a vertex which has minimum distance to x among all vertices in S2
u. If strategy

S2
u yields less cost for agent u than strategy S1

u, then xj cannot be a leaf of Gu
T .

Now we have all the tools we need to prove Theorem 2.

Proof (of Theorem 2). We will prove the contra-positive statement of Theorem 2.
We show that if an agent u can decrease her cost by performing a strategy-change
in a tree network (T, α) which is in Sum-GE, then there is an agent z in V (T )
who can decrease her cost by performing a greedy strategy-change. In that case
we have a contradiction to (T, α) being in Sum-GE.

If agent u can decrease her cost by buying, deleting or swapping one own edge,
thenwehaveu = z andwe are done.Hence,we assume that agentu cannot decrease
her costbyagreedy strategy-changebutbyperforming anarbitrary strategy-change.
We consider agent u’s strategy-change towards the best possible arbitrary strategy
S∗ (if u has more than one such strategy, then we choose the one which buys the
least number of edges). Clearly, agent u cannot remove any owned edge without
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purchasing edges, since T is a tree and the removal would disconnect T . Further-
more, since (T, α) is in Sum-GE and by Lemma 1, agent u cannot decrease her cost
by purchasing k > 0 additional edges. Hence, the only way agent u can possibly
decrease her cost is by removing j own edges and building k edges simultaneously.
Clearly, k ≥ j must hold. Furthermore, by Corollary 1, it follows that k > j. Let
Fu be the forest obtained by removing the j edges owned by agent u from T and
let T ∗ be the tree in Fu which contains vertex u. Observe that among the k new
edges, there cannot be edges having an endpoint in T ∗. This is true because (T, α)
is in Sum-GE and by Lemma 1. Any such edge would be a possible greedy augmen-
tation which we assume not to exist. Hence, by the pigeonhole principle, we have
that there must be at least one tree Tq in Fu into which agent u buys at least two
edges with strategy S∗. We focus on Tq and will find agent z within.

Let {u, x}, with x ∈ V (Tq), be the unique edge of T which connects u to the
subtree Tq. Hence, agent u’s strategy-change to S∗ removes edge {u, x} and buys
kq > 1 edges {u, x1}, . . . , {u, xkq}, with xj ∈ V (Tq) for 1 ≤ j ≤ kq. Let X =
{x1, . . . , xkq}. By Lemma 1, we have xj �= x, for xj ∈ X . Let y1, . . . , yl denote the
neighbors of vertex x in Tq and let Ty1 , . . . , Tyl

be the maximal subtrees of Tq not
containing vertex x, which are rooted at vertex y1, . . . , yl, respectively. Let xa ∈ X
be a vertex of X which has minimum distance to vertex x. Let Ta ∈ {Ty1, . . . , Tyl

}
be the subtree containing xa. By Lemma 3, we have that there is a subtree Tb ∈
{Ty1, . . . , Tyl

}, with Tb �= Ta, which contains at least one vertex of X . Let B =
{xb1 , . . . , xbp} = X∩V (Tb). Furthermore, since no strategywhichbuys at least two
edges including an edge towards x into Tq outperforms u’s greedy strategy within
Tq and by Lemma 4, we have that vertex xa cannot be a leaf. That is, there is a
vertex z ∈ V (Tq), which is a neighbor of xa, such that d(z, x) > d(xa, x). We show
that agent z can decrease her cost by buying one edge in (T, α).

First of all, notice that by definition of S∗, we have that each edge {u, xj},
with xj ∈ X , must independently of the other bought edges yield a distance
decrease of more than α for agent u. Otherwise agent u could remove this edge
and obtain a strictly better (or smaller) strategy, which contradicts the fact
that S∗ is the best possible strategy (buying the least number of edges). Let
Dj ⊂ V (Tq) be the set of vertices to which edge {u, xj} is the first edge on
agent u’s unique shortest path. Since xa has minimum distance to x, it follows
that Dr ⊆ V (Tb) for r ∈ {b1, . . . , bp}. The main observation is that agent z faces
in some sense the same situation as agent u with strategy S∗ but without all
edges {u, y}, where y ∈ B: Both have vertex xa as neighbor and their shortest
paths to any vertex in Tb all traverse xa and x. Remember, that each edge
{u, y}, for all y ∈ B, yields a distance decrease of more than α for agent u and
that Dr ⊆ V (Tb), for r ∈ {b1, . . . , bp}. Furthermore, removing all those edges
from S∗ yields a strict cost increase for agent u. This implies that agent z can
decrease her cost by buying all edges {z, y}, for y ∈ B, simultaneously. If |B| = 1,
then this strategy-change is a greedy move by agent z which decreases z’s cost.
If |B| > 1, then, by the contra-positive statement of Lemma 1, it follows that
there exists one edge {z, y∗}, with y∗ ∈ B, which agent z can greedily buy to
decrease her cost. ��
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3.2 Non-tree Networks in Sum Greedy Equilibrium

There exist non-tree networks in Sum-GE, since, as shown by Albers et al. [1],
there exist non-tree networks in Sum-NE and we have Sum-NE ⊆ Sum-GE.
Having Theorem 2 at hand, one might hope that this nice property carries over
to non-tree greedy equilibria. Unfortunately, this is not true.

Theorem 3. There is a network in Sum-GE which is not in β-approximate
Sum-NE for β < 3

2 .

Fig. 3 shows the construction of a critical greedy equilibrium network.

x
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z33 z23 z13

z11

z21

z31 z12
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w
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y2

y3

z33 z23 z13
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z21

z31 z12

z22

z32

w

u

Fig. 3. The network (Gk, k + 1) for k = 3 and agent u’s best response. Edges point
away from its owner. For k → ∞ agent u’s improvement approaches a factor of 3

2
.

Now let us turn to the good news. We show that Sum-GEs cannot be arbitrarily
unstable. On the contrary, they are very close to Sum-NEs in terms of stability.

Theorem 4. Every network in Sum-GE is in 3-approximate Sum-NE.

Proof. We prove Theorem 4 by providing a “locality gap preserving” reduction
to the Uncapacitated Metric Facility Location problem (UMFL) [16].
Let u be an agent in (G, α) and let Z be the set of vertices in V (G) which
own an edge towards u. Consider the network (G′, α), where all edges owned by
agent u are removed. Observe, that the set Z is the same in (G, α) and (G′, α).
Let S = {U | U ⊆ (V (G′) \ {u}) ∧ U ∩ Z = ∅} denote the set of agent u’s pure
strategies in (G′, α) which do not induce multi-edges or a self-loop. We transform
(G′, α) into an instance I(G′) for UMFL as follows:

Let V (G′) \ {u} = F = C, where F is the set of facilities and C is the set of
clients. For all facilities f ∈ Z ∩ F we define the opening cost to be 0, all other
facilities have opening cost α. Thus, Z is exactly the set of cost 0 facilities in
I(G′). For every i, j ∈ F ∪ C we define dij = dG′(i, j) + 1. If there is no path
between i and j in G′, then we define dij = ∞. Clearly, since the distance in G′

is metric we have that all distances dij in I(G′) are metric as well. See Fig. 4 for
an example.
Now, observe that any strategy S ∈ S of agent u in (G′, α) corresponds to
the solution of the UMFL instance I(G′), where exactly the facilities in FS =
S∪Z are opened and where all clients are assigned to their nearest open facility.
Moreover, every solution F ′ = X ∪ Z, where X ⊆ F \ Z, for instance I(G′)
corresponds to agent u’s strategy X ∈ S in (G′, α). Let SUMFL = {W ⊆ F | Z ⊆
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Fig. 4. Network (G′, α) and its corresponding UMFL instance I(G′). Edges between
clients and between facilities are omitted. All other omitted edges have length ∞.

W} denote the set of all solutions to instance I(G′), which open at least all cost
0 facilities. Hence, we have a bijection π : S → SUMFL, with π(S) = S ∪ Z and
π−1(X) = X \ Z. Let π(S) = FS and let (GS , α) denote the network (G′, α),
where agent u has bought all edges towards vertices in S. Let cost(FS) denote
the cost of the solution FS to instance I(G′). We have that agent u’s cost in
(GS , α) is equal to the cost of the corresponding UMFL solution FS , since

cu(GS , α) = α|S| +
∑

w∈V (GS)\{u}

(
1 + min

x∈S∪Z
dG′(x, w)

)

= α|S| + 0|Z|+
∑

w∈V (GS)\{u}
min

x∈S∪Z
dxw

= α|FS \ Z| + 0|Z|+
∑

w∈C

min
x∈FS

dxw = cost(FS).

We claim the following: If agent u plays strategy S ∈ S and cannot decrease
her cost by buying, deleting or swapping one edge in (GS , α), then we have that
the cost of the corresponding solution FS ∈ SUMFL to instance I(G′) cannot be
strictly decreased by opening, closing or swapping one facility.

Proving the above claim suffices to prove Theorem 4. This can be seen as fol-
lows: For UMFL, Arya et al. [4] have already shown that the locality gap of UMFL
is 3, that is, that any UMFL solution in which clients are assigned to their nearest
open facility and which cannot be improved by opening, closing or swapping one
facility is a 3-approximation of the optimum solution. By construction of I(G′),
we have that every facility z ∈ Z is the unique facility which is nearest to some
client w ∈ C. Thus, we have that in any locally optimal and any globally optimal
UMFL solution to I(G′) all cost 0 facilities must be open, since otherwise such
a solution can be improved by opening a cost 0 facility. Hence, every locally or
globally optimal solution to I(G′) has a corresponding strategy of agent u which
yields the same cost. Using the claim and the result by Arya et al. [4], it follows
that if agent u cannot decrease her cost by buying, deleting or swapping an edge
in (GS , α) then we have cu(GS , α) ≤ 3cu(GS∗ , α), where S∗ is agent u’s optimal
(non-greedy) strategy in (G′, α) and (GS∗ , α) the network induced by S∗.

Now we prove the claim. Let π(S) = FS . We have already shown that cu(GS , α)=
cost(FS). Furthermore, we have Z ⊆ FS . We prove the contra-positive
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statement of the claim. Assume that solution FS can be improved by open-
ing, closing or swapping one facility. Let F ′

S be this locally improved solution
and let cost(F ′

S) < cost(FS). Note, that Z ⊆ F ′
S must hold. This is true, since by

construction of I(G′) closing a cost 0 facility increases the cost of any solution to
I(G′). Hence, no facility z ∈ Z can be included in a closing or swapping opera-
tion. It follows that the strategy S′ := π−1(F ′

S) exists. Observe, that S = FS \Z
and S′ = F ′

S \ Z must differ by one element. Furthermore, by cost-equality, we
have that cu(GS′ , α) = cost(F ′

S) < cost(FS) = cu(GS , α). Hence, agent u can
buy, delete or swap one edge in (GS , α) to decrease her cost. ��

4 The Quality of Max Greedy Equilibria

In this section, we discuss the stability of networks in Max-GE. We will start by
showing that operations of buying, deleting and swapping edges each may have
a strong non-local flavor. See Fig. 5 for an illustration.

Lemma 5. For k ≥ 2 there is a network (G, α), where an agent can decrease her
cost by buying/deleting/swapping k edges but not by buying/deleting/swapping
j < k edges.
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Fig. 5. The networks and strategy-changes for k = 5

Having seen Lemma 5, it should not come as a surprise that greedy local opti-
mization may get stuck at sub-optimal states of the game.

4.1 Tree Networks in Max Greedy Equilibrium

The examples on the left and right side of Fig. 5 already show that there are tree
networks, which are in Max-GE but not in Max-NE. In the following we show
that this undesired behavior is restricted only to two families of tree networks in
Max-GE. That is, we provide a characterization of all tree networks in Max-GE
which are not in Max-NE. Furthermore, we show tight bounds on the stability
for both mentioned families which are very close to the optimum. We start by
introducing the main actors: Cheap Stars and Badly Connected Trees.

Definition 2 (Cheap Star). A network (T, α) in Max-GE is called a Cheap
Star, if T is a star having at least n ≥ 4 vertices and α < 1

n−2 . Furthermore,
the ownership of all edges in T is arbitrary.
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Definition 3 (Badly Connected Tree). A tree network (T, α) in Max-GE
is a Badly Connected Tree if there is an agent u ∈ V (T ) who can decrease her
cost by swapping k > 1 own edges simultaneously.

Intuitively, Cheap Stars owe their instability to a multi-buy operation, whereas
Badly Connected Trees owe their instability to a multi-swap operation. Observe
that Cheap Stars have diameter 2 and that Badly Connected Trees have diameter
at least 3. Hence, these families are disjunct. The following theorem shows that
Cheap Stars and Badly Connected Trees are the only tree networks in Max-GE
which are not in Max-NE.

Theorem 5. Let (T, α) be a network in Max-GE, where T is a tree. The net-
work (T, α) is in Max-NE if and only if it is not a Cheap Star or a Badly
Connected Tree.

We can use the characterization provided by Theorem 5 to “circumvent” the
hardness of deciding whether a tree network is in Max-NE.

Theorem 6. For every tree network (T, α) it can be checked in O(n4) many
steps whether (T, α) is in Max-NE.

We are interested in the stability of tree networks in Max-GE. By Theorem 5,
we only have to analyze the stability of Cheap Stars and Badly Connected Trees
to get bounds on the stability on any tree network in Max-GE.

Lemma 6. Every Cheap Star is in 2-approximate Max-NE. Furthermore, this
bound is tight.

Lemma 7. Every Badly Connected Tree is in 6
5 -approximate Max-NE. Fur-

thermore, this bound is tight.

Combining Theorem 5 with Lemma 6 and Lemma 7 we arrive at the following:

Theorem 7. Let (T, α) be a tree network in Max-GE. If T has diameter at
most 2, then (T, α) is in 2-approximate Max-NE. If T has diameter at least 3,
then (T, α) is in 6

5 -approximate Max-NE. Moreover, both bounds are tight.

4.2 Non-tree Networks in Max Greedy Equilibrium

Fig. 5 (middle) shows that there are non-tree networks in Max-GE, which are
not in Max-NE. We want to quantify the loss in stability of Max-GEs versus
Max-NEs. For tree networks we have that Cheap Stars play a crucial role. These
networks owe their instability to a multi-buy operation and to the fact that they
are in Max-GE for arbitrarily small α. We generalize this property of Cheap
Stars to non-tree networks.

Definition 4 (Cheap Network). A network (G, α) in Max-GE, is called a
Cheap Network, if (G, α) remains in Max-GE when α tends to 0.

Cheap Stars yield a lower bound on the stability approximation ratio which
equals their diameter. We can generalize this observation:
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Theorem 8. If there is Cheap Network (G, α) having diameter d, then there is
an α∗ such that the network (G, α∗) is in Max-GE but not in β-approximate
Max-NE for any β < d.

Lemma 8. There is a Cheap Network having diameter 4.

Corollary 2. For α < 1 there is a network (G, α) in Max-GE, which is not in
β-approximate Max-NE for any β < 4.

Now we consider the case, where α ≥ 1. Quite surprisingly, it turns out that this
case yields a very high lower bound on the approximation ratio.

Theorem 9. For α ≥ 1 there is a Max-GE network (G, α) having n vertices,
which is not in β-approximate Max-NE for any β < n−1

5 .

We give a family of networks in Max-GE each having an agent u who can de-
crease her cost by a factor of n−1

5 by a non-greedy strategy-change. The network
(G1, α) can be obtained as follows: V (G1) = {u, v, l1, l2, a1, a2, b1, b2, x1, y1} and
agent u owns edges to a1, a2 and x1. For i ∈ {1, 2}, agent bi owns an edge to v
and to ai and agent li owns an edge to bi. Finally, agent y1 owns an edge to x1

and to v. Fig. 6 (left) provides an illustration. To get the k-th member of the
family, for k ≥ 2, we simply add the vertices xj , yj, for 2 ≤ j ≤ k, and let agent
yj own edges towards xj and v. See Fig. 6 (right).
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l1 l2

u

a2 x1a1

b1 b2 y1

v

l1 l2

u

a2 x1a1

b1 b2 y1
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l1 l2

x2

y2

xk

yk

. . .

. . .

Fig. 6. (G1, α) before (left) and after (middle) agent u’s non-greedy strategy change
and the network (Gk, α) (right)

Lemma 9. Each of the networks (Gi, α), as described above, is in Max-GE for
1 ≤ α ≤ 2.

Proof (of Theorem 9). We focus on agent u in the network (Gk, α) and show that
this agent can change her strategy in a non-greedy way and thereby decrease
her cost by a factor of n−1

5 , where n is the number of vertices of Gk. Let Su be
agent u’s current strategy in (Gk, α) and let S∗

u be u’s strategy which only buys
one edge towards vertex v. See Fig 6 (left and middle). Let cost(u) and cost∗(u)
denote agent u’s cost induced by strategy Su and S∗

u, respectively. For α = 2,
we have

cost(u)
cost∗(u)

=
α(2 + k) + 3

α + 3
=

7
5

+
2k

5
=

n − 1
5

,

where the last equality follows since k = n−8
2 , by construction. ��

Corollary 3. Uncapacitated Metric Min-Max Facility Location has a locality
gap of n−1

5 , where n is the number of clients.
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