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On Approximate Nash Equilibria
in Network Design
Susanne Albers and Pascal Lenzner

Abstract. In this paper, we study a basic network design game in which n self-interested
agents, each having individual connectivity requirements, wish to build a network by
purchasing links from a given set of edges. A fundamental cost-sharing mechanism is
Shapley cost-sharing, which splits the cost of an edge in a fair manner among the agents
using the edge. It is well known that in such games, the price of anarchy is n, while the
price of stability is H(n), where H(n) denotes the nth harmonic number.

We investigate whether an optimal minimum-cost network represents an attractive,
relatively stable state that agents might want to purchase: what extra cost does an
agent incur compared to a possible strategy deviation? We employ the concept of
α-approximate Nash equilibria, in which no agent can reduce its cost by a factor
of more than α. We prove that for single-source games in undirected graphs, every
optimal network represents an H(n)-approximate Nash equilibrium. We show that
this bound is tight by presenting a matching lower bound. We extend the results to
cooperative games in which agents may form coalitions. A combination of strategies
forms an α-approximate strong Nash equilibrium if no coalition can deviate such that
all members of the coalition reduce their cost by a factor of more than α. We prove that
if coalitions of up to c agents are allowed, 1 ≤ c ≤ n, then every optimal network repre-
sents a 2c(ln(n/c) + 2)-approximate strong Nash equilibrium. We give a corresponding
lower bound that is tight up to a small constant factor. Moreover, we extend the results
to weighted games and present tight upper and lower bounds on the quality of optimal
solutions in noncooperative games. Finally, we show that in general source–sink games
and in directed graphs, minimum-cost networks do not represent good states.
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1. Introduction

Today, many networks are not built and maintained by a central authority but
rather by a large number of economic agents that usually have selfish interests. As
a result, game-theoretic approaches for modeling network formation and agent
behavior have received considerable research interest over the past years; see,
e.g., [Alon et al. 10, Anshelevich et al. 08b, Anshelevich et al. 08a, Chekuri et
al. 07, Chen and Roughgarden 10, Chen et al. 10, Corbo and Parkes 05, Demaine
et al. 09, Devanur et al. 05, Fabrikant et al. 03, Halevi and Mansour 07, Laoutaris
et al. 08, Pal and Tardos 03, Vetta 02].

We study a very basic network design game that has received considerable
attention [Albers 09, Anshelevich et al. 08b, Anshelevich et al. 08a, Chekuri et
al. 07, Chen and Roughgarden 10, Epstein et al. 09, Fiat et al. 06, Hoefer 09].
Let G = (V,E, c) be a graph, where c is a nonnegative cost function defined on
the edges. The graph may be directed or undirected. There are n selfish agents,
each having to connect a set of terminals in G. A strategy of an agent i is an edge
set connecting the desired terminals. Edges used by the agents have to be paid
for. A fundamental cost-sharing mechanism is Shapley cost-sharing, proposed in
[Anshelevich et al. 08b] for network design games. In Shapley cost-sharing, the
cost of an edge is split in a fair manner among the agents using the edge. More
specifically, in an unweighted game, if k agents use an edge e, then each of them
pays a share of c(e)/k. In a weighted game, each agent i has a positive weight
wi and pays a share proportional to its weight.

Previous work has analyzed stable states in which agents have no incentive
to deviate from their strategies. In a standard noncooperative game, a combi-
nation of strategies forms a Nash equilibrium if no agent has a better strategy
with a strictly smaller cost if all other agents adhere to their strategies. In co-
operative games, where coordination among agents is allowed, one is interested
in strong Nash equilibria that are resilient to deviations of coalitions of agents
[Aumann 59]. A combination of strategies forms a strong Nash equilibrium if
there exists no coalition of agents that can jointly change strategy such that
every agent of the coalition achieves a strictly smaller cost. There exist two
performance measures evaluating Nash equilibria relative to globally optimal so-
lutions. The price of anarchy is the maximum ratio of the total cost incurred by
any Nash equilibrium to the cost paid by an optimal solution [Koutsoupias and
Papadimitriou 09]. The price of stability is the minimum ratio, i.e., the cost ratio
of the best Nash equilibrium relative to the optimum [Anshelevich et al. 08b]. It is
shown in [Anshelevich et al. 08b] that for unweighted noncooperative games, the
price of anarchy is n, while the price of stability is H(n). Here H(n) =

∑n
i=1 1/i
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is the nth harmonic number, which is closely approximated by the natural loga-
rithm, i.e., ln(n + 1) ≤ H(n) ≤ ln n + 1. For unweighted cooperative games, the
price of anarchy is H(n) [Albers 09, Epstein et al. 09].

In this paper we study wheter an optimal solution—which is a minimum-
cost network establishing the required connections—represents an attractive,
relatively stable state that agents might want to purchase. If the n agents buy
an optimal solution, what extra cost does any agent incur compared to a strategy
deviation? Such an optimal solution could be signaled by a central authority. The
agents then adhere to this solution if the incentive of deviating is not too high.
Moreover, an optimal solution is attractive for the following two reasons. (1) In
Nash equilibria, there exist agents that pay a high cost compared to the average
agent cost in an optimal solution. In a worst-case equilibrium, this cost factor
can be as high as n; even in a best-case equilibrium, the factor can be H(n).
With this information in mind, the agents might be interested in purchasing an
optimal solution if the incentive of a strategy deviation is not too high. (2) The
only known protocol to reach a good equilibrium, attaining a price of stability
of H(n), relies on optimal solutions. In [Anshelevich et al. 08b], it is shown that
if the agents start in an optimal solution, then a sequence of improving moves
converges to a Nash equilibrium whose cost is at most H(n) times the optimum
cost. Hence, if agents start in an optimal solution, they might as well consider
remaining in that solution if the state has favorable properties.

Given this motivation, our work has relations to signaling , a basic concept in
game theory. In signaling, a more-informed agent transmits information to less-
informed agents so as to improve the outcome of the game. We refer the reader
to [Gibbons 92, Spence 73, Spence 02] for some foundational work on signaling,
where the last two articles address in particular signaling in economic markets.
Recently, papers [Bro Miltersen and Sheffet 12, Emek et al. 12] explored signaling
schemes for revenue maximization in auctions.

We evaluate the quality of optimal solutions by studying approximate Nash
equilibria in which the equilibrium constraint is relaxed [Anshelevich et al. 08a,
Chen and Roughgarden 10]. In a noncooperative game, a combination of strate-
gies forms an α-approximate Nash equilibrium, for some α ≥ 1, if no agent can
improve its cost by a factor of more than α, assuming that all the other agents
adhere to their strategies. In cooperative games, a combination of strategies is
an α-approximate strong Nash equilibrium if no coalition of agents can change
strategy such that all agents of the coalition improve their cost by a factor of
more than α.

We study the performance of optimal solutions for a variety of settings. The
main conclusion is that optimal solutions represent good states for single-source
games in undirected graphs. This holds for unweighted games, considering both
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noncooperative and cooperative agent behavior, as well as for weighted games.
On the other hand, in general source–sink games and in directed graphs, optimal
solutions do not represent satisfying states.

1.1. Previous Work

Research on the network design game defined above was initiated in [Anshele-
vich et al. 08a]. In this first paper, the authors considered general cost-sharing
schemes that are not restricted to Shapley cost-sharing. The cost of an edge may
be split in an arbitrary way among agents. They considered undirected graphs.
First, they studied single-source games in which each agent i has to connect one
terminal to a common source. They showed that the cost of an optimal solution
can be shared among the agents such that the resulting strategies form a Nash
equilibrium. They also studied general source–sink games whereby each agent
has to connect an arbitrary set of terminals. Here the cost of an optimal solu-
tion can be shared such that the agents’ strategies form a 3-approximate Nash
equilibrium.

In a second paper [Anshelevich et al. 08b], network design with Shapley cost-
sharing was investigated. The authors first focused on unweighted games and
showed that in directed and undirected graphs, the price of anarchy is n, while
the price of stability is bounded above by H(n). This upper bound of H(n) is
tight for directed graphs. Additionally, they studied weighted games and proved
a lower bound of Ω(max{n, log W}) on the price of stability, where W is the
total weight of all the agents.

Further work on unweighted games was presented in [Chekuri et al. 07, Fiat
et al. 06]. Both papers address single-source games in undirected graphs. The
first showed that the price of anarchy is O(

√
n log2 n) if agents join the game

sequentially and perform best-response moves. In the second, it was proved that
the price of stability is O(log log n) if each vertex of the graph is the terminal
of some agent. Weighted games in directed graphs were further investigated in
[Chen and Roughgarden 10]. The authors of that work assumed that each agent
has to connect a terminal pair (si, ti) and proved that for every α = Ω(log wmax),
the price of stability of O(α)-approximate Nash equilibria is O((log W )/α). Here
wmax is the maximum weight of any agent. This trade-off also holds for undirected
graphs.

Cooperative network design games were studied in [Aumann 59, Epstein et
al. 09], where it was shown that the price of anarchy drops to H(n). Finally,
approximate pure Nash equilibria for a different class of graphical games were
studied in [Nguyen and Tardos 09].
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1.2. Our Contribution

We evaluate the stability of optimal solutions in network design games with Shap-
ley cost-sharing, complementing the existing results for this classical cost-sharing
mechanism. In Section 3, we present a comprehensive study of unweighted games.
We focus mostly on single-source games in undirected graphs. First, for non-
cooperative games, we prove that every optimal solution represents an H(n)-
approximate Nash equilibrium. We show that this bound is tight. There exist
games in which an optimal solution does not form an α-approximate Nash equi-
librium for α < H(n).

Then we investigate cooperative games in which agents may coordinate their
actions. We consider a general scenario in which coalitions of up to c agents
may be formed, for any 1 ≤ c ≤ n. We prove that every optimal solution is a
2c(ln(n/c) + 2)-approximate strong Nash equilibrium. Furthermore, we give a
nearly matching lower bound: there exist games in which an optimal solution
does not represent an α-approximate strong Nash equilibrium for α < c′ ln(n/c′),
where c′ = min{c, ⌊n/e⌋}. Hence, for c < ⌊n/e⌋, the bound is α < c ln(n/c); for
large coalitions of size c ≥ ⌊n/e⌋, the bound is ⌊n/e⌋ and hence linear in n. This
behavior is consistent with our upper bound.

Moreover, we consider general source–sink games, in which each agent has
to connect an individual set of terminals, as well as directed graphs. In both
cases, we show negative results, even for noncooperative games. There are general
source–sink games for which an optimal solution is an Ω(n)-approximate Nash
equilibrium. In directed graphs, the approximation guarantees that α can even
be unbounded.

In Section 4, we study weighted games. We consider single-source games in
undirected graphs. We show that in noncooperative games, every optimal solu-
tion is an α-approximate Nash equilibrium, where

α = wmax

n−1∑

k=0

1
wmax + k

.

This bound is again tight. Optimal solutions generally do not form α-
approximate Nash equilibria for

α < wmax

n−1∑

k=0

1
wmax + k

.

The latter expression is bounded above by wmax(ln(W/wmax) + 1). Here wmax

and W denote again the maximum and total weight of the agents.
As for analysis techniques, our upper-bound results do not rely on potential

functions. Instead we present direct, combinatorial analyses of the paths
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connecting terminals in an optimal solution. For noncooperative games, the
analysis is a bit involved. More specifically, we show that given any tree
establishing the required connections and any coalition I of agents, there exists
an agent i ∈ I whose cost shares along the path from ti to the source do not
grow too much. Hence, for this agent, the incentive to perform a strategy change
is not sufficiently high.

Here we finally relate our results to those of [Chen and Roughgarden 10]
mentioned above for noncooperative games. In this paper, we evaluate the quality
of optimal solutions, which are solutions of specific interest, and develop explicit
bounds not resorting to O-notation. On the other hand, Chen and Roughgarden
develop asymptotic trade-offs. For unweighted games, these trade-offs imply the
existence of an O(log n)-approximate Nash equilibrium whose cost is within a
constant factor of the optimum cost. The protocol starts in an optimal solution
and then performs a sequence of improving deviations. Our results show that
the protocol can, and indeed will, remain in the optimal solution.

2. Preliminaries

We formally define the network design games and game-theoretic concepts stud-
ied in this paper.

In network design with Shapley cost-sharing we are given a graph G = (V,E, c)
with a nonnegative cost function c : E )→ R 0

+ . As mentioned before, the graph
may be directed or undirected. Associated with the graph are n selfish agents,
whereby each agent i has to connect an individual set Ti ⊆ V of terminals, 1 ≤
i ≤ n. In a single-source game, each agent i has to connect one terminal ti to a
common source s, i.e., Ti = {ti , s}. In a general source–sink game, Ti may be an
arbitrary vertex set.

A strategy Si ⊆ E of an agent i is an edge set connecting the desired terminals.
Considering all agents, we obtain a combination S = (S1 , . . . , Sn ) of strategies.
The cost of the edges used by the agents has to be fully covered. Shapley cost-
sharing divides this cost in a “fair” manner. In an unweighted game, if k agents
use an edge e, then each of them pays a share of c(e)/k. Thus, given a combination
S of strategies, the cost of an agent i, 1 ≤ i ≤ n, is

costi(S) =
∑

e∈Si

c(e)
|{j : e ∈ Sj}|

.

In a weighted game, each agent i has a positive weight wi and pays a share pro-
portional to its weight. For each edge e ∈ Si , agent i pays a share of c(e)wi/We ,
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where We =
∑

j :e∈Sj
wj is the total weight of the agents j using e in their strate-

gies. The cost of agent i is costi(S) =
∑

e∈Si
c(e)wi/We .

We investigate the performance of optimal solutions using the concept of
α-approximate Nash equilibria, which generalize standard Nash equilibria.
Loosely speaking, in an α-approximate stable state, agents cannot improve their
cost by a factor of more than α. More specifically, let α ≥ 1. In a noncooperative
game, a combination S of strategies forms an α-approximate Nash equilibrium
if no agent i has a strategy change S ′

i such that costi(S1 , . . . , S′
i , . . . , Sn ) < costi

(S)/α, i.e., the cost after a strategy change is not smaller than 1/α times the orig-
inal cost. In cooperative games, a combination S of strategies is an α-approximate
strong Nash equilibrium if for every coalition of agents and associated strategy
change, there exists one agent in the coalition whose cost does not decrease by
a factor of more than α. Formally, for no nonempty coalition I of agents does
there exist a strategy change S ′

I such that costi(S ′
I ,S−I ) < costi(S)/α holds for

all i ∈ I. Here S−I is the vector of the original strategies of agents i /∈ I.

3. Unweighted Games

In this section we study unweighted network design games with Shapley cost-
sharing. We first consider the standard setting in which agents are noncoop-
erating entities. Then we consider the setting in which agents cooperate and
may form coalitions. For both scenarios, we focus on single-source games in
undirected graphs. Finally, we address general source–sink games and games in
directed graphs.

3.1. Noncooperative Games

We first prove an upper bound on the quality of optimal solutions and then give
a matching lower bound.

Theorem 3.1. In single-source games, every optimal solution represents an H(n)-
approximate Nash equilibrium.

Proof. Let Eopt be the edge set used by an optimal solution to establish the
required connections. Since we are studying single-source games, Eopt forms a
tree. Consider the combination S of strategies in which every agent i connects
its terminal ti to the common source s using only edges of Eopt. Let Pi be the
simple path used by agent i, and let costi(Pi) denote the corresponding cost paid
by i within Sopt. We observe that the path Pi is unique in Eopt . Furthermore,
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if for any two agents i and i′, the paths Pi and Pi ′ share a common vertex v,
then the subpath from v to s in Pi is identical to the subpath from v to s in Pi ′ .
This holds because otherwise, Eopt would contain cycles (since both Pi and Pi ′

connect to s), contradicting the fact that Eopt is in fact a tree.
Now suppose that an agent i changes strategy and selects a different path Qi ,

Qi ̸= Pi , in order to connect ti to s. Let costi(Qi) be the associated cost incurred
by agent i in performing this strategy change. We will show that

costi(Pi) ≤ H(n)costi(Qi), (3.1)

which establishes the theorem.
Let v1 , . . . , vℓ , ℓ ≥ 2, be the sequence of vertices whereby Pi and Qi separate

and merge again; Figure 1 presents an example. More specifically, starting at
ti , paths Pi and Qi first traverse a common subpath Pi(1) = Qi(1) until they
reach vertex v1 , where the two paths separate. Vertex v1 may be equal to ti ,
in which case paths Pi(1) = Qi(1) are empty. After v1 , path Pi traverses a
subpath Pi(2) while Qi uses a subpath Qi(2). These subpaths use disjoint edge
sets and meet again only at vertex v2 . In general, suppose that Pi and Qi merge
at a vertex vj , with j being even. Then Pi and Qi traverse a common subpath
Pi(j + 1) = Qi(j + 1) until they reach vj+1, where Pi and Qi separate into
disjoint subpaths Pi(j + 2) and Qi(j + 2), meeting again at vj+2. Finally, let
Pi(ℓ + 1) = Qi(ℓ + 1) be the subpath between vℓ and s. For an odd number j, the
subpath Pi(j) = Qi(j) may be empty, in which case vj−1 = vj if 2 < j < l − 1.

Pi(2)

Pi(4)

Pi( )

Pi(1) = Qi(1)

Pi(3) = Qi(3)

Qi(4)

Qi( )

Qi(2)

Pi(1) = Qi(1)

v4

v3

v1

v2

Pi( + 1) = Qi( + 1)
v

agent i

s

ti

Figure 1. Paths Pi and Qi .
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Furthermore, for every even j, the subpath Qi(j) contains at least one edge that
does not belong to Eopt, because the optimal solution does not contain cycles.
Let Q′

i(j), with Q′
i(j) ⊆ Qi(j), be the set of edges not contained in Eopt .

Let costi(Pi(j)) and costi(Qi(j)) denote the costs paid by agent i on Pi(j)
and Qi(j), respectively, 1 ≤ j ≤ ℓ + 1. We have

costi(Pi) =
l+1∑

j=1

costi(Pi(j)) and costi(Qi) =
l+1∑

j=1

costi(Qi(j)),

where costi(Pi(j)) = costi(Qi(j)) for every odd index j. We will prove that

costi(Pi(j)) ≤ H(n)costi(Qi(j))

for every even j, which implies inequality (3.1).
Consider a fixed even j and partition Pi(j) into a sequence of maximal

subpaths Pi(j, 1), . . . , Pi(j, ℓj ) such that for every 1 ≤ k ≤ ℓj , the number of
agents using a given edge e of Pi(j, k) in Eopt is the same for all the edges of this
subpath; cf. Figure 2. Such a partitioning is possible because, as argued at the
beginning of this proof, if the path Pi ′ of an agent i′ meets Pi at some vertex, then
the further subpaths of Pi and Pi ′ in the direction to s are identical. Hence if an
agent i′ uses an edge of Pi(j, k), then it uses all further edges of Pi(j, k) and all the
edges of Pi(j, k + 1), . . . , Pi(j, lj ) in order to reach source s. In fact, agent i′ also
uses all edges of Pi(j, k), by the definition of the subpaths Pi(j, 1), . . . , Pi(j, ℓj ).

So let ni(j, k) be the number of agents using the edges of Pi(j, k) within
Eopt, for 1 ≤ k ≤ ℓj . Since the subpaths are maximal, ni(j, 1) < · · · < ni(j, ℓj ).
Since Eopt is a minimum-cost tree, we have cost(Pi(j, k)) ≤ cost(Q′

i(j)), where

Pi(j − 1) = Qi(j − 1)

Pi(j + 1) = Qi(j + 1)

Qi(j)

Pi( j) used by ni( j) agents

Pi(j, 1) used by ni(j, 1) agents

Pi(j, 2) used by ni(j, 2) agents

Figure 2. Subpaths Pi (j) and Qi (j).
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cost(Pi(j, k)) and cost(Q′
i(j)) denote the total edge costs of subpath Pi(j, k) and

edge set Q′
i(j), respectively, 1 ≤ k ≤ ℓj . If we had cost(Pi(j, k)) > cost(Q′

i(j)),
then in Eopt we could replace Pi(j, k) by Q′

i(j), obtaining a solution with
a strictly smaller cost. The connectivity requirements would still be main-
tained, since agents using Pi(j, k) in Eopt could traverse subpaths Pi(j, k −
1), . . . , Pi(j, 1) and Qi(j) to reach vj , from where they could again follow their
original path to source s. In Eopt , agent i pays a share of cost(Pi(j, k))/ni(j, k) for
Pi(j, k), where cost(Pi(j, k)) is the total cost of the edges on Pi(j, k). Summing
over all k and making use of the fact that the sequence ni(j, k) is strictly increas-
ing with ni(j, 1) ≥ 1, we obtain that the total cost paid by agent i on Pi(j) is

costi(Pi(j)) =
ℓj∑

k=1

cost(Pi(j, k))
ni(j, k)

≤
ℓj∑

k=1

cost(Pi(j, k))
k

≤ H(n)cost(Q′
i(j)).

Since Q′
i(j) is not part of Eopt , agent i has to cover the associated edge cost

fully when traversing Qi(j), and hence cost(Q′
i(j)) ≤ costi(Qi(j)). We conclude

that costi(Pi(j)) ≤ H(n)costi(Qi(j)).

Theorem 3.2. There exists a single-source game in which the unique optimal solution
does not represent an α-approximate Nash equilibrium for any α < H(n).

Proof. Consider a graph consisting of n + 1 vertices v1 , . . . , vn+1 and n edges ei =
{vi, vi+1}, 1 ≤ i ≤ n; cf. Figure 3. Associated with each vi , 1 ≤ i ≤ n, is one
agent that wishes to connect this vertex to the source s = vn+1. Each edge ei ,
1 ≤ i ≤ n, has cost 1. Additionally there is an edge e0 = {v1 , vn+1} of cost 1 + ϵ,
where ϵ > 0 is an arbitrarily small constant. The unique optimal solution consists
of the set of edges ei , 1 ≤ i ≤ n. In this solution, agent 1 pays a cost of H(n).
On the other hand, choosing edge e0 , agent 1 incurs a cost of only 1 + ϵ.

1 +

1

1 v2

v1

vn

vn+1 = s

Figure 3. A single-source game without cooperation.
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3.2. Cooperative Games

We study general cooperative games in which coalitions of up to c agents may
be formed, for any 1 ≤ c ≤ n.

Theorem 3.3. In single-source games, every optimal solution represents an α-
approximate strong Nash equilibrium, where α = 2c(ln(n/c) + 2), if coalitions of
size up to c are allowed.

In order to establish the theorem, we first prove a property for trees T in
which agents connect terminals to the root of T using the edges of the tree. The
property holds for every tree T , but when we use the property in the proof of
Theorem 3.3, T will be an optimal solution of a single-source game. So let T be
an arbitrary tree with root s. There are n agents, each of which has to connect
a terminal of T to s using the edges of T . Let A denote the set of agents i whose
terminal ti is different from s. For every agent i ∈ A, let Pi be the path from
ti to s in T . We partition Pi into maximal subpaths Pi(1), . . . , Pi(li) such that
for every subpath, the number of agents using the edges of the subpath does
not vary. Let ni(j) be the number of agents using the edges of Pi(j), 1 ≤ j ≤ li .
Define

Ni(T ) =
li∑

j=1

1
ni(j)

,

which intuitively is the sum of the fractions paid by agent i on Pi(1), . . . , Pi(li),
ignoring edge costs. Given these definitions, we present the following lemma,
which states that in every nonempty coalition I ⊆ A, there exists an agent i
whose value Ni(T ) is logarithmic in |A|/|I|.

Lemma 3.4. Let T be an arbitrary tree and let A be the set of agents whose terminal
is not equal to the root of T . For every I ⊆ A, I ̸= ∅, there exists i ∈ I satisfying

Ni(T ) ≤ 2 ln
(

2|A|
|I|

)
+ 1.

Proof. We prove a slightly stronger bound on Ni(T ). Given T and A, a vertex
v ̸= s in T is called a branching vertex if v has at least two children rooting
subtrees both of which contain terminals. Let B be the set of branching vertices.
We will prove

Ni(T ) ≤ 2 ln
(
|A| + |B|

|I|

)
+ 1. (3.2)
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The lemma then follows because |B| < |A|.
We prove (3.2) by induction on the number m of the edges of the tree T . In

the base case we have m = 1. Tree T consists of a single edge {v, s}, and A is
the set of agents that have to connect v to s. For every I ⊆ A, I ̸= ∅, and i ∈ I
we have

Ni(T ) =
1
|A| ≤ 1 ≤ 2 ln

(
|A| + |B|

|I|

)
+ 1.

The last inequality holds because |A| ≥ |I| and |B| = 0.
Assume that (3.2) holds for trees consisting of up to m − 1 edges. We consider

a tree T with m edges, where m > 1. If there is an agent i ∈ I whose terminal
ti is equal to a child of s, then the analysis is simple. For this agent we have
Ni(T ) ≤ 1, and as above, we conclude that

Ni(T ) ≤ 2 ln
(
|A| + |B|

|I|

)
+ 1,

because |A| ≥ |I| and |B| ≥ 0. In the following, we assume that for no agent i ∈ I
is the terminal ti equal to a child of s. We distinguish two cases depending on
whether s has degree 1 or degree greater than 1.

We first study the case that s has degree 1. Let {s′, s} be the edge adjacent
to s in T , and let T ′ be the tree rooted at s′. Let A′ ⊆ A be the set of agents
i whose terminal ti is a vertex of T ′ but not equal to the root s′. Then I ⊆ A′,
because we assume that for no agent of I is the terminal equal to a child of s.
For every i ∈ I, consider the path Pi from ti to s and the path P ′

i from ti to s′.
Obviously, Pi consists of P ′

i followed by edge {s′, s}. Partition both Pi and P ′
i

into maximal subpaths Pi(1), . . . , Pi(li) and P ′
i (1), . . . , P ′

i (l′i) such that the edges
of a subpath are used by a nonvarying number of agents. Let ni(j) and n′

i(j) be
the numbers of agents using Pi(j) and P ′

i (j). We have Pi(j) = P ′
i (j) and hence

ni(j) = n′
i(j), for j = 1, . . . , l′i − 1. If the number n′

i(l′i) of agents using P ′
i (l′i) is

equal to the number of agents using edge {s′, s}, then li = l′i , and Pi(li) consists
of P ′

i (li) followed by {s′, s}. Otherwise, li = l′i + 1 as well as Pi(l′i) = P ′
i (l′i) and

Pi(li) = {s′, s}.
By the induction hypothesis, there exists an agent i ∈ I satisfying

Ni(T ′) ≤ 2 ln
(
|A′| + |B′|

|I|

)
+ 1,

where B′ is the set of branching vertices in T ′. In the following, we consider this
fixed agent i. If n′

i(l′i) is equal to the number of agents using {s′, s}, then we are
done: as argued in the previous paragraph, ni(j) = n′

i(j), for j = 1, . . . , l′i − 1,
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and li = l′i , which implies ni(li) = n′
i(l′j ). Hence

Ni(T ) = Ni(T ′) ≤ 2 ln
(
|A′| + |B′|

|I|

)
+ 1 ≤ 2 ln

(
|A| + |B|

|I|

)
+ 1,

because |A′| ≤ |A| and |B′| ≤ |B|.
If, on the other hand, n′

i(l′i) is not equal to the number of agents using {s′, s},
then (a) there exists an agent in A whose terminal is equal to s′ or (b) s′ is
a branching vertex. In case (a), we have |A| > |A′|, and in case (b), we have
|B| > |B′|. Hence in both cases, |A| + |B| > |A′| + |B′|. Again ni(j) = n′

i(j), for
j = 1, . . . , l′i − 1. Since li = l′i + 1 and Pi(l′i) = P ′

i (l′i), we have ni(l′i) = n′
i(l′i) and

ni(li) = 1/|A|, because edge {s′, s} is used by all the agents of A. We obtain

Ni(T ) = Ni(T ′) +
1
|A| ≤ 2 ln

(
|A′| + |B′|

|I|

)
+ 1 +

2
2|A|

≤ 2
(

ln
(
|A′| + |B′|

|I|

)
+

1
|A| + |B|

)
+ 1

≤ 2
(

ln(|A′| + |B′|) +
1

|A′| + |B′| + 1
− ln(|I|)

)
+ 1.

The second inequality holds because |A| > |B| and hence 2|A| > |A| + |B|. The
third inequality follows since |A| + |B| ≥ |A′| + |B′| + 1. For every positive inte-
ger K, we have ln K + 1/(K + 1) ≤ ln(K + 1). Setting K = |A′| + |B′| and ob-
serving again that |A| + |B| ≥ |A′| + |B′| + 1, we obtain as desired

Ni(T ) ≤ 2(ln(|A′| + |B′| + 1) − ln(|I|)) + 1 ≤ 2 ln
(
|A| + |B|

|I|

)
+ 1.

It remains to study the case that the root s of T has degree greater than 1.
Hence there are at least two subtrees linked to s. We divide T into two trees T1

and T2 . Tree T1 is obtained from T by removing an arbitrary subtree T ′ rooted
at a child s′ of s. The edge {s′, s} is removed as well. Tree T ′ is attached below
a new root vertex s2 using an edge {s′, s2} and, together with s2 and {s′, s2},
forms the second tree T2 . Intuitively, T is obtained from T1 and T2 by simply
merging the roots of T1 and T2 .

Recall that A and I do not contain agents whose terminal is equal to the root
s of T . Let Aj ⊆ A, for j ∈ {1, 2}, be the set of agents i whose terminal ti is in
Tj . Similarly, let Ij ⊆ I, for j ∈ {1, 2}, be the set of agents whose terminal is in
Tj . Since T1 and T2 contain different subtrees of T , sets A1 and A2 as well as I1

and I2 are disjoint. Hence |A| = |A1 | + |A2 | and |I| = |I1 | + |I2 |. In the tree T ,
agents of the set A1 do not share edges with agents of A2 when connecting their
terminals to s. Hence, for every agent i ∈ I1 , the structure of Pi in T is the same
as in T1 . Again Pi is the path connecting ti to the root of the tree. Analogously,
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for every agent i ∈ I2 , the structure of Pi in T is the same as in T2 , because in T2

we added an edge {s′, s2} to a new root s2 simulating the edge {s′, s} in T . This
implies Ni(T ) = Ni(T1) for every i ∈ I1 , and Ni(T ) = Ni(T2) for every i ∈ I2 .

If one of the two sets I1 , I2 is empty, we are done: Assume without loss of
generality that I2 = ∅. By the induction hypothesis, there exists an agent i ∈ I1

with

Ni(T1) ≤ 2 ln
(
|A1 | + |B1 |

|I1 |

)
+ 1 = 2 ln

(
|A1 | + |B1 |

|I|

)
+ 1,

where B1 is the set of branching vertices in T1 . Since |A1 | ≤ |A| and |B1 | ≤ |B|,
we obtain

Ni(T ) = Ni(T1) ≤ 2 ln
(
|A1 | + |B1 |

|I|

)
+ 1 ≤ 2 ln

(
|A| + |B|

|I|

)
+ 1.

If both I1 and I2 are not empty, then we consider the smaller of the two ratios

|Aj | + |Bj |
|Ij |

,

where j = 1, 2. Assume without loss of generality that

|A1 | + |B1 |
|I1 |

≤ |A2 | + |B2 |
|I2 |

.

Then
|A1 | + |B1 |

|I1 |
≤ |A1 | + |B1 | + |A2 | + |B2 |

|I1 | + |I2 |
=

|A| + |B|
|I| .

By the induction hypothesis, there exists again an agent i ∈ I1 with

Ni(T1) ≤ 2 ln
(
|A1 | + |B1 |

|I1 |

)
+ 1.

We conclude that for this agent i,

Ni(T ) = Ni(T1) ≤ 2 ln
(
|A1 | + |B1 |

|I1 |

)
+ 1 ≤ 2 ln

(
|A| + |B|

|I|

)
+ 1.

Proof of Theorem 3.3. Consider any optimal solution and let Eopt be the corresponding
edge set. Moreover, let S be the combination of strategies in which every agent
i connects its terminal ti to the common source s using only edges of Eopt . In
order to prove the theorem, we show that if any nonempty coalition I of at most
c agents changes strategy, then there exists an agent i ∈ I whose cost before and
after a strategy change satisfies

1
α

costi(S) ≤ costi(SI ,S−I ), (3.3)
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where α = 2c(ln(n/c) + 2).
If a coalition I contains an agent i whose terminal ti is equal to the source s,

then there is nothing to show, because for this agent, costi(S) = 0 and (3.3) triv-
ially holds. Therefore, in the following we always consider nonempty coalitions
I not containing an agent i whose terminal is equal to s.

Let A be the set of agents whose terminal is not equal to s. Consider any
nonempty coalition I ⊆ A of size at most c. The optimal solution Eopt forms a
tree, and hence by Lemma 3.4, there exists an agent i ∈ I with

Ni(Eopt) ≤ 2 ln
(

2|A|
|I|

)
+ 1.

Fix this agent i. We will prove that if I performs any strategy change, then for
this agent i, inequality (3.3) holds.

For agent i, let Pi be the path connecting ti to s in Eopt . Let Qi be the path
used by the agent when I changes strategy. As in the proof of Theorem 3.1, we
partition Pi and Qi into subpaths Pi(1), . . . , Pi(l + 1) and Qi(1), . . . , Qi(l + 1)
along the vertices v1 , . . . , vl where Pi and Qi separate and merge. Let costi(P (j))
be the cost incurred by agent i for Pi(j) before the strategy change, 1 ≤ j ≤ l + 1.
Similarly, let costi(Q(j)) be the cost paid by the agent for Qi(j) after the strategy
change, 1 ≤ j ≤ l + 1. For every odd number j, we have Pi(j) = Qi(j) and hence

1
|I|costi(P (j)) ≤ costi(Q(j)),

because at most |I|− 1 additional agents of I can join edges of Pi(j) after the
strategy change. Since |I| ≤ c, this implies

1
α

costi(P (j)) ≤ costi(Q(j))

for every odd number j, 1 ≤ j ≤ l + 1. In the following, we show that the last
inequality also holds for every even number j.

For every even j we partition Pi(j) into maximal subpaths Pi(j, 1), . . . , Pi(j, lj )
such that all the edges of a subpath Pi(j, k) are used by the same number ni(j, k)
of agents, 1 ≤ k ≤ lj , considering the time before a strategy change. Let Q′

i(j) ⊆
Qi(j) be the nonempty set of edges not contained in Eopt. For every path π, let
cost(π) be the total cost of the edges of π. Then cost(Pi(j, k)) ≤ cost(Q′

i(j)) for
1 ≤ k ≤ lj , and cost(Q′

i(j)) ≤ cost(Qi(j)). Hence

costi(Pi(j)) =
lj∑

k=1

cost(Pi(j, k))
ni(j, k)

≤ cost(Q′
i(j))

lj∑

k=1

1
ni(j, k)

.

Consider the partitioning of Pi into maximal subpaths such that the edges of
a subpath are used by the same number of agents. Each of Pi(j, 1), . . . , Pi(j, lj )
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occurs as a subpath or as a portion of a subpath in this partitioning, and hence∑lj
k=1 1/ni(j, k) ≤ Ni(Eopt). Moreover, costi(Q′

i(j)) ≥ cost(Q′
i(j))/|I|, because

the cost of the edges of Q′
i(j), which are not part of Eopt , must be fully covered

by the coalition I, and agent i pays a share of at least 1/|I|. Thus

costi(Pi(j)) ≤ |I|costi(Q′
i(j))Ni(Eopt) ≤ |I| · Ni(Eopt)costi(Qi(j)).

By our choice of agent i and Lemma 3.4,

Ni(Eopt) ≤ 2 ln
(

2|A|
|I|

)
+ 1 ≤ 2 ln

(
2n

|I|

)
+ 1.

We obtain

costi(Pi(j)) ≤ |I|
(

2 ln
(

2n

|I|

)
+ 1

)
costi(Qi(j))

≤ c

(
2 ln

(
2n

c

)
+ 1

)
costi(Qi(j)).

The last inequality holds because |I|(2 ln(2n/|I|) + 1) is increasing in |I|. We
conclude that

costi(Pi(j)) ≤ 2c
(
ln

(n

c

)
+ 2

)
costi(Qi(j)),

and, as desired,
1
α

costi(Pi(j)) ≤ costi(Qi(j)).

Theorem 3.5. There exists a single-source game allowing coalitions of size up to c
in which the unique optimal solution does not represent an α-approximate strong
Nash equilibrium for any α < c′ ln(n/c′), where c′ = min{c, ⌊n/e⌋}.

Proof. Consider the graph depicted in Figure 4, which is a modification of the graph
used in the proof of Theorem 3.2. Set c′ = min{c, ⌊n/e⌋}. There are n − c′ + 2
vertices vc ′ , vc ′+1 , . . . , vn+1 that are connected by edges ei = {vi, vi+1}, for c′ ≤
i ≤ n. Associated with vertex vc ′ are c′ agents that wish to connect this vertex
to the source s = vn+1. Associated with each vertex vi , c′ < i ≤ n, is one vertex
having to connect vi to s. Each edge ei = {vi, vi+1}, c′ ≤ i ≤ n, has a cost of 1.
The graph contains an additional edge e0 = {vc ′ , vn+1} of cost 1 + ϵ. The unique
optimal solution consists of edges ei , c′ ≤ i ≤ n. Consider the coalition I of the
c′ agents having to connect vc ′ to s. In the optimal solution, each of these agents
incurs a cost of

1
c′

+
1

c′ + 1
+ · · · + 1

n
≥ ln(n + 1) − ln c′ ≥ ln

(n

c′

)
.
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1 +

1

1

vn

vn+1 = s

vc

vc +1

Figure 4. A single-source game with cooperation.

If I changes strategy and chooses e0 to connect to s, then each of the agents
incurs a cost of (1 + ϵ)/c′ only. Hence the optimal solution does not represent an
α-approximate strong Nash equilibrium for α < c′ ln(n/c′).

3.3. Source–Sink Games and Directed Graphs

It is natural to ask whether the results of the previous sections can be extended
(a) to general source–sink games in which each agent has to connect an individual
set of terminals or (b) to directed graphs. Unfortunately, this is not the case. Even
for noncooperative games, we can show high lower bounds on the approximation
factor α.

Theorem 3.6. There exists a general source–sink game in which the unique optimal
solution represents an α-approximate Nash equilibrium with α = Ω(n).

Proof. Consider the graph depicted in Figure 5. There are n vertices v1 , . . . , vn

that are connected by edges ei = {vi, vi+1}, 1 ≤ i ≤ n − 1. Furthermore, there
are vertices u1 , . . . , un−1 , and w1 , . . . , wn−1 with corresponding edges {ui, vi}
and {vi+1 , wi}, 1 ≤ i ≤ n − 1. Agent i, 1 ≤ i ≤ n − 1, has to connect ui and wi .
There are two additional vertices v0 and vn+1 with associated edges e0 = {v0 , v1}
and en = {vn , vn+1}. Agent n has to connect terminals v0 and vn+1. All edges
mentioned so far have a cost of 1. Finally, there is an edge e′ = {v0 , vn+1} of
cost 2 + ϵ. The unique optimal solution purchases all the edges ei , 0 ≤ i ≤ n, in
addition to {ui, vi} and {vi+1 , wi}, 1 ≤ i ≤ n − 1. In this solution, agent n has
to pay a cost of

2 +
n − 1

2
≥ n

2
,

whereas a purchase of edge e′ incurs a cost of 2 + ϵ only.
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w1 w2

u1 u2 un−1

2 +

11
wn−1

v0

v1 v2

1 1 1
vnvn−1

vn+1

Figure 5. A source–sink game.

Theorem 3.7. For every constant C, there exist single-source games in directed
graphs in which an optimal solution does not form a C-approximate Nash equi-
librium.

Proof. Consider the graph used in Theorem 3.2. We now orient all edges toward
the source s, i.e., we have directed edges (vi, vi+1), 1 ≤ i ≤ n, and (v1 , vn+1).
The edge (v1 , vn+1) adjacent to v1 still has cost 1 + ϵ. On the other edges we
modify the costs such that (v2 , v3) costs 2C and the remaining edges (v1 , v2) as
well as (vi, vi+1), for every 3 ≤ i ≤ n, cost 0. The optimal solution still consists
of edges (vi, vi+1), 1 ≤ i ≤ n. In this solution, agent 1 pays a cost of C, whereas
a purchase of edge (v1 , vn+1) reduces its cost to 1 + ϵ.

4. Weighted Games

In this section, we consider weighted network design games and generalize the
results for noncooperative single-source games in undirected graphs developed
in Section 3.1. More specifically, we extend Theorems 3.1 and 3.2 and give tight
upper and lower bounds on the value of α such that every optimal solution
represents an α-approximate Nash equilibrium.

We scale the agents’ weights such that the minimum weight is equal to 1
and hence wi ≥ 1, for all the agents. Let wmax = max1≤i≤n wi be the maximum
weight of all the agents. The expression

wmax

n−1∑

k=0

1
wmax + k

given in the following theorem is bounded above by wmax(ln(W/wmax) + 1).

Theorem 4.1. In single-source games, every optimal solution represents an α-
approximate Nash equilibrium, where α = wmax

∑n−1
k=0 1/(wmax + k).
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Proof. The proof is very similar to that of Theorem 3.1. In every optimal solution
Eopt, we consider an arbitrary agent i along with its routing path Pi in Eopt.
Suppose that agent i changes strategy and selects a different path Qi ̸= Pi . Paths
Pi and Qi are partitioned in the same way as before into subpaths Pi(j) and
Qi(j), 1 ≤ j ≤ ℓ + 1. We show that for every even j, the costs incurred by agent i
on Pi(j) and Qi(j) satisfy

costi(Pi(j)) ≤ costi(Qi(j)) · wmax

n−1∑

k=0

1
wmax + k

, (4.1)

which establishes the theorem, because for odd indices j, we have Pi(j) = Qi(j),
and hence costi(Pi(j)) = costi(Qi(j)).

To prove (4.1), for even j, we partition Pi(j) again into subpaths Pi(j, 1), . . . ,
Pi(j, ℓj ) of maximum length such that the number of agents using a given subpath
does not change on the subpath. Let Wi(j, k), 1 ≤ k ≤ ℓj , be the total weight of
agents using the edges of Pi(j, k). The cost incurred by agent i on Pi(j) is

costi(Pi(j)) =
ℓj∑

k=1

cost(Pi(j, k))
wi

Wi(j, k)
≤

ℓj∑

k=1

cost(Q′
i(j))

wi

Wi(j, k)
,

where Q′
i(j) is again the set of edges of Qi(j) not contained in Eopt. Hence

costi(Pi(j)) ≤
ℓj∑

k=1

costi(Qi(j))
wi

Wi(j, k)
.

Since the weight of each agent is at least 1, agent i uses path Pi(j, 1) and the
number of agents using subpaths Pi(j, k) is strictly increasing as k increases, we
have Wi(j, k) ≥ wi + k − 1. Thus

costi(Pi(j)) ≤ costi(Qi(j))
ℓj∑

k=1

wi

(wi + k − 1)
.

The function f(w) =
∑ℓj

k=1 w/(w + k − 1) is increasing in w. We conclude that

costi(Pi(j)) ≤ costi(Qi(j)) · wmax

ℓj∑

k=1

1
wmax + k − 1

≤ costi(Qi(j)) · wmax

n−1∑

k=0

1
wmax + k

.
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Theorem 4.2. There exists a single-source game in which the unique optimal solution
does not represent an α-approximate Nash equilibrium for any

α < wmax

n−1∑

k=0

1
wmax + k

.

Proof. The game is identical to that used in the proof of Theorem 3.2, except
that agents now have weights. Agent 1 associated with v1 has weight wmax > 1.
All the other agents have weight 1. In the optimal solution, consisting of the
edges ei = {vi, vi+1}, 1 ≤ i ≤ n, agent 1 incurs a cost of wmax/(wmax + i − 1) for
edge ei . Summing over all i, we obtain a total cost of wmax

∑n−1
i=0 1/(wmax + i).

If agent 1 changes strategy and purchases edge e0 , its cost is 1 + ϵ.

5. Conclusions and Open Problems

In this paper we have studied a basic network design game and analyzed the
stability of optimal solutions. For unweighted games in undirected graphs, every
optimal solution represents an H(n)-approximate Nash equilibrium, and this
bound is tight. A major open problem is to find out whether one can achieve
better guarantees by slightly increasing the cost of the solution: does there exist
a solution whose cost is within a constant factor of the optimal cost and that
forms an α-approximate Nash equilibrium for some α ∈ o(log n)? If the answer
is positive, can such a solution be constructed explicitly, or is it attained via
best-response moves from an optimal solution? At the time of this writing, the
authors do not know how to resolve these questions.

More generally, it would be interesting to consider other games and study
stability properties of optimal solutions.
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