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Abstract
The subject of study in this thesis is a game-theoretic model for decentralized net-
work creation by selfish agents. These agents aim to create a connected network
among themselves which maximizes their individual connection quality. Links in
the network are costly and therefore agents try to find a trade-off between their
cost spent on creating edges and their cost incurred by communicating within the
network. This model was proposed a decade ago by Fabrikant, Luthra, Maneva,
Papadimitriou and Shenker [FLM+03] with the goal of understanding real networks
which emerge from the interaction of selfish entities without explicit central coordi-
nation, e.g. the Internet or social networks. We contribute to this research endeavor
in many ways by considering these so-called Network Creation Games from three
perspectives.
Our first point of view on these games is the approximation perspective. We

analyze which networks are created by very simple computationally bounded selfish
agents and how these networks compare to networks built by agents having un-
limited computational resources. If the individual connection quality of an agent
is measured with the sum of shortest path distances to all other agents, then we
find that simple agents create networks which are remarkably close to networks
created by supernatural agents. On the other hand, if the individual connection
quality of an agent is measured with the maximum over the shortest path distances
to all other agents, then we get the contrasting result that this only holds for tree
networks and that other created networks may be very far away from the optimum.
The second point of view is the dynamics perspective. We turn the model into a

sequential version and focus on the process of selfish network creation. For this, we
investigate whether natural dynamics like best response dynamics are guaranteed
to converge to an equilibrium of the game and if so, how this convergence process
may be sped up. The results are diverse: If agents are restricted to performing
edge-swaps then we have guaranteed and very fast convergence if the initial net-
work is a tree. On the other hand, if the initial network is not a tree or if agents
may perform richer strategy-changes, then we can show that this process may never
converge. We contrast these mostly negative theoretical results with a careful em-
pirical study. There, we observe reliable and surprisingly fast convergence towards
equilibrium networks. Thus, despite our negative results, such egoistic self stabi-
lization processes may be a promising practical approach for finding equilibrium
networks.
We complete the treatment of Network Creation Games with our third point of

view: the structure perspective. The individual quality of a selfishly created network
for the agents is determined by its structure. Thus, a rigorous understanding of the
shape of equilibrium networks seems necessary to understand the deterioration in
quality due to the selfishness of the agents - the so-called Price of Anarchy. We
provide new structural insights for several equilibrium concepts and introduce new
tools which shed light on the structure of equilibrium networks for high edge-cost.
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Zusammenfassung
Untersuchungsgegenstand dieser Arbeit ist ein spieltheoretisches Modell für die dezen-
trale Erzeugung von Netzwerken durch eigennützige Agenten. Diese Akteure verfolgen
das Ziel, ein zusammenhängendes Netzwerk aufzubauen, welches ihre individuelle Verbin-
dungsqualität maximiert. Direktverbindungen im Netzwerk haben Kosten, weshalb die
Agenten ihre Ausgaben für das Erstellen von Direktverbindungen und die damit erzielten
Kommunikationskosten ausbalancieren müssen. Dieses Modell wurde vor einem Jahrzehnt
von Fabrikant, Luthra, Maneva, Papadimitriou und Shenker [FLM+03] eingeführt, um
reale Netzwerke, welche aus der Interaktion von eigenützigen Parteien entstanden sind,
zu verstehen. Zu solchen Netzwerken zählen das Internet und auch soziale Netzwerke.
Die vorliegende Arbeit trägt zu diesem Forschungsvorhaben bei, indem die sogenannten
Network Creation Games aus drei Perspektiven betrachtet werden.

Die erste Sichtweise ist die Approximationsperspektive. Es wird untersucht, welche
Netzwerke von sehr einfachen, in ihrer Berechnungsstärke eingeschränkten Agenten er-
zeugt werden und wie diese im Vergleich mit Netzwerken von Agenten, die beliebige Be-
rechnungsstärke haben, abschneiden. Wird die individuelle Kommunikationsqualität eines
Agenten mit der Summe der Distanzen der kürzesten Pfade von diesem Agent zu allen an-
deren Agenten gemessen, dann wird zeigt, dass die Netzwerke sehr einfacher Agenten den
Netzwerken von unbeschränkten Agenten bemerkenswert nah kommen. Andererseits, falls
das Maximum der Distanzen der kürzesten Pfade die Kommunikationsqualität bestimmt,
dann wird das kontrastierende Ergebnis, dass nur Baumtopologien diese Eigenschaft ha-
ben und andere Netzwerke sehr weit vom Optimum entfernt sein können, bewiesen.

Als zweite Sichtweise wird die Dynamikperspektive betrachtet. Dazu werden sequen-
tielle Versionen des Modells definiert und anhand dieser wird explizit der Prozess der
Netzwerkerzeugung untersucht. Die Hauptfragestellung ist, ob unter der natürlichen An-
nahme, dass Agenten stets ihre Situation verbessern wollen, der Prozess zu einem Gleich-
gewicht konvergiert und, falls dem so ist, wie dieser Prozess beschleunigt werden kann.
Die präsentierten Ergebnisse hierzu sind vielfältig. Falls die Agenten nur Kantenvertau-
schungen ausführen dürfen, dann ist Konvergenz garantiert, falls mit einer Baumtopologie
begonnen wird. Andererseits, falls die Starttopologie kein Baum ist oder falls die Agenten
aufwändigere Strategieänderungen ausführen können, dann gibt es keine Konvergenzga-
rantie. Diese hauptsächlich negativen theoretischen Resultate werden mit einer sorgfälti-
gen empirischen Studie kontrastiert. Diese Studie zeigt in allen Fällen zuverlässige und
sehr schnelle Konvergenz zu einem spieltheoretischen Gleichgewicht. Dies legt nahe, dass
solche Dynamiken, trotz der fehlenden Konvergenzgarantie, ein vielversprechender Ansatz
sind, um Gleichgewichte zu finden.

Die Abhandlung wird mit der dritten Sichtweise, der Strukturperspektive, abgerundet.
Die individuelle Kommunikationsqualität eines Agenten in einem eigennützig erzeugten
Netzwerk wird durch die Struktur des Netzwerks bestimmt. Deshalb erscheint es notwen-
dig die strukturellen Eigenschaften solcher Netzwerke zu verstehen, um den Qualitätsver-
lust durch das eigennützige Verhalten der Agenten - den sogenannten Preis der Anarchie -
ermitteln zu können. Es werden eine Vielfalt neuer Struktureigenschaften für verschiedene
Gleichgewichtskonzepte bewiesen und neue Werkzeuge, die bei der Analyse von Gleichge-
wichtsnetzwerken mit hohen Direktverbindungskosten hilfreich sind, vorgestellt.
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1. Introduction

1.1. Motivation and Context
This thesis focuses on various properties of communication networks which are
built by selfish agents in a decentralized way without explicit coordination among
the agents. Studying communication networks is a classical and still very active
field in the realm of Theoretical Computer Science and Operations Research. This
area, called Network Design, turned out to be a procreative and influential re-
search direction which led within the last sixty years to many beautiful and non-
trivial combinatorial and algorithmic insights in networks. Famous examples are
the Max-Flow-Min-Cut Duality, algorithms for computing (approximately) optimal
communication structures like Minimum Spanning Trees and Steiner Trees or for
finding interesting network nodes, as in Facility Location, k-Median and k-Center
Problems.
Because of this research effort it is now well-known how to design networks under

various side constraints and under various objective functions. But despite all this
huge body of knowledge there is this curious fact: One of the most important com-
munication networks which is increasingly shaping our everyday life – the Internet
– cannot be fully explained by classical Network Design theory. The reason is that
unlike classical centrally designed and optimized networks the Internet was and still
is created by a multitude of selfish agents (e.g. Internet Service Providers), who
control and modify varying sized portions of the network structure (“autonomous
systems”) in a selfish way to suit their needs. This decentralized and egoistic nature
is an obstacle to approaching the design and analysis of the Internet as a classical
Network Design optimization problem.
But the situation is not hopeless - it turned out that to tackle such problems the

focus has to be broadened to the independently established field of Game Theory.
Originally studied mostly by economists and sociologists, classical Game Theory
provides the tools for analyzing the process and the outcomes of strategically in-
teracting selfish agents.1 The powerful idea of combining algorithmic insights with
game theoretic settings has led to the creation of the now thriving research area
called Algorithmic Game Theory.
From an Algorithmic Game Theory point of view the Internet can be considered

as an equilibrium state of a strategic game played by selfish agents. This can be seen
as follows: We have that each selfish agent faces classical Network Design problems,

1This connection is summarized in Papadimitriou’s overview article [Pap01].
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i.e. minimizing the cost of connecting the own network to the rest of the Internet
while ensuring a high quality of service. In consequence agents choose strategies
to cope with these problems. The Internet itself can then be understood as the
outcome of the (repeated) interplay of such local and egoistic strategies.
Within the last decade several such games have been proposed and analyzed. In

this thesis, we will focus on the line of works which consider the so-called Network
Creation Games, as introduced by Fabrikant, Luthra, Maneva, Papadimitriou and
Shenker [FLM+03]. These strategic games are very simple but they contain an in-
teresting trade-off between an agent’s investment in infrastructure and her obtained
usage quality. Agents aim to invest as little as possible but at the same time they
want to achieve a good connection to all other agents in the network.
Understanding such simple models of decentralized selfish network creation with-

out coordination among the agents can be seen as the first step towards rigorously
understanding real networks like the Internet or the multitude of existing social
networks. We believe that this knowledge will lead on the one hand to an improved
measurement and better maintenance of existing networks and on the other hand
to better mechanisms which locally guide the agents towards globally better states.

1.2. Structure and Outline of this Thesis
In the following Chapter 2 we briefly introduce some important game-theoretical
notions and give a detailed formal definition of the model we study in the rest of this
thesis. It is explained how the outcomes of the game-theoretic model are evaluated
and which other closely related models have been studied so far.
In Chapter 3 we investigate what happens when very simple agents act in our

model. Unfortunately, computing a best possible strategy in the Network Creation
Game is NP-hard. Hence, agents which cannot afford exponential running time
have to resort to an approximation of the best possible strategy. These weaker
strategies induce a weaker solution concept, the Greedy Equilibrium, an we analyze
how close networks in Greedy Equilibrium are to networks in Nash Equilibrium.
The dynamics of the network creation process induced by the variants of the Net-

work Creation Games are studied in Chapter 4. There we will consider sequential-
move versions of our model where in every step one agent is allowed to change
her strategy. The main question is whether such dynamics eventually converge to
a (swap-)stable network and if so, how fast. Besides theoretical results, we also
present a careful empirical study and discuss the obtained data.
Chapter 5 is dedicated to the study of structural properties of equilibrium net-

works in the Sum-version for the solution concepts Swap Equilibrium, Asymmetric
Swap Equilibrium, Greedy Equilibrium and Nash Equilibrium.
Finally, in Chapter 6 we summarize the main contributions of this thesis and give

an overview of some intriguing open questions and further research directions.



2. Model and Basic Definitions

2.1. A Brief Introduction to Game Theory

The research area Game Theory studies the interaction of independent strategic
agents in the broadest sense. We do not aim to introduce the whole area, since we
only need some key concepts from one of the most important branches of Game
Theory, which is called non-cooperative Game Theory. A detailed introduction to
all aspects of classical Game Theory can be found in the standard textbooks by My-
erson [Mye91] and by Osborne and Rubinstein [OR94]. The relatively young area of
Algorithmic Game Theory is excellently introduced in the books by Nisan, Rough-
garden, Tardos and Vazirani [NRTV07] and by Shoham and Leyton-Brown [SLB09].
In non-cooperative Game Theory we focus on analyzing the interaction of agents

which are rational and selfish.
The term "rational" means that agents act in a consistent way according to their

own interests. These egoistic interests are modeled by Utility Theory, which was
introduced by von Neumann and Morgenstern [VNM44] in a very influential book.1
The interests of an agent are modeled by an utility function which simply maps
states of the world as seen from the agent’s perspective to a real number with the
property that states which are more preferred by the agent have a higher utility
value and vice versa.2 We will get more formal below.
By "selfish" we mean that agents evaluate any state of the world from their

own egoistic perspective and act primarily to achieve their own goals, that is, to
maximize their own utility value. Agents are ignorant of the preferences, that is,
the utility functions, of other agents and there is no explicit coordination among
agents. However, coordination may arise whenever this suits all participating agents
individually.
We are left to specify what it means when agents "act" to achieve their goals.

In finite strategic games it is assumed that every agent individually has a finite
number of different actions to choose from and that there is only a finite number of
agents. In the following this number will be n. Let the set of actions for agent i be
Ai = {a1, . . . , ak}. Thus, the set A of all possible combinations of actions of agents

1This book [VNM44] is often addressed as the birth of Game Theory.
2Von Neumann and Morgenstern have shown that based on some simple axioms about agents’
preferences such a function always exists. Thus, astonishingly, this simple idea of mapping an
arbitrary complex state to a single number is not an over-simplification.
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is the Cartesian product of these sets, that is,

A = A1 × A2 × · · · × An .

We will call any element a ∈ A an action-profile. But agents are in general not
restricted to deterministically choosing one available action. They are allowed to
randomize between different actions. This is captured with the notion of a mixed
strategy. As we will see, agents act in the strategic game by choosing such a mixed
strategy. A mixed strategy si of agent i is any probability distribution over her set of
available actions Ai. We let si(aj) denote the probability that agent i chooses action
aj ∈ Ai under the probability distribution si. Let Si denote the set of all probability
distributions over Ai, that is, Si is the set of all mixed strategies of agent i. If a
mixed strategy si ∈ Si chooses some action aj with probability 1, that is, si(aj) = 1,
then this strategy is called a pure strategy. Thus, we have that choosing the pure
strategy si with si(aj) = 1 is equal to choosing the action aj and we will sometimes
refer to actions as pure strategies. The set of all strategy-profiles S, also called the
strategy-space, is the Cartesian product of the sets of mixed strategies of all agents,
that is,

S = S1 × S2 × · · · × Sn .

A strategy-profile s ∈ S is a n-dimensional vector of strategies, where the i-th
component of s, that is, si, specifies the strategy chosen by agent i. Let s−i denote
the n− 1-dimensional vector which is obtained from s by removing the i-th entry.
Thus s−i specifies the chosen strategies of all agents other than agent i. We will
use the convention that s = (si, s−i), for all 1 ≤ i ≤ n. We will sometimes say
that in strategy-profile (si, s−i) the strategy si is agent i’s response to the strategies
s−i. Moreover, with this notation it is easy to express the strategy-profile which
results from strategy-profile s if exactly one agent changes her strategy. Assume
that agent i changes her strategy from si to s∗i and all other agents stick to their
respective strategy in s. The strategy-profile obtained by agent i’s strategy-change
then is s′ = (s∗i , s−i).
Now we can rigorously define the utility function ui of agent i. As described above

this function should map states of the world to real numbers. Thus, we define ui to
be a mapping from the set of all action-profiles3 to a real numbers, that is,

ui : A → R .

The crucial point here is, that the value of ui may depend on the chosen actions of
all agents. In other words, agent i’s utility value ui(a), that is, her happiness with
the state of the world a ∈ A, may depend on the behavior of the other agents.
We are not yet done. Since agents may choose randomized strategies we have

to define the utility of states of the world where possibly all agents choose mixed
3Note that an action-profile a = (a1, . . . , an) is equal to the corresponding pure strategy-profile
sa = (sa1 , . . . , san) with sai (ai) = 1, for all 1 ≤ i ≤ n. Thus, the definition of ui captures the
utility of strategy-profiles where all agents choose pure strategies.
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strategies. This is straightforward by considering the corresponding expected value.
Let s ∈ S be any n-dimensional strategy-profile. Agent i’s expected utility of s is
defined as

ui(s) =
∑
a∈A

ui(a)
n∏
j=1

sj(aj) .4

Thus, a finite strategic game can be specified by the set of agents, the set of
available actions per agent (which specifies the possible strategies of that agent)
and by giving a utility function for each agent.
Such games are usually analyzed by characterizing interesting sets of strategy-

profiles defined by the used solution concept. A solution concept simply is a subset
of the strategy-space S, where all elements in the subset have some property.
Let s = (si, s−i) be any strategy-profile. If there is a strategy s′i for agent i such

that ui(s′i, s−i) > ui(si, s−i), then we say that s′i is an improving response for agent i.
If we have that

∀s∗i ∈ Si : ui(s′i, s−i) ≥ ui(s∗i , s−i) ,

then we say that strategy s′i is a best response of agent i.
Best response strategies directly lead us to the classical and most famous solution

concept: the Nash Equilibrium [Nas50]. For the following definition, let N be the
set of agents and let |N | = n.

Definition 2.1.1 (Nash Equilibrium) A strategy-profile s ∈ S is in Nash Equi-
librium, if

∀i ∈ N ∀s∗i ∈ Si : ui(s) = ui(si, s−i) ≥ ui(s∗i , s−i) .

This solution concept can be understood as follows: If the strategy-profile s is in
Nash Equilibrium, then no agent can strictly increase her utility by unilaterally
changing her strategy. That is, if all other agents stick to their strategy, then no
agent has an improving response strategy in her current situation. Thus, in any
Nash Equilibrium strategy-profile all agents have chosen a best response against
each other.
One of the most celebrated results in Game Theory, Nash’s Theorem [Nas50],

guarantees that any finite strategic game must have a Nash Equilibrium strategy-
profile. Thus, in any such game there is a stable state of the world in which no
agent unilaterally wants to change her strategy.
However, in many strategic games, for example in the Network Creation Games

which we define below, it is not suitable to assume that agents choose randomized
strategies. Thus, for such games we have to restrict the agents to pure strategies.
The corresponding set of stable strategy-profiles is called the pure Nash Equilibrium.

4This is exactly the utility function whose universal existance was proved by von Neumann and
Morgenstern [VNM44].
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Definition 2.1.2 (pure Nash Equilibrium) A strategy-profile s ∈ S is in pure
Nash Equilibrium, if for all agents i ∈ N the strategy si is a pure strategy and

∀i ∈ N ∀s∗i ∈ S
p
i : ui(s) = ui(si, s−i) ≥ ui(s∗i , s−i) ,

where Spi is the set of pure strategies available for agent i.

Pure Nash Equilibria are a proper subset of Nash Equilibria. This statement may
not be obvious, because of the heavy restriction that in pure Nash Equilibria agents
compare their current pure strategy only with their alternative pure strategies.
Some other mixed strategy could potentially outperform all pure strategies of an
agent. The reason, why this cannot happen is the usage of the expected value in
the definition of the utility of a mixed strategy-profile. Let s′i be any mixed strategy
of agent i and let Sup(s′i) = {aj ∈ Ai | s′i(aj) > 0} be the support of s′i. Remember,
that pure strategies are equal to the action on which they put all their probability
weight. It holds that s′i is a best response to s−i if and only if all pure strategies
in the support of s′i are best responses to s−i. This can be seen as follows: Assume
that some pure strategy aj in the support of s′i is not itself a best response to
s−i, then agent i could improve on strategy s′i by reducing the probability weight
on action aj and by distributing this weight to all other actions in the support.
The other direction is also easy to see: If all actions in the support of s′i are best
responses, then any probability distribution over Sup(s′i) must be a best response
as well. Thus, if agent i has a mixed strategy as best response to s−i, then this
agent also has a pure strategy which is a best response to s−i.
A crucial difference to mixed Nash Equilibria is that pure Nash Equilibria are not

guaranteed to exist for any finite strategic game. There are simple strategic games,
like Matching Pennies [SLB09], which do not have a pure Nash Equilibrium.
Fortunately for our treatment of selfish network creation below, pure Nash Equi-

libria in Network Creation Games will always exist.

2.2. Modeling Selfish Network Creation
In this section we formally introduce our model of selfish network creation. We start
by defining the original model, the Network Creation Game, proposed by Fabrikant,
Luthra, Maneva, Papadimitriou and Shenker [FLM+03] a decade ago. Next, we will
introduce several solution concepts for this game and explain how variants of the
game can be derived from these concepts.
We will assume basic graph-theoretic knowledge and refer the reader to Diestel’s

standard textbook [Die10] for basic definitions. Throughout this thesis we will use
uw or wu for the undirected edge {u,w} ∈ E of a graph G = (V,E). We use the
standard notation that V (G) denotes the vertex set and E(G) denotes the edge set
of the graph G and we will abbreviate the number of vertices in G, that is |V (G)|,
with the short-hand |G|. Moreover, let G−u be the graph G after vertex u ∈ V (G)
is removed.
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2.2.1. The Network Creation Game
We consider the following model of selfish network creation, called the Network
Creation Game (NCG). We will sometimes call this came Buy Game (BG) to em-
phasize the difference to a variant called Swap Games, where only edge-swaps are
allowed.
In Network Creation Games (or Buy Games) there are n selfish agents who seek

to build a connected network among themselves which suits their individual needs.
Agents are associated to vertices in the network and we will use the terms agent
and vertex interchangeably. However, we will stick to the term agent, whenever a
node in the network is in some way active. Note, that we also use the terms graph
and network interchangeably.
Agents can influence the structure of the network by individually choosing a pure

strategy. Let V be the set of agents in the network. A pure strategy of an agent u
is any subset Su ⊆ V \ {u}.5 The pure strategy Su of an agent u specifies which
edges are owned (and have to be paid for) by agent u: She owns the undirected
edges ux for all x ∈ Su. Thus, agents may choose to create links to any subset
of other agents in the network. Note, that the above definition implies that only
incident edges can be owned. Furthermore, edges have exactly one owner. That is,
if w ∈ Su and u ∈ Sw for two agents u and w, then this means that there exist two
edges between the vertices u and w in the network.6
Any combination of pure strategies of all agents, that is, the induced pure strategy-

profile (or action-profile), will then uniquely determine the structure of an undi-
rected graph, that is, which edges of the graph are present and who is the owner
of each link. Interestingly, this connection between pure strategy-profiles and net-
works can be easily reversed: Given any network on n vertices and information on
the edge-ownership of all edges then this uniquely determines the pure strategies of
all agents in the network. It follows, that we have a bijection between graphs with
edge-ownership information and pure strategy-profiles.
In our illustrations we will encode the edge-ownership information by directing

edges away from their respective owner. We emphasize that this direction of edges
does not influence the communication-direction of edges. For communication, all
edges in any network will be undirected, that is, they can be traversed in both
directions. Figure 2.1 illustrates the bijection between directed networks an the
pure strategies of all agents with a toy example.
To get a complete game-theoretic model for selfish network creation, we have to

define a utility function for all agents. We will work only with negative utilities and
we will call them cost. Agents want to maximize their utility value. In terms of

5Observe, that this definition explicitly rules out self-loops and multi-edges owned by the same
agent in the networks. This is no restriction, since with consideration of the cost function of
an agent self-loops or multi-edges can never appear in any equilibrium network. Moreover we
use Su instead of su to emphasize that the strategy of an agent is a set.

6The used cost function will imply that no multi-edges can appear in any equilibrium network.
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d
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a

Sa = ∅

Sb = {a, d}

Sd = {c, e}

Sc = ∅

Se = {c}

Figure 2.1.: A network with edge-ownership information and the corresponding pure
strategies of all agents.

cost this means that agents want to minimize their cost. Thus, instead of a utility
function we define a cost function for the agents. This is the crucial element of the
game, since our selfish agents will choose pure strategies with the goal of minimizing
their own cost.
We assume that any edge costs α > 0, where α is a fixed parameter of the game.

Since this parameter heavily influences the structure of the created networks, we
will emphasize this by denoting a network G with parameter α as (G,α).
The cost of agent u in the network (G,α) is defined as follows:

cu(G,α) = eu(G,α) + δu(G) .

Here eu(G,α) is agent u’s edge-cost within network (G,α) and δu(G) is agent u’s
distance-cost within network (G,α). The edge-cost eu(G,α) of agent u depends
only on the number of edges which are purchased by agent u, that is

eu(G,α) = α|Su| ,

where Su is agent u’s strategy in the network (G,α). Thus, if agent u buys k edges
in network (G,α), then she has to pay edge-cost of αk.
There are two versions of the distance-cost of an agent:
• In the Sum-version, introduced in [FLM+03], agents try to minimize the sum of

their shortest-path distances towards all other agents in the network, that is

δu(G) =


∑
w∈V (G) dG(u,w), if (G,α) is connected
∞, otherwise .

• In the Max-version, introduced by Demaine, Hajiaghayi, Mahini and Zadi-
moghaddam [DHMZ12], agents try to minimize their maximum shortest-path-
distance towards any other agent in the network, that is

δu(G) =

maxw∈V (G) dG(u,w), if (G,α) is connected
∞, otherwise .
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In both cases dG(u,w) denotes the number of edges in any shortest path from
vertex u to vertex w in the network (G,α). Observe that agent u’s distance-cost is
independent of the parameter α and depends only on the structure of the created
network.
Thus, if agent u plays strategy Su in the network (G,α) we have that the cost of

agent u in (G,α) in the Sum-version is

cu(G,α) =

α|Su|+
∑
w∈V (G) dG(u,w), if G is connected,

∞, otherwise .

In the Max-version we have

cu(G,α) =

α|Su|+ maxw∈V (G) dG(u,w), if G is connected,
∞, otherwise .

See Figure 2.2 for an example of the agents’ cost in both the Sum- and the Max-
version. Note that for the distance-cost the edge-direction has no influence. For
communication all edges are undirected.

b

c

d

e

a

ca(G,α) = 9

cb(G,α) = 2α+ 6

cd(G,α) = 2α+ 5

cc(G,α) = 7

ce(G,α) = α+ 7

b

c

d

e

a

ca(G,α) = 3

cb(G,α) = 2α+ 2

cd(G,α) = 2α+ 2

cc(G,α) = 3

ce(G,α) = α+ 3

Sum-version Max-version

Figure 2.2.: Left: the agents’ cost in the Sum-version, right: the agents’ cost in the
Max-version.

Note that both cost functions nicely incorporate two conflicting objectives: Agents
want to pay as little as possible for being connected to the network while at the
same time they want to have good connection quality. Observe that it is easy to
minimize either edge-cost or distance-cost alone by either buying no edges or by
buying direct links to all other agents. But the cost is defined as the sum of both
terms. This conflict between the two terms is the key ingredient which renders this
model highly interesting and non-trivial. From an agent’s point of view this cost
function is realistic: agents like to free-ride but they have an incentive to invest in
infrastructure to improve their experienced service quality in the network.
Depending on which version of the distance-cost function is used, we will call the

corresponding game Sum-NCG (or Sum-BG) or Max-NCG (or Max-BG).
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The standard solution concept for the Network Creation Game is the pure Nash
Equilibrium (NE). Recall that a pure strategy-profile is in pure Nash Equilibrium
if no agent can unilaterally change her pure strategy to another pure strategy to
strictly decrease her cost. That is, if all other agents stick to their pure strategies,
then no agent has an incentive to deviate from her current pure strategy. Since we
have a bijection between networks with ownership-information and pure strategy-
profiles, we will often say that a network is in pure Nash Equilibrium and we
will sometimes call such networks stable, since this notion highlights the fact that
in pure Nash Equilibrium no agent selfishly wants to change the structure of the
corresponding network.
We will slightly abuse notation by denoting the set of all networks in pure Nash

Equilibrium of the Sum-NCG as Sum-NE. For the Max-NCG the corresponding set
is denoted as Max-NE. We will sometimes omit the reference to the version of the
distance-cost function. We do this, whenever a statement holds for both versions
or when the version is clear from the context. Moreover, whenever we use the term
Nash Equilibrium in the following, it should be clear from the context that we use
this as abbreviation for pure Nash Equilibrium. Throughout this thesis we do not
consider mixed strategies of agents since for the creation of networks it makes no
sense to create an edge with some probability.
As mentioned above, pure Nash Equilibria always exist for the Sum- and the

Max-NCG. It was shown in [FLM+03], that for α ≤ 1 the complete network is
always in Sum-NE and for α > 1 a star is in Sum-NE. For the Max-version it was
shown in [MS13], that for α ≤ 1

n−2 a clique on n vertices is in Max-NE and it is
easy to see that for α > 1

n−2 a star on n vertices is in Max-NE.

2.2.2. Other Solution Concepts for NCGs
Besides the pure Nash Equilibrium several other weaker solution concepts have been
considered in recent research: The Greedy Equilibrium, which will be introduced in
more detail in Chapter 3, the Asymmetric Swap Equilibrium, introduced by Mihalák
and Schlegel [MS12], and the Swap Equilibrium, introduced by Alon, Demaine,
Hajiaghayi and Leighton [ADHL13].
Definition 2.2.1 (Greedy Equilibrium) A network (G,α) is in Greedy Equi-
librium (GE) if no agent can unilaterally strictly decrease her cost by either buying
or deleting or swapping one own edge. We will denote the set of all networks in
Greedy Equilibrium as Sum-GE or Max-GE, depending on the version of distance-
cost.

Here an edge-swap of an agent u is the operation of replacing one incident edge
which is owned by agent u with another non-existing incident edge of which then
agent u will be the owner. See Figure 2.3 for an example.
In comparison to the pure Nash Equilibrium the Greedy Equilibrium clearly is

a much weaker solution concept for NCGs. We have that NE ⊆ GE, since if no
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Figure 2.3.: Example of an edge-swap: Agent e swaps her own edge ec to edge
eb. The agents’ cost in the Sum-version is drawn in blue. Note, that
agent e’s swap changes the cost of other agents as well. Since the swap
strictly decreases agent e’s cost, it follows that the left network is not
in Sum-GE, which implies that it is also not in Sum-NE.

agent can deviate to any other strategy to improve, then certainly no agent can
buy, delete or swap one own edge to improve. Any such move would be a deviation
to a valid new strategy.
An even weaker solution concept is the Asymmetric Swap Equilibrium:

Definition 2.2.2 (Asymmetric Swap Equilibrium) A network (G,α) is in A-
symmetric Swap Equilibrium (ASE) if no agent can unilaterally strictly decrease her
cost by swapping one own edge. We will denote the set of all networks in Asymmet-
ric Swap Equilibrium as Sum-ASE or Max-ASE, depending on the distance-cost
function.

For example, the right network in Figure 2.3 is in Sum-ASE.
Note, that the edge-cost parameter α has no influence if we consider the ASE as

solution concept. This is true since an edge-swap does not change the edge-cost of
the swapping or any other agent. Thus, the edge-cost can be simply ignored or be
set to 0. Hence, we will mostly omit the parameter α when we analyze networks in
Asymmetric Swap Equilibrium.
Clearly, we have that any network which is in GE must be in ASE as well. The

converse is not true: The right network in Figure 2.3 is in Sum-ASE but not in
Sum-GE for α = 1.5. For example, agent a can strictly decrease her cost by buying
the edge ad.
The last solution concept, the Swap Equilibrium, is closely related to the ASE,

but in Swap Equilibrium edge-ownership is ignored as well.

Definition 2.2.3 (Swap Equilibrium) A network (G,α) is in Swap Equilibrium
(SE) if, when all edges have cost 0 and edge-ownership is ignored, no agent can
unilaterally strictly decrease her cost by swapping one incident edge. We will denote
the set of all networks in Swap Equilibrium as Sum-SE or Max-SE, depending on
the distance-cost function.
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Since edge-ownership is ignored, we will often omit the edge-ownership information
in illustrations of networks in Swap Equilibrium, that is, we will draw undirected
networks.
We emphasize that with focus on Swap Equilibria agents may swap any incident

edge independently of the edge-ownership. For example, the right network in Fig-
ure 2.3 is not in Sum-SE, since agent a can strictly decrease her cost by swapping
the edge ab with the edge ad.
Networks in SE are robust against swaps from both endpoints of any edge. It fol-

lows that the Swap Equilibrium is a stronger solution concept than the Asymmetric
Swap Equilibrium and we have that SE ⊆ ASE.7
Note that despite their heavy restrictions (Asymmetric) Swap Equilibria are an

interesting object of study since they model networks in which the agents locally
weigh incident edges against alternative links. Quite surprisingly, despite their
innocent statement, such networks tend to have a complicated structure. We survey
those structural results in Chapter 5.
So far we have argued, that NE ⊆ GE ⊂ ASE and SE ⊂ ASE holds. We will

discuss the relationship of these sets in more detail in Chapter 3.
All these equilibria are guaranteed to exist for both the Sum- and the Max-NCG.

For GE and ASE this follows from the existence of NE and from NE ⊆ GE ⊂ ASE.
For Swap Equilibria we will see in Chapter 5 that networks having diameter at most
2 are in SE.

2.2.3. Variants of NCGs
The different solution concepts for the Network Creation Game can be used to define
variants of the NCG which have the property that the pure Nash Equilibrium of
such a NCG-variant coincides with one of the alternative solution concepts. The
trick is to restrict the possible strategy-changes of an agent accordingly. We will
define the Greedy Buy Game, the Asymmetric Swap Game and the Swap Game8.
We use these variants mostly in Chapter 4, where we study their dynamic behavior.

The Greedy Buy Game

The Greedy Buy Game (GBG) is very close to the Network Creation Game (or Buy
Game). There is only one difference: Not all possible strategies of an agent are
admissible. The admissible strategies of an agent u in a network (G,α) will depend
on the current strategy of agent u and are restricted to be only slight adaptations
of her current strategy.
Let Su be agent u’s strategy in network (G,α). At any time agents are allowed

to only buy or delete or swap one own edge. A strategy-change of agent u from
7Observe, that the right network in Figure 2.3 shows that SE ⊂ ASE holds.
8The Swap Game will be an exception since we cannot consider the pure NE in these games to
obtain the Swap Equilibrium of NCGs.
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strategy Su towards the new strategy S∗u is admissible for agent u in network (G,α)
if

(1) |S∗u| = |Su|+ 1 and Su ⊂ S∗u, or
(2) |S∗u| = |Su| − 1 and S∗u ⊂ Su, or
(3) |Su| = |S∗u| and |Su ∩ S∗u| = |Su| − 1.

Here we have that (1) is the creation of one new own edge, (2) is the deletion of
one own edge and (3) is the swap of one own edge. All operations can be seen as
greedy adaptations of the current strategy, which explains the name of the game.9
By design we have that the pure Nash Equilibrium of the Greedy Buy Game

coincides with the Greedy Equilibrium in the Network Creation Game.
We will emphasize the used version of the distance-cost function by using the

terms Sum-GBG and Max-GBG.

The Asymmetric Swap Game

If we restrict the agents’ admissible strategies even more to only single edge-swaps
of own edges, then we end up with the Asymmetric Swap Game (ASG).
To put this more formally: Let Su be the strategy of agent u in the network

(G,α). The new strategy S∗u is admissible for agent u in (G,α) if |Su| = |S∗u| and
|Su ∩ S∗u| = |Su| − 1 holds.
The consequence of the heavy restriction on the admissible strategies is that the

number of owned edges will remain constant for every agent.10 Hence, the edge-cost
per agent is constant and we will therefore omit it in the agents’ cost function. It
follows, that the whole cost function of an agent and the resulting (stable) networks
will no longer depend on the edge-cost parameter α. This was one of the main
reasons why Alon, Demaine, Hajiaghayi and Leighton [ADHL13] have proposed the
Swap Game, a close relative of the ASG which was introduced earlier and which we
will define below. Mostly, when discussing networks in the ASG, we will omit the
parameter α.
Thus, we have that in Asymmetric Swap Games the cost of an agent u in network

G in the Sum-version is defined as

cu(G) =


∑
w∈V (G) dG(u,w), if G is connected,
∞, otherwise .

9These strategy-changes resemble a simple local search step in the (pure) strategy-space of the
Network Creation Game. But we refrain from calling the game "local buy game" since this
may convey that only edges to vertices in some close neighborhood can be created - which is
clearly not the case.

10Another consequence is, that if we consider the process of network creation in the ASG, then
this process should start with n-vertex networks having at least n− 1 edges. In Chapter 4 we
will consider connected initial networks to ensure this and to avoid infinite agents’ cost.
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In the Max-version of the ASG we have

cu(G) =

maxw∈V (G) dG(u,w), if G is connected,
∞, otherwise .

Again, by design, we have that the networks in pure Nash Equilibrium of the ASG
coincide with the networks which are in Asymmetric Swap Equilibrium for the NCG.
We will highlight the used version of the distance-cost function, by using the

terms Sum-ASG and Max-ASG.

The Swap Game

The Swap Game (SG), originally introduced as "Basic Network Creation Game" by
Alon, Demaine, Hajiaghayi and Leighton [ADHL13], is similar to the Asymmetric
Swap Game defined above, but there is a crucial difference: Edges do not have
owners in the Swap Game11. This means that both incident agents of an edge may
swap this edge. This innocent-looking detail has severe consequences for the model:
First of all, the meaning of a pure Strategy Su of agent u changes. It no longer
specifies which edges are owned by agent u, instead it specifies all neighbors of u in
the network G. This implies that the pure strategy of agent u influences the current
pure strategies of all other agents. For agents x ∈ Su it follows that u ∈ Sx and for
agents y /∈ Su if follows that u /∈ Sy. This can be seen as a conceptual drawback
of this model.12 However, this has no severe consequences because the agents’ cost
function is exactly the same as in the ASG, that is, the edge-cost term is omitted.
The swap-stable networks in the Swap Game are exactly the Swap Equilibria

(SE) for NCGs. Note that we cannot use the term "stable networks" or pure Nash
Equilibrium here. The pure Nash Equilibrium is not a suitable solution concept
for Swap Games, since with the precise definition of a pure NE we have that all
networks are stable in the Swap Game. The reason is, that no agent can perform any
strategy-change if all other agents stick to their strategy. This is true because the
strategies depend on each other, that is, for any strategy-change some agents must
cooperate. Instead we have to consider a solution concept where agents only care
about their own cost as in the pure NE but affected agents will always cooperate
to help an agent change her strategy.
As mentioned above, Swap Games were introduced to remove the intricate de-

pendence on the parameter α and to get a weaker solution concept for the NCG.
But, as first observed by Mihalák and Schlegel [MS13], for the NCG it is not true
that any network in pure Nash Equilibrium is in Swap Equilibrium. This carries
over to the Greedy Equilibrium as well. In Chapter 3 we give examples for networks
11Or, equivalently, edge-ownership will be ignored in the Swap Game.
12Curiously, the authors of [ADHL13] do not define the strategy of an agent. They only define

the Swap Equilibrium from a graph theoretic point of view and discuss the differences to the
pure NE in NCGs.
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which are in NE but not in SE and networks which are in GE but not in SE for the
NCG.

2.3. Measuring (In-)Efficiency
We want to measure the quality of networks created by selfish agents. For this, we
first have to define an objective function, which quantitatively measures how good
a created network is for the whole society of all participating agents. This objective
function is called the social cost. For defining this function we adopt what is usually
called the utilitarian approach: The social cost c(G,α) of a network (G,α) is the
sum of the cost of all agents in (G,α). That is

c(G,α) =
∑

u∈V (G)
cu(G,α) .

With this objective function we can now ask how good a n-vertex network (G,α) is
compared to some other n-vertex network (G′, α). For this, we can simply consider
the ratio of c(G,α) over c(G′, α). For example, if this ratio is greater than 1, then
network (G,α) is socially worse than network (G′, α).
Our object of study are networks which are created by selfish agents without

explicit coordination. A very natural and influential idea is to ask how the selfish
behavior of the agents and the lacking of any centralized coordination affects the
overall quality of the created networks.13 To study this question for the Network
Creation Game we can simply compare the social cost of equilibrium networks
having n-vertices with the social cost of a best possible n-vertex network which may
not be in equilibrium. Clearly, to have a fair comparison, the edge-cost parameter
α should be the same for all compared networks.
A socially best possible n-vertex network with parameter α is a network which

has minimum social cost among all n-vertex networks with parameter α. There
may be many best possible n-vertex networks for parameter α, but all have the
same minimum social cost. Note, that a best possible network might not be in
equilibrium. Let Gαn denote the set of all n-vertex networks with parameter α.
We can now choose any solution concept for the NCG and can compare the social

cost of the corresponding n-vertex networks with some n-vertex network having
minimum social cost. Let Sαn be any set of n-vertex networks with parameter α
selected by the chosen solution concept in the NCG.14 We can now compare the
worst or best network in Sαn to the best possible n-vertex network. This leads us to
the Price of Anarchy, introduced by Koutsoupias and Papadimitriou [KP99] and the
Price of Stability, introduced by Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler
and Roughgarden [ADK+08].
13This idea was suggested by Koutsoupias and Papadimitriou [KP99]. This work turned out to

be of the most influential papers in Algorithmic Game Theory.
14That is, Sαn is any subset of the pure strategy-space of the game. Thus, Sαn ⊆ Gαn .
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Definition 2.3.1 (Price of Anarchy) The Price of Anarchy of the Network Cre-
ation Game with n agents under solution concept Sαn ⊆ Gαn is

max(G,α)∈Sαn c(G,α)
min(G,α)∈Gαn c(G,α) .

Definition 2.3.2 (Price of Stability) The Price of Stability of the Network Cre-
ation Game with n agents under solution concept Sαn ⊆ Gαn is

min(G,α)∈Sαn c(G,α)
min(G,α)∈Gαn c(G,α) .

The Price of Anarchy is very close in spirit to the approximation ratio from the
area of Approximation Algorithms [Vaz01] and to the competitive ratio, introduced
by Sleator and Tarjan [ST85], from the area of Online Algorithms [Alb03]. It takes
a worst-case perspective and characterizes how far from optimum selfishly created
networks can be. The Price of Stability is more optimistic. It focuses on the best
possible equilibrium networks and thus characterizes how close to optimum selfish
agents may get.
We will sometimes restrict the set Sαn even more by focusing on n-vertex equilib-

rium networks having a certain structure, e.g. tree networks. In this case we will
call this the Price of Anarchy for the restricted class, e.g. the Price of Anarchy on
trees.
The above definitions can be easily carried over to the GBG, ASG or SG. Note,

that for the NCG and GBG the Price of Anarchy and the Price of Stability depend
heavily on the chosen version of the distance-cost function and on the edge-cost
parameter α. For the ASG and SG only the version of the distance-cost function
matters. We will always use the pure Nash Equilibrium as solution concept for the
NCG, GBG and ASG and the Swap Equilibrium for the SG whenever we refer to
the Price of Anarchy or Stability in these games. Note that since NE, GE, ASE
and SE are guaranteed to exist, the Price of Anarchy or Stability for all mentioned
versions of the NCG is well-defined.

2.4. A Brief Survey of other Models
We will briefly summarize related work on other models for game-theoretic network
creation settings. Since this is a rich and diverse research direction, we will only
focus on models which are very close to Network Creation Games. Excellent sources
for a broader overview are Jackson’s survey [Jac03] and his book [Jac10].
One of the earliest ancestors of the Network Creation Game is the "connections

model", proposed by Jackson and Wolinsky [JW96]. In this model links represent
social relationships between agents and linked agents benefit from these connections.
Agents have to pay for establishing these links. Each agent chooses a subset of other
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agents she wants to connect to and a link is formed if both agents are willing to
connect to each other and to pay for this link. The benefit is measured with a
parameter δ < 1 and diminishes with increasing distance.15 If two agents have
distance k in the created network, then their mutual benefit is δk. The utility of an
agent i in network G is defined as

ui(G) =
∑

j 6=i∈V (G)
δdG(i,j) −

∑
j:ij∈E(G)

cij ,

where cij is the cost of link ij. Thus, agents strive to be close to all other agents,
but, since links are costly, they have to choose carefully whom to connect to. This is
essentially the same feature which also renders the Network Creation Game interest-
ing and realistic. Links in the connections model can only be created by concerted
action of two agents. Thus, unilateral solution concepts like the Nash Equilibrium
are not suitable for characterizing interesting outcomes of this game.16 Instead,
Jackson and Wolinsky propose "pairwise stability" as suitable solution concept. A
network G is pairwise stable, if each existing link is wanted by both incident agents
and for each non-existing link there is at least one incident agent who is not will-
ing to pay for it. This concept is particularly interesting because stability can be
checked locally by inspecting all the existing and non-existing links independently.
The authors of [JW96] study the structure of networks which maximize the social
utility and of networks which are pairwise stable for all ranges of δ when all edges
have uniform cost of c. As one of the first works on selfish network creation, they
explicitly compare stable networks to socially optimal networks. Watts [Wat01]
analyzed the dynamics of the connections model when links are proposed uniformly
at random and the incident agents can decide to create or sever the proposed link.
The Price of Anarchy and the structure of pairwise stable networks for some ranges
of δ was studied by Baumann and Stiller [BS08].
A unilateral, purely non-cooperative version of the connections model was pro-

posed and studied by Bala and Goyal [BG00]. In this version agents selfishly choose
which links to buy and no action is needed from the other incident agent for link
creation. The authors consider both the version with directed links as well as the
version where links are undirected. The utility function of an agent is similar to
the connections model. Besides considering the networks for parameter δ < 1,
they also focus on the special case where δ = 1. In this case, if edge-cost is low
enough, agents try to maximize the number of agents in the network to which they
have a (directed) path. For all these versions, the authors give characterizations
of stable and social utility maximizing networks and also study the dynamics of a
corresponding network creation process.
The Network Creation Game can be understood as a modification of Bala and

Goyal’s model with undirected links. The crucial difference is that agents in the
15The parameter may even depend on the specific pair of agents.
16For example, the empty network would always be in pure Nash Equilibrium.



18 2.4 A Brief Survey of other Models

NCG want to be connected to all other agents in the network and that the length of
the shortest path in the network measures the benefit of the connection. Moreover,
decreasing benefit with distance is rephrased as increasing cost with distance which
allows for the very elegant and simple cost function of an agent.
Corbo and Parkes [CP05] considered a bilateral version of the NCG. In this model,

agents have to agree on creating edges and both endpoints have to pay half of the
edge-cost α for the edge. As for the connections model, the pure Nash Equilibrium
is not a suitable solution concept. Therefore, the authors consider Jackson and
Wolinski’s pairwise stability and a minimal coalitional refinement of the pure Nash
Equilibrium which allows for concerted action by two-agent coalitions. This solution
concept is called pairwise Nash Equilibrium. The authors show that these two
concepts and another solution concept proposed by Myerson [Mye91] are equivalent
and they study the Price of Anarchy. We will encounter the bilateral version of the
NCG in Section 4.6 where we study its dynamic behavior.
Another related model was proposed by Brautbar and Kearns [BK11] and is

called the clustering coefficient network formation game. This model is motivated
by the empirical observation that social networks typically have densely clustered
sub-networks and that agents strive to belong to such a “social clique”. Friedship in
social networks is often transitive, that is, the friends of friends are mutual friends as
well. Thus, such networks contain many triangles. One of the standard measures
for analyzing clustering in networks is the clustering coefficient. This coefficient
for an agent v in a network G is defined as CCv(G) = ∆v(G)/

(
degv(G)

2

)
, where

∆V (G) is the number of triangles which contain agent v and degv(G) is the number
of incident edges of v. A high clustering coefficient for an agent yields that this
agent is part of an important social clique in the network. In the corresponding
game-theoretic model, agents balance edge-cost against the clustering coefficient.
Similarly to the Network Creation Game, agents unilaterally choose which edges to
create and agents have to pay α > 0 for their owned edges. The utility function of
agent i in network G is ui(G) = CCi(G)−α|Si|, where Si is agent i’s pure strategy
in G. The authors study the structure of the corresponding stable networks and
also analyze the Price of Anarchy.



3. Approximating Equilibria
As mentioned in Section 1.1, the Internet can be understood as the result of the
interplay of local strategies of the agents, that is, it can be considered as an equi-
librium state of a game played by selfish agents.
The classical and most popular solution concept of stratgic games is the (pure)

Nash Equilibrium [Nas50], which is a stable state, where no agent unilaterally wants
to change her current (pure) strategy. However, (pure) Nash Equilibria (NE) have
their difficulties. Besides their purely descriptive, non-algorithmic nature, there are
two problems:

(1) With NE as solution concept agents only care if there is a better strategy
and will perform radical strategy-changes even if they yield only a tiny
improvement.

(2) In some games it is computationally hard even to decide if a stable state is
reached because computing the best possible strategy of an agent is hard.
Thus, for such games NE only predict stable states found by supernatural
agents.

But what solutions are actually found by more realistic players, i.e. by agents who
prefer smooth strategy-changes and who can only perform polynomial-time compu-
tations? And what impact on the stability has this transition from supernatural to
realistic players?
In this chapter, we take the first steps towards answering these questions for

the Sum- and Max-version of the Network Creation Game which we have defined
in Section 2.2. Remember that agents model ISPs who create links towards other
ISPs while minimizing cost and maximizing their quality of network usage. It seems
reasonable that ISPs prefer greedy refinements of their current strategy (network
architecture) over a strategy-change which involves a radical re-design of their in-
frastructure. Furthermore, computing the best strategy in NCGs is known to be
NP-hard1. Hence, it seems realistic to assume that agents perform smooth strategy-
changes and that they do not play optimally. We take this idea to the extreme by
considering very simple agents and by introducing and analyzing a natural solution
concept, called Greedy Equilibrium, for which agents can easily compute whether a
stable state is reached and which models an ISP’s preference for smooth strategy-
changes.

1See Section 3.1.2 for more details.
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3.1. Preliminaries

3.1.1. Additional Definitions
We will use the concept of an approximate Nash Equilibrium in the Network Cre-
ation Game. Let (G,α) be any network. For all agents u ∈ V (G) let cu and c∗u
denote agent u’s cost induced by her current strategy in the network (G,α) and by
her best possible alternative pure strategy, respectively. We say that (G,α) is in
β-approximate Nash Equilibrium in the NCG if for all agents u ∈ V (G) we have
cu ≤ βc∗u, for some β ≥ 1.

3.1.2. Related Work
One of the main drawbacks of the Network Creation Game by Fabrikant, Luthra,
Maneva, Papadimitriou and Shenker [FLM+03] is that computing a best possible
strategy of an agent is NP-hard. The authors gave a reduction from the classical
Dominating Set problem [GJ79]. Thus, computationally bounded agents in the
NCG cannot even recognize easily if they can improve on their current strategy,
which implies that such agents cannot tell whether they have already collectively
found a stable network.
To circumvent this problem and to get rid of the intricate dependence on the edge-

cost parameter α, Alon, Demaine, Hajiaghayi and Leighton [ADHL13] introduced
the Swap Game, as defined in Section 2.2.3. Remember that in Swap Games agents
can only swap any single incident edge to decrease their cost. Here, a swap is the
exchange of an incident edge with a non-existing incident edge. The cost of an
agent is defined as in Network Creation Games but without the edge-cost term.
The corresponding solution concept is the Swap Equilibrium (SE). A network is in
SE, if no agent can unilaterally swap one incident edge to strictly decrease her cost.
This solution concept has the nice property that agents can check in polynomial
time if they can perform an improving strategy-change. This can be done by simply
checking all possible edge-swaps and computing the incurred cost. Thus, agents can
decide efficiently if they have collectively found a swap-stable network. However,
simplifying the model as in [ADHL13] is not without its problems. Allowing only
edge-swaps implies that the number of edges remains constant. Hence, this model
seems too limited to explain the creation of rapidly growing networks.
The Greedy Equilibrium, which we introduce and analyze in this chapter, can

be understood as an extension of the Swap Equilibrium which has similar prop-
erties but provides agents more freedom to act and which leads to more realistic
equilibrium networks.
Some of our results in this chapter are for tree networks. Such topologies are

common outcomes of the Network Creation Game if edges are expensive, which led
the authors of [FLM+03] to conjecture that all (non-transient) stable networks of the
Sum-NCG are trees if α is greater than some constant. The conjecture, known as
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the Tree Conjecture, was later disproved by Albers, Eilts, Even-Dar, Mansour and
Roditty [AEED+06] but it was shown to be true for high edge-cost. In particular,
Mihalák and Schlegel [MS13] proved that all stable networks are trees if α > 273n
in the Sum-NCG or if α > 129 in the Max-NCG. Experimental evidence suggests
that this transition to tree networks already happens at much lower edge-cost and
it is an interesting open problem to improve on these bounds.2
Demaine, Hajiaghayi, Mahini and Zadimoghaddam [DHMZ09] investigated Net-

work Creation Games, where agents cannot buy every possible edge. This is mod-
eled by considering a host graph which specifies which edges may be created. Fur-
thermore, Ehsani, Fazli, Mehrabian, Sadeghabad, Safari, Saghafian and Shokat-
Fadaee [EFM+11] recently analyzed a bounded-budget version. Both versions seem
realistic, but in the following we do not restrict the set of edges which can be bought
or the budget of an agent. Clearly, such restrictions reduce the qualitative gap be-
tween simple and arbitrary strategy-changes and would lead to weaker results for
our analysis. Note, that this indicates that outcomes found by simple agents in the
edge- or budget-restricted version may be even more stable than we show in the
following sections.
To the best of our knowledge, approximate Nash Equilibria have not been studied

before in the context of selfish network creation. Close to our approach here is our
previous work [AL10], which analyzes for a different game how tolerant the agents
have to be in order to accept a centrally designed solution. We adopt a similar
point of view by asking how tolerant agents have to be to accept a solution found
by greedy play.
Guylás, Kõrösi, Szabó and Biczók [GKSB12] recently published a paper having

a very similar title to our original work [Len12]. They investigate networks created
by agents who use the length of “greedy paths” as communication cost and show
that the resulting equilibria are substantially different to the ones we consider here.
Their term “greedy” refers to the distances whereas our term “greedy” refers to the
behavior of the agents.

3.1.3. Our Contribution
We introduce and analyze Greedy Equilibria (GE) as a new solution concept for the
Network Creation Game (or Buy Game) which leads to the Greedy Buy Game. This
solution concept is based on the idea that agents (ISPs) prefer greedy refinements of
their current strategy (network architecture) over a strategy-change which involves
a radical re-design of their infrastructure. Furthermore, GE represent solutions
found by very simple agents, which are computationally bounded. We show in
Section 3.2 that such greedy refinements can be computed efficiently and clarify
the relation of GE to the other known solution concepts for NCGs which we have
briefly introduced in Section 2.2.2.

2We provide a new line of attack on this problem in Chapter 5.
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Our main contribution of this chapter follows in Section 3.3 and Section 3.4, where
we analyze the stability of solutions found by greedily playing agents. For the Sum-
version we show the unexpected result that, despite the fact that greedy strategy-
changes may be sub-optimal from an agent’s point of view, Sum-GE capture Sum-
NE on trees. That is, in any tree network which is in Sum-GE no agent can decrease
her cost by performing any strategy-change. For general networks we prove that
any network in Sum-GE is in 3-approximate Sum-NE and we provide a lower bound
of 3

2 for this approximation ratio. Hence, we are able to show the rather surprising
result that greedy play almost suffices to create perfectly stable networks.
For the Max-version we show that these games have a strong non-local flavor

which yields diminished stability. Here even GE-trees may be susceptible to non-
greedy improving strategy-changes. Interestingly, susceptible trees can be fully
characterized and we show that their stability is very close to being perfect. Specif-
ically, we show that any star in Max-GE is in 2-approximate Max-NE and that
any Max-GE tree having larger diameter is in 6

5 -approximate Max-NE. We give a
matching lower bound for both cases. For non-tree networks in Max-GE the picture
changes drastically. We show that for Max-GE networks having a very small α the
approximation ratio is related to their diameter and we provide a lower bound of 4.
For α ≥ 1, we show that there are non-tree networks in Max-GE, which are only
in Ω(n)-approximate Max-NE. The latter result yields that the locality gap of the
Uncapacitated Metric min-max Facility Location problem3 is in Ω(n).
Regarding the complexity of deciding Nash-stability, we show that there are sim-

ple polynomial time algorithms for tree networks in both versions. Furthermore,
greedy-stability represents an easy-to-check certificate for 3-approximate Nash-stab-
ility in the Sum version.

3.2. Greedy Agents and Greedy Equilibria
We consider agents which check three simple ways to improve their current infras-
tructure. The three operations are

• greedy augmentation, which is the creation of one new own link,

• greedy deletion, which is the removal of one own link,

• greedy swap, which is a swap of one own link.

Computing the best augmentation/deletion/swap for one agent can be done in
O(n2(n+m)) steps by trying all possibilities and re-computing the incurred cost via
a modified breadth-first-search computation. Observe, that these smooth strategy-
changes induce some kind of organic evolution of the whole network which seems

3This problem is the max-analogue of the classical Uncapacitated Metric Facility Location prob-
lem [Vaz01]. The only difference is, that the sum-operator in the objetive function is replaced
by a max-operator.
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highly adequate in modeling the Internet or social networks. This greedy behavior
naturally leads us to a new solution concept:

Definition 3.2.1 (Greedy Equilibrium) (G,α) is in Greedy Equilibrium if no
agent in G can decrease her cost by buying, deleting or swapping one own edge.

Note, that GE can be understood as solutions which are obtained by a distributed
local search procedure performed by selfish agents. We will discuss the dynamics
of this local search in detail in Chapter 4.
The next theorem relates GE to other solution concepts in the Sum version. See

Fig. 3.1 for an illustration. Relationships are similar in the Max version.

Theorem 3.2.2 For the Sum version it is true that NE ⊂ GE ⊂ ASE and that
SE ⊂ ASE. Furthermore, we have NE\SE 6= ∅, GE\SE 6= ∅, (GE\SE)\NE 6= ∅,
(GE\NE) ∩ SE 6= ∅ and NE ∩ GE ∩ SE 6= ∅.

(H1, 7)

(H6, 9)

(H2, 3)

(H3, 3)

(H5, 5)

(H4, 3.5)

NE

GE

SE

ASE

Fabrikant et al. 2003 Alon et al. 2010

Mihalák & Schlegel 2012

Figure 3.1.: Relations between solution concepts for NCGs in the Sum version.
Edge-directions indicate edge-ownership, edges point away from their
owner.

Proof It is easy to see that Sum-NE ⊆ Sum-ASE and Sum-SE ⊆ Sum-ASE must
hold, since in both cases we restrict the set of available strategies for the agents.
Clearly, greediness restricts the possible strategies of an agent as well. Hence, we
have Sum-NE ⊆ Sum-GE. Furthermore, by the same argument, if no agent can
buy, delete or swap one own edge, then such a network must be in Asymmetric
Swap Equilibrium. It follows that Sum-GE ⊆ Sum-ASE.
Consider the networks depicted in Fig. 3.1. It follows from the work of Alon

et al. [ADHL13] that any network having diameter 2 is in Sum-SE.4 Thus, we
4See Corollary 5.2.2 in Chapter 5.
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have that (H2, 3), (H3, 3), (H5, 5) ∈ Sum-SE, since the edge-cost parameter and the
edge-ownerships have no influence on the stability in the Swap Game. Observe
that (H1, 7), (H6, 9) /∈ Sum-SE, since any leaf-agent can swap her edge towards a
neighbor of another leaf-agent and thereby strictly decrease her cost. Furthermore,
(H4, 3.5) /∈ Sum-SE, since an agent having distance 3 towards the leaf-agent can
decrease her cost by swapping an edge towards the neighbor of the leaf.
Now we show that a cycle having 5 vertices, C5 for short, is in Sum-GE for any

edge assignment if and only if 1 ≤ α ≤ 4. Since C5 is in Sum-SE, we only have to
show that no agent wants to buy or delete one edge if and only if 1 ≤ α ≤ 4. Since
every vertex of C5 has eccentricity 2, we have that an agent can strictly decrease
her cost by buying one edge if and only if α < 1. On the other hand, since deleting
one edge increases the distance-cost of the moving agent by 4, we have that an
agent can strictly decrease her cost by deleting one edge if and only if α > 4. Thus,
(H2, 3), (H3, 3) ∈ Sum-GE and (H5, 5) /∈ Sum-GE.
Next, we show that H1 = H6 is in Sum-GE for 6 ≤ α ≤ 8: For H1 to be in

Sum-GE we have to make sure that no leaf-agent can buy an edge and that every
cycle-agent has bought the best possible edge and cannot be better off by removing
that edge or by purchasing one additional edge. By symmetry of the construction,
we can focus on one leaf-agent l only. A best possible edge for agent l is the edge
towards a cycle-vertex which has maximum distance to l. This edge decreases agent
l’s distance-cost by 6. Now we consider a cycle-agent u and again, by symmetry, it
suffices to argue for agent u. Observe that agent u cannot remove her edge towards
the neighboring leaf, since this would disconnect the network. If x removes an
edge towards a neighboring cycle-vertex, then agent u’s distance-cost increases by
8. Furthermore, it is easy to see that no edge-swap can decrease agent u’s cost.
Hence, it remains to show that agent u cannot buy an additional edge and thereby
strictly decrease her cost. A best possible additional edge for u is an edge towards a
non-neighboring cycle-vertex, which yields a distance decrease of 2. Hence, if α > 2,
no such additional edge will be bought by u. Analogously, it is easy to check that
H4 is in Sum-GE for 3 ≤ α ≤ 4. If we restrict agents only to swapping own edges,
it follows that (H6, 9) ∈ Sum-ASE \ Sum-GE.
Now, let us investigate (H1, 7). Note that agents of H1 who do not own any

edge cannot change their strategy to strictly decrease their cost. Hence, we only
have to argue that no cycle-vertex u can unilaterally change her strategy to strictly
decrease her cost. By symmetry of the construction, it suffices to argue for agent u.
Let lu be u’s leaf-neighbor and let w be u’s cycle-neighbor to which u owns an
edge and let v be u’s other cycle-neighbor. Observe that u has to buy the edge
towards lu in any strategy to ensure connectedness. Hence, we can safely ignore
this edge. Furthermore, since α ≤ 8, removing edge uw does not yield a strict cost
decrease for u. Since (H1, 7) is in Sum-Greedy Equilibrium, we have that u cannot
swap edge uw with some other edge to decrease her cost. It remains to show that
u cannot strictly decrease her cost by removing edge uw and buying at least two
edges. First, let us assume that u can remove edge uw and simultaneously buy
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two edges ux and uy and thereby strictly decrease her cost. Observe that x 6= w
and y 6= w must hold, since otherwise the edge not connecting to w would be a
greedy augmentation. Furthermore, it is easy to show that v 6= x, v 6= y and x 6= y
must hold and that x and y cannot be leaves, since leaves are always dominated by
their corresponding cycle-neighbors. Hence, the only possible strategy for agent u,
which satisfies the mentioned constraints, is to buy the edges uz1 and uz2, where
z1 and z2 are the cycle-vertices which have maximum distance to u. This strategy
yields a distance decrease of 10 compared to buying only edge ulu. Clearly, every
edge in an equilibrium strategy, which is not required for ensuring connectedness of
the network must yield at least a distance decrease of α, since otherwise the agent
would be better off without buying that edge. Since 10 < 2α, we have that agent
u’s new cost is strictly higher than u’s cost in (H1, 7). Observe that removing uw
and buying three edges ux, uy, uz, with x 6= w, y 6= w and z 6= w, yields a distance
decrease of 12 < 3α. Hence, agent u cannot strictly decrease her cost by buying
3 edges. For more than three edges, where no edge is allowed to connect to w, an
analogous argument yields that u cannot strictly decrease her cost. Hence, agent u
cannot change her strategy to strictly decrease her cost. Analogously, it is easy to
check that (H2, 3) ∈ Sum-NE.
The network (H3, 3) /∈ Sum-NE, since the vertex which owns two edges can

strictly decrease her cost by removing both edges and buying one edge towards a
vertex in distance 2 in H3. Finally, (H4, 3.5) /∈ Sum-NE, since the agent who owns
two edges can strictly decrease her cost by performing a similar strategy-change as
the respective agent in (H3, 3). �

3.3. The Quality of Sum Greedy Equilibria
This section is devoted to discussing the quality of Greedy Equilibrium networks in
the Sum-version of the NCG. We begin with a simple but very useful property.
Lemma 3.3.1 If an agent u cannot decrease her cost by buying one edge in the
Sum-NCG, then buying k > 1 edges cannot decrease agent u’s cost.

Proof Let u be an agent who cannot strictly decrease her cost in network (G,α)
by purchasing one edge. Let q denote the number of edges in (G,α) owned by
agent u. Now assume towards a contradiction that agent u can strictly decrease
her cost by purchasing k > 1 edges e1, . . . , ek. Let (Gk, α) be the network (G,α)
augmented by these k edges. Hence, we have cu(Gk, α) < cu(G,α). We have
cu(G,α) = qα + δu(G) and cu(Gk, α) = qα + kα + δu(Gk). Let (G1, α) denote the
network (G,α), where agent u has built the best possible additional edge e∗. That
is, there is no other additional edge e′, such that agent u can strictly decrease her
cost by swapping edge e∗ with edge e′. Since (G,α) is in Greedy Equilibrium, we
have cu(G1, α) = qα + α + δu(G1) ≥ cu(G,α). Hence, we have

cu(Gk, α) < cu(G,α) ⇐⇒ kα < δu(G)− δu(Gk) (3.1)
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and
cu(G1, α) ≥ cu(G,α) ⇐⇒ α ≥ δu(G)− δu(G1). (3.2)

Let gk = δu(G) − δu(Gk) and g1 = δu(G) − δu(G1), that is, gk and g1 denote
the distance decrease of agent u by building edges e1, . . . , ek simultaneously or by
building edge e∗, respectively. For all edges l ∈ {e1, . . . , ek, e

∗}, let gl denote the
decrease in distance-cost for agent u if only the edge l is inserted into network
(G,α). Observe that gk ≤ ge1 + ge2 + · · ·+ gek holds.
By inequality (3.1) we have that

α <
gk

k
≤ ge1 + ge2 + · · ·+ gek

k
.

It follows that α < gej , for some 1 ≤ j ≤ k, since otherwise we would have

α <
ge1 + ge2 + · · ·+ gek

k
≤ kα

k
= α .

Furthermore, since e∗ is the best possible additional edge for agent u in (G,α), we
have gej ≤ ge

∗ . It follows that α < ge
∗ , which contradicts inequality (3.2). �

3.3.1. Tree Networks in Sum Greedy Equilibrium
We show that in the NCG all stable trees found by greedily behaving agents are
even stable against any strategy-change. Hence, in case of a tree equilibrium no loss
in stability occurs by greedy play. This is a counter-intuitive result, since for each
agent alone being greedy is clearly sub-optimal (the network in Fig. 3.2 with α = 6
is an example). Thus, the following theorem shows the emergence of an optimal
outcome out of a combination of potentially sub-optimal strategies.

Theorem 3.3.2 If (T, α) is in Sum-GE and T is a tree, then (T, α) is in Sum-NE.

Before we prove Theorem 3.3.2, we first provide some useful observations. The
well-known notion of a 1-median [KH79b] is used:

Definition 3.3.3 (1-median) A 1-median of a connected graph G is a vertex x ∈
V (G), where

x ∈ arg min
u∈V (G)

∑
w∈V (G)

dG(u,w) .

Lemma 3.3.4 Let (T, α) be a tree network in Sum-GE. If agent u owns edge uw
in (T, α), then w must be a 1-median of its tree in the forest T − {u}.

Proof Assume towards a contradiction that vertex w is not a 1-median vertex in
its respective tree Tw in the forest T −{u}. Clearly, agent u’s unique shortest paths
to all vertices in V (Tw) in (T, α) traverse vertex w and we have that agent u’s total
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distance-cost to vertices in Tw is |V (Tw)|+∑
v∈V (Tw) dTw(w, v). Let x be a 1-median

vertex of Tw. By definition, we have that∑
v∈V (Tw)

dTw(x, v) <
∑

v∈V (Tw)
dTw(w, v) .

Thus, agent u can strictly decrease her total distance-cost to vertices in Tw by
performing an edge-swap from w towards x. This contradicts the fact that (T, α)
is in Sum-GE. �

Let (T, α) be any tree network in Sum-GE and let T u be the forest induced by
removing all edges owned by agent u from T . Let F u be the forest T u without the
tree containing vertex u. The above lemma directly implies the following:

Corollary 3.3.5 Let (T, α) be in Sum-GE, and let F u be defined as above. Agent
u’s strategy in (T, α) is the optimal strategy among all strategies that buy exactly
one edge into each tree of F u.

Let x ∈ V (T ) be a 1-median of the tree T . Let u /∈ V (T ) be a special vertex. We
consider the network (Gu

T , α), which is obtained by adding vertex u and inserting
edge ux, which is owned by u, in T and by assigning the ownership of all other edges
arbitrarily among the respective endpoints of any other edge in Gu

T . Furthermore,
let y1, . . . , yl denote the neighbors of vertex x in T and let Tyi , for 1 ≤ i ≤ l, denote
the maximal subtree of T which is rooted at yi and which does not contain vertex x.
See Fig. 3.2 (left) for an illustration. We consider a special strategy of agent u in

x u x ux1

x2

x3

y2

y1

y3

Ty2

Ty1

Ty3

Figure 3.2.: The network (Gu
T , α) before and after agent u changes her strategy to

strategy S∗u.

(Gu
T , α): Let S∗u = {x1, . . . , xk} be the best strategy of agent u which purchases

at least two edges. The situation with agent u playing strategy S∗u is depicted in
Fig. 3.2 (right).
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Lemma 3.3.6 Let (Gu
T , α), S∗u = {x1, . . . , xk} and the subtrees Tyi, for 1 ≤ i ≤ l

be specified as above. There is no subtree Tyi, which contains all vertices x1, . . . , xk.

Proof We assume towards a contradiction that there is a strategy S∗u buying k > 1
edges and a subtree Tyi of T such that x1, . . . , xk are vertices of Tyi .
We claim that if this is the case, then there is a strategy S ′u which purchases

exactly k edges and which strictly outperforms strategy S∗u, that is, agent u can
strictly decrease her cost by switching from strategy S∗u to strategy S ′u. Clearly, this
yields a contradiction to S∗u being the best strategy for agent u.
Consider the vertices x1, . . . , xk induced by strategy S∗u. By assumption, all these

vertices are contained in subtree Tyi . Observe that vertex x does not belong to any
subtree Tyj . We will use the following well-known fact [KH79b] about a 1-median in
a tree stated in our terminology: Vertex x is a 1-median of tree T having n vertices
if and only if |V (Tyi)| ≤ n

2 for all 1 ≤ i ≤ l.
Let x′ ∈ {x1, . . . , xk} be the vertex having minimum distance to vertex x and let

x′′ be the neighbor of x′ which is closer to x. (Note that x′′ = x is possible and
that x′′ must be a non-neighbor of u.) Clearly, we have dT (x′, x) ≥ 1. Let S ′u be
the strategy S∗u with only one modification: Vertex x′ is replaced by vertex x′′.
We claim that S ′u yields strictly less cost for agent u than strategy S∗u. Observe

that since x is a 1-median we have |V (T ) \ V (Tyi)| ≥ n
2 . Hence, the replacement of

x′ by x′′ yields a cost decrease for agent u by at least n
2 . On the other hand, this

replacement increases agent u’s cost by at most n
2 − 1. This is true, because k > 1

and dT (x′, x′′) = 1 we have that agent u’s distances to all but one vertices in Tyi can
possibly increase by 1. Since we have only replaced x′ by x′′ all other distances stay
the same. Hence, we have that S ′u yields strictly less cost for agent u than strategy
S∗u and we have a contradiction. �

Next, let us consider two special strategies of agent u. Let S1
u be agent u’s best

strategy, which buys at least two edges including one edge towards vertex x. Fur-
thermore, let S2

u be agent u’s best strategy, which buys at least two edges but no
edge towards vertex x.

Lemma 3.3.7 Let (Gu
T , α), S1

u, S2
u and vertex x be specified as above. Let xj ∈ S2

u

be a vertex which has minimum distance to x among all vertices in S2
u. If strategy

S2
u yields less cost for agent u than strategy S1

u, then xj cannot be a leaf of Gu
T .

Proof We assume towards a contradiction that S2
u yields strictly less cost for agent

u than strategy S1
u and vertex xj ∈ S2

u, which has minimum distance to x among
all vertices in S2

u, is a leaf of Gu
T . Let x′j be the unique neighbor of xj. It follows

that d(x′j, x) = d(xj, x)− 1. There are two cases:
If d(xj, x) ≥ 2, then let S ′u be the strategy S2

u, where vertex xj is replaced by
vertex x′j. We claim that agent u can strictly decrease her cost by switching from
strategy S2

u to strategy S ′u. Observe that by switching from S2
u to S ′u, agent u

decreases her distance to x and to x′j by one. On the other hand, only the distance
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to vertex xj increases by one. Observe that |S ′u| = |S2
u| and x /∈ S ′u. Hence, S ′u

yields strictly less cost for agent u than strategy S2
u, which is a contradiction to the

fact that S2
u is agent u’s best strategy which buys at least two edges and no edge

towards x.
On the other hand, consider the case where d(xj, x) ≤ 1. Note that xj 6= x, since

x /∈ S2
u. Hence, we have d(xj, x) = 1. Let S ′′u be the strategy S2

u, where we replace
xj by x. We have |S2

u| = |S ′′u| and x ∈ S ′′u. Furthermore, since x /∈ S2
u, d(xj, x) = 1

and since xj is a leaf, we have that strategy S ′′u yields at most the cost of S2
u for

agent u. This contradicts the fact that S2
u strictly outperforms S1

u. �

Now we have all the tools we need to prove Theorem 3.3.2.

Proof (of Theorem 3.3.2) We will prove the contra-positive statement of The-
orem 3.3.2. We show that if an agent u can decrease her cost by performing a
strategy-change in a tree network (T, α) which is in Sum-GE, then there is an
agent z in V (T ) who can decrease her cost by performing a greedy strategy-change.
In that case we have a contradiction to (T, α) being in Sum-GE.
If agent u can decrease her cost by buying, deleting or swapping one own edge,

then we have u = z and we are done. Hence, we assume that agent u cannot de-
crease her cost by a greedy strategy-change but by performing an arbitrary strategy-
change. We consider agent u’s strategy-change towards the best possible arbitrary
strategy S∗ (if u has more than one such strategy, then we choose the one which
buys the least number of edges).
Clearly, agent u cannot remove any owned edge without purchasing edges, since

T is a tree and the removal would disconnect T . Furthermore, since (T, α) is in
Sum-GE and by Lemma 3.3.1, agent u cannot decrease her cost by purchasing k > 0
additional edges. Hence, the only way agent u can possibly decrease her cost is by
removing j own edges and building k edges simultaneously. Clearly, k ≥ j must
hold. Furthermore, by Corollary 3.3.5, it follows that k > j.
Let F u be the forest obtained by removing the j edges owned by agent u from

T and let T ∗ be the tree in F u which contains vertex u. Observe that among the
k new edges there cannot be edges having an endpoint in T ∗. This is true because
(T, α) is in Sum-GE and by Lemma 3.3.1. Any such edge would be a possible greedy
augmentation which we assume not to exist. Hence, by the pigeonhole principle,
we have that there must be at least one tree Tq in F u into which agent u buys at
least two edges with strategy S∗. We focus on Tq and will find agent z within.
Let ux, with x ∈ V (Tq), be the unique edge of T which connects u to the sub-

tree Tq. Hence, agent u’s strategy-change to S∗ removes edge ux and buys kq > 1
edges ux1, . . . , uxkq , with xj ∈ V (Tq) for 1 ≤ j ≤ kq. Let X = {x1, . . . , xkq}. By
Lemma 3.3.1, we have xj 6= x, for xj ∈ X. Let y1, . . . , yl denote the neighbors
of vertex x in Tq and let Ty1 , . . . , Tyl be the maximal subtrees of Tq not contain-
ing vertex x, which are rooted at vertex y1, . . . , yl, respectively. Let xa ∈ X be
a vertex of X which has minimum distance to vertex x. Let Ta ∈ {Ty1 , . . . , Tyl}
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be the subtree containing xa. By Lemma 3.3.6, we have that there is a subtree
Tb ∈ {Ty1 , . . . , Tyl}, with Tb 6= Ta, which contains at least one vertex of X. Let
B = {xb1 , . . . , xbp} = X ∩ V (Tb). Furthermore, since no strategy which buys at
least two edges including an edge towards x into Tq outperforms u’s greedy strategy
within Tq and by Lemma 3.3.7, we have that vertex xa cannot be a leaf. That is,
there is a vertex z ∈ V (Tq), which is a neighbor of xa, such that d(z, x) > d(xa, x).
We show that agent z can decrease her cost by buying one edge in (T, α).
First of all, notice that by definition of S∗, we have that each edge uxj, with

xj ∈ X, must independently of the other bought edges yield a distance decrease of
more than α for agent u. Otherwise agent u could remove this edge and obtain a
strictly better (or smaller) strategy, which contradicts the fact that S∗ is the best
possible strategy (buying the least number of edges). Let Dj ⊂ V (Tq) be the set of
vertices to which edge uxj is the first edge on agent u’s unique shortest path. Since
xa has minimum distance to x, it follows that Dr ⊆ V (Tb) for r ∈ {b1, . . . , bp}.
The main observation is that agent z faces in some sense the same situation as

agent u with strategy S∗ but without all edges uy, where y ∈ B: Both have vertex
xa as neighbor and their shortest paths to any vertex in Tb all traverse xa and x.
Remember that each edge uy, for all y ∈ B, yields a distance decrease of more than
α for agent u and that Dr ⊆ V (Tb), for r ∈ {b1, . . . , bp}. Furthermore, removing
all those edges from S∗ yields a strict cost increase for agent u. This implies that
agent z can decrease her cost by buying all edges zy, for y ∈ B, simultaneously. If
|B| = 1, then this strategy-change is a greedy move by agent z which decreases z’s
cost. If |B| > 1, then, by the contra-positive statement of Lemma 3.3.1, it follows
that there exists one edge zy∗, with y∗ ∈ B, which agent z can greedily buy to
decrease her cost. �

3.3.2. Non-Tree Networks in Sum Greedy Equilibrium
There exist non-tree networks in Sum-GE, since, as shown by Albers, Eilts, Even-
Dar, Mansour and Roditty [AEED+06], there exist non-tree networks in Sum-NE
and we have Sum-NE ⊆ Sum-GE. Having Theorem 3.3.2 at hand, one might hope
that this nice property carries over to non-tree Greedy Equilibria in the Sum-
version. Unfortunately, this is not true.

Theorem 3.3.8 There is a network in Sum-GE which is not in β-approximate
Sum-NE for β < 3

2 .

Proof We consider a special family G1, G2, . . . of networks. The network Gk is
constructed as follows: We have V (Gk) = {u,w, x, y1, . . . , yk} ∪ {zji | 1 ≤ i, j ≤ k}.
Vertex u owns edges towards y1, . . . , yk, vertex w owns edges towards x and u, each
vertex zji owns an edge to x and yi and the vertices y1, . . . , yk form a clique, with
arbitrary edge-ownership. Fig. 3.3 (left) illustrates this construction for k = 3.
First we show that the network (Gk, k+ 1) is in Sum-GE and then we show that

agent u’s best strategy yields a cost decrease by a factor of roughly 2
3 .
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Figure 3.3.: The network (Gk, k + 1) for k = 3 and agent u’s best response. For
k →∞ agent u’s improvement approaches a factor of 3

2 .

Note that Gk has diameter 2. Since α = k + 1 > 1, it follows that no agent
can buy an edge to decrease her cost. Furthermore, swapping any own edge cannot
decrease an agent’s cost either, since the number of neighbors stays the same. Thus,
we only have to argue that no agent can delete an own edge to decrease her cost.
Consider agent u. Deleting edge uyi increases u’s distances to yi, z1

i , . . . , z
k
i by

one. Hence, for α = k + 1, this operation does not decrease agent u’s cost. An
agent yi is in essentially the same situation. If yi deletes her edge yiyj, then yi’s
distances to yj, z1

j , . . . , z
k
j increase by one. Thus, agents y1, . . . , yk cannot delete an

edge to decrease their cost.
If agent w deletes edge wu, then all distances towards u, y1, . . . , yk increase by

one. Furthermore if w deletes edge wx, then all distances towards x and all zji ,
for 1 ≤ i, j ≤ k increase by at least one. Thus, agent w cannot delete an edge to
decrease her cost.
Finally, consider an agent zji . Deleting edge zji x increases zji ’s distances to x and

all zqp, for p 6= i and 1 ≤ q ≤ k. Deleting edge zji yi increases z
j
i ’s distances to

u, y1, . . . , yk by one. Hence, no agent can delete an edge to decrease her cost and
we have that (Gk, k + 1) is in Sum-GE.
Now consider a strategy-change of agent u from strategy Su = {y1, . . . , yk} to

strategy S∗u = {x}, see Fig. 3.3 (right). Let (G∗k, k + 1) be the network induced
by S∗u. We claim that S∗u is agent u’s best possible strategy. It is easy to see that
no other strategy S ′u, with |S ′u| ≤ 1 outperforms S∗u. Furthermore, note that with
strategy S∗u agent u has exactly the k vertices y1, . . . , yk at distance 3. Any edge
uyi yields a cost decrease of exactly k + 1, but since α = k + 1, such an edge does
not decrease agent u’s cost. Clearly, edges towards a vertex zji are even worse than
edges towards yi. By Lemma 3.3.1, we have that even more additional edges cannot
decrease u’s cost. Furthermore, it is easy to see that strategy Su is agent u’s best
possible strategy, which does not buy an edge towards x.
We will show that S∗u yields strictly less cost than Su for agent u, which will settle



32 3.3 The Quality of Sum Greedy Equilibria

the claim that S∗u is optimal. We have

lim
k→∞

cu(Gk, k + 1)
cu(G∗k, k + 1) = lim

k→∞

kα + k + 1 + 2(k2 + 1)
α + 2 + 2k2 + 3k = lim

k→∞

3k2 + 2k + 3
2k2 + 4k + 3 = 3

2 .

Thus, for any β < 3
2 there is a k′ such that cu(Gk′ , k

′ + 1) > βcu(G∗k′ , k′ + 1), which
implies that the Sum-GE (Gk′ , k

′ + 1) is not a β-approximate Sum-NE for β < 3
2 .�

Now let us turn to the good news. We show that Sum-GEs cannot be arbitrarily
unstable. On the contrary, they are very close to Sum-NEs in terms of stability.

Theorem 3.3.9 Every network in Sum-GE is in 3-approximate Sum-NE.

Proof We prove Theorem 3.3.9 by providing a “locality gap preserving” reduction
to the Uncapacitated Metric Facility Location problem (UMFL) [Vaz01].
Let u be an agent in (G,α) and let Z be the set of vertices in V (G) which

own an edge towards u. Consider the network (G′, α), where all edges owned by
agent u are removed. Observe that the set Z is the same in (G,α) and (G′, α). Let
S = {U | U ⊆ (V (G′)\{u})∧U ∩Z = ∅} denote the set of agent u’s pure strategies
in (G′, α) which do not induce multi-edges or a self-loop. We transform (G′, α) into
an instance I(G′) for UMFL as follows:
Let V (G′) \ {u} = F = C, where F is the set of facilities and C is the set of clients.
For all facilities f ∈ Z ∩ F we define the opening cost to be 0, all other facilities
have opening cost α. Thus, Z is exactly the set of cost 0 facilities in I(G′). For
every i, j ∈ F ∪ C we define dij = dG′(i, j) + 1. If there is no path between i and j
in G′, then we define dij = ∞. Clearly, since the distance in G′ is metric we have
that all distances dij in I(G′) are metric as well. See Fig. 3.4 for an example.
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Figure 3.4.: Network (G′, α) and its corresponding UMFL instance I(G′). Edges
between clients and between facilities are omitted. All other omitted
edges have length ∞.

Now, observe that any strategy S ∈ S of agent u in (G′, α) corresponds to the
solution of the UMFL instance I(G′), where exactly the facilities in FS = S ∪Z are
opened and where all clients are assigned to their nearest open facility. Moreover,
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every solution F ′ = X ∪ Z, where X ⊆ F \ Z, for instance I(G′) corresponds to
agent u’s strategy X ∈ S in (G′, α). Let SUMFL = {W ⊆ F | Z ⊆ W} denote the
set of all solutions to instance I(G′), which open at least all cost 0 facilities. Hence,
we have a bijection π : S → SUMFL, with π(S) = S ∪ Z and π−1(X) = X \ Z. Let
π(S) = FS and let (GS, α) denote the network (G′, α), where agent u has bought
all edges towards vertices in S. Let cost(FS) denote the cost of the solution FS to
instance I(G′). We have that agent u’s cost in (GS, α) is equal to the cost of the
corresponding UMFL solution FS, since

cu(GS, α) = α|S|+
∑

w∈V (GS)\{u}

(
1 + min

x∈S∪Z
dG′(x,w)

)
= α|S|+ 0|Z|+

∑
w∈V (GS)\{u}

min
x∈S∪Z

dxw

= α|FS \ Z|+ 0|Z|+
∑
w∈C

min
x∈FS

dxw = cost(FS) .

We claim the following: If agent u plays strategy S ∈ S and cannot decrease her
cost by buying, deleting or swapping one edge in (GS, α), then we have that the
cost of the corresponding solution FS ∈ SUMFL to instance I(G′) cannot be strictly
decreased by opening, closing or swapping one facility.
Proving the above claim suffices to prove Theorem 3.3.9. This can be seen

as follows: For UMFL, Arya, Garg, Khandekar, Meyerson, Munagala and Pan-
dit [AGK+04] have already shown that the locality gap of UMFL is 3, that is,
that any UMFL solution in which clients are assigned to their nearest open facility
and which cannot be improved by opening, closing or swapping one facility is a
3-approximation of the optimum solution.
By construction of I(G′), we have that every facility z ∈ Z is the unique facility

which is nearest to some client w ∈ C. Thus, we have that in any locally optimal
and any globally optimal UMFL solution to I(G′) all cost 0 facilities must be open,
since otherwise such a solution can be improved by opening a cost 0 facility. Hence,
every locally or globally optimal solution to I(G′) has a corresponding strategy of
agent u which yields the same cost. Using the claim and the result by Arya et
al. [AGK+04], it follows that if agent u cannot decrease her cost by buying, deleting
or swapping an edge in (GS, α) then we have cu(GS, α) ≤ 3cu(GS∗ , α), where S∗ is
agent u’s optimal (non-greedy) strategy in (G′, α) and (GS∗ , α) the network induced
by S∗.
Now we prove the claim. Let π(S) = FS. We have already shown that cu(GS, α) =

cost(FS). Furthermore, we have Z ⊆ FS. We prove the contra-positive statement of
the claim. Assume that solution FS can be improved by opening, closing or swapping
one facility. Let F ′S be this locally improved solution and let cost(F ′S) < cost(FS).
Note that Z ⊆ F ′S must hold. This is true, since by construction of I(G′) closing a
cost 0 facility increases the cost of any solution to I(G′). Hence, no facility z ∈ Z
can be included in a closing or swapping operation. It follows that the strategy
S ′ := π−1(F ′S) exists. Observe that S = FS \ Z and S ′ = F ′S \ Z must differ by
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one element. Furthermore, by cost-equality, we have that cu(GS′ , α) = cost(F ′S) <
cost(FS) = cu(GS, α). Hence, agent u can buy, delete or swap one edge in (GS, α)
to decrease her cost. �

3.4. The Quality of Max Greedy Equilibria
In this section, we discuss the stability of networks in Max-GE. We will start by
showing that the operations of buying, deleting and swapping edges each may have
a strong non-local flavor. See Fig. 3.5 for an illustration.

Lemma 3.4.1 For k ≥ 2 there is a network (G,α), where an agent in the Max-
NCG can decrease her cost by buying/deleting/swapping k edges but not by buy-
ing/deleting/swapping j < k edges.
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Figure 3.5.: The networks and strategy-changes for k = 5.

Proof We consider each operation separately:
Buying k edges versus buying j < k edges: Let G be a star having n = k + 2

vertices and let agent u be a leaf vertex. See Fig. 3.5 (left). Furthermore, let
α < 1

n−2 . Let x be the center of the star. If agent u owns the edge ux, then we have
cu(G,α) = α+ 2, otherwise, we have cu(G,α) = 2. Now, observe that u has exactly
k vertices at maximum distance 2. Hence, buying j < k edges does not decrease
agent u’s maximum distance to any vertex. On the other hand, if u buys k = n− 2
edges to all distance 2 vertices, then agent u’s distance-cost decreases by 1 while
agent u’s edge-cost increases by kα < 1. Thus, buying k edges yields a strict cost
decrease for agent u.
Deleting k edges versus deleting j < k edges: Let G be a clique having n = k+ 2

vertices and let u be an agent who owns all but one of her k + 1 incident edges.
See Fig. 3.5 (middle). Let 1

n−2 < α ≤ 1
n−3 . Observe that cu(G,α) = kα + 1. If

agent u deletes j < k edges, then u’s distance-cost increases by 1 while u’s edge-cost
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decreases by jα ≤ 1. Thus, deleting j < k edges does not decrease agent u’s cost.
On the other hand, if u deletes k edges, then u distance-cost increases by 1 while
u’s edge-cost decreases by kα > 1. Hence, deleting k edges decreases agent u’s cost.
Swapping k edges versus swapping j < k edges: Let G = (V,E) be a star-like

graph which is defined as follows: Vertex u is the center of the star and we have
k triples of vertices ai, bi, ci, for 1 ≤ i ≤ k. Let E = {uai, aibi, bici | 1 ≤ i ≤ k},
where u owns the edges uai, ai owns the edge aibi and bi owns the edge bici, for
all 1 ≤ i ≤ k. See Fig. 3.5 (right). Observe that agent u cannot decrease her
cost by swapping j < k edges simultaneously, since each edge must connect to the
same subtree of u. In contrast to this, agent u can decrease her cost by performing
the multi-swap, where every edge uai is replaced by the edge ubi. Note that this
multi-swap decreases agent u’s distance-cost by 1 while having the same edge-cost.�

Having seen Lemma 3.4.1, it should not come as a surprise that greedy local opti-
mization may get stuck at sub-optimal states of the game.

3.4.1. Tree Networks in Max Greedy Equilibrium
The examples on the left and right side of Fig. 3.5 already show that there are
tree networks which are in Max-GE but not in Max-NE. In the following we show
that this undesired behavior is restricted to only two families of tree networks in
Max-GE. That is, we provide a characterization of all tree networks in Max-GE
which are not in Max-NE. Furthermore, we show tight bounds on the stability for
both mentioned families which are very close to the optimum.
We start by introducing the main actors: Cheap Stars and Badly Connected Trees.

Definition 3.4.2 (Cheap Star) A network (T, α) in Max-GE is called a Cheap
Star, if T is a star having at least n ≥ 4 vertices and α < 1

n−2 . Furthermore, the
ownership of all edges in T is arbitrary.

As we will see, Cheap Stars are exactly those tree networks (T, α) in Max-GE
which remain in Max-GE even if we let the edge-cost parameter α tend to 0.

Definition 3.4.3 (Badly Connected Tree) A tree network (T, α) in Max-GE
is a Badly Connected Tree if there is an agent u ∈ V (T ) who can decrease her cost
by swapping k > 1 own edges simultaneously.

Intuitively, Cheap Stars owe their instability to a multi-buy operation, whereas
Badly Connected Trees owe their instability to a multi-swap operation. Observe
that Cheap Stars have diameter 2 and that Badly Connected Trees have diameter
at least 3. Hence, these families are disjunct. The following theorem shows that
Cheap Stars and Badly Connected Trees are the only tree networks in Max-GE
which are not in Max-NE.



36 3.4 The Quality of Max Greedy Equilibria

Theorem 3.4.4 Let (T, α) be a network in Max-GE, where T is a tree. The
network (T, α) is in Max-NE if and only if it is not a Cheap Star or a Badly
Connected Tree.

The proof of Theorem 3.4.4 is based on the following two observations.

Lemma 3.4.5 Let (T, α) be a tree network in Max-GE having diameter at most 2.
If (T, α) is not in Max-NE, then (T, α) is a Cheap Star.

Lemma 3.4.6 Let (T, α) be a tree network in Max-GE having diameter at least
3. If (T, α) is not in Max-NE, then (T, α) is a Badly Connected Tree.

We start with proving Lemma 3.4.5.

Proof (of Lemma 3.4.5) Trivially, any tree network having diameter at most
1 must be in Max-NE. Hence, we focus on diameter 2 tree networks which are in
Max-GE but not in Max-NE. Note that every tree network in Max-GE which has
diameter 2 is stable against multi-swap operations. This is easy to see, since leaves
can own at most one edge and the unique non-leaf vertex (the center of the star)
has already optimal distance-cost of 1. Since edge deletions lead to a disconnected
network, it follows that the instability against arbitrary strategy-changes must be
due to a multi-buy operation of a leaf agent. If T has at most 3 vertices, then
any leaf can buy at most one additional edge, which represents a greedy operation.
Hence, T must have at least 4 vertices. Since T is a star, we have that any leaf l
has exactly n−2 vertices in distance 2. Thus, to strictly decrease her distance-cost,
agent l must buy all edges towards these n− 2 non-neighbors. It follows that such
a multi-buy operation yields a strict cost decrease for agent l, if α < 1

n−2 . This
matches exactly the definition of a Cheap Star and implies that Cheap Stars are
the only possible diameter 2 tree networks in Max-GE which are not in Max-NE.�

For proving Lemma 3.4.6, we first need some additional observations. We will use
well-known notion of a 1-center vertex [KH79a]:

Definition 3.4.7 (1-center) A 1-center vertex of a connected graph G is a vertex
x ∈ V (G), where

x ∈ arg min
u∈V (G)

max
w∈V (G)

dG(u,w) .

Lemma 3.4.8 If (T, α) is a tree network in Max-GE having diameter at least 3,
then α ≥ 1.

Proof Assume towards a contradiction that there is a tree network (T, α), which
is in Max-GE and has diameter at least 3 and where α < 1. There are two cases:
If every leaf of T is a neighbor of a 1-center of T , then, since T has diameter at

least 3, there must be two 1-center vertices of T and T has diameter exactly 3. It
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is easy to see that any tree can have at most two 1-center vertices5. Thus, we have
that T must be a “double-star”. Let x and y be the two 1-center vertices of T and
let l be a leaf which is a neighbor of x. Since y is a 1-center, there must be a leaf
z which is a neighbor of y and where dT (l, z) = 3. If agent l buys the edge {l, y},
then l’s edge-cost increases by α but her distance-cost decreases by 1. Since α < 1,
this yields a strict cost decrease for agent l and we have a contradiction to (T, α)
being in Max-GE.
If not all leaves of T have a neighboring 1-center vertex, then let l be one such

leaf which has the maximum distance to any 1-center in T . Let x be this 1-center
vertex and let dT (l, x) = k ≥ 2. Let Dl be the set of vertices which have maximum
distance to vertex l in T . Since l has maximum distance to x and x is a 1-center
of T , it follows that x lies on all shortest paths from l to any vertex in Dl. Thus,
if agent l buys the edge {l, x}, she reduces her distance-cost by at least 1 while
increasing her edge-cost by α < 1. This yields a strict cost decrease for agent l and
again we have a contradiction to (T, α) being in Max-GE. �

Lemma 3.4.9 Let (G,α) be any network in Max-GE which is not in Max-NE.
Let u be any agent who can strictly decrease her cost by performing a non-greedy
strategy-change towards strategy S∗u. If α ≥ 1, then agent u’s distance-cost induced
by strategy S∗u is at least 2.

Proof Let Su be agent u’s current strategy in (G,α). Clearly, we have δu(G) > 1,
since otherwise agent u could improve on her current strategy only by deleting
edges, which yields an increase in distance-cost by at least 1. We assume towards
a contradiction that agent u can perform a strategy-change towards strategy S∗u,
which yields a strict cost decrease and where δu(G∗) = 1. Here (G∗, α) is the new
network induced by agent u’s strategy-change. It is easy to see that |S∗u| > |Su|
must hold, since we have δu(G) > 1 which implies that agent u cannot possibly
bring her distance-cost down to 1 by performing a multi-swap. Consider agent u’s
shortest path in (G,α) towards a vertex having maximum distance to u. Clearly,
this path has length δu(G). Since in (G∗, α) we have δu(G∗) = 1, it follows that
u with her new strategy S∗u must buy an edge to all vertices on this path. Hence,
agent u must buy at least δu(G)− 1 many additional edges to achieve distance-cost
of 1. But, since α ≥ 1, this yields that

eu(G∗, α) ≥ eu(G,α) + (δu(G)− 1)α ≥ eu(G,α) + δu(G)− 1 .

Hence, we have that

cu(G∗, α) = eu(G∗, α) + δu(G∗) ≥ eu(G∗, α) + δu(G)− 1 + 1
≥ eu(G,α) + δu(G) = cu(G,α) ,

5The proof is similar to the proof of Lemma 4.2.14. If there are at least three 1-center vertices,
then there must be a vertex which lies on all paths between all pairs of 1-center vertices. This
vertex must have strictly smaller eccentricity than all the (other) 1-center vertices, which is a
contradiction.
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which is a contradiction to the fact that S∗u strictly decreases agent u’s cost. �

Now we are ready for the proof of Lemma 3.4.6.

Proof (of Lemma 3.4.6) Let (T, α) be any tree network in Max-GE, where T
has diameter at least 3. Note that by Lemma 3.4.8, it follows that α ≥ 1.
We claim that if there is an agent u in V (T ) with strategy Su who can strictly

decrease her cost by changing to a strategy S∗u, where |Su| < |S∗u|, then there must
be an agent p who can strictly decrease her cost by buying one edge. This yields a
contradiction to (T, α) being in Max-GE.
Observe that in a tree network, no agent can change to a strategy which involves

buying less edges than before, since such a change would disconnect the network.
Proving the above claim suffices to prove the Lemma, since Badly Connected Trees
are exactly those tree networks in Max-GE, where one agent v with strategy Sv can
strictly decrease her cost by performing a multi-swap, that is, agent v can change
to a strategy S∗v , where |Sv| = |S∗v |.
Now we prove the claim. Let u be an agent with strategy Su who can strictly

decrease her cost by changing to strategy S∗u, with |Su| < |S∗u|. Let (G∗, α) be
network induced by agent u’s new strategy S∗u. Let x1, . . . , xl denote the neighbors
of u in T and let Txi denote the maximal subtree rooted at xi which does not contain
u, for all 1 ≤ i ≤ l. Let k = |S∗u| − |Su| denote the number of additional edges
purchased by agent u with her new strategy. Since we assume that S∗u yields a strict
cost decrease for agent u, it follows that S∗u must decrease agent u’s distance-cost
by more than kα. Let Du denote the set of vertices of T which have maximum
distance δu(T ) to u. By Lemma 3.4.9, it follows that 2 ≤ δu(G∗) < δu(T ) − kα,
which yields δu(T ) ≥ bkαc+ 3. There are two cases:

1. Du 6⊂ V (Tv), for any v ∈ {x1, . . . , xl}. In this case there are two vertices p, q,
where p ∈ V (Txi) and q ∈ V (Txj), for some i 6= j, and we have δu(T ) = dT (u, p) =
dT (u, q). Since T is a tree, it follows that dT (p, q) = 2δu(T ) and that q ∈ Dp,
where Dp is the set of vertices of T which have maximum distance to p. Observe
that p has distance at most 2δu(T )− 2 to any other vertex in Txi . This implies
that vertex u lies on agent p’s shortest paths to any vertex of Dp. If agent p
buys the edge pu, then agent p’s distance to all vertices which are not in V (Txi)
decreases by δu(T )− 1 ≥ bkαc+ 2 > α. Furthermore, edge pu yields that agent
p’s distance to any vertex in V (Txi) is at most 1+δu(T ). Since δu(T ) > kα+2 and
k ≥ 1 it follows that 1+δu(T ) < 2δu(T )−α. Thus we have that edge pu increases
agent p’s edge-cost by α but at the same time it decreases her distance-cost by
more than α, which is a contradiction to (T, α) being in Max-GE.

2. Du ⊂ V (Tv), for some v ∈ {x1, . . . , xl}. Consider agent p ∈ Du, for which
dT (u, p) = δu(T ) ≥ bkαc + 3 holds. Since Du ⊂ V (Tv) we have that dT (u,w) ≤
δu(T )− 1, for all w ∈ V (T ) \ V (Tv). Hence, on the one hand we have that agent
p’s maximum distance in T to any vertex in V (Tv) is at most 2δu(T )−2. On the
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other hand, agent p’s maximum distance in T to any vertex in V (T )\V (Tv) is at
most 2δu(T )− 1. If agent p buys the edge pv, then we have that her maximum
distance to any vertex in V (Tv) decreases by δu(T ) − 2 ≥ bkαc + 1 > α. For
any other vertex q ∈ V (T ) \ V (Tv), we have that edge pv yields a distance of
at most 1 + δu(T ) between p and q. Since δu(T ) > kα + 2 and k ≥ 1 we have
1 + δu(T ) < 2δu(T ) − 1 − α. Hence, edge pv increases agent p’s edge-cost by α
but it decreases agent p’s maximum distance by more than α, which implies that
p can greedily buy the edge pv and thereby strictly decrease her cost. This is a
contradiction to (T, α) being in Max-GE. �

Finally, we can set out for proving Theorem 3.4.4.

Proof (of Theorem 3.4.4) If a Max-GE tree network (T, α) is a Cheap Star,
then by definition of a Cheap Star, there is a leaf-agent who can strictly decrease
her cost by buying edges to all non-neighboring vertices. Clearly, this implies that a
Cheap Star cannot be in Max-NE. Furthermore, by definition of a Badly Connected
Tree, we have that in every such tree network, there is an agent who can strictly
decrease her cost by swapping k > 1 edges simultaneously, which implies that such
networks are not in Max-NE. Hence, it remains to show that Cheap Stars and
Badly Connected Trees are the only tree networks which can be in Max-GE and
at the same time not in Max-NE.
On the one hand, by Lemma 3.4.5, we have that for Max-GE tree networks

having at most diameter 2 Cheap Stars are the only tree networks which are not in
Max-NE. On the other hand, by Lemma 3.4.6, it follows that among all Max-GE
tree networks having diameter at least 3 only Badly Connected Trees are not in
Max-NE. Since this case distinction covers every possible diameter, the Theorem
follows. �

We can use the characterization provided by Theorem 3.4.4 to “circumvent” the
hardness of deciding whether a tree network is in Max-NE.

Theorem 3.4.10 For every n-vertex tree network (T, α) it can be checked in O(n4)
many steps whether (T, α) is in Max-NE.

Proof We can check whether a tree network (T, α) is in Max-NE as follows: First,
we compute whether (T, α) is in Max-GE. If this test fails, then, since Max-GEs
are a super-class of Max-NEs, we have that (T, α) is not in Max-NE. On the other
hand, if (T, α) is in Max-GE, then we have to check whether (T, α) is a Cheap
Star or a Badly Connected Tree. If (T, α) is not a Cheap Star and not a Badly
Connected Tree, then, by Theorem 3.4.4, we have that (T, α) must be in Max-NE.
Otherwise, (T, α) is not in Max-NE.
Computing whether (T, α) is in Max-GE can be done in O(n4) steps by checking

for every agent if she can strictly decrease her cost by either swapping or buying
one own edge. We can neglect edge deletions since such an operation disconnects



40 3.4 The Quality of Max Greedy Equilibria

the network. An agent may own Θ(n) may edges, which implies that at most
O(n2) many edge-swaps are possible. Computing the incurred cost of a strategy
can be done in linear time by performing a modified breadth-first-search of the tree
network. Since there are O(n) many possible edge purchases per agent, it follows
that we can check in O(n3) steps, if an agent can decrease her cost by performing
a greedy strategy-change.
Checking if (T, α) is a Cheap Star is possible in O(n) steps, since we only have to

compute the diameter of T and checking if n and α have the right size. Computing
whether (T, α) is a Badly Connected Tree is more involved since we have to check
if there is an agent who can perform a multi-swap to strictly decrease her cost.
This can be done by computing for every agent u the vertices having the maximum
distance to u, checking if u owns all edges towards the respective subtrees of T
and by computing the 1-center vertices of those subtrees. Finally, by checking if all
edges towards subtrees, which contain maximum distance vertices, do not connect
to a 1-center vertex of that subtree it can be decided whether agent u can perform
a multi-swap which decreases her cost. Computing the vertices having maximum
distance to u can be done by a breadth-first-search. Furthermore, there are linear
time algorithms for computing the 1-center of an vertex-unweighted tree - see for
example the work of Kariv and Hakimi [KH79a]. Hence, we have that checking if
agent u can perform a multi-swap to decrease her cost can be done in O(n) steps.
In total this yields O(n4) steps for deciding whether (T, α) is in Max-NE. �

We are interested in the stability of tree networks in Max-GE. By Theorem 3.4.4,
we only have to analyze the stability of Cheap Stars and Badly Connected Trees to
get bounds on the stability on any tree network in Max-GE.

Lemma 3.4.11 Every Cheap Star is in 2-approximate Max-NE. Furthermore, this
bound is tight.

Proof We consider any Cheap Star (T, α). Since Cheap Stars have at least 4
vertices, we have that V (T ) consists of x, the center of the star, and at least 3
leaves l1, l2 and l3. Let the edge-ownership be arbitrary. Analogously to the proof
of Lemma 3.4.1, we have that no leaf agent of T can buy one edge to decrease her
cost. Let Sl1 denote agent l1’s strategy in (T, α). Let S∗l1 be l1’s strategy which
buys all edges towards all non-neighbors in T and let (G∗, α) denote the induced
network. We claim that S∗l1 is agent l1’s best strategy. Since every Cheap Star is
in Max-GE, we have that agent l1 cannot delete or swap one edge to decrease her
cost. Since she owns at most one edge in (T, α), this rules out all deletion and
swapping operations. Analogously to the proof of Lemma 3.4.1, buying exactly one
edge does not decrease player l1’s cost either. Note that since α < 1

n−2 < 1, we have
that no strategy which yields distance-cost of 2 can have strictly less cost than Sv1

for agent l1. Hence, the claim follows.
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If agent l1 does not own the edge l1x, then we have

lim
α→0

cl1(T, α)
cl1(G∗, α) = lim

α→0

2
(n− 2)α + 1 = 2.

If the edge l1x is owned by agent l1 we get

lim
α→0

cl1(T, α)
cl1(G∗, α) = lim

α→0

α + 2
(n− 1)α + 1 = 2.

Thus, in both cases we have that the approximation ratio approaches 2 as α tends
to 0. Clearly, this also represents a tight lower bound of 2 on this ratio. �

Lemma 3.4.12 Every Badly Connected Tree is in 6
5-approximate Max-NE. Fur-

thermore, this bound is tight.

Proof Remember that Badly Connected Trees are exactly those tree networks in
Max-GE, where an agent u can strictly decrease her cost by performing a multi-
swap. Clearly, any multi-swap does not change agent u’s edge-cost. Thus, to
maximize the ratio between agent u’s cost in the Badly Connected Tree (T, α) and
u’s cost after the best possible multi-swap, we have to consider a Badly Connected
Tree, where agent u can decrease her distance-cost as much as possible. By definition
of a Badly Connected Tree, we have that agent u has at least two vertices p and
q in maximum distance δu(T ) and we know that p and q lie in different subtrees
of u. Observe that, since T is a tree, agent u owns exactly one edge towards each
subtree which contains maximum distance vertices. To ensure connectedness of
the network, agent u must swap those edges only within their respective subtree.
It follows that the best possible multi-swap connects to the middle vertex of the
shortest paths to all maximum distance vertices. Let (T ∗, α) be the tree network
induced by this best possible multi-swap of agent u. It follows that

δu(T ∗) ≥ 1 +
⌈
δu(T )− 1

2

⌉
≥
⌈
δu(T )

2

⌉
.

Let δu(T ) = k and let agent u own j ≥ 2 edges in T . We have

cu(T, α)
cu(T ∗, α) ≤

jα + k

jα +
⌈
k
2

⌉ ≤ 2α + k

2α +
⌈
k
2

⌉ .

Note that this ratio is maximized for a Badly Connected Tree (T ′, α), where an
agent u ∈ V (T ′) can decrease her distance-cost from k to

⌈
k
2

⌉
and where α is as

small as possible. However, we cannot simply choose α = 1 since we have to ensure
that (T ′, α) remains in Max-GE.
We explicitly construct (T ′, α), which will serve at the same time as lower and

upper bound construction. Clearly, T ′ must consist of a path P of length 2k, where
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agent u is the middle vertex of this path. Without loss of generality, we can choose
an odd k. Furthermore, to avoid greedy edge-swaps, we assume that for every edge
xy in P we have that x owns xy if x is closer to u than y. Thus, on path P we have
that u is the only agent who owns two edges. Now, observe that (P, α) is already
stable against greedy deletions and greedy swaps. No agent x ∈ V (P ) can swap any
single edge to decrease her cost, since the only owned edge is by construction an
edge which does not lie on all shortest paths from x to the vertices having maximum
distance to x. However, agents may improve their cost by buying one additional
edge if α is small enough. To rule out this possibility, we consider a leaf agent l and
choose α in such a way that l cannot decrease her cost by buying one edge. Note
that leaf agents have the highest distance-cost in P , which implies that they are
exactly those agents which are most susceptible to single edge purchases. Thus, if
no leaf agent of P can decrease her cost by buying one edge, then no other agent
can.
Let l1 and l2 be the to leaf agents of P . Observe that l1’s best possible additional

edge connects to some vertex z which lies on the path between u and l2. Hence,
this edge decreases agent l1’s distance-cost by at least k − 1. We choose α such
that it will neutralize this decrease in distance-cost. It follows that to minimize
α, we have to ensure that z is as close as possible to u. We force z towards u
by adding two branches to P as follows: Let p1 and p2 denote the vertices which
lie in the middle of the path from u to l1 and l2, respectively. Thus, we have
dP (u, p1) = dP (u, p2) =

⌈
k
2

⌉
. To finally obtain T ′, we connect both vertices p1, p2 to

a path of length
⌈
k
2

⌉
−1, respectively. Again, the ownership on these paths resembles

the edge ownership on P , that is, the respective vertex closer to u owns the edge.
Let l′1 and l′2 be the leaves of the newly attached paths. Note that these new paths
do not change agent u’s distance decrease. See Fig. 3.6 for an illustration.

u
l1

l′1

l2

l′2

p1 p2

u
l1

l′1

l2

l′2

p1 p2

Figure 3.6.: The network (T ′, α) for k = 7 before and after agent u’s best multi-
swap.

In (T ′, α), we have that dT ′(l1, l′1) = k−1. It follows that every possible additional
edge of agent l1 only yields a distance decrease of at most k + 1. Thus, setting
α ≥ k + 1, implies that no agent in (T ′, α) can decrease her cost by buying one
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edge.
Now we are ready to finally settle the approximation ratio of Badly Connected

Trees. For agent u in (T ′, α) we have
6
5 = lim

k→∞

2(k − 1) + k

2(k − 1) +
⌈
k
2

⌉ ≥ lim
k→∞

c(u)
c∗(u) ≥ lim

k→∞

2(k + 1) + k

2(k + 1) +
⌈
k
2

⌉ = 6
5 ,

where the limit on the left side represents the upper bound with α = k− 1 and the
limit on the right represents the lower bound with α = k + 1. Both bounds match
if we let k tend to infinity. �

Combining Theorem 3.4.4 with Lemma 3.4.11 and Lemma 3.4.12 we arrive at the
following:
Theorem 3.4.13 Let (T, α) be a tree network in Max-GE. If T has diameter at
most 2, then (T, α) is in 2-approximate Max-NE. If T has diameter at least 3, then
(T, α) is in 6

5-approximate Max-NE. Moreover, both bounds are tight.

3.4.2. Non-Tree Networks in Max Greedy Equilibrium
Fig. 3.5 (middle) shows that there are non-tree networks in Max-GE, which are
not in Max-NE. We want to quantify the loss in stability of Max-GEs versus
Max-NEs. For tree networks we have that Cheap Stars play a crucial role. These
networks owe their instability to a multi-buy operation and to the fact that they
are in Max-GE for arbitrarily small α. We generalize this property of Cheap Stars
to non-tree networks.
Definition 3.4.14 (Cheap Network) A network (G,α) in Max-GE, is called a
Cheap Network, if (G,α) remains in Max-GE when α tends to 0.

Cheap Stars yield a lower bound on the stability approximation ratio which equals
their diameter. We can generalize this observation:
Theorem 3.4.15 If there is Cheap Network (G,α) having diameter D, then there
is an α∗ such that the network (G,α∗) is in Max-GE but not in β-approximate
Max-NE for any β < D.

Proof Consider a Cheap Network (G,α), where G has diameter D and let u be
any vertex of G having eccentricity D. Let j denote the number of edges, which are
owned by agent u in (G,α). Thus, we have that agent u has cost jα+D. Now we
consider the strategy-change of agent u towards the strategy which buys an edge to
all vertices of G which do not own an edge to u. Clearly, after the strategy-change
agent u incurs cost of at most (n− 1)α + 1.
Now, observe that since (G,α) is a Cheap Network, we have that (G,α) remains

in Max-GE when α tends to 0. Hence, limα→0
jα+D

(n−1)α+1 = D, which implies that
for all β < D there is an α∗ such that jα∗ +D > β(n− 1)α∗ + 1. Hence, (G,α∗) is
in Max-GE but not in β-approximate Max-NE for any β < D. �
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Lemma 3.4.16 There is a Cheap Network having diameter 4.

Proof We construct the Cheap Network (G̃, α) as follows: The graph G̃ has 24
vertices u0, . . . , u7, v0, . . . , v7, w0, . . . , w7 and the vertices u0, . . . , u7 form a cycle,
where ui owns the edge towards ui+1, for 0 ≤ i ≤ 6, and u7 owns the edge to u0.
Furthermore, for 0 ≤ j ≤ 7 we have that agent vj owns an edge to uj and wj and
agent wj owns an edge towards uk, where k = (j + 4) mod 8. See Fig. 3.7 for an
illustration.

u0 u1

u2

u3

u4u5

u6

u7

v0 v1

v2

v3

v4v5

v6

v7

w1

w2

w3

w4w5

w6

w7

w0

Figure 3.7.: The Cheap Network (G̃, 1) having diameter 4.

For showing that (G̃, α) is a Cheap Network, we have to show that it is in Max-
GE for some α and that it remains in Max-GE if α tends to 0. We begin by proving
that (G̃, α) is in Max-GE for α = 1.
Since (G̃, 1) is highly symmetric, it suffices to show that agents u0, v0 and w0

cannot strictly decrease their cost by performing a greedy strategy-change. It is
easy to see that none of them can decrease her cost by deleting one own edge, since
any such deletion increases the respective agent’s distance-cost by at least 1. Since
α = 1, this does not yield a strict cost decrease.
Next, we show that none of the three agents can swap or buy an own edge and

thereby strictly decrease her cost. Consider agent u0, who owns exactly one edge.
Now, observe that u0’s edge u0u1 is the first edge on u0’s shortest paths to the
vertices w1 and v5 to which u0 has maximum distance. Furthermore, observe that
there is no vertex in G̃ which is a neighbor to both w1 and v5. Thus, no swap can
simultaneously decrease agent u0’s distance to w1 and v5. Agent u0 also has vertex
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w2 in maximum distance 3. Since dG̃(w1, w2) = 4, it follows that u0 cannot buy
any edge, which strictly decreases u0’s distances to both w1 and w2 simultaneously.
Hence, u0 cannot greedily purchase an edge to strictly decrease her cost.
Agent v0 has, among others, vertices v2, v3, v5 and v6 in maximum distance 4. We

have dG̃(v2, v3) = dG̃(v5, v6) = 3 and dG̃(v2, v5) = dG̃(v3, v6) = 4. Thus, the best
possible swap or edge purchase of v0, which strictly decreases the distances from v0
to v2 and v3 simultaneously, must connect to a neighbor x of v2 or v3. It follows
that either dG̃(x, v5) ≥ 3 or dG̃(x, v6) ≥ 3. Thus, such a swap or edge purchase
does not reduce v0’s distances to all of the four vertices v2, v3, v5, v6. Any improving
swap or edge purchase must strictly decrease v0’s distance-cost, which implies that
such an edge must connect to a neighbor of v2 or v3, since this is the only way to
decrease the distance to both of them. It follows that v0 cannot swap or buy any
own edge to decrease her cost.
Agent w0 has the vertices v1, v2.v6 and v7 in maximum distance 4. We have

dG̃(v1, v2) = dG̃(v6, v7) = 3 and dG̃(v1, v6) = dG̃(v2, v7) = 4. Hence, w0 faces
essentially the same situation as v0 and an analogous argument shows that w0
cannot swap or buy an edge to decrease her cost. This establishes that (G̃, 1) is in
Max-GE.
We have argued above that any edge deletion increases the distance-cost of the

moving agent by 1. Furthermore, we have shown that no swap or edge purchase can
strictly decrease any agent’s distance-cost. This implies that (G̃, α) is in Max-GE
for any α ≤ 1. Hence (G̃, α) is a Cheap Network having diameter 4. �

Remark 3.4.17 The Cheap Network (G̃, α) is not only stable against greedy strategy-
changes, it is even stable against any strategy-change. That is, (G̃, α) is in Max-
NE for any α ≤ 1. To the best of our knowledge, this is the first known non-tree
Max-NE network having diameter 4.

Corollary 3.4.18 For α < 1 there is a network (G,α) in Max-GE, which is not
in β-approximate Max-NE for any β < 4.

Now we consider the case, where α ≥ 1. Quite surprisingly, it turns out that this
case yields a very high lower bound on the approximation ratio.

Theorem 3.4.19 For α ≥ 1 there is a Max-GE network (G,α) having n vertices,
which is not in β-approximate Max-NE for any β < n−1

5 .

We give a family of networks in Max-GE each having an agent u who can decrease
her cost by a factor of 5

n−1 by a non-greedy strategy-change. The network (G1, α)
can be obtained as follows: V (G1) = {u, v, l1, l2, a1, a2, b1, b2, x1, y1} and agent u
owns edges to a1, a2 and x1. For i ∈ {1, 2}, agent bi owns an edge to v and to ai
and agent li owns an edge to bi. Finally, agent y1 owns an edge to x1 and to v.
Fig. 3.8 (left) provides an illustration. To get the k-th member of the family, for
k ≥ 2, we simply add the vertices xj, yj, for 2 ≤ j ≤ k, and let agent yj own edges
towards xj and v. See Fig. 3.8 (right).
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Figure 3.8.: (G1, α) before (left) and after (middle) agent u’s non-greedy strategy-
change and the network (Gk, α) (right).

Lemma 3.4.20 Each of the networks (Gi, α), as described above, is in Max-GE
for 1 ≤ α ≤ 2.

Proof The statement is proven as follows: If any agent of (G1, α) deletes one
own edge, then either this operation disconnects the network or her distance-cost
increases by 2. Since deleting an own edge decreases the edge-cost by α ≤ 2, we
have that such a move cannot yield a strict cost decrease for any agent.
Next, we show that no agent can swap an own edge to strictly decrease her cost.

Clearly, agents a1, a2, v and x1, . . . , xk cannot swap any edge since they do not own
one. By symmetry of the construction, we only have to show that agents u, b1, l1
and y1 cannot decrease their cost by swapping one own edge. Agent u has vertices
l1, l2 and v in maximum distance 3. But, since dGk(l1, l2) = 4, it is impossible
for u to swap any own edge such that the distance to all three of them is strictly
decreased. Agent b1 has vertices l2, a2 and x1 in maximum distance 3. But since
dGk(l2, x1) = 4, no swap can decrease b1’s distance to all of them. Analogously,
the same holds true for agent y1, who has l1, l2, a1 and a2 in maximum distance 3.
Agent l1 cannot improve by swapping her edge, since b1 is a 1-center vertex of the
graph Gk − l1 and for a leaf vertex it is clearly optimal to connect to a 1-center of
the remaining network.
Finally, let us focus on greedy edge purchases in (Gk, α). Since α ≥ 1, it follows

that greedily buying one edge can strictly decrease an agent’s cost only if this
operation decreases the distance-cost of that agent by more than α, that is, by at
least 2. Clearly, for all agents of (Gk, α) which have eccentricity 3, this is impossible.
Now we consider all other agents, which all have eccentricity 4 and we show that
none of them can buy an edge to decrease her distance-cost by more than 1. By
symmetry, it suffices to argue for agents l1, a1 and x1. Agent l1 has vertices l2 and
x1 in maximum distance 4. To decrease both distances simultaneously, agent l1
must buy an edge towards a vertex, which lies on both shortest paths from l1 to
l2 and from l1 to x1. Indeed, vertex v is such a vertex and it is easy to see that it
is the only non-neighbor of l1, which lies on both shortest paths. But buying an
edge towards v decreases l1’s distance-cost only by 1. Agent a1 only has vertex l2
in maximum distance 4. There are two shortest paths from a1 to l2 which both use
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vertex b2. However, buying an edge towards b2 only yields a distance decrease of 1
for agent a1. The same holds true for an edge towards a2 or v, respectively. Thus,
no edge to any non-neighboring vertex on a1’s shortest paths to l2 can decrease a1’s
distance-cost by more than 1. Agent x1 has vertices l1 and l2 in maximum distance
4. But, analogously to agent l1’s situation, there is no vertex which simultaneously
lies on a shortest path from x1 to l1 and on a shortest path from x1 to l2 and which
has distance 1 to l1 and l2. Thus, agent x1 can decrease her distance-cost by buying
one edge by at most 1. �

Proof (of Theorem 3.4.19) We focus on agent u in the network (Gk, α) and
show that this agent can change her strategy in a non-greedy way and thereby
decrease her cost by a factor of n−1

5 , where n is the number of vertices of Gk. Let
Su be agent u’s current strategy in (Gk, α) and let S∗u be u’s strategy which only
buys one edge towards vertex v and let (G∗k, α) be the corresponding network. See
Fig 3.8 (left and middle). For α = 2, we have

cu(Gk, α)
cu(G∗k, α) = α(2 + k) + 3

α + 3 = 7
5 + 2k

5 = n− 1
5 ,

where the last equality follows since k = n−8
2 , by construction. �

Corollary 3.4.21 Uncapacitated Metric Min-Max Facility Location6 has a locality
gap of n−1

5 , where n is the number of clients.

Proof The corollary follows by using the “locality gap preserving” reduction pro-
vided in the proof of Theorem 3.3.9 and the lower bound of Theorem 3.4.19.
The lower bound construction of Theorem 3.4.19 can be transformed into an

instance of uncapacitated metric min-max facility location. Remember that we have
cost-equality and that greedy strategy-changes of agent u in the NCG transfer one
to one to greedy modifications of the facility location solution. Thus, we have the
property that the corresponding solution to the facility location problem is locally
optimal but resembles only a n−1

5 -approximation to the globally optimal solution.�

6This problem is definied exactly like the Uncapacitated Metric Facility Location problem [Vaz01]
but with a max-operator instead of the sum-operator in the objective function.





4. The Dynamics of Selfish
Network Creation

Network Creation Games and several variants, as defined in Section 2.2, have been
studied intensively, but, to the best of our knowledge, almost all these works exclu-
sively focus on properties of the equilibrium states of the game1. With this focus,
the game is usually considered to be a one-shot simultaneous-move game.
However, the Internet and social networks are not created in “one shot”. It

evolved from an initial network, the ARPANET, into its current shape by repeated
infrastructural changes performed by selfish agents who entered or left the stage at
some time in the process. For this reason, we focus on a more dynamic point of
view: We analyze the properties of the network creation processes induced by the
sequential-move versions of the known model of selfish network creation.
It is well-known that Network Creation Games have low Price of Anarchy, which

implies that the social cost of the worst stable states arising from selfish behavior
is close to the cost of the social optimum. Therefore these games are appealing for
the decentralized and selfish creation of networks which optimize the service quality
for all agents at low infrastructural cost, e.g. overlay networks created by selfish
peers. But, to the best of our knowledge, it is not known how a group of agents
can collectively find such a desirable stable state. Analyzing the game dynamics of
Network Creation Games is equivalent to analyzing a very natural search strategy:
(uncoordinated) distributed local search, where in every step some agent myopically
modifies the network infrastructure to better suit her needs. Clearly, if at some
step in the process no agent wants to modify her part of the network, then a stable
network has emerged.

4.1. Preliminaries

4.1.1. Additional Definitions
We consider several versions of a network creation process performed by n selfish
agents. In all versions we consider networks, where every node corresponds to an
agent and undirected links connect network nodes. The creation process is based
on an underlying Network Creation Game (NCG) and can be understood as a
dynamic process where agents sequentially perform strategy-changes in the NCG.

1See Section 5.1.2 for a detailed summary.
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As explained in Section 2.2, the strategies of the agents determine which links are
present in the network and any strategy-profile, which is a vector of the strategies
of all n agents, determines the induced network. But this also works the other
way round: Given some network (G,α) with edge-ownership information then this
determines the current strategies of all agents in the network. Thus, starting from
a network (G0, α), any sequence of strategy-changes by agents can thus be seen
as a sequence of networks (G0, α), (G1, α), (G2, α), . . . , where the network (Gi+1, α)
arises from the network (Gi, α) by the strategy-change of exactly one agent.
The creation process starts in an initial state (G0, α), which we call the initial

network. A step from state (Gi, α) to state (Gi+1, α) consists of amove by one agent.
A move of agent u in state (Gi, α) is the replacement of agent u’s pure strategy in
(Gi, α) by another admissible pure strategy of agent u. The induced network after
this strategy-change by agent u then corresponds to the state (Gi+1, α). We consider
only improving moves, that is, strategy-changes which strictly decrease the moving
agent’s cost.
The cost of an agent in Gi depends on the structure of (Gi, α) as defined in

Section 2.2. If agent u in state (Gi, α) has an admissible new strategy which yields
a strict cost decrease for her, then we call agent u unhappy in network (Gi, α) and
we let Ui denote the set of all unhappy agents in state (Gi, α). Only one agent can
actually move in a state of the process and this agent u ∈ Ui, whose move transforms
(Gi, α) into (Gi+1, α), is called the moving agent in network (Gi, α). In any state
of the process the move policy determines which agent is the moving agent. The
process stops in some state (Gj, α) if no agent wants to perform a move, that is, if
Uj = ∅, and we call the resulting networks (swap-)stable.
Depending on what strategies are admissible for an agent in the current state,

we get the different game types Swap Game (SG), Asymmetric Swap Game (ASG),
Greedy Buy Game (GBG) and Buy Game (BG) (or Network Creation Game) as
defined in Section 2.2. Note that the (swap-)stable networks which may emerge at
the end of the network creation process correspond to pure Nash Equilibria if the
underlying game is the Buy Game, the Greedy Buy Game or the Asymmetric Swap
Game. They correspond to Swap Equilibria, if the underlying game is the Swap
Game. We will omit the reference to the edge-cost parameter α whenever we focus
on the SG or ASG.
The move policy specifies for any state of the process, which of the unhappy

agents is allowed to perform a move. From a mechanism design perspective, the
move policy is a way to enforce coordination and to guide the process towards a
stable state. We will focus on the max cost policy, where an agent having the
highest cost is allowed to move and ties among such agents are broken arbitrarily.
Sometimes we will assume that an adversary chooses the worst possible moving
agent. Note that the move policy only specifies who is allowed to move, not which
specific move has to be performed. We do not consider such strong policies since
we do not want to restrict the agents’ freedom to act.
Any combination of an underlying game (SG, ASG, GBG or BG), the two distance
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functions (Sum and Max) and some move policy together with an initial network
completely specifies a network creation process. If not stated otherwise, edge-costs
cannot be shared by agents.
A cyclic sequence of networks (C1, α), . . . , (Cj, α), where network (Ci+1 mod j, α)

arises from network (Ci mod j, α) by an improving move of one agent is called a
better response cycle. If every move in such a cycle is a best response move, which
is a strategy-change towards an admissible strategy which yields the largest cost
decrease for the moving agent, then we call such a cycle a best response cycle.
Clearly, a best response cycle is a better response cycle, but the existence of a
better response cycle does not imply the existence of a best response cycle.

4.1.2. Classifying Games According to their Dynamics
Analyzing the convergence processes of games is a very rich and diverse research
area. We will briefly introduce the two well-known classes of finite strategic games:
games having the finite improvement property (FIPG) [MS96] and weakly acyclic
games (WAG) [You93] as well as several subclasses of them.
FIPG have the most desirable form of dynamic behavior: Starting from any

initial state, every sequence of improving moves must eventually converge to an
equilibrium state of the game, that is, such a sequence must have finite length.
Thus, in such games distributed local search is guaranteed to succeed. It was
shown by Monderer and Shapley [MS96] that a finite game is a FIPG if and only if
there exists a generalized ordinal potential function Φ, which maps strategy-profiles
to real numbers and has the property that if the moving agent’s cost decreases,
then the potential function value decreases as well. Stated in our terminology, this
means that Φ : Gn → R, where Gn is the set of all networks on n nodes, and we
have

cu(Gi, α)− cu(Gi+1, α) > 0⇒ Φ((Gi, α))− Φ((Gi+1, α)) > 0 ,

if agent u is the moving agent in the network (Gi, α). Clearly, no FIPG can admit
a better response cycle. An especially nice subclass of FIPG are games that are
guaranteed to converge to a stable state in a number of steps which is polynomial
in the number of players. We call this subclass poly-FIPG.
Another well-known subclass of FIPG is the class of ordinal potential games

(OPG) [MS96]. OPGs admit an ordinal potential function Ψ : Gn → R, with
the stronger constraint that

cu(Gi, α)− cu(Gi+1, α) > 0 ⇐⇒ Ψ((Gi, α))−Ψ((Gi+1, α)) > 0 ,

if agent u is the moving agent in the network (Gi, α). Clearly every ordinal potential
function is a generalized ordinal potential function.
Weakly acyclic games (WAG) are a super-class of FIPG. Here it is not necessarily

true that any sequence of improving moves must converge to an equilibrium but
we have that from any initial state there exists some sequence of improving moves
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which enforces convergence. Thus, with some additional coordination distributed
local search may indeed lead to stable states for such games. A subclass of WAG
are games where from any initial state there exists a sequence of best response
moves, which leads to an equilibrium. We call those games weakly acyclic under
best response, BR-WAG for short. Observe that if a game is not weakly acyclic,
then there is no way of enforcing convergence if agents stick to playing improving
moves.
The above mentioned classes of finite strategic games are related as follows:

poly-FIPG ⊂
FIPG ⊂ BR-WAG ⊂WAG

OPG ⊂

The story does not end here. Very recently, Apt and Simon [AS12] have classified
WAG in much more detail by introducing a “scheduler”, which is a moderating
super-player who guides the agents towards an equilibrium.

4.1.3. Related Work
Most of the previous work on Network Creation Games focuses on properties of
stable networks or on the complexity of computing an agent’s best response. To the
best of our knowledge, the dynamic behavior of most of these variants, including
best response dynamics in the well-studied original model [FLM+03], has not yet
been analyzed.
Previous work, e.g. [FLM+03, AEED+06, DHMZ12, MS13], has shown that the

Price of Anarchy for the Sum-BG and the Max-BG is constant for a wide range
of α and in 2O(

√
logn) in general. For the Sum-(A)SG the best upper bound is

in 2O(
√

logn) as well [ADHL13, MS12], whereas the Max-SG has a lower bound
of Ω(

√
n) [ADHL13]. Interestingly, if played on trees, then the Sum-SG and the

Max-SG have constant Price of Anarchy [ADHL13], whereas the Sum-ASG and the
bounded budget version on trees has Price of Anarchy in Θ(log n) [EFM+11, MS12].
Moreover, it is easy to show that the Max-ASG on trees has Price of Anarchy in
Θ(n). Thus, we have the desirable property that selfish behavior leads to a relatively
small deterioration in social welfare for most of the proposed versions.2
Very recently, Cord-Landwehr, Hüllmann, Kling and Setzer [CLHKS12] studied

a variant of the Max-SG where agents have communication interests and showed
that this variant admits a best response cycle on a tree network as initial network.
Hence the restricted-interest variant of the Max-SG is not a FIPG – even on trees.
Brandes, Hoefer and Nick [BHN08] were the first to observe that the Sum-BG is

not a FIPG and they prove this by providing a better response cycle. Very recently,
Bilò, Gualà, Leucci and Proietti [BGLP12] gave a better response cycle for the

2See Section 5.1.2 for a more detailled discussion.
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Max-BG which implies the same statement for this version. Note that both proofs
contain agents who perform a sub-optimal move at some step in the better response
cycle. Hence, these two results do not address the convergence behavior if agents
play optimally.
It was shown in [FLM+03] that computing a best response in the Sum-BG is

NP-hard. In [MS13] the NP-hardness of this problem for the Max-version was
established. Independently from us Ehsani, Fazli, Mehrabian, Sadeghabad, Sa-
fari, Saghafian and ShokatFadaee [EFM+11] came up with a NP-hardness proof for
computing a best response in the bounded budget version of the Sum-BG and the
Max-BG. Their results imply NP-hardness for the corresponding problems in all
versions of Swap Games since agents will always use up their budget. Interestingly,
they also reduce from the p-Median problem [KH79b].

4.1.4. Our Contribution
In this chapter, we study Network Creation Games, as proposed by Fabrikant,
Luthra, Maneva, Papadimitriou and Shenker [FLM+03], and several natural vari-
ants of this model from a new perspective. Instead of analyzing properties of equi-
librium states, we apply a more constructive point of view by asking if and how fast
such desirable states can be found by selfish agents. For this, we turn the original
model, which was originally formulated as one-shot simultaneous-move game, into
several more algorithmic models, where moves are performed sequentially.
We study the dynamics of the Sum-SG and the Max-SG and show that if the

initial network is a tree on n nodes, then the network creation process is guaranteed
to converge in O(n3) steps for both versions. By employing the max cost policy
and enforcing best responses in the Sum-SG on trees, this process can be sped up
significantly to n + bn2 c − 5 steps, which is asymptotically optimal and close to
optimal in the exact number of steps. The same move policy with best responses
yields a significant speed-up in the Max-version as well: we prove an upper bound
of Θ(n log n) steps, which is almost asymptotically optimal. Moreover, we show
that these results carry over to the Asymmetric Swap Game on trees in both the
Sum- and the Max-version.
These positive results for initial networks which are trees are contrasted by sev-

eral strong negative results on general networks. We show that the Sum-SG, the
Max-SG, the Sum-ASG and the Max-ASG on general networks are not guaran-
teed to converge if agents repeatedly perform best possible improving moves and,
even worse, for the latter three versions we show that no move policy can enforce
convergence. We show that these games are not in FIPG, which implies that there
cannot exist a generalized ordinal potential function which “guides” the way to-
wards an equilibrium state. For the Sum-ASG we show the even stronger negative
result that it can happen that no sequence of best response moves may enforce
convergence, that is, the Sum-ASG is not even weakly acyclic under best response.
If not all possible edges can be created, that is, if we have a non-complete host
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graph [DHMZ09, BGLP12], then we show that the Sum-ASG and the Max-ASG
on non-tree networks is not weakly acyclic. Moreover, we map the boundary be-
tween convergence and non-convergence in ASGs and show the surprising result
that cyclic behavior can already occur in n-vertex networks which have n edges.
That is, even one non-tree edge suffices to completely change the dynamic behavior
of these games. In our constructions we have that every agent owns exactly one
edge, which is equivalent to the uniform-budget case introduced by Ehsani, Fazli,
Mehrabian, Sadeghabad, Safari, Saghafian and ShokatFadaee [EFM+11]. In their
paper the authors raise the open problem of determining the convergence speed for
the bounded-budget version. Thus, our results answer this open problem – even
for the simplest version of these games – in the negative, since we show that no
convergence guarantee exists.

We provide best response cycles for all versions of the Buy Game, which implies
that these games have no convergence guarantee – even if agents have the compu-
tational resources to repeatedly compute best response strategies. To the best of
our knowledge, the existence of best response cycles for all these versions was not
known before.

See Table 4.1 for an overview of our convergence results for Network Creation
Games without cost sharing.

Furthermore, we investigate the version where bilateral consent is needed for edge-
creation and where the edge-cost is shared equally among its endpoints. We show
that this version exhibits a similar undesirable dynamic behavior as the unilateral
version. Quite surprisingly, we can show an even stronger negative result in the
Sum-version which implies the counter-intuitive statement that cost-sharing may
lead to worse dynamic behavior. Our findings nicely contrast a result of Corbo and
Parkes [CP05] who have shown guaranteed convergence if agents repeatedly play
best response strategies against perturbations of the other agents’ strategies. We
show that these perturbations are necessary for achieving convergence.

Along the way, we observe that the hardness of computing a best response in
the Sum-(A)SG behaves similarly as the convergence property. We give a linear
time algorithm for computing a best response on tree networks - even if agents are
allowed to swap multiple edges at a time. This is contrasted with the result that this
task is NP-hard even on simple general networks if agents can perform multi-swaps.

Finally, we present a careful empirical study of the convergence time in the ASG
and in the GBG. Interestingly, our simulations show that our negative theoretical
results seem to be confined to a small set of pathological instances. Even more
interesting may be that our simulations show a remarkably fast convergence towards
stable networks in O(n) steps, where n is the number of agents. This indicates that
despite our negative results distributed local search may be a suitable method for
selfish agents for collectively finding equilibrium networks.
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Table 4.1.: Summary of convergence results for the Sum and Max-versions. "Tree"
stands for tree networks as initial network. "Arbitrary" is the case where
the initial network is an arbitrary connected network. "Host" is the case
where a host network is given and only edges from the host network may
be used. BB abbreviates "bounded-budget" [EFM+11], BRC abbreviates
"best response cycle".

Sum-SG Sum-ASG BB Sum-(G)BG Sum-(G)BG
tree poly-FIPG poly-FIPG BRC

(Thm. 4.2.7) (Cor. 4.4.1) (Thm. 4.5.1)
arbitrary BRC /∈ BR-WAG BRC BRC

(Thm. 4.2.20) (Thm. 4.4.3) (Thm. 4.4.7) (Thm. 4.5.1)
host /∈ WAG /∈ WAG

(Cor. 4.4.6) (Cor. 4.5.2)

Max-SG Max-ASG BB Max-(G)BG Max-(G)BG
tree poly-FIPG poly-FIPG BRC

(Thm. 4.3.1) (Cor. 4.4.1) (Thm. 4.5.1)
arbitrary BRC, BRC, BRC BRC

no move-policy no move-policy (Thm. 4.4.7) (Thm. 4.5.1)
(Thm. 4.3.16) (Thm. 4.3.16)

host /∈ WAG /∈ WAG
(Cor. 4.4.6) (Cor. 4.5.2)

4.2. Dynamics in Sum-Swap Games
We consider the Sum-SG. Remember that the cost of an agent u in a connected
network G in this version is cu(G) = ∑

w∈V (G) dG(u,w) and that both endpoints of
an edge may swap the edge. Recall that we use |G| to denote the number of vertices
in network G.

4.2.1. Dynamics on Trees
In this subsection we analyze the special case where the initial graph G0 is a tree.
We show that the Sum-SG on trees belongs to the well-studied class of ordinal
potential games (OPG) [MS96]. This guarantees the desirable property that Swap
Equilibria can be found by distributed local search.

Theorem 4.2.1 The Sum-SG on trees is an ordinal potential game.

Before we prove the Theorem, we analyze the impact of an edge-swap on the indi-
vidual cost of the swapping agent and on the social cost.
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Let T = (V,E) be a tree having n vertices. Assume that agent u performs the
edge-swap uv to uw in the tree T . (Note that this implies that uw /∈ E). Let T ′ be
the tree obtained after this edge-swap. Let

Ψ(G) =
∑

u∈V (G)
cu(G) =

∑
u∈V (G)

∑
w∈V (G)

dG(u,w)

denote the social cost of network G. Hence, Ψ(T ) and Ψ(T ′) denotes the social
cost of T and T ′, respectively. Let Tu and Tv be the tree T rooted at u and v,
respectively. Let A be the subtree rooted at u in Tv and let B be the subtree rooted
at v in Tu. See Fig. 4.1 for an illustration.

u v

wA

B

u v

wA

B

T T ′

Figure 4.1.: Agent u swaps edge uv to edge uw.

Lemma 4.2.2 The change in agent u’s cost induced by the edge-swap uv to uw is

∆(u) = cv(B)− cw(B) .

Proof We have

cu(T ) =
∑

x∈V (A)
dT (u, x) +

∑
y∈V (B)

dT (u, y) =
∑

x∈V (A)
dA(u, x) +

∑
y∈V (B)

(1 + dB(v, y))

=
∑

x∈V (A)
dA(u, x) + |B|+

∑
y∈V (B)

dB(v, y) =
∑

x∈V (A)
dA(u, x) + |B|+ cv(B) .

Analogously, we obtain cu(T ′) = ∑
x∈V (A) dA(u, x) + |B|+ cw(B). Thus, we have

∆(v) = cu(T )− cu(T ′) = cv(B)− cw(B) . �

The following lemma implies the desired property that a local improvement of an
agent yields a global improvement in terms of social cost.

Lemma 4.2.3 The change in social cost induced by the edge-swap uv to uw is

∆(Ψ) = Ψ(T )−Ψ(T ′) = 2|A|∆(v) .
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Proof First, we analyze Ψ(T ) in terms of the subtrees A and B:

Ψ(T ) =
∑

x∈V (T )
cx(T ) =

∑
x∈V (A)

cx(T ) +
∑

x∈V (B)
cx(T )

=
∑

x∈V (A)

( ∑
y∈V (A)

dT (x, y) +
∑

y∈V (B)
dT (x, y)

)

+
∑

x∈V (B)

( ∑
y∈V (B)

dT (x, y) +
∑

y∈V (A)
dT (x, y)

)
.

For all a ∈ A and b ∈ B, we have that the neighbors u and v lie on the shortest
path between a and b. Hence, we have

Ψ(T ) =
∑

x∈V (A)

∑
y∈V (A)

dA(x, y) +
∑

x∈V (A)

∑
y∈V (B)

(dA(x, u) + dT (u, y))

+
∑

x∈V (B)

∑
y∈V (B)

dB(x, y) +
∑

x∈V (B)

∑
y∈V (A)

(dB(x, v) + dT (v, y))

=
∑

x∈V (A)

∑
y∈V (A)

dA(x, y) +
∑

x∈V (A)

(
|B|dA(x, u) +

∑
y∈V (B)

(1 + dB(v, y))
)

+
∑

x∈V (B)

∑
y∈V (B)

dB(x, y) +
∑

x∈V (B)

(
|A|dB(x, v) +

∑
y∈V (A)

(1 + dA(u, y))
)

=Ψ(A) + |B|cu(A) + |A||B|+ |A|cv(B)
+ Ψ(B) + |A|cv(B) + |A||B|+ |B|cu(A)

=Ψ(A) + Ψ(B) + 2 (|A||B|) + 2|B|cu(A) + 2|A|cv(B) .

In an analogous way, we get

Ψ(T ′) = Ψ(A) + Ψ(B) + 2(|A||B|) + 2|B|cu(A) + 2|A|cw(B) .

Thus, the amount of change in social cost of the edge-swap uv to uw is

∆(Ψ) = Ψ(T )−Ψ(T ′) = 2|A|(cv(B)− cw(B)) .

By Lemma 4.2.2, we have that ∆(u) = cv(B)− cw(B). Thus, ∆(Ψ) = 2|A|∆(u). �

Now we are ready to prove Theorem 4.2.1.

Proof (of Theorem 4.2.1) By Lemma 4.2.3, we have that the social cost strict-
ly decreases if and only if the cost of the swapping agent strictly decreases. This
implies that the social cost Ψ(G) is an ordinal potential function for the Sum-SG
on trees. �

Theorem 4.2.1 guarantees that a Swap Equilibrium in the Sum-Swap Game can
be found by distributed local search, even if the agents do not play optimally. We
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only need one very natural ingredient for convergence: Whenever an agents moves,
this move must decrease this agent’s cost. We call every dynamic where an agent
strictly improves by making a move (or passing if no improving move is possible) an
improving response dynamic (IRD)3. Such a dynamic stops if no agent can strictly
improve, which implies that any IRD stops if a swap-stable network is obtained.
We will now analyze IRDs in more detail.

Improving Response Dynamics on Trees

For trees it was shown by Alon, Demaine, Hajiaghayi and Leighton [ADHL13] that
the star is the only swap-stable tree. Using this observation and Theorem 4.2.1, we
arrive at the following corollary.

Corollary 4.2.4 For every tree T , every IRD converges to a star.

Having guaranteed convergence, the natural question to ask is how many steps
are needed to reach the unique Swap Equilibrium by myopic play. The following
theorems provide a lower and an upper bound on that number.

Theorem 4.2.5 Let Pn be a path having n vertices. Any IRD on Pn needs at least
max{0, n− 3} steps to converge.

Proof Let n ≥ 4, since otherwise Pn is already a star. Since the leaf-agents can
perform an improving move (every swap to an inner vertex strictly decreases their
cost), we have that Pn cannot be stable. By Corollary 4.2.4, any IRD converges to
a star on n vertices. Clearly, such a star contains a vertex having degree n− 1. In
any step-wise transformation of P into a star, some vertex will become the center
of the star. Assume that an inner vertex v of P is the designated center. Since v
has degree 2 there are n− 3 non-neighbors of v. Since in every step of the dynamic
only one edge can be swapped, it follows that at least n − 3 steps are needed, to
connect all of these non-neighbors to v. If a leaf of P is the designated center, then
one additional step is needed. �

Lemma 4.2.6 Pn is the tree on n vertices which has maximum social cost.

Proof Let T have at least four vertices and assume towards a contradiction that
T has more than two leaves and has maximum social cost. Consider a leaf l of T ,
which has minimum cost cl(T ) among all leaves of T . Let k be the neighbor of l in
T and observe that cl(T ) = ck(T ) + (n−2), since k is the first vertex on l’s shortest
paths to all other n − 2 vertices of T . Let u be a leaf of T , which has maximum
cost cu(T ) among all leaves of T . Thus, we have cu(T ) ≥ cl(T ).
Now consider the tree T ′ = T − l. Since l is a neighbor of k in T , we have

ck(T ′) = ck(T )−1 = cl(T )−(n−1). Furthermore, we have cu(T ′) = cu(T )−dT (u, l).
3Such dynamics are also known as better response dynamics.
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The tree T has at least three leaves, which implies that the longest path of T can
have length at most n − 2. Thus, dT (u, l) < n − 1, together with cu(T ) ≥ cl(T ),
this implies cu(T ′) > ck(T ′). Consider the edge-swap lk to lu by agent l and let T ′′
be the obtained tree.
We have

cl(T ′′) = cu(T ′′) + (n− 2) = cu(T ′) + (n− 1) > ck(T ′) + (n− 1) = cl(T ) .

Thus, the edge-swap lk to lu strictly increases agent l’s cost. By Lemma 4.2.3, it
follows that the social cost of T ′′ is strictly larger than the social cost of T , which
is a contradiction. Hence, every tree with maximum social cost must have exactly
two leaves. �

Theorem 4.2.7 Any IRD on trees having n vertices converges in O(n3) steps.
That is, the Sum-SG on trees is in poly-FIPG.

Proof The idea is to start with the tree having the highest potential and to bound
the number of steps any IRD needs by analyzing the number of steps needed if this
potential is decreased by the smallest possible amount per step. By Lemma 4.2.6,
we have that Pn has the maximum social cost Ψ(Pn). Observe that

Ψ(Pn) =
n−1∑
i=1

2i(n− i) = n3 − n
3 .

Let Xn be a star having n vertices. We have Ψ(Xn) = 2n2 − 4n+ 2. To transform
Pn into Xn any IRD has to decrease the social cost by

Ψ(Pn)−Ψ(Xn) = n3

3 − 2n2 + 11n
3 − 2 .

Since we have an IRD, every moving agent decreases her cost by at least 1. By
Lemma 4.2.3, we have that the minimum decrease in social cost by any move is 2.
Hence, at most n3

6 − n
2 + 11n

6 − 1 ∈ O(n3) steps are needed to transform Pn into
Xn. �

Best Response Dynamics on Trees

It is reasonable to assume that agents greedily try to decrease their cost most,
whenever swapping an edge. In this section we analyze dynamics, where every
move of an agent is a best response move.
Since a best response is always an improving response, we have that every dy-

namic where every move is a best response must converge to a star for every tree
T . We are left with the question of how fast best response dynamics converge.
In the following, we analyze a specific best response dynamic, called Max Cost
Best Response Dynamic (mcBRD), whose convergence speed almost matches the
lower bound provided by Theorem 4.2.5. Hence, for best response dynamics we can
significantly improve the upper bound of Theorem 4.2.7.
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Definition 4.2.8 The Max Cost Best Response Dynamic on a network G is a
dynamic, where, starting with the initial network G, the moving agent is chosen
by the max cost policy and moving agents always play best responses. We use the
short-hand mcBRD(G).

In this section we show the following upper bound on the speed of convergence for
the Max Cost Best Response Dynamic. Surprisingly, mcBRD behaves differently
depending on whether the number of agents in the tree is odd or even.
Theorem 4.2.9 Let T be a tree having n vertices. The following holds:
• If n is even, then mcBRD(T ) converges after at most max{0, n − 3} steps and
every agent moves at most once.

• If n is odd, then at most max{0, n+ bn/2c− 5} steps are needed and every agent
moves at most twice.

In order to prove Theorem 4.2.9, we first show some useful properties of the con-
vergence process induced by the mcBRD-rule.
We begin with characterizing an agent’s best response on a tree. Here, the notion

of a 1-median vertex, as defined in Definition 3.3.4, is crucial.
Lemma 4.2.10 Let u be an arbitrary vertex of a tree T and let F = T−u = ⋃l

j=1 Tl,
where the trees Tj are connected components in the forest F . Let v1, . . . , vl be the
neighbors of u in T , where vj is a vertex of Tj for all 1 ≤ j ≤ l. Let wj be a
1-median vertex of the tree Tj. The best response of u in T is the edge-swap uvj to
uwj, where

j ∈ arg max
1≤j≤l

{
cvj(Tj)− cwj(Tj)

}
.

Proof Let T ′ be the tree obtained after agent u’s swap. Observe that if agent u
removes the edge uvi for some i ∈ {1, . . . , l}, then it must be replaced with an edge
uxi, where xi ∈ V (Ti), since otherwise T ′ would be disconnected. Thus, if the edge
uvi is removed, then agent u has to choose which of the vertices of Ti to connect to.
By Lemma 4.2.2, agent u’s change in cost is ∆(u) = cvi(Ti) − cxi(Ti), if the edge
uvi is removed and uxi is built. Since agent u’s best response yields the largest
decrease in cost, it follows that xi must be chosen such that cxi(Ti) ≤ cyi(Ti) holds
for all vertices yi ∈ V (Ti). Thus, xi must be a 1-median vertex of Ti. Agent u can
swap only one edge. Hence, u’s best response is to connect to a 1-median vertex xj
of a tree Tj, which maximizes cvj(Tj)− cxj(Tj). �

The next Lemma provides a very useful property of neighbors in a tree.
Lemma 4.2.11 Let u and w be neighbors in a tree T . Let Tu and Tw denote the
tree T rooted at vertex u and w, respectively. Let U be the set of vertices in the
subtree rooted at u in Tw. Analogously, let W be the set of vertices in the subtree
rooted at w in Tu. Then we have

cu(T ) ≤ cw(T ) ⇐⇒ |U | ≥ |W | and cu(T ) < cw(T ) ⇐⇒ |U | > |W | .
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Proof Let u, w, U , W , Tu and Tw be defined as in the Lemma. Since T is a tree,
we have

cu(T ) ≤ cw(T )
⇐⇒

∑
x∈U

dT (u, x) +
∑
x∈W

(1 + dT (w, x)) ≤
∑
x∈W

dT (w, x) +
∑
x∈U

(1 + dT (u, x))

⇐⇒
∑
x∈W

(1 + dT (w, x))−
∑
x∈W

dT (w, x) ≤
∑
x∈U

(1 + dT (u, x))−
∑
x∈U

dT (u, x)

⇐⇒ |W | ≤ |U | .

If the inequality is strict, then the proof is similar. �

We can use Lemma 4.2.11, to show an important property of the mcBRD-process.

Lemma 4.2.12 Let T be a tree. Every agent who moves in any step of mcBRD(T )
must be a leaf-agent.

Proof In every step of mcBRD the agent with the highest cost is allowed to move.
Assume towards a contradiction that an inner vertex u has the highest cost c∗ in
T . Let x1, . . . , xl be the neighbors of u. By Lemma 4.2.11, we have that at most
one of the neighbors of u can have the same cost c∗.
If u has no neighbor having cost c∗, then all neighbors must have strictly lower

cost than agent u. But Lemma 4.2.11 yields that at most one neighbor of any vertex
can have lower cost. Since u has at least two neighbors, there must be a neighbor
of u having higher cost and we have a contradiction.
If u has a neighbor w having cost c∗, then, by Lemma 4.2.11, all other neighbors

of w must have lower cost. If there is more than one such neighbor, then again,
we have a contradiction. Thus, assume that there is exactly one such neighbor z.
Let Tu, Tw and Tz denote the tree T rooted at vertex u, w and z, respectively. Let
U and W1 denote the subtree rooted at u and w, respectively, in tree Tz. Let W2
denote the tree rooted at w in tree Tu and let Z denote the subtree rooted at z in
tree Tw. By Lemma 4.2.11, we have that |Z| > |W1| ≥ |U |. Furthermore, we have
|W2| > |Z|. Hence, we have |W2| > |U | and thus, again by Lemma 4.2.11, it follows
that cu(T ) > cw(T ), which is a contradiction. �

The following Lemma provides the key to analyzing mcBRD. It shows that at some
point in the dynamic a certain behavior is “triggered” which forces the dynamic to
converge quickly.

Lemma 4.2.13 (First Trigger Lemma) Let T be a tree. If the agent who moves
in step i of mcBRD(T ) has a unique best response vertex w, then all agents who
move in a later step of mcBRD(T ) will connect to vertex w.

Proof Let T be any tree. Let T s denote the tree which is obtained after step s
of mcBRD(T ) and let us denote the agent who moves in step s. Consider step i of
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mcBRD(T ) and assume that agent ui has maximum cost in T i−1. Let the edge-swap
towards w be the unique best response of agent ui in this step. We show for any
step j ≥ i + 1 of mcBRD(T ) that if T j−1 is not a star, then agent uj will connect
to vertex w, if agent uj−1 did.
Consider the tree T j−2 in which agent uj−1 has maximum cost. It follows by

Lemma 4.2.12 that uj−1 must be a leaf of T j−2. Since T j−1 is not a star, we have
that T j−2 is not a star. Assume that the unique best response of agent uj−1 is
to connect to vertex w. By Lemma 4.2.10, it follows that w must be the unique
1-median vertex of the tree T ′′ = T j−2 − uj−1. Let x1, . . . , xk be the neighbors
of w in T ′′. Let Tw be the tree T ′′ rooted at vertex w and let X1, . . . , Xk be the
subtrees of Tw rooted at x1, . . . , xk, respectively. Using the fact that w is the unique
1-median vertex of T ′′ and Lemma 4.2.11, we obtain that 1 +∑

p6=q |Xp| > |Xq| for
any q ∈ {1, . . . , k}. After her move, agent uj−1 will end up as the k+ 1’th neighbor
of w in the tree T j−1. Since, by assumption, this tree is not swap-stable, there
is a leaf uj of T j−1 who swaps an edge in step j. Clearly, we have uj ∈ V (Xr)
for some r ∈ {1, . . . , k}. Now consider T ′′′ = T j−1 − uj and let X ′1, . . . , X ′k+1 be
defined analogously as above for the tree T ′′′. We have that |Xi| = |X ′i|, for all
i ∈ {1, . . . , k} \ {r}, and |Xr| = |X ′r| + 1. The new tree Xk+1 contains only vertex
uj−1 and thus compensates the loss of tree |X ′r|. Hence, we have 1+∑p6=q |Xp| > |Xq|,
for q ∈ {1, . . . , k+1}. By Lemma 4.2.11, this implies that w is the unique 1-median
vertex of T ′′′. Thus, agent uj will connect to w in step j. �

Lemma 4.2.14 In any tree T on n vertices, there are at most two 1-median ver-
tices. If this is the case, then they are neighbors and n must be even.

Proof Assume that T contains exactly two vertices x1 and x2, which both have
minimum cost c∗ but there is no edge x1x2 in T . Since T is connected, there is a
path P from x1 to x2 of length at least 2. Let z1 and z2 be the neighbors of x1
and x2, respectively, on path P . Let Tx1 , Tx2 , Tz1 and Tz2 be the tree T rooted at
vertex x1, x2, z1 and z2, respectively. Let X1 be the set of vertices in the subtree of
Tz1 , which is rooted at vertex x1. Analogously, X2 denotes the set of vertices in the
subtree rooted at x2 in Tz2 . We define Z1 and Z2 in the same way, for the trees Tx1

and Tx2 , respectively. We apply Lemma 4.2.11, which yields

cx1(T ) ≤ cz1(T ) ⇐⇒ |X1| ≥ |Z1| and cx2(T ) ≤ cz2(T ) ⇐⇒ |X2| ≥ |Z2| .

Since T is a tree and x1 and x2 are non-neighbors, we have that |Z1| > |Y | and
|Z2| > |X|. Using Lemma 4.2.11, this implies cz1(T ) < cy(T ) and cz2(T ) < cx(T ),
which is a contradiction. The only feasible solution is that z1 = x2 and z2 = x1
and thus, x1 and x2 have to be neighbors. Furthermore, we have that cx1(T ) =
cx2(T ) = c∗. By Lemma 4.2.11, it follows that |X1| = |X2| which implies that n
must be even.
If there are more than two agents having minimum cost, then the above argu-

mentation implies that all of them must be pairwise neighbors. Since T is a tree,
this is impossible. �
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Now we are ready, to prove the first part of Theorem 4.2.9.

Proof (of Theorem 4.2.9, Part 1) We show that if the number of vertices in
a tree T is even, then mcBRD needs at most max{0, n− 3} to converge and every
agent moves at most once.
If T has two vertices, then it is a star and no agent will move in mcBRD(T ). Thus,

let T be a tree having at least n ≥ 4 vertices, where n is even. By Lemma 4.2.12, we
have that in every step of mcBRD(T ) a leaf l of the current tree is allowed to move.
By Lemma 4.2.10, we know that agent l will connect to a 1-median vertex of T ′− l,
where T ′ is the tree before agent l moves. Observe that the tree T ′ − l has an odd
number of vertices. By Lemma 4.2.14, we have that any tree having an odd number
of vertices must have a unique 1-median vertex. It follows that the leaf who moves
in the first step of mcBRD(T ) has a unique best response. Let this best response be
the edge-swap towards vertex w. Lemma 4.2.13 implies that all agents who move
in a later step of mcBRD(T ) will connect to vertex w as well. Furthermore, again
by Lemma 4.2.13, after the first step of mcBRD(T ) it holds that every vertex who
is already connected to vertex w will never move again. Hence, every agent moves
at most once.
By Lemma 4.2.11, we have that w must be an inner vertex of T . Thus, w has at

most n− 3 non-neighbors which implies that the dynamic mcBRD(T ) will need at
most n− 3 steps to converge to a star having w as its 1-median vertex. �

The next theorem shows a lower bound on the speed of convergence for mcBRD on
trees having an odd number of vertices. Surprisingly, the behavior of the dynamic
on such instances is much more complex. The lower bound for odd n is roughly
50% greater than the upper bound for even n. Furthermore, the following theorem
together with Theorem 4.2.5 implies that the analysis of mcBRD is tight.

Theorem 4.2.15 There is a family of trees having an odd number of vertices
greater than 5, where mcBRD can take n+bn/2c−5 steps to converge. Furthermore,
every agent moves at most twice.

Figure 4.2 shows an example of a tree which belongs to the above mentioned family
of trees and it sketches the convergence process induced by mcBRD.

Proof (of Theorem 4.2.15) A member of the family is constructed as follows:
We start with a path having 5 vertices. Let the leaves of this path be l and r, let the
center be w and let v be the vertex between w and r and u be the vertex between l
and w. Fix an even number k ≥ 2 and connect k/2 vertices to l and r, respectively.
Let x1, . . . , xk/2 be the vertices having l as neighbor and y1, . . . , yk/2 are the vertices
connected to r. An example is shown top left in Fig. 4.2.
Let T be a tree constructed in the described way. During mcBRD(T ) some agents

will have two best responses and the number of steps towards convergence depends
on which best response is chosen. Note that this implies that a local decision has
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Figure 4.2.: Example of a tree network T having 17 vertices, where mcBRD(T )
takes n + bn/2c − 5 = 20 steps to converge. The agents x1, . . . , x6, u
move twice.

global impact. We show that these choices can be made such that mcBRD(T ) takes
n+ bn/2c − 5 steps until a star emerges.
Since T is symmetric, all leaves are equal in the first step of mcBRD(T ), that is,

they all have the same cost. By Lemma 4.2.12, one of those leaves moves in the first
step of mcBRD(T ). Let T i denote the tree, which is obtained after the i-th step
of mcBRD(T ). Let T iw and T iv denote the tree T i rooted at w and v, respectively.
Let W i be the set of vertices in the tree rooted at w in T iv and let V i be the set of
vertices in the tree rooted at v in T iw. Before the first step of mcBRD(T ), we have
that |W 0| = |V 0|+ 1.
The convergence proceeds in three stages:
Stage 1: Without loss of generality, assume that agent x1 moves first. Consider

the tree T 0 − x1. This tree has two 1-median-vertices, namely w and v. Hence,
agent x1 has two best responses. Assume that x1 chooses to connect to vertex w.
Thus, we have that W 0 = W 1 and V 0 = V 1. In the next step, we have that vertices
x2, . . . , xk/2 have maximum cost. Each of those agents has two best responses,
namely to connect to w or v. This is true by Lemma 4.2.11, since |W 1| − 1 = |V 1|.
Let x2 move towards vertex w, which implies W 1 = W 2 and V 1 = V 2. This process
iterates until all xi-vertices are connected to w. Thus, we have that W 0 = W k/2

and V 0 = V k/2. The top right network in Fig. 4.2 illustrates the result of the steps
mentioned so far.
In the following step, agent l is allowed to move and, again, there are the two

best responses w and v. Let l choose the connection towards v. This implies
W k/2+1 = W 0 \{l} and V k/2+1 = V 0∪{l}. Observe that |W k/2+1| < |V k/2+1| holds.
This leads to the bottom right network in Fig. 4.2.
Stage 2: Now, all yi-vertices have maximum cost. Again, they have the two

best responses w and v and we let them choose the vertex which is closer, that
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is v. After another k/2 steps a network similar to the one in the middle of the
bottom row in Fig. 4.2 is obtained. Furthermore, we have thatW k+1 = W k/2+1 and
V k+1 = V k/2+1. Let NV

v denote the number of neighbors of v in V k+1. Let NW
w be

defined analogously. Observe that NV
v > NW

w holds.
Stage 3: In the next steps, all neighbors of w in W have maximum cost, but

this time there is only one best response, which is the connection to vertex v. The
dynamic stops when all vertices are connected to v, which happens after NW

w many
steps.
Now we analyze the number steps of mcBRD(T ). In Stage 1, there are k/2 steps,

where an agent xi moves and one step where l swaps an edge. In Stage 2, all
yi-agents move, which implies k/2 steps. In Stage 3, there are NW

w steps. Since
|W k+1| = |W 0| − 1, we have that NW

w = |W0| − 2 = dn/2e − 2. Observe that in
Stage 3 all xi-agents move a second time. There are no other agents which move
twice.
Hence, in total there are k/2 + 1 + k/2 + dn/2e − 2 = k + bn/2c steps. By

construction, we have that k = n−5 and thus mcBRD(T ) takes n+bn/2c−5 steps
to converge and every agent moves at most twice. �

For proving the second part of Theorem 4.2.9 we need two additional properties of
the mcBRD-process.

Lemma 4.2.16 (Second Trigger Lemma) Let T be an unstable tree having n
vertices. If after any step i in mcBRD(T ) a vertex w of T i has degree dn/2e, then
this vertex will be the unique best response to connect to for all agents moving in a
later step of mcBRD(T ).

Proof Let T be any unstable tree having n vertices. Observe that whenever an
agent moves in mcBRD(T ), the degrees of exactly two vertices change by 1. Let
step i be the first step of mcBRD(T ) after which a vertex w having degree dn/2e
occurs. Using Lemma 4.2.13, it suffices to show that if vertex w has degree dn/2e
after step i of mcBRD(T ), then the agent ui+1 who moves in the i + 1’th step will
have w as its unique best response vertex. To prove this, we show that ui+1 cannot
be a neighbor of w in T i. By Lemma 4.2.11, this implies that w is the unique best
response vertex of ui+1.
Assume towards a contradiction that agent x is a neighbor of w in T i and that x

moves in the i+1’th step of mcBRD(T ). Thus, agent x must be a leaf and can swap
an edge to decrease her cost. This implies that w is not a vertex having minimum
cost in T ′ = T i − x. Observe that vertex w has degree bn/2c in T ′. Let v be a
vertex having minimum cost in T ′. Let T ′w denote the tree T ′ rooted at w. We
have that v lies in a subtree rooted at some neighbor y of w in T ′w. Let T ′y denote
the tree T ′ rooted at y. Let W be the set of vertices in the subtree rooted at w
in T ′y and let Y denote the set of vertices in the subtree rooted at y in T ′w. Since
w has degree bn/2c, we have that |W | ≥ bn/2c. Thus, |Y | ≤ |T ′| − |W | = bn/2c.
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By Lemma 4.2.11, it follows that w cannot have higher cost than v and we have a
contradiction. �

Lemma 4.2.17 Let T be an unstable tree having an odd number of vertices. Only
vertices which are best response vertices of the agent who moves in the first step of
mcBRD(T ) will be best responses in any step of mcBRD(T ).

Proof Let T be an unstable tree having n vertices, where n is odd. Let u be the
agent who moves in the first step of mcBRD(T ). Let T i denote the resulting tree
after step i of mcBRD(T ).
If agent u has a unique best response w, then, by Lemma 4.2.13, vertex w will

be the unique best response of any agent who moves in a later step of mcBRD(T ).
The only case left is the one where agent u has two best responses v and w. We

show that the set of best responses of any agent y who moves in step j ≥ 2 is a
subset of the set of best responses of the agent x who moved in step j − 1. Settling
this implies the Lemma.
If in step j − 1 agent x has a unique best response, then, by Lemma 4.2.13, the

claim is true. Thus, suppose that in step j−1 agent x has two best responses p and
q. Let T j−2 be the tree T after step j−2. Let T j−2

p and T j−2
q be the tree T j−2 rooted

at p and q, respectively. Let P j−2 be the subtree rooted at p in T j−2
q and let Qj−2

be the subtree rooted at q in T j−2
p . Suppose that x is a leaf of P j−2. Since both p

and q are best responses for x we have, by Lemma 4.2.11, that |P j−2− x| = |Qj−2|.
In step j− 1 agent x will connect either to p or to q. Suppose x connects to p. Now
consider the moving agent y in step j. Define T j−1, P j−1 and Qj−1 analogous to
the respective trees after step j − 2. There are two cases:
If y is a leaf of P j−1, then |P j−1 − y| = |Qj−1| and thus, by Lemma 4.2.10 and

Lemma 4.2.11, agent y has p and q as its best responses.
If y is a leaf of Qj−1, then we claim that vertex p is the unique vertex having

minimum cost in T j−1−y and thus vertex p must be agent y’s unique best response.
To prove the claim, it suffices to show that every neighbor of p in T j−1−y has higher
cost than p itself. Since |P j−1| > |Qj−1 − y|, this holds by Lemma 4.2.11 for vertex
q. Furthermore it is trivially true for x, which is a leaf connected to p. Let z be
any other neighbor of p in T j−1 − y. In tree T j−2 − x, by assumption, p and q are
the vertices having minimum cost. This implies that agent z must have higher cost
than agent p in T j−2 − x. Since agent x, who is missing in T j−2 − x connects in
step j − 1 to vertex p, this difference increases further, which settles the claim.
The case where x connects in step j − 1 to vertex q and both subcases where x

is a leaf of Qj−2 are analogous. �

Finally, we have set the stage to prove the second part of Theorem 4.2.9.

Proof (of Theorem 4.2.9, Part 2) We show that if a tree T has an odd num-
ber of vertices, then mcBRD(T ) takes at most max{0, n + bn/2c − 5} steps to
converge and every agent moves at most twice.
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If n = 5, then the worst case instance is a path and thus the convergence takes
at most 2 steps. Hence, we assume for the following that n ≥ 7. Observe that there
are two events that force the dynamic to converge: Let E1 be the event, where
for the first time in the convergence process a vertex w becomes the unique best
response of a moving agent. Let E2 be the event, where for the first time a vertex
w has degree dn/2e.
If event E1 occurs in step j, then, by Lemma 4.2.13, all non-neighbors of the vertex

w will connect to w in the subsequent steps of mcBRD(T ). Thus, mcBRD(T ) will
converge in at most j + |V \ Γ(w)| steps, where Γ(w) is the closed neighborhood of
w. If event E2 occurs in step j, then, by Lemma 4.2.16, all non-neighbors of w will
connect to w in the subsequent steps. Thus, in this case j + bn/2c − 1 steps are
needed for mcBRD(T ) to converge.
Let T be any tree and u be the first agent to move and assume that u has two best

responses p and q, since otherwise the dynamic will converge in at most n−3 steps.
By Lemma 4.2.17, we have that in any step of mcBRD(T ) an agent will connect
either to p or to q. Let t1(T ) denote the number of steps until event E1 is the first
event to occur in mcBRD(T ). Analogously, let t2(T ) denote the number of steps
until E2 is the first occurring event. Let r1(T ) denote the number of steps needed
for convergence after event E1. Hence, the maximum number of steps needed until
mcBRD(T ) converges is t(T ) = max{t1(T ) + r1(T ), t2(T ) + bn/2c − 1}.
We claim that t1(T ) + r1(T ) ≤ n+ bn/2c − 5. Observe that r1(T ) ≤ n− 3, since

the vertex that becomes the center of the star must be an inner vertex of T and,
thus, can have at most n−3 non-neighbors. Furthermore, if t1(T ) ≤ bn/2c−2, then
the claim is true. Now let t1(T ) > bn/2c−2. Note that both p and q must be inner
vertices of T . Thus, they have at least degree 2. Since event E2 did not occur in the
first t1(T ) steps of mcBRD(T ) we have that not all agents who moved within the
first t1(T ) steps can be connected to p. Thus, at least x = t1(T )−(bn/2c−2) agents
have connected to q. This yields t1(T )+r1(T ) ≤ t1(T )+n−3−x ≤ n+bn/2c−5. On
the other hand, since all agents move either to p or q and both p and q have degree at
least 2, it follows that t2(T ) ≤ 2(bn/2c−2). Hence, t2(T )+bn/2c−1 ≤ n+bn/2c−5.
Observe that any agent x who is a neighbor of either p or q will not move again

until event E1 or E2 happens. This holds because every leaf, which is not a neighbor
of p or q must have higher cost than x and will therefore move before x. Thus, every
agent moves at most twice. �

Computing a Best Response on Trees

Observe that Lemma 4.2.10 directly yields an algorithm for computing a best re-
sponse move of an agent u: Compute the costs of all other agents in T − u within
their respective connected component to find a 1-median vertex for every compo-
nent. Then choose the 1-median vertex, which yields the greatest cost decrease for
agent u. Clearly, the cost of an agent can be obtained using a BFS-computation.
However the above naive approach of computing a 1-median vertex yields an algo-
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rithm with running time quadratic in n, since Ω(n) BFS-computations can occur.
The following lemma shows that a 1-median vertex can be computed in linear time,
which is clearly optimal. The algorithm crucially uses the structural property pro-
vided by Lemma 4.2.11. Note that we are not the first to observe this4. Our
algorithm can be seen as an alternative solution for this problem.

Lemma 4.2.18 Let T be a tree having n vertices. A 1-median vertex of T and its
cost can be computed in O(n) time.

Proof We give a linear time algorithm, which computes a 1-median vertex of T
and its cost. Let L be the set of leaves of T . Clearly, L can be computed in O(n)
steps by inspecting every vertex5.
Given T and L, the algorithm proceeds in two stages:

1. The algorithm computes for every vertex v of T two values nv and cv. This is
done in reverse BFS-order: We define nv to be the number of vertices in the
already processed subtree Tv containing v and cv to v’s cost in Tv. For every
leaf l ∈ L we set nl := 1 and cl := 0. Let i be an inner vertex and assume that
we have already processed all but one neighbor of i. Let a1, . . . , as denote these
neighbors. We set ni := 1 + na1 + · · · + nas and ci := ni − 1 + ca1 + · · · + cas .
By breaking ties arbitrarily, this computation terminates at a root-vertex r, for
which all neighbors are already processed. Let b1, . . . , bq denote these neighbors.
We set nr := n and cr := n− 1 + cb1 + · · ·+ cbq .

2. Starting from vertex r, we perform a local search for a 1-median vertex with
the help of Lemma 4.2.11. For all neighbors bi ∈ {b1, . . . , bq} of r, we check if
nbi > nr−nbi . Since T is a tree, this can hold for at most one neighbor x. In this
case, x will be considered as new root-vertex. Let c1, . . . , cs, r be the neighbors of
x. By setting nx := n and cx := n−1+c1 + · · ·+cs+cr−cx we arrive at the same
situation as before and we now check for all neighbors cj 6= r if ncj > nx − ncj
holds and proceed as above. Once no neighbor of the current root-vertex satisfies
the above condition, the algorithm terminates and the current root-vertex is the
desired 1-median vertex.

The correctness of the above algorithm follows by Lemma 4.2.11. Step 1 clearly
takes time O(n). Step 2 takes linear time as well, since the condition is checked
exactly once for every edge towards a neighbor and there are only n − 1 edges in
the tree T . �

Theorem 4.2.19 If p ≥ 1 edges can be swapped at a time, then the best response
of an agent u in network G can be computed in linear time if G is a tree.

4To the best of our knowledge, the first linear time algorithm for computing a 1-median vertex
on a (weighted) tree is due to Goldman [Gol71]. See also a more general exposition of this
simple algorithm in Kariv and Hakimi [KH79b].

5We assume that the tree T is given as adjacency list.
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Proof Let u be a degree d vertex in the tree network G. Clearly, agent u can swap
at most min{p, d} edges and the task is to determine the k ≤ min{p, d} edge-swaps
that decrease agent u’s cost most. Let v1, . . . , vd denote the neighbors of u in G.
Let F = T1∪T2∪· · ·∪Td be the forest obtained by deleting vertex u from G. Let

ci = |Ti|+
∑
w∈Ti dG(vi, w) denote agent u’s connection cost to vertices in Ti, where

1 ≤ i ≤ d. By Lemma 4.2.10 we have that every swap in agent u’s best response
is of the form (vi, wi), which abbreviates the swap from uvi to uwi, where wi is a
1-median vertex of Ti. Let zi = cwi(Ti) − cvi(Ti) denote agent u’s change in cost
after the swap (vi, wi). Clearly, if zi ≥ 0 then the swap (vi, wi) will not be part of
u’s best response, since it does not yield a cost reduction. If zi < 0, then we call
the corresponding swap (vi, wi) attractive. If there are l attractive swaps for agent
u, then we have that u’s best response will consist of the min{k, l} attractive swaps
having the smallest zi values.
Thus, computing agent u’s best response reduces to finding a 1-median vertex in

each tree Ti and to computing the corresponding value of cwi(Ti). By Lemma 4.2.18
we have that both tasks can be done in time linear in the number of vertices in
each Ti. Observe that all negative zi-values are in the range [−n2, 0]. Hence, we can
use radixsort [LRSC01] to find the min{k, l} attractive swaps having the smallest
zi values in linear time. �

4.2.2. Playing on General Networks
Now we consider the case where the initial network G0 is an arbitrary connected
network.

Best Response Dynamics on General Networks

We show that there is no convergence guarantee for the Sum-SG on general initial
networks.
Theorem 4.2.20 The Sum-SG on general networks admits a best response cycle.
Proof Consider the network G1 depicted left in Figure 4.3. Agent a can decrease
her cost and one of her best responses is to swap edge ab with edge ac. This leads
to network G2 depicted in Figure 4.3. In G2, agent b has the swap bc to ba as its
best response, which leads to network G3 depicted in the illustration. Finally, in
G3 agent c can perform the swap ca to cb as its best response, which leads back to
network G1. �

Voorneveld [Voo00] introduced the class of best-response potential games, which is
a super-class of ordinal potential games. Furthermore he proves that if the strategy
space is countable, then a strategic game is a best-response potential game if and
only if there is no best response cycle. This implies the following Corollary.
Corollary 4.2.21 There cannot exist an ordinal potential function for the Sum-SG
on general networks.
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Figure 4.3.: A best response cycle for the Sum-SG. The moving agent is colored
red, the agents’ costs are drawn in blue.

Computing a Best Response in General Networks

Given an undirected connected network G, then the best response for agent v can
be computed in O(n2) time, since |SG(v)| < n2 and we can try all pure strategies
to find the best one. In contrast to the result on trees, we show that computing a
best response is hard if we allow an agent to swap multiple edges at a time.

Theorem 4.2.22 If agents are allowed to swap multiple edges at a time, then com-
puting the best response in a network G is NP-hard, even if G is planar and has
maximum degree 3.

Proof We reduce from the p-Median problem [KH79b], which is defined as fol-
lows: Given a connected undirected network G = (V,E) with non-negative weights
w(v) for every vertex v ∈ V and non-negative lengths l(e) for every edge e ∈ E
and given an integer p > 1. The task is to find a subset X ⊆ V with |X| = p such
that ∑v∈V minu∈X w(v)dG(v, u) is minimized. Here dG(v, u) denotes the length of
the shortest path from v to u in G.
The p-Median problem is known [KH79b] to be NP-hard for p > 1 even if all

vertex weights and edge lengths are one, G is planar and has maximum degree 3.
The reduction works as follows: Let G be an instance of the p-Median problem,

where G is planar, has unit vertex weights and edge lengths and has maximum
degree 3. We introduce a new agent v∗ and connect v∗ with p new edges to G which
induces the graph G′ = (V ′, E ′). Now, let agent v∗ play a best response and let
Sv∗ ⊆ V \{v∗} be the corresponding strategy of v∗, that is, Sv∗ is the set of vertices
incident to v∗ after the best response move. Let G∗ = (V ′, E∗) be the network
obtained after the best response move of v∗. We claim that Sv∗ is the solution to
the p-Median problem in G, which implies NP-hardness of computing the best
response if p edges can be swapped at a time.
Clearly, we have |Sv∗| = p, since no best response of v∗ will allow multiple edges

connecting to the same vertex. By definition of a best response, we have that
building edges to vertices in Sv∗ minimizes the cost cv∗(G∗) of agent v∗ in the
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network G∗. Thus, we have

cv∗(G∗) =
∑
u∈V ′

dG∗(v∗, u) =
∑
u∈V

(
1 + min

x∈Sv∗
dG(x, u)

)
= |V |+

∑
u∈V

min
x∈Sv∗

dG(x, u) ,

which yields that the cost of agent v∗ is minimized if and only if the set Sv∗ minimizes∑
u∈V minx∈Sv∗ dG(x, u). �

Remark 4.2.23 Note that the above result trivially carries over to the Sum-ASG
where agents are allowed to perform multi-swaps. Using a similar proof and reducing
from the p-Center problem [KH79a] it was shown in [EFM+11] that computing a
best response for the bounded budget version of the Max-BG in general networks is
NP-hard as well. Since agents always use up their budget this implies that computing
a best response in the Max-(A)SG is NP-hard on general networks if agents are
allowed to swap multiple edges at a time.

4.3. Dynamics in Max Swap Games
In this section we focus on the game dynamics of the Max-SG. Recall that the
cost of an agent u in a connected network G in the Max-SG is defined as cu(G) =
maxw∈V (G) dG(u,w). Interestingly, we obtain results which are very similar to the
results shown in Section 4.2 but we need entirely different techniques to derive them.
We emphasize the contrast between both versions with an example which shows

that the social cost cannot be used as ordinal potential function in the Max-SG on
trees. Consider an improving swap of agent u from v to w in the tree network in
Fig. 4.4 (left). This swap decreases agent u’s cost from 4 to 3 but it increases the
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Figure 4.4.: Example of an improving swap in the Max-SG which increases the
social cost.

the cost of all agents a1, . . . , ak by 1. Thus, if k is large enough, then the improving
swap of agent u increases the social cost of the network.

4.3.1. Dynamics on Trees
We will analyze the network creation process in the Max-SG when the initial net-
work is a tree. We prove that this process has the following desirable property:
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Theorem 4.3.1 The Max-SG on trees is guaranteed to converge in O(n3) steps
to a stable network. That is, the Max-SG on trees is a poly-FIPG.

Before proving Theorem 4.3.1, we analyze the impact of a single edge-swap. Let
T = (V,E) be a tree on n vertices and let agent u be unhappy in network T . Assume
that agent u can decrease her cost by performing the edge-swap uv to uw, for some
v, w ∈ V . This swap transforms T into the new network T ′ = (V, (E\{uv})∪{uw}).
Let A denote the maximal tree of T ′′ = (V,E \ {uv}) which contains u and let B
be the tree of T ′′ which contains v and w. It is easy to see that we have dT (x, y) =
dT ′(x, y), if x, y ∈ V (A) or if x, y ∈ V (B).

Lemma 4.3.2 For all x ∈ V (A) there is no y ∈ V (A) such that cx(T ) = dT (x, y).

Proof By assumption, agent u can decrease her cost by swapping the edge uv to
edge uw, where v, w ∈ V (B). We have that dT (x, u) < cu(T ), for all x ∈ V (A), since
otherwise this swap would not change agent u’s cost. It follows that for arbitrary
x, y ∈ V (A) we have dT (x, y) ≤ dT (x, u)+dT (u, y) < dT (x, u)+cu(T ). Let z ∈ V (B)
be a vertex having maximum distance to u in T , that is, cu(T ) = dT (u, z). The
above implies that dT (x, y) < dT (x, z) = cx(T ), for all x, y ∈ V (A). �

Lemma 4.3.2 directly implies the following statement:

Corollary 4.3.3 For all x ∈ V (A), we have cx(T ) > cx(T ′).

Hence, we have that agent u’s improving move decreases the cost for all agents in
V (A). For agents in V (B) this may not be true: The cost of an agent y ∈ V (B)
can increase by agent u’s move, as shown in Fig. 4.4. Interestingly, the next result
guarantees that such an increase cannot be arbitrarily high.

Lemma 4.3.4 Let x ∈ V (A) and y ∈ V (B) such that dT ′(x, y) = cy(T ′). It holds
that cx(T ) > cy(T ′).

Proof In tree T we have cx(T ) = dT (x, u) + dT (v, z) + 1. Furthermore, in tree
T ′ we have cy(T ′) = dT ′(x, u) + dT ′(w, y) + 1. Since cu(T ) > cu(T ′), it follows that
dT (w, y) < dT (v, z), where z ∈ V (B) is a vertex having maximum distance to u in
T . Hence, we have cx(T )− cy(T ′) = dT (v, z)− dT (w, y) > 0. �

Towards a generalized ordinal potential function we will need the following:

Definition 4.3.5 (Sorted Cost Vector) Let G be any network on n vertices.
The sorted cost vector of G is −→cG = (γ1

G, . . . , γ
n
G), where γiG is the cost of the agent,

who has the i-th highest cost in the network G.

Observe that an agent having cost γnG in a n-vertex network G is a 1-center vertex
of G, as already defined in Definition 3.4.7.
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Lemma 4.3.6 Let T be any tree on n vertices. The sorted cost vector of T induces
a generalized ordinal potential function Φ for the Max-SG on T .

Proof Let u be any agent in T , who performs an edge-swap which strictly de-
creases her cost and let T ′ denote the network after agent u’s swap. We show that
cu(T )− cu(T ′) > 0 implies −→cT >lex

−→cT ′ , where >lex is the lexicographic order on Nn.
The existence of a generalized ordinal potential function Φ then follows by mapping
the lexicographic order on Nn to an isomorphic order on R.
Let the subtrees A and B be defined as above and let cu(T ) − cu(T ′) > 0. By

Lemma 4.3.2 and Lemma 4.3.4, we know that there is an agent x ∈ V (A) such that
cx(T ) > cy(T ′), for all y ∈ V (B). By Lemma 4.3.2 and Corollary 4.3.3, we have
that cx(T ) > cx(T ′), which yields that −→cT >lex

−→cT ′ . �

In the following, a special type of paths in the network will be important.

Definition 4.3.7 (Longest Path) Let G be any connected network. Let u be any
agent in G having cost cu(G) = k. Any simple path in G, which starts at u and has
length k is called a longest path of agent u.

As we will see, 1-center vertices and longest paths are closely related.

Lemma 4.3.8 Let T be any connected tree and let v∗ be a 1-center-vertex of T .
Vertex v∗ must lie on all longest paths of all agents in V (T ).

Proof Let Pxy denote the path from vertex x to vertex y in T . We assume towards
a contradiction that there are two vertices v, w ∈ V (T ), where cv(T ) = dT (v, w),
and that v∗ /∈ V (Pvw). Let z ∈ V (T ) be the only shared vertex of the three paths
Pvv∗ , Pwv∗ , Pvw. We have dT (v, z) < dT (v, v∗) ≤ cv∗(T ) and dT (w, z) < dT (w, v∗) ≤
cv∗(T ). We show that cz(T ) < cv∗(T ), which is a contradiction to v∗ being a 1-center
vertex in T .
Assume that there is a vertex u ∈ V (T ) with dT (u, z) ≥ cv∗(T ). It follows that

V (Pvz) ∩ V (Pzu) = {z}, since otherwise dT (v∗, u) = dT (v∗, z) + dT (z, u) > cv∗(T ).
But now, since dT (z, w) < cv∗(T ) ≤ dT (z, u), we have dT (v, u) > cv(T ), which
clearly is a contradiction. Hence, we have dT (z, u) < cv∗(T ), for all u ∈ V (T ),
which implies that cz(T ) < cv∗(T ). �

Lemma 4.3.8, leads to the following observation.

Observation 4.3.9 Let G be any connected network on n nodes and let −→cG =
(γ1
G, . . . , γ

n
G) be its sorted cost vector. We have γ1

G = γ2
G and γnG =

⌈
γ1
G

2

⌉
.

Now we are ready to provide the key property which will help us upper-bound the
convergence time.
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Lemma 4.3.10 Let T = (V,E) be a connected tree on n vertices having diameter
D ≥ 4. After at most nD−D2

2 moves of the Max-SG on T one agent must perform
a move which decreases the diameter.

Proof Let v, w ∈ V such that dT (v, w) = D ≥ 4 and let Pvw be the path from
v to w in T . Clearly, if no agent in V (Pvw) makes an improving move, then the
diameter of the network does not change. On the other hand, if the path Pvw is the
unique path in T having length D, then any improving move of an agent in V (Pvw)
must decrease the diameter by at least 1. The network creation process starts from
a connected tree having diameter D ≥ 4 and, by Lemma 4.3.6, must converge to
a stable tree in a finite number of steps. Moreover, Lemma 4.3.6 guarantees that
the diameter of the network cannot increase in any step of the process. It was
shown [ADHL13] that any stable tree has diameter at most 3. Thus, after a finite
number of steps the diameter of the network must strictly decrease, that is, on
all paths of length D some agent must have performed an improving move which
reduced the length of the respective path. We fix the path Pvw to be the path of
length D in the network which survives longest in this process.
It follows that there are |V \ V (Pvw)| = n − (D + 1) agents which can perform

improving moves without decreasing the diameter. We know from Observation 4.3.9
and Lemma 4.3.8 that each one of those n− (D+ 1) agents can decrease her cost to
at most

⌈
D
2

⌉
+ 1 and has to decrease her cost by at least 1 for each swap. We show

that an swap of such an agent does not increase the cost of any other agent and use
the minimum possible cost decrease per step to conclude the desired bound.
Let u ∈ V (T ) \ V (Pvw) be an agent who decreases her cost by swapping the edge

ux to uy and let T ′ be the tree after this edge-swap. Let a, b ∈ V (T ) be arbitrary
agents. Clearly, if {u, y} 6⊆ V (Pab) in T ′, then dT (a, b) = dT ′(a, b). Let A be the tree
of T ′′ = (V,E \ {uy}) which contains u and let B be the tree of T ′′ which contains
y. W.l.o.g. let a ∈ V (A) and b ∈ V (B). By Corollary 4.3.3, we have cz(T ) > cz(T ′)
for all z ∈ V (A) and it follows that V (A) ∩ V (Pvw) = ∅. Hence, it remains to
analyze the change in cost of all agents in V (B).
If no vertex on the path Pab is a 1-center vertex in T ′, then, by Lemma 4.3.8, we

have that dT ′(a, b) < cb(T ′). It follows that every longest path of agent b in T ′ lies
entirely in subtree B which implies that cb(T ′) ≤ cb(T ).
If there is a 1-center vertex of T ′ on the path Pab in T ′, then let v∗ be the

last such vertex on this path. We have assumed that the diameters of T ′ and T
are equal, which implies that Pvw is a longest path of agent v in T ′. Since, by
Lemma 4.3.8, any 1-center vertex of T ′ must lie on all longest paths, it follows that
v∗ is on the path Pvw and we have v∗ ∈ V (B). W.l.o.g. let dT ′(v, b) ≥ dT ′(w, b).
We have dT ′(a, b) = dT ′(a, v∗) + dT ′(v∗, b) ≤ dT ′(v, v∗) + dT ′(v∗, b). Hence, we have
dT ′(a, b) ≤ cb(T ′). Since the path Pbv is in subtree B, we have cb(T ′) ≤ cb(T ).
Now we can easily conclude the upper bound on the number of moves which do

not decrease the diameter of T . Each of the n− (D + 1) agents with cost at most
D may decrease their cost to

⌈
D
2

⌉
+ 1. If we assume a decrease of 1 per step, then
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this yields the following bound:

(n− (D + 1))
(
D −

(⌈
D

2

⌉
+ 1

))
< (n−D)D2 = nD −D2

2 . �

Proof (of Theorem 4.3.1) By Lemma 4.3.6, we know there exists a generalized
ordinal potential function for the Max-SG on trees. Hence, we know that this
game is a FIPG and we are left to bound the maximum number of improving moves
needed for convergence. It was already shown [ADHL13] that the only stable trees
of the Max-SG on trees are stars or double-stars. Hence, the process must stop at
the latest when diameter 2 is reached. Observe that in any unstable tree having
diameter 3 there can be only one unhappy agent. If this agent moves, then the
diamter drops from 3 to 2 and a star emerges.
Let Nn(T ) denote the maximum number of moves needed for convergence in the

Max-SG on the n-vertex tree T . Let D(T ) be the diameter of T . Let Di,n denote
the maximum number of steps needed to decrease the diameter of any n-vertex tree
having diameter i by at least 1. Hence, we have

Nn(T ) ≤ 1 +
D(T )∑
i=4

Di,n ≤ 1 +
n−1∑
i=4

Di,n ,

since the maximum diameter of a n-vertex tree is n− 1. The additional step is the
possible move which decreases the diameter from 3 to 2. By applying Lemma 4.3.10
and adding the steps which actually decrease the diameter, this yields

Nn(T ) ≤ 1 +
n−1∑
i=4

Di,n < 1 +
n−1∑
i=4

(
ni− i2

2 + 1
)

< n+ n

2

(
n∑
i=1

i

)
− 1

2

(
n∑
i=1

i2
)
∈ O(n3). �

The following result shows that we can speed up the convergence time by employing
a very natural move policy - the mcBRD. The speed-up is close to optimal, since it
is easy to see that there are instances in which Ω(n) steps are necessary.

Theorem 4.3.11 The mcBRD in the Max-SG on trees converges in Θ(n log n)
moves.

Proof We prove Theorem 4.3.11, by proving the lower and the upper bound sep-
arately, starting with the former. Since the max cost policy is employed to choose
the moving agent, we need two additional observations, which are easy to see.

Observation 4.3.12 An agent having maximum cost in a tree network T must be
a leaf of T .
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Observation 4.3.13 Let u be an unhappy agent in T = (V,E) and let u be a leaf
of T and let v be u’s unique neighbor. Let B be the tree of T ′ = (V,E \ {uv}) which
contains v. The edge-swap uv to uw, for some w ∈ V (B) is a best possible move
for agent u if w is a 1-center vertex of B.

Lemma 4.3.14 There is a tree T on n vertices where mcBRD(T ) in the Max-SG
needs Ω(n log n) moves for convergence.

Proof We consider the path on n-vertices Pn = v1v2 . . . vn of length n − 1. We
apply the max cost policy and for breaking ties we will always choose the vertex
having the smallest index among all vertices having maximum cost. If a maximum
cost vertex has more than one best response move, then we choose the edge-swap
towards the new neighbor having the smaller index. With these assumptions and
with Observation 4.3.12 and Observation 4.3.13, we have that the 1-center-vertex
having the smallest index will “shift” towards a higher index, from vdn/2e to vn−2.
Finally, agent vn is the unique agent having maximum cost and her move transforms
the tree to a star. See Fig. 4.5 for an illustration for n = 9.
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Figure 4.5.: The convergence process for with n = 9 in the Max-SG on Pn.

We start by analyzing the change in costs of agent v1. Clearly, c0 := cv1(Pn) =
n−1. By Observation 4.3.13, we know that v1’s best swap connects to the minimum
index 1-center vertex of the tree without vertex v1. Hence, after the best move of
v1 this agent has cost

c1 :=
⌈
c0 − 1

2

⌉
+ 1 > c0

2 .

When v1 is chosen to move again, her cost can possibly decrease to

c2 :=
⌈
c1 − 1

2

⌉
+ 1 > c0

4 .

After the i-th move of v1 her cost is at least

ci :=
⌈
ci−1 − 1

2

⌉
+ 1 > c0

2i .
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Thus, the mcBRD allows agent v1 to move at least log c0
3 times until she is connected

to vertex vn−2, the center of the final star, where she has cost 3.
The above implies that the number of moves of every agent allowed by the

mcBRD only depends on the cost of that agent when she first becomes a maxi-
mum cost agent. Moreover, since all moving agents are leaves, no move of an agent
increases the cost of any other agent. By construction, the cost of every moving
agent is determined by her distance towards vertex vn. Since agent vn does not
move until in the last step of the process, we have that a move of agent vi does
not change the cost of any other agent vj 6= vn who moves after vi. It follows that
we can simply add up the respective lower bounds on the number of moves of all
players, depending on the cost when they first become maximum cost agents. It is
easy to see that agent vi becomes a maximum cost agent, when the maximum cost
is n − i. Let M(Pn) denote the number of moves of the Max-SG on Pn with the
mcBRD and the above tie-breaking rules. This yields

M(Pn) >
4∑

c0=n−1
log c0

3 ∈ Ω(n log n) .

Lemma 4.3.15 The mcBRD on a n-vertex tree T in Max-SG needs O(n log n)
moves to converge to a stable tree.

Proof Consider any tree T on n vertices. By Observation 4.3.12, we know that
only leaf-agents are allowed to move by the max cost policy, which implies that
no move of any agent increases the cost of any other agent. Observation 4.3.13
guarantees that the best possible move of a leaf-agent u having maximum cost c
decreases agent u’s cost to at most

⌈
c
2

⌉
+ 1. Hence, after O(log n) moves of agent u

her cost must be at most 3. If the tree converges to a star, then agent u may move
one more time. If we sum up over all n agents, then we have that after O(n log n)
moves the tree must be stable.

This concludes the proof of Theorem 4.3.11. �

4.3.2. Dynamics on General Networks
In this section we show that allowing cycles in the initial network completely changes
the dynamic behavior of the Max-SG.

Theorem 4.3.16 The Max-SG on general networks admits best response cycles.
Moreover, no move policy can enforce convergence. The first result holds even if
agents are allowed to perform multi-swaps.

Proof We prove the theorem by showing that there exists an initial network which
induces a best response cycle and where in every step of the cycle exactly one agent
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is unhappy. The existence of the best response cycle shows that the Max-SG on
this instance does not have the finite improvement property. The fact that in every
step of the cycle exactly one agent is unhappy shows that no move policy can avoid
that cyclic behavior. In every step, swapping one edge suffices to achieve the best
possible cost decrease for the moving agent. Hence, there exists a best response
cycle even if agents are allowed to perform multi-swaps. However, note that with
multi-swaps it is no longer true that there is only one unhappy agent in every step.
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Figure 4.6.: The steps of a best response cycle for the Max-SG on general networks.

Consider the initial network G1 which is depicted in Fig. 4.6 (left). Note that
only agents a1, a3, b3 and c3 have cost 3 while all other agents have cost 2. Clearly,
agents having cost 2 cannot improve on their current situation. Agents a3, b3, c3
cannot perform an improving move, since all of them have exactly two vertices in
distance 3 and there is no vertex which is a neighbor of both of them. This leaves
agent a1 as the only possible candidate for an improving edge-swap. A best possible
move for agent a1 is the swap a1b1 to a1c1, which yields a distance decrease of 1
which is clearly optimal. This swap transforms G1 into G2, which is depicted in
Fig. 4.6 (middle). Observe that G2 is isomorphic to G1, with agent b1 facing exactly
the same situation as agent a1 in G1. Agent b1 has the swap b1c1 to b1a1 as best
response move and we end up in network G3, shown in Fig. 4.6 (right). Again, G3
is isomorphic to G1, now with agent c1 being the unique unhappy agent. Agent c1’s
best possible swap transforms G3 back into G1. �

4.4. Dynamics in Asymmetric Swap Games
In this section we consider the Sum-ASG and the Max-ASG. Note that now we
assume that each edge has an owner and only this owner is allowed to swap the edge.
We show that we can directly transfer the results from Section 4.2 and Section 4.3
to the asymmetric version if the initial network is a tree. On general networks we
show even stronger negative results.
Observe that the instance used in the proofs of Theorem 4.2.20 and Theorem 4.3.16

show that best response cycles in the Swap Game are not necessarily best response
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cycles in the Asymmetric Swap Game. We will show the rather counter-intuitive
result that this holds true for the other direction as well.

4.4.1. Asymmetric Swap Games on Trees
The results in this section follow from the results in Section 4.2.1 and Section 4.3.1
and are therefore stated as corollaries.

Corollary 4.4.1 The Sum-ASG and the Max-ASG on n-vertex trees are both a
poly-FIPG and both must converge to a stable tree in O(n3) steps.

Proof By Theorem 4.2.1 we have that the Sum-SG on trees is an ordinal potential
game, where the social cost, which is the sum of all agent’s costs, serves as ordinal
potential function. Note that ordinal potential games are a subclass of FIPG [MS96].
Furthermore, by Theorem 4.2.7 and Theorem 4.3.1, we know that the Sum-SG and
the Max-SG on n-vertex trees must converge in O(n3) steps.
The only difference in the asymmetric version of this game is that edges have

owners and only the respective owner is allowed to swap an edge. Clearly, since
any improving swap decreases the value of the (generalized) potential function, this
is independent of the edge-ownership. Furthermore, with edges having owners, we
have that in each network less moves are possible and every moving agent has,
compared with the Swap Game, at most the same number of admissible strategies
in any step. Thus, the convergence process cannot be slower. �

Corollary 4.4.2 Using the mcBRD and assuming a n-vertex tree as initial net-
work, we have that

• the Sum-ASG converges in max{0, n− 3} steps, if n is even and in max{0, n+
dn/2e− 5} steps, if n is odd. Moreover, both bounds are tight and asymptotically
optimal.

• the Max-ASG converges in Θ(n log n) steps.

Proof The results from Section 4.2.1 and Section 4.3.1 on speeding up the con-
vergence process with the mcBRD carry over to ASGs. The reason for this is that
in all used lower bound constructions it holds that whenever an edge is swapped
more than once, then it is the same incident agent who moves again. Hence, we
can assign the edge-ownership to this agent and get the same lower bounds in the
asymmetric version. The upper bounds carry over trivially, since agents cannot have
more admissible new strategies in any step in the asymmetric version compared to
the version without edge-owners.
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4.4.2. Asymmetric Swap Games on General Networks
If we move from trees to general initial networks, we get a very strong negative
result for the Sum-ASG: There is no hope to enforce convergence if agents stick to
playing best responses even if multi-swaps are allowed.

Theorem 4.4.3 The Sum-ASG on general networks is not weakly acyclic under
best response. Moreover, this result holds true even if agents can swap multiple
edges in one step.

Proof We give a network which induces a best response cycle. Additionally, we
show that in each step of this cycle exactly one agent can decrease her cost by
swapping an edge and that the best possible swap for this agent is unique in every
step. Furthermore, we show that the moving agent cannot outperform the best
possible single-swap by a multi-swap. This implies that if agents stick to best
response moves then no best response dynamic can enforce convergence to a stable
network and allowing multi-swaps does not alter this result.
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Figure 4.7.: The steps of a best response cycle for the Sum-ASG on general net-
works. Note that edge directions indicate edge-ownership. Edges point
away from their owners. All edges allow two-way communication.

The best response cycle consists of the networks G1, G2, G3 and G4 given in
Fig. 4.7. We begin with showing that in G1, . . . , G4 all agents, except agent b and
agent f , cannot perform an improving strategy-change even if they are allowed to
swap multiple edges in one step.
In G1, . . . , G4 all leaf-agents do not own any edges and the agents c and e cannot

swap an edge since otherwise the network becomes disconnected. For the same
reason, agent d cannot move the edge towards d1. Agent d owns three other edges,
but they are optimally placed since they are connected to the vertices having the
most leaf-neighbors. It follows that agent d cannot decrease her cost by swapping
one edge or by performing a multi-swap. Note that this holds true for all networks
G1, . . . , G4, although the networks change slightly. Agent a cannot move her edges
towards ai, for 1 ≤ i ≤ 4. On the other hand, it is easy to see that agent a’s edge
towards vertex e cannot be swapped to obtain a strict cost decrease since the most
promising choice, which is vertex c, yields the same cost in G1 and G4 and even
higher cost in G2 and G3. Trivially, no multi-swap is possible for agent a.
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Now, we consider agent b and agent f . First of all, observe that in G1, . . . , G4
agent f owns exactly one edge which is not a bridge. Thus, agent f cannot perform
a multi-swap in any step of the best response cycle. Agent b, although owning
three edges, is in a similar situation: Her edges to vertex c and e can be considered
as fixed, since swapping one or both of them does not yield a cost decrease in
G1, . . . , G4. Hence, agent b and agent f each have one “free” edge to operate with.
In G1 agent b’s edge towards f is placed optimally, since swapping towards a or d
does not yield a cost decrease. In G3, agents b’s edge towards a is optimal, since
swapping towards d or f does not decrease agent b’s cost. Analogously, agent f ’s
edge towards e in G2 and her edge towards d in G4 are optimally placed.
Finally, we describe the best response cycle: In G1 agent f can improve and

her unique best possible edge-swap in G1 is the swap from d to e, yielding a cost
decrease of 4. In G2 agent b has the swap from f to a as unique best improvement
which yields a cost decrease of 1. In G3 have agent f being unhappy with her
strategy and the unique best swap is the one from e to d yielding an improvement
of 1. In G4 it is agent b’s turn again and her unique best swap is from a to f which
decreases her cost by 3. After agent b’s swap in G4 we arrive again at network G1,
hence G1, . . . , G4 is a best response cycle where in each step exactly one agent has
a single-swap as unique best possible improvement.

Remark 4.4.4 Note that the best response cycle presented in the proof of Theo-
rem 4.4.3 is not a best response cycle in the Sum-SG. The swap fb to fe of agent
f in G1 yields a strictly larger cost decrease than her swap fd to fe.

Compared to Theorem 4.4.3, we show a slightly weaker negative result for the
Max-version.

Theorem 4.4.5 The Max-ASG on general networks admits best response cycles.
Moreover, no move policy can enforce convergence.

Proof We show that there exists a best response cycle for the Max-ASG, where
no move policy can enforce convergence. Our cycle, shown in Fig. 4.8, has six steps
G1, . . . , G6. In G3 and G6 there are two unhappy agents whereas in the other steps
there is exactly one unhappy agent. It turns out that independently which one of
the two agent moves in G3 or G6, there is a best response move which leads back to
a network in the cycle. This implies that no move policy may enforce convergence.

First of all, note that the networks G2 and G5 are isomorphic. The same holds true
for the networks G3 and G6. We start by showing that in the networks G1, . . . , G4
only the highlighted agents are unhappy. Then we will analyze the best response
moves of the unhappy agents in the respective networks.
Consider any Gi, where 1 ≤ i ≤ 4. Clearly, no leaf-agent of Gi can perform any

swap. Agent g has cost 3 in Gi. We have dGi(g, l1) = dGi(g, l5) and there is no
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Figure 4.8.: The steps of a best response cycle for the Max-ASG on general net-
works.

vertex in Gi which is a neighbor to both l1 and l5. Thus, agent g cannot achieve
cost 2, which implies that agent g does not want to perform a move in Gi. By the
same argument, it follows that any agent having cost 3 must be happy. Hence, we
have that agent b in G1 and G2 and agent c in G3 and G4 do not swap.
Agent d, having cost 4 in Gi, cannot perform an improving move in Gi, since

dGi(d, l1) = dGi(d, l4) = 4 and any such improving move must connect to a vertex
which has distance at most 2 to vertex l1. These vertices are c, j, k and l1 but any
of them has distance at least 3 towards l4 in Gi. Agents f and i, both having cost
4 in Gi, each face an analogous situation, since dGi(f, l1) = dGi(i, l1) = dGi(f, l5) =
dGi(i, l3) = 4 and since vertices c, j, k, l1 have distance at least 3 to l5 or l3 in any
Gi.
Agent h, having cost 4 in Gi has both l1 and l2 in distance 4. The only vertex

which has distance at most 2 to both of them is vertex j. But if h swaps towards
vertex j, then this yields distance 4 towards towards vertex l3.
Now we consider agent e. Any strategy yielding cost at most 3 for agent e must

connect to c, j, k or l1, since otherwise vertex l1 would be in distance 4. But, since
dGi(e, l4) = 4 and since c, j, k, l1 all have distance at least 3 towards l4, no such
strategy can exist. For agent j, having cost 4 in Gi. the situation is similar. Any
strategy having cost at most 3 for agent j must connect to a, b, h, i or l5, since
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otherwise j’s distance towards l5 would be 4. But if j swaps away from g to any
vertex in {a, b, h, i, l5}, then her distance to l3 increases to 4.

Agent k, having cost 4 in Gi, has vertex l4 and l5 in distance 4. Thus, to achieve
as cost of at most 3, agent k must connect to vertex h or i. Both h and i have
distance at least 3 towards l3. Since dGi(k, l3) = 4, it follows that agent k cannot
perform an improving move.

Now, we are left with agent c in G1, agent a in G2 and agent b in G4, all having
cost 4. We have dG1(c, l2) = 4. Thus, any strategy which yields cost at most 3 must
connect to d, e, j or l2. If c swaps away from g, then her distance to l4 increases to
4. If c swaps away from b, then her distance to l5 increases to 4. Hence, agent c
cannot swap an edge to decrease her cost in G1. For agent a in G2 and agent b in G4
the situation is similar. We have dG2(a, l1) = dG2(a, l3) = dG4(b, l1) = dG4(b, l3) =
4. Both agents cannot decrease their cost by swapping an edge in the respective
network, since all vertices which have distance at most 2 to l1 have distance at least
3 to l3.

Finally, we analyze the best response moves of all unhappy agents in any Gi.
In G1 only agent a, having cost 5, is unhappy. There is only one vertex having
distance 5 to a, which is l1. Thus, agent a could swap towards any vertex having
distance at most 3 to l1 to improve on this distance. Possible target-vertices are
b, c, e, g, j, k and l1. But, after any such swap, agent a must have distance 4 to
vertex l3, which implies that agent a cannot decrease her cost by more than 1.
Furthermore, swapping towards c, k or l1 yields distance 5 towards l3, which rules
out these target-vertices. If agent a performs the swap ad to ae in G1, then we
obtain network G2. In G2 only vertex c, having cost 4, is unhappy. Her unique
vertex in distance 4 is l2. Thus, a swap towards a, d, e, j or l2 would reduce this
distance. However, only the swap towards a is an improving move, since in all
other cases agent c’s distance to l6 increases to 4. This swap transforms G2 into
G3. In G3 we have that agent a and agent b are unhappy. Agent b in G3 is in a
similar situation as agent a in G1. Her only vertex in distance 5 is the leaf l1 and
by swapping towards a, c, e, g, j, k or l1 this distance can be reduced. But any such
swap yields that agent b’s distance to l3 increases to at least 4, which implies that
a cost decrease by 1 is optimal. Furthermore, the swaps towards c, k or l1 are not
improving moves since these yield distance 5 towards l3. If agent b performs the
swap bd to be we obtain network G4. Agent a in G3 has l3 as her only vertex in
distance 4. There is exactly one swap for agent a, which decreases this distance to 3
without increasing any other distance to more than 3, and this is the swap ae to ad.
Note that this swap of agent a transforms G3 to a network which is isomorphic to
network G1. Finally, we argue for agent a in G4. This agent is in a similar situation
as agent a in G3. Her only vertex in distance 4 is l3 and the swap towards d is the
only swap which does not increase any other distance to more than 3. Thus, this
move is agent a’s unique best response in G4 and this move leads to network G5.�
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If played on a non-complete host-graph, then we get the worst possible dynamic
behavior.

Corollary 4.4.6 The Sum-ASG and the Max-ASG on a non-complete host graph
are not weakly acyclic.

Proof (of Corollary 4.4.6, Sum-version) We use the best response cycle
G1, . . . , G4 shown in Fig. 4.7 and let the host graph H be the complete graph but
without the edge af . In this case, agent f ’s best response move in G1 is her only
possible improving move. For the networks G2, G3 and G4 it is easy to check that
the respective moving player has exactly one possible improving move. �

Proof (of Corollary 4.4.6, Max-version) We use the best response cycle
G1, . . . , G6 from Fig. 4.8. As host graph H we use the complete graph, but without
edges ab, ag, aj, bg, bj. By inspecting the proof of Theorem 4.4.5, it is easy to see
that in each step of the cycle the moving agent has exactly one improving move. �

4.4.3. The Boundary between Convergence and
Non-Convergence

In this section we explore the boundary between guaranteed convergence and cyclic
behavior. Quite surprisingly, we can draw a sharp boundary by showing that the
undesired cyclic behavior can already occur in n-vertex networks having exactly
n edges. Thus, one non-tree edge suffices to radically change the dynamic be-
havior of Asymmetric Swap Games. Our constructions are such that each agent
owns exactly one edge, which corresponds to the uniform unit budget case, re-
cently introduced by Ehsani, Fazli, Mehrabian, Sadeghabad, Safari, Saghafian and
ShokatFadaee [EFM+11]. Hence, even if the networks are built by identical agents
having a budget the cyclic behavior may arise. This answers the open problem
raised in [EFM+11] in the negative.

Theorem 4.4.7 The Sum-ASG and the Max-ASG admit best response cycles on
a network where every agent owns exactly one edge.

Proof (of Theorem 4.4.7, Sum-version) The network which induces a best
response cycle and the steps of the cycle G1, . . . , G4 are shown in Fig. 4.9. Let nk
denote the number of vertices having the form kj, for some index j.
In network G1, agent a1 has only one improving move, which is the swap from b1
to c1. This swap reduces agent a1’s cost by 1, since nc = nb + nd + 1. After this
move, in network G2, agent b1 is no longer happy with her edge towards d1, since
by swapping towards a4 she can decrease her cost by 2. This is a best possible
move for agent b1 (note that a swap towards a3 yields the same cost decrease). But
now, in network G3, by swapping back towards vertex b1, agent a1 can additionally
decrease her distances to vertices a4 and a5 by 1. This yields that agent a1’s swap
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Figure 4.9.: The steps of a best response cycle for the Sum-ASG where each agent
owns exactly one edge.

from c1 to b1 decreases her cost by 1. This is true, since all distances to cj vertices
increase by 1 but all distances to bi and dl vertices and to a4 and a5 decrease by
1 and since we have nc = nb + nd + 1. Note that this swap is agent a1’s unique
improving move. By construction, we have that after agent a1 has swapped back
towards b1, that is, in network G4, agent b1’s edge towards a4 only yields a distance
decrease of 7. Hence, by swapping back towards d1, agent b1 decreases her cost by
1, since her sum of distances to the dj vertices decreases by 8. This swap is the
unique improving move of agent b1 in network G4 and this move leads to network
G1. �

Proof (of Theorem 4.4.7, Max-version) Fig. 4.10 shows the four networks
G1, . . . , G4 which form the steps of a best response cycle for the Max version, where
each agent owns exactly one edge.
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Figure 4.10.: The steps of a best response cycle for the Max-ASG where each agent
owns exactly one edge.

In the first step of the cycle, in network G1, agent a1 can decrease her maximum
distance from 6 to 5 by swapping from e1 to one of the vertices e2, . . . , e5. Note
that all these swaps yield the same distance decrease of 1 and, since a1 has distance
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5 towards a6 and swapping towards any of the ai-vertices is obviously sub-optimal,
no other swap can yield a larger cost decrease. By agent a1 performing the swap
towards e5 we obtain the network G2.
Now, agent b1 can improve her situation with a swap from a1 to a2 or to a3. Both

possible swaps reduce her maximum distance from 6 to 5. This is best possible:
The cycle has length 9 before agent b1’s move, which implies that there are two
vertices on the cycle which have distance 4 to b1. Observe that agent b1 must swap
towards a vertex which has at most distance 4 to vertex a6 to reduce her maximum
distance. Clearly, only one of the ai vertices, with i 6= 1, is possible. However,
swapping away from a1 must increase the cycle by at least 1, which implies that
after this swap agent b1 must have at least one cycle-vertex in distance 5. Hence,
no swap can decrease agent b1’s maximum distance by more than 1. Let agent b1
perform the swap towards a3 and we end up with the network G3.
Agent a1 in G3 finds herself sitting in a large cycle having maximum distance 7

towards d3 and distance 6 to vertex b4. By swapping from e5 to one of the vertices
e1, e2, e3, agent a1 can reduce her maximum distance to 6. This is optimal, since all
improving moves must swap towards a vertex having at most distance 5 to vertex
d3 and agent a1 cannot move to far away from vertex e6. The vertices e1, e2, e3 are
the only vertices which satisfy both conditions. Let a1 swap towards e1 and we get
the network G4.
In the last step of the best response cycle, in network G4, we have agent b1 with

maximum distance 8 towards vertex e6. Clearly, agent b1 wants to move closer to
this vertex but this implies that she must move away from vertex a6. The only
possible compromise between both distances is a swap either to a1 or to e1. Both
these swaps yield a decrease of b1’s maximum distance by 1. By swapping towards
vertex a1, we end up with our starting network G1 and the cycle is complete. �

Remark 4.4.8 We can give best response cycles for both versions of the ASG for
the case where every agent owns exactly two edges. We conjecture that such cyclic
instances also exist for all cases where every agent owns exactly k edges, for any
k ≥ 3. In particular, it would be interesting if there is a generic construction which
works for all k ≥ 1.

4.4.4. Empirical Study of the Bounded-Budget Version
We have conducted extensive simulations of the convergence behavior and the ob-
tained results provide a sharp contrast to our mostly negative theoretical results
for both versions of the ASG. Our experiments show for the bounded-budget ver-
sion [EFM+11] a surprisingly fast convergence in at most 5n steps under the max
cost policy or by choosing the moving agents uniformly at random and by enforcing
best responses. Despite millions of trials we have not found any best response cycle
in our experiments. This indicates that our negative results may be only very rare
pathological examples.
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We first describe the experimental setup, then we will discuss the obtained results
for the bounded-budget version of the ASG for the Sum and the Max-version of
the distance-cost function.

Experimental Setup

One run of our simulation can be described as follows: First we generate a random
initial network, where every agent owns exactly k edges. Then, for every step of the
process, the move policy decides which agents is allowed to perform a best possible
edge-swap. After the respective swap has happened, we again let the move policy
decide which agent is allowed to move next. We count the number of steps until a
stable network is found. Thus, the number of steps equals the number of performed
moves.
Computing a best possible edge-swap of an agent can be done in polynomial time

by simply checking all possible edge-swaps and re-computing the cost.
Under the max cost policy we calculate the agents’ costs and check in descending

order if the respective agent can perform an improving move. If we have found
an unhappy agent, then we calculate the best possible edge-swap for this agent,
breaking ties uniformly at random, and we let this agent perform the respective
move. Then the process starts all over again until there is no unhappy agent left.
Under the random policy we choose one agent uniformly at random and check

if this agent can perform an improving move. If not, then we remove this agent
from the set of candidates and we choose another agent uniformly at random from
the remaining candidates. We proceed iteratively until we have found an unhappy
agent or until no candidate is left. In the former case, we let this agent perform a
best possible edge-swap and start all over again (with all agents being a possible
candidate again). If the latter happens, then we stop.
The initial network is generated as follows: We start with an empty graph G on n

vertices. Then, to ensure connectedness, we create a random spanning tree among
all n agents as follows: We start with a uniformly chosen random pair of agents and
insert the respective edge into G. The owner of this edge is chosen uniformly at
random among its endpoints. We mark both vertices. Then, we iteratively choose
one unmarked agent uniformly at random from the set of unmarked agents and
one marked agent uniformly from the set of all marked agents and we insert the
respective edge and mark the former agent. The edge-ownership is chosen uniformly
at random with the constraint that no agent is allowed to own more than k edges.
If all agents are marked, then we have that G is a spanning tree. Now we proceed
inserting edges into G as follows: First we mark all agents who already own k edges.
Then we iteratively choose one unmarked agent and one other agent uniformly at
random and insert the edge with the first agent being its owner, if the edge is not
already present in G. If the edge is present, then we randomly choose another
suitable pair of agents. Again we mark agents having already k edges. We stop, if
there is no unmarked agent left.
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Figure 4.11.: Experimental results for the Sum-ASG with budget k. The average
number of steps needed for convergence is plotted on the left, the
maximum number of steps needed for convergence is plotted on the
right. Each point is the average/maximum over the number of steps
needed for convergence of 10000 trials with random initial networks
where each agent owns exactly k edges.

The used Python script can be found in Appendix A.1.

Experimental Results and Discussion

Results for the Sum-ASG Our obtained results for the Sum-ASG in the bound-
ed-budget version can be found in Fig. 4.11. We simulated 10000 runs for each
configuration and the average and the maximum of the observed convergence time
for each configuration is plotted. Here a configuration consists of the number of
agents in the initial network and the choice of the move policy. The results for the
max cost policy are plotted in black, whereas the results for the random policy are
shown in red.
First of all, note that no run took longer than 5n steps, where n is the number

of agents, and that the max-cost policy yields faster convergence than the random
policy. The only exceptions here are the random policy in the cases where k = 1 and
k = 10, which shows roughly the same behavior than the max cost policy. For the
case k = 10 the number of agents seems to small to produce the difference. Indeed,
for all other budgets we see that the plots for the random policy and the max cost
policy are close together for small numbers of agents and start to separate as n
grows larger. Note that for k = 1 only roughly n steps are needed for convergence
under both move policies. This is to be expected for the max cost policy since
the initial network is almost a tree and we have shown in Corollary 4.4.2 that the
Sum-ASG on trees converges in at most n+ dn/2e − 5 steps.
For k > 1 the results are particularly interesting. Under the max cost policy

our simulations reveal a rather curious behavior: The convergence time increases
super linear until it peaks and then, for larger n, it converges to n. One possible
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explanation for this is the ratio of edges versus non-edges in the network. For small
n we have that the initial networks are very dense, which yields that agents have
very short distances to each other. This implies that moves yield a relatively low
cost-decrease since only a few distances can be reduced, which implies that after
a small number of steps, no such move is available and the convergence process
stops. For large n we have that the initial networks are very sparse, which implies
that agents “at the perimeter” can achieve a large cost-decrease by performing a
move. If only such agents move, then we have a sequence of moves which reduce a
high number of individual distances and this leads to fast convergence. The slowest
convergence time is achieved if the ratio of present edges over all possible edges is
between 1

7 and 1
6 .

Under the random policy, we see a completely different behavior if k > 1. For
example, note the difference between the k = 2 case of the random versus the
max cost policy. Here we have the expected behavior that the convergence time is
strictly increasing for larger n. Interestingly, except for small n, the convergence
time grows only linear in n. The super linear increase for small n can be explained
as under the max cost policy. The initial networks are too dense to admit a high
number of best possible improving moves. For large n, the results can be explained
as follows: in contrast to the max cost policy we have that the random policy often
picks agents who already have a relatively central position in the network. Such
agents can improve only slightly. Thus, moves of such agents only reduce a small
number of individual distances, which explains why a lot of agents remain unhappy
with their situation.

Results for the Max-ASG The results for the Max-ASG under both move
policies can be found in Fig. 4.12. As in the Sum-version, we simulated 10000
runs for each configuration. The results for the max cost policy are shown in black
whereas the results for the random policy are plotted in red.
The plots show that, with one exception, every run of our simulations converged

in less than 5n steps. Hence, the Max-version yields the same fast convergence to
a stable network as in the Sum-version. However, there is a crucial difference: Here
the different move policies do not yield a different convergence behavior. The curves
for the random policy and the max cost policy for the same budget k are very close
to each other. For k ≥ 4 they are almost indistinguishable. For smaller k we see
that the random policy slightly outperforms the max cost policy. The reason for
the similar behavior under both move policies is that in the Max-version there are
significantly more agents which all have maximum cost than in the Sum-version.
After a small number of steps we even have the situation that a large fraction of
all agents has maximum cost. Thus, for an agent we have that choosing randomly
among the maximum cost agents and choosing randomly among all agents yields
no significant difference in the probability of being chosen.
Observe that for k = 1 the convergence time of the max cost policy grows slightly



90 4.4 Dynamics in Asymmetric Swap Games

 0

 100

 200

 300

 400

 500

 600

 700

 10  20  30  40  50  60  70  80  90  100

S
te

p
s

Agents

Avg # of steps until convergence, MAX version, budget = k

k=1 max cost
k=2 max cost
k=3 max cost
k=4 max cost
k=5 max cost
k=6 max cost

k=10 max cost
k=1 random
k=2 random
k=3 random
k=4 random
k=5 random
k=6 random

k=10 random
f(n)= 5n

g(n)=n log n

 0

 100

 200

 300

 400

 500

 600

 700

 10  20  30  40  50  60  70  80  90  100

S
te

p
s

Agents

Max # of steps until convergence, MAX version, budget = k

k=1 max cost
k=2 max cost
k=3 max cost
k=4 max cost
k=5 max cost
k=6 max cost

k=10 max cost
k=1 random
k=2 random
k=3 random
k=4 random
k=5 random
k=6 random

k=10 random
f(n)= 5n

g(n)=n log n

Figure 4.12.: Experimental results for the Max-ASG with budget k. The average
number of steps needed for convergence is plotted on the left, the
maximum number of steps needed for convergence is plotted on the
right. Each point is the average/maximum over the number of steps
needed for convergence of 10000 trials with random initial networks
where each agent owns exactly k edges.

super linear and is well below n log n. In this case the network is almost a tree and
this explains why the convergence time is very close to our bound of Θ(n log n)
shown in Corollary 4.4.2. Interestingly, we have for both move policies that the
convergence time decreases as the budget k increases. Intuitively this is not sur-
prising, since having more edges leads to a lower distance-cost for an agent and to
a lower diameter in the network. However, agents may have many other agents in
maximum distance and the respective shortest paths may not overlap. It is not
clear how a higher budget can help in such a situation.
The curves for k ≥ 3 have a rather strange shape. They show a local peak

right after the beginning and then they fall and much later rise again. We cannot
explain this curious behavior but we conjecture that the reason is the density and
the distance-distribution in the initial networks.

Further Remarks We emphasize again that among all these simulations we have
never encountered a cyclic instance. Our cyclic constructions basically rely on the
observation that it can happen that an improving move of one agent increases the
costs of several agents simultaneously. Empirically this happens very often but has
no severe consequences since whenever the other agents are allowed to move, they
can compensate for their temporary cost increase. As we have shown, it requires a
rather intricate sequence of such moves to achieve that the costs of all agents after
several steps are the same as before. Such sequences are therefore very unlikely to
occur.
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4.5. Dynamics in (Greedy) Buy Games
We focus on the dynamic behavior of the Buy Game and the Greedy Buy Game.
Remember that we assume that each edge can be created for the cost of α > 0.
Thus, the cost of an agent u with strategy Su ⊆ V \ {u} in network (G,α) is
cu(G,α) = α|Su| +

∑
w∈V (G) dG(u,w) in the Sum-version and cu(G,α) = α|Su| +

maxw∈V (G) dG(u,w) in the Max-version.

4.5.1. Convergence Results
We show that best response cycles exist, even if arbitrary strategy-changes are
allowed. However, on the positive side, we were not able to construct best response
cycles where only one agent is unhappy in every step. Hence, the right move policy
may have a substantial impact in (Greedy) Buy Games. In contrast to this, we rule
out this glimmer of hope if played on a non-complete host-graph.

Theorem 4.5.1 The Sum-(G)BG and the Max-(G)BG admit best response cycles.

Proof (of Theorem 4.5.1, Sum-version) We prove both statements by giv-
ing a best response cycle, where the best response of any moving agent consists of
either buying, deleting or swapping one edge.
The best response cycle (G1, α), . . . , (G6, α), for 7 < α < 8, is depicted in

Fig. 4.13.
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Figure 4.13.: The steps of a best response cycle for the Sum-(G)BG for 7 < α < 8.

We analyze the steps of the cycle and show that the indicated strategy-change
is indeed a best response move – even if there are no restrictions on the admissible
strategies.
In network (G1, α), it is obvious that agent g is unhappy with her situation. The

indicated swap gf to gc decreases agent g’s cost from α + 21 to α + 15. This is a
best possible move, which can be seen as follows. Clearly, deleting her unique own
edge would disconnect the network. Hence in all optimal strategies agent g must
purchase at least one edge. Among all strategies, where g buys exactly one edge,
that is, among all possible single edge-swaps, we have that buying an edge towards a
vertex having minimum cost inG1−g is optimal. Here, G1−g is the networkG1 with
vertex g removed. Thus, swapping her edge towards vertex c is optimal. Buying
exactly 1 < k ≤ 6 edges yields cost of at least kα + k + 2(6 − k) > 6k + 12 ≥ 24,
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which is no improvement since α + 15 < 23. After agent g has performed her
strategy-change we obtain network (G2, α).
In (G2, α) we claim that agent f is unhappy and that her best possible move is

to buy an edge towards vertex b. First of all, this is an improving move, since the
edge fb decreases her cost from 19 to 11 + α, which is a strict cost decrease since
α < 8. The target vertex b is optimal, since connecting to c yields the same cost and
connecting to any other vertex yields a higher cost. Clearly, agent f cannot delete
or swap any edges. Furthermore, buying at least two edges yields cost of more than
19, since 2α > 14 and there are six other vertices in (G2, α) to which f must have
distance of at least 1. The edge purchase of agent f leads us to network (G3, α).
In network (G3, α) we claim that agent c is unhappy and that her best possible

move is to delete her edge towards b. Agent c has cost 9 + α in G3. Deleting edge
cb yields cost 16 < 9 + α, since α > 7. Clearly, no strategy which buys at least two
edges can be optimal for agent c, since 6 + 2α > 16. On the other hand, swapping
her unique edge away from b must increase agent c’s cost since at least one distance
increases to 3. If agent c deletes her edge cb, then we obtain network (G4, α).
In (G4, α), we have that agent g is in a similar situation as she was in (G1, α).

Agent g is again a leaf-vertex of a path of length 6. Thus, by an analogous argument
as for agent g in (G1, α), we have that the swap gc to gf is a best possible move
for agent g in (G4, α). This move leads us to network (G5, α).
In network (G5, α) we have that agent c is in a similar situation as agent f in

(G2, α). By analogous arguments, it follows that buying the edge towards b is a
best possible move of agent c in (G5, α). This edge-purchase transforms (G5, α) into
(G6, α).
Finally, in network (G6, α) we have that agent f is in a similar situation as agent

c in (G3, α). Thus, by analogous arguments, we have that deleting her edge fb is an
optimal move for agent f in (G6, α). This deleting transforms (G6, α) into (G1, α)
and we have completed the cycle. �

Proof (of Theorem 4.5.1, Max-version) We provide a best response cycle,
where in every step of the cycle the moving agent has a best response which consists
of a greedy move, that is, the strategy-change is the addition, deletion or swap of
one edge. The best response cycle (G1, α), . . . , (G4, α), for 1 < α < 2, can be seen
in Fig. 4.14.
We show for each step of the cycle that the indicated moving agent indeed per-

forms a best response move which transforms the network of one step into the
network of the next step of the cycle.
In network (G1, α) we claim that agent g is unhappy and that a best response

move is to buy the edge ga. Clearly, agent g cannot delete or swap any edges.
Hence, it suffices to analyze all buy or multi-buy operations. Agent g has cost 5
in (G1, α). The purchase of edge ga is an improving move, since with this yields a
distance-cost of 3 for agent g and since α < 2. Note that agent g must buy at least
one edge to reduce her distance-cost in (G1, α). Furthermore, it is easy to see that
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Figure 4.14.: The steps of a best response cycle for the Max-(G)BG for 1 < α < 2.

with one additional edge a distance-cost of 3 is best possible. Now, observe that
if agent g buys more than one edge, than her distance-cost may decrease, but it
cannot decrease by more than 1 per edge. Since α > 1, no strategy which buys at
least two edges can yield strictly less cost than 3 + α. The indicated move of agent
g transforms (G1, α) into (G2, α).
In (G2, α), agent e, having cost 4, is unhappy with her situation. By buying the

edge ea, agent e can decrease her distance-cost to 2. Since α < 2, it follows that
this is an improving move. Note that agent e cannot delete or swap any edges and
that distance-cost of 2 is optimal, unless agent e buys 5 edges, which clearly is too
expensive. Hence, buying the edge ea is a best response move for agent e and this
move leads to network (G3, α).
In network (G3, α), we have that agent g, having cost 3 + α, is unhappy. By

deleting her own edge ga, agent g can achieve a cost of 4, which is strictly less than
3+α, since α > 1. We claim that deleting edge ga is a best response move for agent
g. If agent g swaps her unique own edge, than she cannot achieve a distance-cost
of less than 3. Thus, no swap can be an improving move. If agent g buys at least
one additional edge, then such a purchase may decrease agent g’s distance-cost by
1 per edge, but since α > 1, this cannot outperform her current strategy in (G3, α).
Thus, deleting edge ga is the only improving move of agent g and, thus, must be
her best response move. This move transforms network (G3, α) in to (G4, α).
Finally, in network (G4, α) we have that agent e, having cost 3 + α, is unhappy.

Deleting her edge ea yields a cost of 4, which is strictly less than 3 + α. Swapping
this edge cannot decrease her distance-cost below 3, which rules out any edge-swaps.
If agent e buys at least one additional edge, then she can reduce her distance-cost
by at most 1 per additional edge. Clearly, no such strategy may yield less cost
than 3 + α and, thus, cannot be an improving move. Hence, deleting her edge ea
is her unique improving move, which must be her best response move. This move
transforms (G4, α) into (G1, α). �

If we restrict the set of edges which can be built, then we get the worst possible
dynamic behavior. In this case there is no hope for convergence if agents are only
willing to perform improving moves.
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Corollary 4.5.2 The Sum-(G)BG and the Max-(G)BG on general host graphs is
not weakly acyclic.

Proof (of Corollary 4.5.2, Sum-version) We use the best response cycle
(G1, α), . . . , (G6, α), shown in Fig. 4.13 with 7 < α < 8 and set the host-graph H
to the graph G1 augmented by the two additional edges bf and cg. With this host
graph, we have that in every step of the cycle exactly one agent is unhappy and
this agent has exactly one possible improving move. It follows that starting with
network (G1, α) on host-graph H there is no sequence of improving moves which
leads to a stable network. �

Proof (of Corollary 4.5.2, Max-version) We use the best response cycle
(G1, α), . . . , (G4, α) in Fig. 4.14 with 1 < α < 2 and we let the host-graph H be
the graph G1 with the additional edges ag and ae. It follows that in every step of
the cycle, exactly one agent is unhappy and this agent has exactly one improving
move. �

4.5.2. Empirical Study of Greedy Buy Games
We give empirical results for the convergence time for both versions of the GBG.
Note that a best response for both versions of the GBG can be computed in poly-
nomial time, whereas this problem is well-known [FLM+03, MS13] to be NP-hard
for the BG. Our results show a remarkably small number of steps needed for con-
vergence in these games, which indicates that distributed local search is a practical
method for selfishly creating stable networks. For the Sum-GBG no run took longer
than 7n steps to converge, whereas for the Max-version we always observed less
than 8n steps until convergence. Moreover, as in the simulations for the ASG, de-
spite several millions of trials we did not encounter a cyclic instance. This indicates
that such instances are rather pathological and may never show up in practice.
As for our experiments in the ASG, we will first describe the experimental setup

and then we summarize the obtained results for the convergence time of the Sum-
GBG and the Max-GBG.

Experimental Setup

Our simulations for the GBG have a similar setup as the experiments presented in
Section 4.4.4. One run of our simulations consists of the generation of a random
initial network, then we employ the max cost or the random policy and enforce best
responses until the process converges to a stable network. See Section 4.4.4 for a
description of these move policies. We measure the number of steps needed for this
convergence to happen.
We focus on the GBG, since it is well-known [FLM+03] that in the BG computing

a best response for an agent is NP-hard. In contrast, for the GBG this can be done
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in polynomial time by simply checking the best possible edge-deletion, edge-swap
and edge-addition and re-computing the incurred cost, see Section 3.2. If at least
two of these operations yield the same cost decrease, then we prefer deletions before
swaps before additions. Such ties are very rare and we have obtained similar results
by changing this preference order.
The initial networks are generated analogously to the ASG, but this time we

do not have to enforce the budget-constraint. Starting from an empty graph on n
vertices we first generate a random spanning tree to enforce connectedness of our
networks. Then we insert edges uniformly at random until the desired number of
edges is present. Note that we do not allow multi-edges. The ownership of every
edge is chosen uniformly at random among the endpoints. In order to investigate
the impact of the density of the initial network on the convergence time, we fix the
number of edges in the initial network to be n, 2n and 4n, respectively. The impact
of the edge-cost parameter α is investigated by setting α to n/10, n/4, n/2 and n,
respectively. Demaine et al. [DHMZ12] argue that this is the most interesting range
for α, since implies that the average distance is roughly on par with the creation
cost of an edge.
The used Python script can be found in Appendix A.2.

Experimental Results and Discussion

We have simulated both the Sum-GBG and the Max-GBG. For each configuration
we computed 5000 runs. Here a configuration is determined by the number of
agents, the number of edges m in the initial network, the choice for α and the
choice for the move policy. For sake of presentation, our plots only contain the
results for m = n and m = 4n and α = n, α = n/4 and α = n/10.

Results for the Sum-GBG Our results for the Sum-GBG can be found in
Fig. 4.15. It can be seen that the convergence time grows roughly linear in n for all
configurations, which implies that these processes scale very well.
Similarly as for the ASG in the Sum-version, we have that the max cost policy

outperforms the random policy. However, since the respective curves look similar,
there seems to be no qualitative difference between both policies. For the cases
where the initial network has 4n edges we have that the gap between the max cost
policy and the random policy is even smaller. The cases where m = 2n, which are
not shown here, fit in well with this observation. This can be explained as in the
ASG: The max cost policy favors agents “at the perimeter” whose best response
moves decrease a high number of individual distances if these moves turn out to
be swaps or additions. In contrast, the random policy picks agents which occupy a
more central position in the network with higher probability. If such agents happen
to swap or add an edge, then this decreases a smaller number of individual distances.
This also explains why the gap becomes smaller, when the number of edges in the
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Figure 4.15.: Experimental results for the Sum-GBG. The average number of steps
needed for convergence is plotted on the left, the maximum number of
steps needed for convergence is plotted on the right. Each point is the
average/maximum over the number of steps needed for convergence of
5000 trials with random initial networks having m edges and α = a.

initial network becomes larger. With more edges to start with, it follows that the
max cost agents have a more central position.
Interestingly, the number of edges in the initial network seems to have an impact

on the convergence time, since all curves for m = 4n are well above the respective
curves for m = n. In the cases where m = 2n, we have that the respective curves
lie between the shown curves. The reason for this may be the relatively high value
for α compared to the diameter of the resulting networks. We have not found any
stable network having a diameter larger than 4 and for our values of α almost
all stable networks happened to be stars. Since stars have n − 1 edges, clearly
m − (n − 1) deletion-steps happen during the convergence process. However, note
that the convergence time is well above m−(n−1), which shows that swap and add
operations also occur fairly often. A typical sample trajectory for the case ofm = 4n
with α = n/4 under the random policy looks as follows: First there is a phase with
mostly deletions. Then this phase is followed by a phase where mostly swap and
some buy and deletion operations occur. This is followed by a final phase where
some swaps and mostly deletions happen. The first phase seems to be due to the
fact that by our generation process the number of owned edges in the initial network
varies more or less strongly between all agents and that α is relatively high. Agents
having too many edges first try to get rid of them until their cost is in a range, where
swaps or additions can outperform deletions, that is, where the distance-cost starts
to dominate the edge-cost of that agent. The latter seems to explain what happens
in the second phase. Here agents are mainly trying to minimize their distance-cost.
After that, a high number of individual distances has decreased, which explains why
in the last phase some swaps and a lot of deletions occur. Clearly, with less edges
to start with, the second phase starts much earlier and the last phase is shorter as
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well. Under the max cost policy we observed that the first phase and the second
phase are slightly shorter than under the random policy. In the first phase almost
all operations are deletions, whereas under the random policy we see more swaps in
the first phase. Interestingly the second phase under the max cost policy consists
almost entirely of swap operations. Under the random policy we see more deletions
and more add-operations in the second phase. Curiously, we generally see more
add-operations under the random policy than under the max cost policy. This is
counter-intuitive, since at least in the second phase agents with high cost have high
distance-cost and therefore add-operations should be appealing for them. However,
these small observations can serve as an additional explanation why the max cost
policy outperforms the random policy.
The choice of α also has an influence on the convergence time. We see that a

smaller α generally yields a higher number of steps needed for convergence. Again,
our additional results for α = n/2 confirm this observation. With smaller α, we
have that the length of the first phase decreases and the length of the second phase
increases. It seems that agents buy more edges in the second phase which then
leads to a longer last phase which may explain the overall increase in convergence
time.
To clarify the influence of different starting topologies, we have compared three

different types of initial networks. The results can be found in Fig. 4.16. In the
random setting, we focus on the initial networks with n vertices and n edges as
described in Section 4.5.2. In the random line, or rl, setting we generate the
initial networks as follows: first a path having n vertices is created and then we
choose the ownership of each edge uniformly at random among its endpoints. In
the directed line, or dl, setting we generate a path having n vertices and then the
edge ownership is chosen such that all edges point in the same direction, that is,
that the edge-ownership forms a directed path.
Generally we find that the specific topology of the initial network has only

marginal impact on the number of steps needed for convergence in the Sum-GBG.
As shown in Fig. 4.16, the convergence time differs roughly by a factor of at most
2. We expected that the random setting is faster than the rl setting and that rl is
faster than dl. The reason for our expectation was that the initial networks in the
random setting are more star-like than in rl or dl (which actually is the opposite
of star-like) and being star-like seems to be closer to the typical shape of a stable
network. However, our simulations show exactly the opposite behavior for all con-
figurations. Under both move policies we see that dl is faster than rl and random.
One possible explanation is that due to the high diameter of the initial network in
the dl setting a move by some agent, especially in the first rounds, decreases the
social cost by a larger amount than in the rl or random setting. Maybe this initial
decrease is large enough to reduce the number of moves at the end of the process.
Another interesting point is the comparison of the two move policies. We find

that the max cost policy outperforms the random policy, independently of the initial
setting. But there are differences: Under the max cost policy we see that the dl
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Figure 4.16.: Comparison of different starting topologies for the Sum-GBG. The
maximum number of steps needed for convergence under the max cost
policy is plotted on the left, the maximum number of steps needed
for convergence under the random policy is plotted on the right. Each
point is the maximum over the number of steps needed for convergence
of 5000 trials where the initial setting is random, rl or dl and α = a.

setting is the fastest, independently of the edge-price α. The convergence time in
the other settings depends stronger on α and they are very similar. The reason
for this may be that only a few moves by max cost agents in the rl suffice to
obtain a network which is very similar to the initial network in the random setting.
Under the random policy, we again see for each configuration that dl is faster than
rl, which is faster than random. However, we also see that the convergence time
depends stronger on α than under the max cost policy. It seems that the value of
α has a stronger influence than the respective initial setting. This is not surprising
since the max cost policy favors agents whose move decreases the social cost by a
rather large amount which leads to faster convergence.

Results for the Max-GBG The results of our simulations for the Max-GBG
are shown in Fig. 4.17. We generally find the same behavior as for the Sum-version.
The convergence time grows linear in n but, at least for the cases where m = 4n it
takes longer than the respective configurations in the Sum-version.
One difference is that the choice of α seems to have less impact on the convergence

time than in the Sum-version. Furthermore, for the cases wherem = 4n andm = 2n
(omitted in the plot) we see that the process under the max cost policy is slower
than under the random policy. Thus, we see the opposite behavior under both move
policies.
A typical sample trajectory for m = 4n, with α = n/4 under the random policy

looks much like the trajectory for the Sum-version, but it seems that the final phase
is missing. The first phase contains almost exclusively deletions and the second
phase contains mostly swaps and some deletions. Add-operations are exceptionally
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Figure 4.17.: Experimental results for the Max-GBG. The average number of steps
needed for convergence is plotted on the left, the maximum number of
steps needed for convergence is plotted on the right. Each point is the
average/maximum over the number of steps needed for convergence of
5000 trials with random initial networks having m edges and α = a.

rare, which seems to be due to the high value of α. Interestingly, under the max
cost policy a typical trajectory looks different. Here we have that the second phase
is much longer and almost all moves in this phase are swaps. This may explain
why the max cost policy induces a slower convergence towards a stable network.
Clearly, in the Max-version the cost of an agent is mostly determined by her edge-
cost, which explains why first a series of deletions and then mostly swap operations
can be seen.
As for the Sum-version, we considered different initial topologies. Fig. 4.18 shows

a comparison of the three settings random, rl and dl, which we have introduced
above.
The comparison shows a stronger impact of the starting topology than in the

Sum-version. In the Max-version we find that the convergence times differ by at
most a factor of 5. Interestingly, here we find the expected outcome that under both
move policies the random setting is faster than rl and dl and that rl is faster than
dl. Furthermore, the edge-price α has almost no influence on the convergence time
compared to the influence of the initial topology. Both move polices yield almost
the same convergence times. As argued above, this is not surprising, since we have
that under the max cost policy a few moves suffice to obtain a network where a
large fraction of agents has maximum cost and then we are almost in the random
policy scenario.

Further Remarks As for the ASG, we have not encountered a cyclic instance for
the Sum-GBG or the Max-GBG in any of our several million trials. This indicates
that non-convergent initial networks may be very rare. It is not impossible that the
random policy or even the max cost policy may guarantee convergence. However, as
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Figure 4.18.: Comparison of different starting topologies for the Max-GBG. The
maximum number of steps needed for convergence under the max cost
policy is plotted on the left, the maximum number of steps needed
for convergence under the random policy is plotted on the right. Each
point is the maximum over the number of steps needed for convergence
of 5000 trials where the initial setting is random, rl or dl and α = a.

our result for the GBG on general host-graphs shows, there may be initial networks
on the complete host-graph for which no sequence of improving moves leads to a
stable network. Finding such initial networks seems to be very challenging, but - in
contrast - proving guaranteed convergence for some move policy seems even more
challenging.

4.6. Dynamics in Bilateral Buy Games with
Cost-Sharing

We consider “bilateral network formation”, as introduced by Corbo and Parkes
[CP05], which we call the bilateral equal-split BG. This version explicitly models
that bilateral consent is needed in order to create an edge, which is a realistic
assumption in some settings. The cost of an edge is split equally among its endpoints
and edges are built only if both incident agents are willing to pay half of the edge-
price. This model implicitly assumes coordination among coalitions of size two
and the corresponding solution concept is therefore the pairwise Nash Equilibrium,
which can be understood as the minimal coalitional refinement of the pure Nash
Equilibrium. The authors of [CP05] show that this solution concept is equivalent to
Myerson’s proper equilibrium [Mye91], which implies guaranteed convergence if the
agents repeatedly play best response strategies against perturbations of the other
players’ strategies, where costly mistakes are made with less probability. We show
in this section that these perturbations are necessary for achieving convergence by
proving that the bilateral equal-split BG is not weakly acyclic in the Sum-version
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and that it admits best response cycles in the Max-version. Interestingly, the first
result is stronger than the result for the Sum-(G)BG, which yields the counter-
intuitive observation that sharing the cost of edges can lead to worse dynamic
behavior.
We want to avoid that agents are forced to buy edges. Hence, we assume that

the initial network of the network creation process is connected. This assumption
may be removed by enforcing a penalty for every disconnected agent, as proposed
by Fabrikant et al. [FLM+03] and analyzed by Brandes et al. [BHN08].
The creation of an edge in bilateral equal-split BGs requires coordination of the

two incident agents, whereas the deletion of an edge is a unilateral move of one agent.
Formally, the edge-cost term in the cost function of an agent changes slightly, since
in this version an agent has to pay half of the price for every incident edge. Let
(G,α) be any network and let NG(u) be the set of neighbors of agent u in (G,α). Let
(G′, α) be the network induced by a strategy-change of agent u in network (G,α)
and let NG′(u) be the set of agent u’s neighbors in (G′, α). Thus, agent u changes
her strategy from NG(u) to NG′(u). Such a strategy-change is feasible if and only
if cv(G,α) ≥ cv(G′, α) for all v ∈ NG′(u) \ NG(u). Hence, agent u can perform a
move from strategy Su to S ′u if and only if in the network induced by S ′u all agents
involved in the creation of new edges selfishly agree to pay their cost-share. If this
is not the case for some agent x ∈ S ′u \ Su, then we say that agent x blocks agent
u’s move from Su to S ′u.

Theorem 4.6.1 The Sum bilateral equal-split Buy Game is not weakly acyclic.

Proof Theorem 4.6.1 We prove the statement by giving a cyclic sequence of net-
works (G0, α), . . . , (G2, α), where all unhappy agents in network (Gi, α) only have
feasible improving moves which lead to a network which is isomorphic to network
(Gi+1 mod 3, α). It follows that starting from network (G0, α) as initial network no
sequence of improving moves leads to a network where all agents are happy.
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Figure 4.19.: The cyclic sequence of networks (G0, α), (G1, α), (G2, α) for 10 < α <
12 for the Sum bilateral equal-split Buy Game. Unhappy agents are
highlighted.

Now we analyze the states of the cycle. The networks (G0, α), (G1, α) and (G2, α)
are shown in Fig. 4.19. We assume that 10 < α < 12 holds.
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Network (G0, α): We show that only agent a and c are unhappy in (G0, α) and
that their unique improving move is the removal of their edge towards agent b,
respectively. After this move, we obtain a network which is isomorphic to network
(G1, α).
Consider the leaf agents f, g, h, i, j and k. Clearly, none of them can delete an

edge since this would disconnect the network. Next, swapping their unique edge
involves another agent who must be willing to accept another leaf neighbor, but,
since α

2 > 1, no agent will do this. It follows that a leaf agent must buy at least two
edges if she wants to improve. Among those edges, there cannot be edges towards
other leaf agents. This is true because the network (G0, α) has diameter 4 and no
vertex has more than two neighboring leaves. At best, such an edge can decrease
the distance towards the other leaf by 3, towards the neighbor of this leaf by 1 and
possibly towards the other leaf connected to this neighbor by 1, which yields at most
a distance decrease of 5 < α

2 . All non-leaf agents have distance at most 3 towards
any leaf agent and distance at most 2 towards any non-leaf agent. It follows that no
non-leaf vertex will accept any edge offered by a leaf agent, independently of which
other edges this leaf agent buys. This implies that no leaf agent can perform any
strategy-change to decrease her cost.
Now we focus on agent d and e. By symmetry, both agents face the same situation

and therefore we restrict our attention to agent d. Her cost in (G0, α) is 4α2 + 17.
Clearly, agent d cannot remove her edge towards h or i and not both edges to c
and e, since this would disconnect the network. Removing edge dc or de alone
increases her distance-cost by 7 or 14, respectively. Since α

2 < 7, these moves are
not improving for agent d. Thus, agent d’s best possible strategy buys at least three
edges including the edges dh and di. Among all strategies of agent d which buy
exactly three edges, the strategy {a, h, i} is optimal, since a has minimum distance-
cost in the network G0 − {d, i, h}. Note that the strategy {a, h, i} is better than
agent d’s current strategy {c, e, h, i} and it is the only strategy involving three edges
with this property. However, the move from {c, e, h, i} to {a, h, i} will be blocked
by agent a, since she currently has cost 3α2 + 20 and with agent d’s new strategy
her cost increases to 4α2 + 17. Agent d’s current strategy is best possible among
all strategies which buy four edges. This is easy to see, since the edges dh and di
are forced and the other two edges should connect to the vertices of a 2-median-set
in the graph G0 − {d, h, i}. There are two such sets: {c, e} and {b, e}. Thus, the
strategy {b, e, h, i} yields the same cost as strategy {c, e, h, i} for agent d. We claim
that no strategy buying more than four edges can outperform agent d’s current
strategy. Any such strategy buys at least five edges and no edge will connect to a
leaf of (G0, α). The strategy {a, c, e, h, i} is the best strategy using five edges and
yields cost 5α2 + 15. With six edges there is only one strategy which yields cost of
6α2 + 14. Thus, agents d and e cannot perform an improving move in (G0, α).
Next, we show that agent b is happy in network (G0, α). Clearly, agent b has to

buy at least one edge, since otherwise the network is disconnected. Among all these
strategies, the strategies {d} and {e}, which both yield cost α

2 + 25, are optimal.
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Note that both outperform agent b’s current strategy {a, c} having cost 2α2 + 22.
However, in both cases, agent b cannot change towards the new strategy, since the
respective new neighbor will block this change. Consider b’s strategy-change from
{a, c} to {d}. Before the change, agent d has cost 4α2 + 17, after the change d’s cost
is 5α2 + 16, which is strictly larger. Note that no other strategy of agent b which
buys exactly one edge outperforms her current strategy. By deleting her edge to a
or c her distance-cost increases by 11. Furthermore, connecting to a leaf is clearly
worse than agent b’s current strategy. By the same reasoning as above, agents d
and e will block every new strategy of b which connects to them. Since connecting
to a leaf is clearly sub-optimal, we are left with b’s current strategy {a, c}. Thus,
agent b cannot perform an improving move.
Agents a and c are unhappy and, by symmetry, we will focus on agent a, who has

cost 3α2 + 20 in (G0, α). Clearly, all optimal strategies of agent a must buy the edge
towards f and at least one additional edge. The best possible strategy using two
edges is {d, f}, since d is a 1-median vertex of the graph G0 − {a, f}. But, agent e
would block this strategy, since this strategy-change yields cost 5α2 + 15 > 4α2 + 17
for agent e. There are two other strategies using two edges and which outperform
agent a’s current strategy. These strategies are {c, f} and {e, f}. Moving from
{b, e, f} to {c, f} is not possible for agent a, since this move would be blocked by
agent c, whose cost would change from 3α2 + 20 to 4α2 + 18. The move from {b, e, f}
to {e, f} is possible, since the move only consists of the deletion of an edge, which
is a unilateral move. This move decreases agent a’s cost from 3α2 + 20 to 2α2 + 25,
which is indeed an improvement since α

2 > 5. Now we are left to show that agent a
has no other improving moves. Clearly, since connecting towards leaf agents cannot
outperform a’s current strategy, we can ignore all other strategies which buy two
edges. For all larger strategies the same holds true. We have already shown that
agent c blocks any connection attempts of agent a. By analogous reasoning, the
same is true for agents d and e. It follows that there are no other possible improving
moves for agent a. Hence, we have that a’s move from {b, e, f} to {e, f} is her only
improving move. By symmetry the same holds for agent c’s move from {b, d, g} to
{d, g}. In both cases we obtain a network which is isomorphic to network (G1, α).
Network (G1, α): We show that in network (G1, α) only the agents b, f, g are

unhappy and that any improving move of one of those agents leads to a network
which is isomorphic to network (G2, α).
Analogous to the discussion above, we have that no non-leaf agent is willing to

accept an edge from agents h, i, j or k and that any edge towards another leaf
agent does not yield a distance decrease which is high enough to compensate the
edge-price. Hence, these agents cannot perform a strategy-change.
Agents d and e are in a very similar situation than in (G0, α) and, since they

cannot buy less edges, it is easy to see that they cannot perform an improving
move. Agent a is happy, since she has just performed her only improving move
which transformed network (G0, α) into network (G1, α). If a would have another
improving move, then this would contradict the uniqueness of her move in (G0, α).
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Agent c cannot delete her edges to b and g and has to buy at least three edges.
Her best possible strategy using three edges would connect to e instead of d, but c
cannot move towards this strategy, since agent e would block it. Connecting to a
instead of d is clearly worse. Any strategy which uses four edges cannot outperform
agent c current strategy. Since agent e refuses an edge from c, there are only
agent a or leaf agents left. Again, connecting to leaf agents yields a cost increase.
Connecting to agent a yields a decrease in distance-cost of 4 but, since α

2 > 4, it
follows that the strategy {a, b, d, g} is worse than agent c’s current strategy. More
than 4 edges would involve an edge towards a leaf agent and therefore we conclude
that agent c cannot improve on her current strategy {b, d, g}.
We are left with agents b, f and g. Agents b and g face a similar situation an we

will focus on agent b having cost α
2 + 33. Clearly, agent b has to buy at least one

edge and, among all strategies using exactly one edge, agent b’s current strategy
{c} is the only possible strategy, since all other vertices would block an edge-swap
from agent b to them. Hence, we consider possible strategies of agent b, which buy
at least two edges. Agents d and e will refuse any edge from b, independently of
the number of other edges bought by agent b. Thus, d and e cannot be involved in
any feasible improving strategy of agent b. Next, by buying an edge towards h, i, j
or k agent b cannot decrease her distance-cost more than 4 < α

2 , which rules out
that h, i, j or k are involved in an improving strategy. We are left with vertices
a, c, f and g as possible targets for edges from b and we have that b’s strategy has
to choose at least two of them. With these restrictions it is easy to see that buying
at least three edges is too expensive for agent b. Hence, we focus on all possible
strategies using exactly two edges. Clearly, strategy {a, c} is the best possible
among them, but it requires that agents a and c are willing to accept b’s edge. For
agent c this is true, since in (G1, α) this edge is already present and because bc is
a bridge. Unfortunately for b, agent a will block the move from {c} to {a, c}, since
a was the agent who unilaterally decided to remove the edge towards b in network
(G0, α). The same is true for a move towards strategy {a, g}. We are left with the
two strategies {c, f} and {f, g}. After moving to strategy {f, g} agent b has cost
2α2 + 28, which, since α

2 > 5, is higher than agent b’s current cost of α2 + 33. Finally,
the move towards strategy {c, f} will be an improving move, since this strategy
yields cost 2α2 + 25 < α

2 + 33. Furthermore, the move from {c} to {c, f} will not be
blocked by agent f , since this move decreases agent f ’s cost from α

2 +34 to 2α2 +26.
Moreover, the move will not be blocked by agent c, since the move strictly decreases
agent c’s cost. Thus, we have that the move from {c} to {c, f} is agent b’s unique
feasible improving move. By symmetry, the same is true for agent g’s move from
strategy {c} to strategy {c, f}.
Now we consider agent f . By analogous reasoning there is no feasible improving

move for agent f towards a strategy which uses exactly one or more than two edges.
We are left with analyzing all possible strategies using exactly two edges. Similar
to the situation of agent b, only the agents a, b, c and g are possible targets for f ’s
edges. The strategy {a, c} looks the most promising for agent f , but it will be
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blocked by agent c, since c’s decrease in distance-cost caused by this move is only
4 < α

2 . The same is true for strategy {b, c} or {g, c}. Moreover, strategy {b, g}
yields higher cost then f ’s current strategy. Hence, we are left with the strategies
{a, b} and {a, g}. Both yield cost 2α2 + 26 < α

2 + 33, since α
2 < 7. A move from {a}

to {a, b} or {a, g} is feasible, since agent b’s (or g’s) cost changes from α
2 + 31 to

2α2 + 25, which is a strict cost decrease since α
2 < 6. Furthermore, it is easy to see

that agent a’s cost strictly decreases if f moves to strategy {a, b} or {a, g}, which
implies that a will not block such a move.
Observe that all possible improving moves by agents b, f or g lead to a network

which is isomorphic to (G2, α).
Network (G2, α): We show that in network (G2, α) only agent e is unhappy and

that her unique feasible improving move leads to a network which is isomorphic to
network (G0, α).
We consider the leaf agents g, h, i, j and k first. Clearly, they cannot delete their

unique edge and no agent would accept an edge if a leaf agent performs an edge-
swap. Thus, they must buy at least two edges if they want to outperform their
current strategy. Analogous to the discussion above, no edge towards another leaf
agent can be part of an improving strategy. Thus, it remains to show that no
strategy-change towards a combination of at least two edges to non-leaf agents is a
feasible improving move for g, h, i, j or k. The agents d and e will not accept any
new edge from a leaf agent since they have only one non-leaf agent in distance 3
and any leaf agent is in distance at most 3. It follows that by accepting such an
edge agent d or e can only hope for a distance decrease of 3 < α

2 . The same is true
for agents a and c. Agent a has one non-leaf agent in distance 3 and one leaf-agent,
which is g, in distance 4. Thus, by accepting an edge coming from a leaf agent,
agent a’s distance-cost can decrease by at most 4 < α

2 . For agent c the situation
is similar, but c does not have a leaf agent in distance 4, which implies that by
accepting an edge from a leaf agent only a distance decrease of 3 is possible. We
are left with agents b and f , which both have one non-leaf agent in distance 3 and
two leaf agents in distance 4. Hence, by accepting an edge from a leaf agent they
can possibly reduce their distance towards this leaf by 3, towards its neighbor by 1
and towards the other leaf in distance 4 by 1. In total the best possible distance
decrease for agents b or f is 5 < α

2 . It follows that no leaf agent can perform a
feasible improving move.
Next, we show that agent d cannot improve on her current strategy {c, e, h, i}

which yields cost of 4α2 + 17. Clearly, agent d must buy the edges towards h and
i and at least one more edge to connect to the network G2 − {d, h, i}. The best
possible strategy using three edges connects to a 1-median vertex of G2 − {d, h, i}.
There are two such vertices: a and f . Both strategies {a, h, i} and {f, h, i} yield
cost 3α2 + 25 which is higher than agent d’s current cost. Hence, no strategy using
exactly three edges can outperform d’s current strategy. The optimal strategy using
4 edges must connect towards the vertices which form a 2-median-set in the graph
G2 − {d, h, i}. The 2-median-problem in G2 − {d, h, i} has two solutions: {c, e},
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{b, e}. Thus, agent d’s current strategy is an optimal strategy using four edges.
Now let us look at possible strategies for agent d which use more than four edges.
The best strategy using five edges is {c, e, f, h, i} and yields cost 5α2 +15 > 4α2 +17.
Clearly, the best strategy using six edges is worse. Thus, agent d cannot perform
any improving move.
Now, let us consider agent c having cost 3α2 +20 with her current strategy {b, d, g}.

Agent c must buy the edge towards g and at least one more edge to ensure con-
nectedness of the network. Her best possible strategy using exactly two edges is
{e, g}, since g is the unique 1-median vertex of G2 − {c, g}. However, the move
from {b, d, g} towards {e, g} will be blocked by agent e since this move increases
her cost from 4α2 + 18 to 5α2 + 16. The two second best strategies using two edges
are {a, g} and {d, g} which both yield cost 2α2 + 26 > 3α2 + 20 since α

2 < 6. Hence,
no strategy using two edges can be a feasible improving strategy for agent c. For
all other strategies using more than two edges we have that they cannot contain an
edge towards e. This is true since in G2 agent e only has two agents in distance 3,
which implies that by accepting an edge from c agent e can only hope for a distance
decrease by 3 < α

2 . It follows that c’s best possible strategy using three edges must
connect to agent d and g. The best choice for the third edge is agent f , but the
move from {b, d, g} to {d, f, g} will be blocked by agent f since this move changes
her cost from 2α2 +26 to 3α2 +21 which is a strict cost increase, since 5 < α

2 . Clearly,
the third edge cannot connect to a leaf agent of (G2, α). Hence, we are left with c’s
current strategy and the strategy {a, d, g}, which yield the same cost. It follows that
c’s current strategy is the best possible feasible strategy using three edges. If agent
c would buy more than three edges, then, since e is not available and leaf agents
are not attractive as well, the best such strategy connects to d and g and chooses
two targets from the set {a, b, f}. It is easy to see that such a strategy yields higher
cost than c’s current strategy. Moreover, if c buys more than four edges, then the
situation gets even worse. Thus, we have that agent c cannot perform a feasible
improving move.
Agent b has cost 2α2 + 25 in network (G2, α). Agent b cannot move towards

a strategy using exactly one edge, since the removal of the edge bf increases b’s
distance-cost by 6 > α

2 and removing the edge bc yields an increase in distance-cost
by 16. Furthermore, no other agent than c or f would accept an edge from agent b
if this edge is b’s unique edge. Thus, we have that agent b has to buy at least two
edges to outperform her current strategy. Note that agents d and e will refuse to
accept any edge offered by agent b, since they have at most two agents in distance
3 an can only hope for a distance decrease by 3 from such an edge. By buying an
edge towards a leaf agent, agent b can only hope for a distance decrease by 5 < α

2 ,
since b has two agents in distance 4 and their common neighbor is in distance 3.
Agent a will refuse an edge from b, since this edge must yield a distance decrease
for a by at least 6 but this is only possible if b simultaneously buys edges towards
c, g, h and i, which clearly is not an improving strategy for agent b. Hence, agent b
only has agents c and f available as targets and connecting to both is b’s current
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strategy. It follows that agent b has no feasible improving move.
Agent f has cost 2α2 +26. We first show that f has no feasible improving strategy

using one edge. Removing edge fa or fb increases f ’s distance-cost by 11 or 6,
respectively. Hence, no such removal yields a cost decrease. Furthermore, it is easy
to see that no other agent than a and b would accept an edge from f if f buys
no other edges. By an analogous argument as for agent b, it follows that no edge
towards a leaf agent is beneficial for f and that no non-leaf agent other than a
and b would accept an edge from f . Thus, agent f cannot perform any improving
strategy-change.
Next, we show that agent a, having cost 2α2 +23, cannot move towards an improv-

ing strategy. No move towards a strategy using one edge can be feasible and yield
a cost decrease. Removing the edge ae or af yields an increase in distance-cost by
18 or 6, respectively, which implies that agent a would not improve. Moreover, no
agent other than e and f would accept an edge from a if a buys no other edges.
For all strategies which buy more than one edge, we have that agent d would refuse
to accept any edge coming from a, since d only has one agent in distance 3 and
this implies that d could only gain 2 in distance-cost. Moreover, no edge towards
a leaf agent can be part of an improving strategy for a, since a has only one leaf
in distance 4 and could decrease her distance-cost by at most 4 by such an edge.
Hence, all edges of a must connect to vertices b, c, e or f and it is obvious that in a’s
best possible strategy the edge towards e should by contained. With this restric-
tion it follows that a’s best possible strategy must use exactly two edges, since the
strategies {b, c, e}, {c, e, f}, {b, e, f} and {b, c, e, f} are clearly more expensive than
a’s current strategy. The strategy {c, e} outperforms a’s current strategy, but the
move from {e, f} to {c, e} will be blocked by agent c since this move increases her
cost from 3α2 + 20 to 4α2 + 18. Analogously, agent a’s move from {e, f} to {b, e} will
be blocked by agent b since this move increases her cost from 2α2 + 25 to 3α2 + 21.
Thus, we have that agent a cannot perform a feasible improving move.
Finally, we show that agent e, having cost 4α2 +18, is unhappy in (G2, α). Clearly,

agent e must buy the edges towards j and k and at least one additional edge. Since
c is the unique 1-median vertex in G2 − {e, j, k}, we have that {c, j, k} is agent e’s
best possible strategy which buys three edges. This strategy outperforms e’s current
strategy, but the move from {a, d, j, k} to {c, j, k} will be blocked by agent c since
this move increases her cost from 3α2 + 20 to 4α2 + 17. The second best strategies
using exactly three edges, {d, j, k} and {b, j, k}, both yield cost 3α2 + 24 for agent
e. Since α

2 < 6, this implies that these strategies yield higher cost for agent e. It
follows that no move to a strategy with three edges can be feasible and improving
for agent e. The best possible strategy using four edges must connect to the vertices
in a 2-median-set of G2 − {e, j, k}. This set is {d, f} and it is unique, hence we
have that {d, f, j, k} is agent e’s best possible strategy using four edges. Note that
this strategy yields cost 4α2 + 17 which implies that it outperforms agent e’s current
strategy. Furthermore, the move from {a, d, j, k} towards {d, f, j, k} is feasible,
since this move decreases agent f ’s cost from 2α2 + 26 to 3α2 + 20. This is indeed
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a strict decrease, since α
2 < 6. We have found a feasible improving strategy-change

for agent e. In the following we will show that this is the only feasible improving
strategy-change. The second best strategies using exactly four edges are {a, d, j, k},
which is e’s current strategy and {b, d, j, k}. Both yield the same cost for agent e.
It follows that there are no other possible improving strategies using four edges.
Strategies using more than four edges cannot outperform agent e’s current strategy.
This can be seen as follows. With e’s current strategy we have that there are two
agents in distance 3 and both do not share a common neighbor. The best possible
situation with more than four edges would be to have five vertices in distance 1
and the rest in distance 2. This yields a cost of 5α2 + 15 > 4α2 + 18. Thus, we have
shown that agent e can perform exactly one feasible improving strategy-change and
this move transforms network (G2, α) into a network (labeled (G3, α) in Fig. 4.19)
which is isomorphic to (G0, α). �

For the Max-version, we can show a slightly weaker result.

Theorem 4.6.2 The Max bilateral equal-split Buy Game admits best response cy-
cles.

Proof Theorem 4.6.2 The four steps (G1, α), . . . , (G4, α) of the best response cycle
are depicted in Fig. 4.20. We assume that 2 < α < 4 holds.
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Figure 4.20.: The steps of a best response cycle for 2 < α < 4 for the Max bilateral
equal-split Buy Game.

In network (G1, α) we claim that agent a, having cost α
2 + 5 is unhappy with her

situation and that buying the edge ae is the best possible feasible strategy-change
for her. With strategy {b, e} agent a has cost 2α2 + 2 < α

2 + 5, since α
2 < 2.

Furthermore, a’s move from {b} to {b, e} decreases e’s cost from 3α2 + 4 to 4α2 + 2.
Observe that agent a cannot remove any edge. By swapping her unique edge,

agent a can possibly achieve distance-cost of 4, but we have 2α2 + 2 < α
2 + 4. Thus,

no strategy using one edge can outperform her move from {b} to {b, e}. Note that
by buying less than seven edges, the best possible distance-cost agent a can hope for
is 2. Since the strategy {b, e} already achieves this, it follows that agent a’s move
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from {b} to {b, e} is indeed a best possible strategy-change. This move transforms
network (G1, α) into network (G2, α).
In network (G2, α) we claim that agent c’s best possible feasible strategy-change

is the removal of edge cd. By removing this edge, agent c’s cost changes from 2α2 +3
to α

2 + 4, which is a strict decrease since α
2 > 1. Among all strategies which buy one

edge, the strategy {e} would be optimal for agent c since this is the only strategy
which yields distance-cost of 3. However, a move from {b, d} to {e} will be blocked
by agent e, whose cost changes from 4α2 + 2 to 5α2 + 2. It follows that distance-cost
of 4 is best possible if agent c buys only one edge. Among all strategies using two
edges, the strategy {b, e} is the only one which yields distance-cost 2. But, as we
have already seen, agent e would block agent c’s move from {b, d} to {b, e}. It
follows that c’s current strategy is the best possible among all strategies which buy
two edges. By buying more than two and less than seven edges, agent c can only
hope for distance-cost 2, but even with three edges, this yields higher cost than her
current strategy. Buying seven edges is clearly too expensive. Hence, we have that
the removal of edge cd is a feasible and best possible strategy-change for agent c
and this change transforms (G2, α) into (G3, α).
Agent e is unhappy in network (G3, α). We show that e’s best possible feasible

strategy-change is the removal of edge ea. This move decreases agent e’s cost from
4α2 + 3 to 3α2 + 4, which is a strict decrease since 1 < α

2 . In any improving strategy
agent e must buy an edge towards d and h and at least one additional edge. Clearly,
agent e’s best possible strategies using three edges is {b, d, h} and {d, g, h}, since b
and g is are the 1-center vertices of G3−{d, e, h}. Both strategies outperform agent
e’s removal of ea, but a move from {a, d, f, h} to {b, d, h} will be blocked by agent
b whose cost will be increased from 3α2 + 3 to 4α2 + 2 and a move from {a, d, f, h} to
{d, g, h} will be blocked by agent g, since her cost increases from 2α2 + 3 to 3α2 + 2.
Furthermore, strategies {b, d, h} and {d, g, h} are the only strategies using three
edges, which yield a distance-cost of 3 for agent e. The same reasoning applies
for strategies which buy more than three edges. In this case agents b and g would
refuse to accept any edge from agent e, since they can only hope for a distance-
cost of 2, which is not low enough to compensate for the additional edge-cost. It
follows that agent e’s move from {a, d, f, h} to {d, f, h} is her best possible feasible
strategy-change. This move transforms network (G3, α) into network (G4, α).
In network (G4, α) we claim that agent c is unhappy and that her best possible

feasible strategy-change is the move from strategy {b} to {b, d}, which decrease her
cost from α

2 + 5 to 2α2 + 3, which is indeed a strict decrease since α
2 < 2. Any

strategy-change towards a strategy using only one edge, that is, any edge-swap by
agent c, will be blocked by the other involved agent. This is true, since no agent
has agent c as her unique agent in maximum distance. It follows that c has to move
to a strategy which buys at least two edges, if she wants to outperform her current
strategy. The best possible strategy with two edges is {b, e}, since this set is the
unique 2-median-set in the graph G4 − {c} which yields a distance-cost of 2 for
agent c. Unfortunately for agent c the move from {b} to {b, e} will be blocked by
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agent e, since this move would increase her cost from 3α2 + 4 to 4α2 + 3. No other
strategy using two edges yields distance-cost of 2 for agent c, which implies that she
has to buy more than 2 edges to outperform her move to {b, d}. It is easy to see
that with at least three edges and less than seven edges at best a distance-cost of 2
is possible for agent c, but this does not suffice to compensate the higher edge-cost.
Furthermore, buying seven edges is clearly too expensive. Thus, the indicated move
from {b} to {b, d} is a best possible feasible move for agent c. This move transforms
(G4, α) into (G1, α) and we have completed the best response cycle. �





5. On the Structure of Selfishly
Created Networks

A significant part of the research on Network Creation Games focuses on assessing
the impact of the agents’ selfish behavior on the overall network quality. Clearly,
if there is no or little coordination among the agents, then it cannot be expected
that the obtained networks minimize the social cost. The reason for this is that
each agent aims to improve the network quality for herself while minimizing the
cost spent to achieve this service quality. However, despite this egoistic behavior of
agents, recent theoretical results and empirical observations suggest that selfishly
built networks are very efficient in terms of the overall cost and of the individu-
ally perceived service quality. We believe that to understand this quite surprising
phenomenon it is important to understand the structure of equilibrium networks
built by selfish agents. This knowledge may then be used in mechanism design
for guiding agents towards socially good states or constructively for creating and
maintaining robust and efficient overlay or peer to peer networks.
In this chapter we contribute to this endeavor by providing new insights into

the structure of equilibrium networks which arise as outcomes of Network Creation
Games. Our contributed insights, apart from being of interest on their own, may
be used for proving better bounds on the Price of Anarchy for Network Creation
Games, since they provide a rich structure to work with.

5.1. Preliminaries

5.1.1. Additional Definitions
Let G = (V,E) be any undirected connected graph. A bridge in G is an edge whose
removal disconnects G. A bridge-free component Cbf of G is a maximal induced
subgraph of G, where |V (Cbf )| ≥ 3 and which does not contain bridges. We call
a graph bridge-free if it does not contain bridges. Note that we rule out trivial
bridge-free components which contain only one vertex. Recall that G − u denotes
the graph G after vertex u ∈ V (G) is removed. We generalize this and let G − U ,
for some set U ⊂ V , denote the graph G after all vertices in U are removed. A
cut-vertex x of a connected graph G is a vertex, where G− x contains at least two
non-empty connected components. A biconnected component Cbc of a graph G is a
maximal induced subgraph of G, where |V (Cbc)| ≥ 3 and which does not contain a
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cut-vertex. We call a graph biconnected if it has no cut-vertex. Note that we rule
out trivial biconnected components which contain exactly one edge. A set U ⊂ V
is a separator of a connected network G, if G− U contains at least two non-empty
connected components. Let G′ = (V ′, E ′) and G′′ = (V ′′, E ′′) be induced subgraphs
of G. We define G′ ∪G′′ := (V ′ ∪ V ′′, E ′ ∪E ′′) to be the union graph of G′ and G′′
and G′ ∩ G′′ := (V ′ ∩ V ′′, E ′ ∩ E ′′) to be the shared graph of G′ and G′′. We will
sometimes abuse notation by writing uv ∪G′, where uv ∈ E, which is equivalent to
({u, v}, {uv}) ∪G′.
We will sometimes omit this reference to α, mostly when we focus on graph-

theoretic properties of the network.
A more refined view on pure Nash Equilibria will be adopted in one section. A

network (G,α) is said to be in transient pure Sum-Nash Equilibrium if it is in
Sum-NE but there is at least one agent in (G,α) who can perform a cost neutral
strategy-change which leads to an unstable network. If there is no such agent in
(G,α) then it is in non-transient Sum-NE.
We will sometimes refer explicitly to the structure of edge-ownership within a

network (G,α). For this purpose, let −→G be the network (G,α) interpreted as di-
rected graph. That is, we get the directed graph −→G by replacing every edge in
(G,α) with a directed arc which is directed away from its owner.

5.1.2. Related Work
Network Creation Games, as defined in Section 2.2, were introduced with the inten-
tion of modeling and understanding networks which are created by selfish agents.
Fabrikant, Luthra, Maneva, Papadimitriou and Shenker [FLM+03] showed for the
Sum-NCG that the Price of Stability is 1, except for 1 ≤ α < 2 where it is upper
bounded by 4

3 , and gave the first general bound of O(
√
α) on the Price of Anarchy

by proving a bound of O(
√
α) on the diameter and by showing that if any Sum-

NE network has diameter at most D, then the Price of Anarchy is bounded by
O(D). Moreover, they proved that computing a best response in the Sum-version
is NP-hard and conjectured that above some constant edge-price all (non-transient)
NE networks are trees. This conjecture, called the Tree Conjecture, is especially
interesting since they have shown that tree networks which are in Sum-NE have con-
stant Price of Anarchy. The Tree Conjecture was later disproved by Albers, Eilts,
Even-Dar, Mansour and Roditty [AEED+06]. They gave a generic construction of a
non-tree network in non-transient Sum-Nash Equlibrium for 1 < α ≤

√
n/2 where

n ≥ n0 for any positive n0.
A line of works [Lin03],[AEED+06],[DHMZ12],[MS13] has focused on improving

the Price of Anarchy bound for the Sum-NCG. The currently best known upper
bound for all ranges of α is 2O(

√
logn) and is due to Demaine, Hajiaghayi, Mahini and

Zadimoghaddam [DHMZ12]. Interestingly, for most ranges of α much better upper
bounds are known: As shown by Demaine et al [DHMZ12], the Price of Anarchy
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is constant if α < n1−ε, for any fixed ε ≥ 1
logn . On the other end of the spectrum

Mihalák and Schlegel [MS13] proved a constant bound if α > 273n, by establishing
that all networks in Sum-NE for such α must be trees. Very recently, Graham,
Hamilton, Levavi and Loh [GHLL13] improved the constant upper bound on the
Price of Anarchy in the Sum-NCG for the case where α < 3

√
n to 1 + o(1). Halevi

and Mansour [HM07] studied a version where agents have interests and want to be
connected to only a subset of the other agents. For this case they showed an upper
bound of O (

√
n) on the Price of Anarchy in the Sum-version. Demaine, Hajiaghayi,

Mahini and Zadimoghaddam [DHMZ09] considered a cooperative version of the
Sum-NCG and a version where the game is played on a host graph, which specifies
which edges may be bought. For the cooperative Sum-version they prove a general
polylogarithmic upper bound on the Price of Anarchy whereas for the version played
on a host graph they provide an upper bound of O (

√
α) and min {O (

√
α) , n2/α}

for α < n and α ≥ n, respectively, and a lower bound of Ω (min{α/n, n2/α}) on
this ratio. Another cooperative version of the Sum-NCG was studied by Andelman,
Feldman and Mansour [AFM09] who introduced the strong Price of Anarchy and
showed that this ratio is constant for the Sum-NCG if α ≥ 2.
The Price of Anarchy for the Max-NCG was studied in [DHMZ12] and [MS13].

The currently best bounds are due to Mihalák and Schlegel [MS13] who proved a
general upper bound of 2O(

√
logn) on the Price of Anarchy and showed a constant

bound if α ∈ O(n− 1
2 ) or if α > 129. The latter is achieved by proving that all

networks in Max-NE for such α must be trees and by showing that Price of Anarchy
for tree networks in the Max-NCG is constant. Along the way, the authors of
[MS13] proved that computing a best response in the Max-NCG is NP-hard as
well. Bilò, Gualà, Leucci and Proietti [BGLP12] studied the Max-NCG on a host
graph and proved an upper bound on the Price of Anarchy of O (n/(α + rH)), where
rH is the radius of the host graph H, if α < n, and a constant upper bound if α ≥ n.
They also showed a lower bound of Ω

(√
n/(1 + α)

)
for α ∈ o(n).

Alon, Demaine, Hajiaghayi and Leighton [ADHL13] showed an upper bound of
2O(
√

logn) on the diameter of networks in Sum-Swap Equilibrium. Furthermore, the
authors gave a construction for a network in Max-SE having diameter in Θ(

√
n).

It is easy to see that networks which minimize the social cost in both versions must
have diameter at most 2. Thus, these bounds on the diameter carry over to the
Price of Anarchy of the respective version. This yields an upper bound of 2O(

√
logn)

for the Price of Anarchy in the Sum-Swap Game and a lower bound of Ω (
√
n) in the

Max-Swap Game. Ehsani, Fazli, Mehrabian, Sadeghabad, Safari, Saghafian and
ShokatFadaee [EFM+11] gave the same upper bound of 2O(

√
logn) for a bounded bud-

get version of the Sum-NCG. Mihalák and Schlegel [MS12] observed that this proof
carries over to Sum-Asymmetric Swap Games as well. Moreover, they proved that
all networks in Sum-Asymmetric Swap Equilibrium contain at most one bridge-free
component. Furthermore, they gave a tight bound of Θ(log n) on the diameter of
tree networks in Sum-ASE and showed that if the minimum degree of any vertex



5.1.3 Our Contribution 115

in the bridge-free component is at least nε, for 4 log 3
logn < ε < 1, then the diameter

of such a network in Sum-ASE is bounded by O(log n) as well. They conjectured
that the diameter of any network in Sum-ASE is bounded by O(log n). Nikoletseas,
Panagopoulou, Raptopoulos and Spirakis [NPRS13] proved polylogarithmic upper
bounds on the diameter of networks in Sum-Swap Equilibrium if these networks
are dense enough or have large k-vicinity. Interestingly, they use the probabilistic
method to provide a structural characterization of stable networks for this version.
Last but not least, Cord-Landwehr, Hüllmann, Kling and Setzer [CLHKS12] con-
sidered Swap Games on tree networks where agents have communication interests.
They show that Max-SE tree networks can have a diameter of Θ(

√
n) which implies

the same bound for the Price of Anarchy. If the game is played on a host graph,
then this ratio can be as high as Θ(n). For the Sum-version with interests on trees
they provide a lower bound of Ω(

√
n) on the diameter of a Sum-SE tree network.

5.1.3. Our Contribution
We show a multitude of structural properties for the whole spectrum of equilibria
for the Sum-version of Network Creation Games.
Starting with networks in Sum-SE, we give a strong characterization of their

structure. They can have at most one cut-vertex and if the diameter is at least 3,
then there can be at most one biconnected component. This implies that all leaf-
vertices of the network must be connected to the unique cut-vertex. Moreover, we
give a substantially easier proof of a theorem by Alon et al. [ADHL13] and, along
the way, we show how to fix a flaw in their construction.
Then we prove bounds on the diameter of Sum-ASE and Sum-GE networks in

the case where the network has exactly n edges. For Sum-ASE networks we show
an upper bound of O(log n) and for Sum-GE networks we give a constant upper
bound. The latter implies constant Price of Anarchy for Sum-GE networks having
n edges.
For Sum-GE networks we extend and strengthen a result of Mihalák and Schlegel

[MS12] by showing that all Sum-GE networks must have a very specific shape:
They consist of at most one biconnected component and possibly some attached
trees. Since Sum-NE are a subset of Sum-GE this property directly carries over.
Furthermore, we show that bounding the diameter of the biconnected component
suffices to bound the Price of Anarchy for both equilibria.
Since the famous Tree Conjecture, little progress was made on finding the right

range of α where the structure of equilibrium networks tips from arbitrary networks
to tree networks. We improve the currently known lower bounds on the edge-cost
parameter α for that case.
Our main contribution is an extensive study of the structure of Sum-Nash Equi-

librium networks for the case where α > 2n − 6. Most known structural results
are targeted at much lower ranges of α and, to the best of our knowledge, very
little is known for higher edge-cost. We introduce two main tools, Min-Cycles and
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Critical Pairs, and show their versatility in proving several strong structural prop-
erties. Min-Cycles are special cycles where a shortest path between any pair of
cycle-vertices lies on the cycle itself. We believe that Min-Cycles are interesting for
analyzing distance-related graph properties. Such cycles can be found easily and
we show that in equilibrium networks these Min-Cycles can overlap only in a very
specific way. The reason for this is our second tool, called Critical Pairs. Such a
pair consists of two agents which lie in a very specific distance relationship. We
use this distance structure in showing that no network in Sum-Nash Equilibrium
can contain a Critical Pair if α > 2n − 6. Having this tool in hand, we can show
that the edge-ownership in Min-Cycles of Sum-NE networks must have a certain
structure and that Min-Cycles may overlap only in exactly one relatively short path.
On the one hand, if this overlapping path forms a separator of the network, then
the network cannot be in Sum-ASE. On the other hand, if the overlapping path
is not a separator, then this implies the existence of a cycle of Min-Cycles in the
network. We focus on such cycles of Min-Cycles and show that the length and shape
of such cycles is heavily restricted. It turns out that any Sum-NE network for some
α > 2n− 6 having at least n+ 1 edges must contain an even wheel of Min-Cycles.
Furthermore the ownership in all Min-Cycles must be directed.
All in all, we provide new tools for analyzing the structure of equilibrium net-

works. These tools lead to various side constraints which Sum-NE networks have
to fulfill. We are confident that with these or similar structure enriching tools it
is possible to finally settle the long standing open problem of proving the Price
of Anarchy of Sum-NE networks to be constant. Moreover, we believe that these
ideas may be carried over to the study of the structural properties of equilibrium
networks in the Max-version.

5.2. On the Structure of Sum Swap Equilibria
We start with stating a result from Alon, Demaine, Hajiaghayi and Leighton.

Lemma 5.2.1 ([ADHL13]) If a vertex u has eccentricity at most 2 in a network
G, then agent u cannot decrease her cost by swapping an edge in G. This holds for
the Sum- and the Max-version.

Note that the diameter of a network G is a trivial upper bound to the eccentricity
of any vertex in G. Hence, Lemma 5.2.1 implies the following:

Corollary 5.2.2 Every connected network with diameter at most 2 is in Sum-SE
and in Max-SE.

The story does not end here. The next theorem shows that there are swap-stable
networks having a larger diameter than 2. This observation is due to Alon et
al. [ADHL13] but we give a substantially easier proof of this fact.
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Theorem 5.2.3 ([ADHL13]) There is a network in Sum-SE having diameter 3.

Remark 5.2.4 The original proof in [ADHL13] is flawed. There the authors present
a network having diameter 3 and show that in this network no agent can perform an
improving move in the Sum-Swap Game. This statement is not true: Agents d1, d2
and d3 can perform improving edge-swaps. For example, agent d1 can perform the
edge-swap d1c1,1 to d1c2,1 and thereby decrease her cost by 1. However, the given
construction can be fixed by introducing a new vertex, which is connected to d1, d2, d3
and a. We give a much smaller example of a Sum-SE network having diameter 3
which leads to a substantially easier proof of its swap-stability.

Proof (of Theorem 5.2.3) We analyse the network G depicted in Fig. 5.1.

Figure 5.1.: A Sum-SE network having diameter 3.

Note that all vertices having degree 3 have eccentricity 2. Thus, by Lemma 5.2.1,
the respective agents cannot perform an improving edge-swap. Every vertex having
degree 2 has exactly one vertex in distance 3 and, thus, these agents each also have
two vertices in distance 1, four vertices in distance 2. Thus, they all have cost
c = 13. Each degree-2 agent u in G has a unique shortest path to all her four
vertices which are at distance 2 from u. Furthermore, each incident edge of u is
part of exactly two such shortest paths. Hence, any possible edge-swap of a degree-2
vertex u in G leads to a graph G′, where at least one vertex has distance 3 to vertex
u. Thus, since the number of neighbors of u does not change, agent u must have
cost of at least c in G′, which implies that x cannot perform an improving move. �

Mihalák and Schlegel [MS12] proved the following structural property. Since every
network in Sum-SE is also in Sum-ASE, this property directly carries over to Sum-
SE networks.

Theorem 5.2.5 ([MS12]) Every network in Sum-ASE has at most one bridge-
free component.

They gave an example network in Sum-ASE having one brige-free component which
contained a cut-vertex and two biconnected components. In the following we will
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give a stronger characterization for networks in Sum-SE. We will show in the follow-
ing that networks in Sum-SE can have at most one cut-vertex and that all Sum-SE
networks having at least diameter 3 can have at most one biconnected component.
Moreover, if such a network has leaves, then all leaves must be connected to the
unique cut-vertex.

Lemma 5.2.6 Let x be a cut-vertex of a Sum-SE network G and let G1, . . . , Gq be
the connected components of G−x. We have that if |Gi| ≤ bn2 c, for some 1 ≤ i ≤ q,
then for all u ∈ V (Gi) it holds that dG(u, x) = 1.

Proof Assume that for some Gi with |Gi| ≤ n
2 there is an agent u ∈ V (Gi) with

dG(u, x) = 2. We claim that agent u has an improving response and thus G cannot
be in Sum-SE. Let the shorest path from u to x use the vertex w. Consider the edge-
swap uw to ux. Since |V (G) \ V (Gi)| ≥ n

2 this swap decreases agent u’s shortest
path to |V (G) \ V (Gi)| many vertices by one and it increases agent u’s shortest
path to |Gi| − 1 many vertices by at most one. Since |Gi| − 1 < n

2 , this yields a
strict decrease in cost for agent u, which contradicts the swap-stability of G. �

Lemma 5.2.7 Let G be a network in Sum-SE having diameter at least 3 and let
x be a cut-vertex of G. Let G1, . . . , Gq be the connected components of G − x. We
have that if |Gi| ≤ bn2 c, for some 1 ≤ i ≤ q, then |Gi| = 1.

Proof Consider a component Gi with 2 ≤ |Gi| ≤ bn2 c. By Lemma 5.2.6, we have
that all vertices in V (Gi) are neighbors of x in G. Thus, for Gi to be connected
there must be at least one additional edge in Gi, which is not incident to x. Let
uv, for some u, v ∈ V (Gi), be such an edge. Since G has diameter at least 3, there
must be a component Gj with |Gj| > bn2 c. Otherwise, again by Lemma 5.2.6, we
have that dG(x,w) = 1, for all vertices w 6= x of G, which contradicts that G has
diameter 3. Furthermore, there must be a vertex z in Gj with dG(x, z) = 2. Observe
that, by x being a cut-vertex, we have dG(u, z) = 3.
Now consider agent u and the edge-swap uv to uz. This swap yields a cost

decrease of at least 2 for agent u. Since all vertices in Gi, especially vertex v, are
connected to x, we have that the swap increases agent u’s distance only to vertex v
by 1. Thus, the swap yields a strict decrease in cost for agent u, which contradicts
the swap-stability of G. Hence, there are no edges between vertices of Gi in G,
which are not incident to x. It follows that each Gi contains only one vertex. �

Theorem 5.2.8 If a Sum-SE network G has diameter at least 3 and no leaves,
then G is biconnected.

Proof Assume that G is in Sum-SE, has diameter at least 3 and no leaves. Fur-
thermore, assume towards a contradiction that G contains at least one cut-vertex x.
Let G1, . . . , Gq be the connected components of G−x. Observe that there can be at
most one component Gi with |Gi| > bn2 c. Hence, since x is a cut-vertex, there must
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be at least one component Gj, with i 6= j, such that |Gj| ≤ bn2 c. By Lemma 5.2.7,
we have that |Gj| = 1, which implies that G must contain a leaf. Hence, we have a
contradiction. �

Lemma 5.2.9 If a Sum-SE network G has a bridge-free component C and diameter
at least 3, then C must be a biconnected component.

Proof Consider a bridge-free component C of a Sum-SE network G having diam-
eter at least 3 and assume that C has a cut-vertex x. Let G1, . . . , Gq denote the
connected components of G−x. If we have |Gi| ≤ n

2 , for all i, then, by Lemma 5.2.6,
all vertices of G − x must be neighbors of x, which implies that G has diameter
at most 2, which is a contradiction. Hence, assume that there is a connected com-
ponent Gj containing more than n

2 vertices. Clearly, there can be only one such
component. By Lemma 5.2.7 and the fact that a bridge-free component contains
at least three vertices and is connected, we have that the connected component Gj

must contain C − x. Thus, C − x must be connected, which contradicts the fact
that x is a cut-vertex of C. �

Theorem 5.2.10 Every Sum-SE network has at most one cut-vertex.

Proof Let G be in Sum-SE. By Theorem 5.2.5, G has at most one bridge-free
component. If G has no bridge-free component, then it is a tree. In this case G
must be a star and therefore G has exactly one cut-vertex.
Now, consider that G has a bridge-free component C. There are three cases:

1. If G has diameter 1, then it must be the complete graph, which implies that
there is no cut-vertex.

2. Let G have diameter 2. Assume that G has at least two cut-vertices and let x
and y be two of them. Since G is connected, there must be a shortest path P
connecting x and y. Furthermore, since x is a cut-vertex, there must be a vertex
u, which is a neighbor of x, and every shortest path from u to y contains x.
Analogously, since y is a cut-vertex there must be a vertex v, which is a neighbor
of y, and every shortest path from v to x contains y. Since d(x, y) ≥ 1, d(u, x) = 1
and d(v, y) = 1, it follows that d(u, v) ≥ 3 and we have a contradiction.

3. Let G have diameter at least 3. By Lemma 5.2.9, we have that the bridge-free
component C must be a biconnected component. Assume that G has k ≥ 2
cut-vertices x1, . . . , xk. By Lemma 5.2.6 and by Lemma 5.2.7, we have that each
xi has some neighboring leaves. Here a leaf is a vertex which has degree 1. Let L
be the set of all leaves of G and consider a leaf l ∈ L, which is connected to some
cut-vertex xi. Clearly, the best response of agent l is to connect to the vertex of
G−l, which has the smallest cost within the network G−l. Thus, xi must be a 1-
median vertex of G− l. Now consider a leaf l′ 6= l, which is connected to xj 6= xi.
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Hence, xj must be a 1-median vertex in G − l′. Let c(u) and c′(u) denote the
cost of agent u in G− l and G− l′, respectively. We have that c(xi) ≤ c(xp) and
c′(xj) ≤ c′(xq), for i 6= p and j 6= q. Observe that dG(xi, l′) = dG(xj, l) = D ≥ 2
and dG(xi, l) = dG(xj, l′) = 1. Thus we have, c′(xi) = c(xi) + 1−D < c(xi) and
c′(xj) = c(xj) +D− 1 > c(xj). This yields c′(xi) < c(xi) ≤ c(xj) < c′(xj), which
contradicts the swap-stability of G, because agent l′ has an improving response.
Thus, we have that all leaves must be connected to the same cut-vertex and it
follows that this cut-vertex is unique. �

Observe that Theorem 5.2.8 and Theorem 5.2.10 characterize the shape of any Sum-
SE network G having diameter at least 3. Such a network is biconnected if it has no
leaves, or all leaves of G are connected to a unique cut-vertex of G. Note that there
are Sum-SE networks having diameter 2 and no leaves which contain a cut-vertex.
The left network in Fig.5.2 without edge-ownership is an example

5.3. On the Structure of Sum Asymmetric Swap
Equilibria

It was shown by Mihalák and Schlegel [MS12] that every tree network in Sum-ASE
has diameter in O(log n). This bound is tight, since a complete binary tree is in
Sum-ASE if all edges are owned by the vertex which is closer to the root. We go
one step further and bound the diameter of n-agent networks in Sum-ASE having
exactly n edges.

Theorem 5.3.1 If a network in Sum-Asymmetric Swap Equilibrium has exactly
one cycle, then this cycle has length at most 5.

Proof We assume towards a contradiction that there is a network G in Sum-
Asymmetric Swap Equilibrium having exactly one cycle which contains at least 6
nodes. We show that there is a cycle-agent who can swap an edge and thereby
strictly decrease her cost. Let a1, . . . , ak, with k ≥ 6, denote the cycle-agents in
cyclic order. LetGi be the networkG where the edges ai−1ai and aiai+1 are removed.
Let Ui be the set of agents in the connected component of Gi which contains ai.
We will study the network G′, which is the induced subgraph of G containing only
the cycle-agents a1, . . . , ak and where every cycle-agent ai has weight w(ai) = |Ui|.
Note that w(ai) ≥ 1 for all i, since ai ∈ Ui. The network G′ defines the cyclic
sequence of weights

S(G′) = w(a1), w(a2), . . . , w(ak), w(a1) .

We will argue about connected subsequences Z(G′) of S(G′), where Z(G′) is a con-
nected subsequence of S(G′) if Z(G′) is a subsequence of S(G′) with the property
that neighboring elements in Z(G′) must be neighboring elements in S(G′).
There are two cases:
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1. If all w(ai) are equal, then we choose a cycle-agent aj who owns at least one edge
and w.l.o.g. let this edge be ajaj+1. We claim that agent aj can perform the
edge-swap ajaj+1 to ajaj+2 in network G and thereby strictly decrease her cost.
This is easy to see, since this swap increases aj’s distance to w(aj+1) many agents
by 1 but it decreases her distances to w(aj+2) +w(aj+3) agents by 1. The latter
is true, because the cycle has length at least 6 which implies that aj’s distance
to aj+3 before the swap was 3.

2. The more interesting case is if not all weights are equal. We show for this case
that if G is in Sum-Asymmetric Swap Equilibrium then the sequence S(G′) must
have a certain shape.
First of all, assume that S(G′) contains a connected subsequence

Q(G′) = w(aj), w(aj+1), w(aj+2) ,

where w(aj) > w(aj+1) > w(aj+2). We have that the edge aj+1aj+2 must be
owned by agent aj+1, since otherwise agent aj+2 could swap towards aj and
thereby strictly decrease her cost. Now, if w(aj+3) ≥ w(aj+2), then this implies
that agent aj+1 could perform the edge-swap aj+1aj+2 to aj+1aj+3 and thereby
strictly decrease her cost. This is true, since the cycle has length at least 6 which
implies that this swap increases aj+1’s cost by w(aj+2) but it decreases her cost
by w(aj+3)+w(aj+4). It follows that w(aj+2) > w(aj+3) must hold for G being in
Sum-Asymmetric Swap Equilibrium. By iterating this argument we have that the
weights in S(G′), starting from w(aj), must be strictly monotonically decreasing,
but since S(G′) is cyclic this is impossible. Thus, no such connected subsequence
Q(G′) can exist if G is in Sum-Asymmetric Swap Equilibrium. By an analogous
argument it follows that S(G′) cannot contain a connected subsequence

P (G′) = w(aj), w(aj+1), w(aj+2) ,

where w(aj) < w(aj+1) < w(aj+2). It follows that the sequence S(G′) must be
alternating. Consider a connected subsequence

R(G′) = w(aj), w(aj+1), w(aj+2) ,

where w(aj) > w(aj+1) and w(aj+1) < w(aj+2). The edge ajaj+1 must be owned
by agent aj+1, since otherwise agent aj could swap towards aj+2 and strictly
decrease her cost. Analogously, edge aj+1aj+2 must be owned by agent aj+1. It
follows that all cycle-edges in G′ must be owned by the endpoint having lower
weight, if the respective weights are different. Since we assume that not all
weights are equal, there must be a connected subsequence

X(G′) = w(aj), w(aj+1), w(aj+2)
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of S(G′), where w(aj) > w(aj+1), w(aj+1) < w(aj+2) and w(aj) ≤ w(aj+2).
Again, this is true because S(G′) is cyclic. We claim that agent aj−1 can strictly
decrease her cost by swapping an edge. Since S(G′) is alternating, we have that
w(aj−1) < w(aj) and by the above observation we know that aj−1 must be the
owner of the edge aj−1aj. Now, if aj−1 swaps this edge towards aj+1, then her
cost increases by w(aj), but it decreases by w(aj+1) + w(aj+2) > w(aj), because
the cycle has length at least 6 which implies that aj−1’s distance to aj+2 before
the swap is 3. This is a contradiction to G being in Sum-Asymmetric Swap
Equilibrium. �

Corollary 5.3.2 Let G be a n-node network having exactly n edges. If G is in
Sum-ASE, then the diameter of G is in O(log n). If (G,α) is in Sum-GE for some
α > 0, then the diameter of G is in O(1).

Proof The first statement holds, since G must consist of a cycle with attached
trees. Since trees in Sum-ASE can have diameter of at most O(log n) [MS12] and
by Lemma 5.3.1, we have that the diameter of the cycle is at most 2. The second
statement follows from Lemma 5.3.1 and Corollary 5.4.4 and from the fact that any
Sum-GE network must be in Sum-ASE as well1. �

5.4. On the Structure of Sum-Greedy Equilibria
In this section we prove a general structural result for all networks in Sum-GE.
Recall Theorem 5.2.5 from above which states that networks in Sum-ASE have
at most one bridge-free component. The theorem is tight in the sense that there
are networks in Sum-ASE which have one bridge-free component but where this
component contains a cut-vertex. We will show that this cannot happen in Sum-
GE networks.

Lemma 5.4.1 Let (G,α) be a network in Sum-GE having a bridge-free component
Cbf which contains a cut-vertex x ∈ V (Cbf ). If α > 1, then G has diameter at
least 3.

Proof We assume towards a contradiction that (G,α) is in Sum-GE and has a
bridge-free component Cbf which contains a cut-vertex x. Furthermore, assume
that G has diameter 2 (diameter 1 is obviously impossible).
Since Cbf is a bridge-free component of G, we have that Cbf must contain at least

3 vertices. Moreover, since Cbf contains a cut-vertex x, we have that G−x consists
of the connected components A1, . . . , Ak, for some k ≥ 2. Since G has diameter
2 and since x is a cut-vertex, we have that dG(a, x) = 1, for all a ∈ V (G) \ {x}.
Consider the subgraph Gi of G, which is induced by the set V (Ai)∪{x}. Since Cbf

1See the discussion in Section 2.2.2.
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is a bridge-free component, we have that each induced subgraph Gi must contain a
cycle of length at least 3 which contains the cut-vertex x. In any such cycle, there
must be an edge, which is not incident to vertex x. Let uv be this edge and let u
be the owner of uv. Observe that u, v ∈ V (Ai) for some i. Deleting edge uv would
increase agent u’s distance to vertex v by 1, but, since all agents in V (Ai) have
distance 1 to x, no other distance of agent u changes. Since α > 1, we have that
agent u can strictly decrease her cost by deleting the edge uv and it follows that
(G,α) cannot be in Sum-GE. This contradicts our assumption. �

Theorem 5.4.2 Let α 6= 1 and let (G,α) be a network in Sum-GE. If G contains
a bridge-free component, then this component is biconnected.

Proof For α < 1, the statement follows trivially, since (G,α) must be a complete
network. Thus, let us assume that α > 1. Let (G,α) be a network in Sum-GE
and let Cbf be a bridge-free component of G. By Theorem 5.2.5 and since Sum-
GE networks are in Sum-ASE, this component is unique. We assume towards a
contradiction that Cbf is not biconnected, that is, that Cbf contains a cut-vertex x.
Let A1, . . . , Ak, for some k ≥ 2, denote the connected components of G− x and let
Gi be the subgraph of G which is induced by the set V (Ai) ∪ {x}. Each Gi must
contain a cycle of length at least 3, which contains the cut-vertex x, since otherwise
there must be a bridge in Cbf . By Lemma 5.4.1, we know that Gmust have diameter
at least 3. It follows that at least one subgraph Gj contains a vertex w which has
distance at least 2 towards x. We fix Gj and w such that w has maximum distance
to x among all vertices in V (G). Now, let us consider a different induced subgraph
Gl 6= Gj.
Such a subgraph exists, since k ≥ 2. Moreover, we know that Gl contains a cycle

Cl which contains vertex x. Let u ∈ V (Cl) be a cycle-vertex who owns a cycle-edge
and which has maximum distance to x. Let v denote the cycle-neighbor of u to
which agent u owns the cycle-edge uv. If agent u owns two cycle-edges, then we
fix v to be the cycle-neighbor of u which has maximum distance to x. Since (G,α)
is in Sum-GE, we know that agent u cannot decrease her cost by deleting edge
uv. Let Nu

v be the set of vertices of G, which have vertex v on all their shortest
paths towards vertex u. By the choice of u and v, it follows that x /∈ Nu

v and that
Nu
v ⊂ V (Al). Observe that if agent u deletes her edge towards v, then she is still

connected to all vertices in Nu
v , since a shortest path from u to x and all shortest

paths from x to z, for all z ∈ Nu
v , remain intact. Since this edge-deletion does not

yield a strict cost decrease, it follows that

α +
∑
z∈Nu

v

dG(u, z) ≤
∑
z∈Nu

v

(dG(u, x) + dG(x, z)) ≤
∑
z∈Nu

v

(dG(w, x) + dG(x, z)),

where the second inequality holds, since dG(u, x) ≤ dG(w, x), by choice of w. Note
that the right sum denotes agent w’s distance-cost towards all vertices in Nu

v . This
is true, since Nu

v ⊂ V (Al), w /∈ V (Gl) and because x is a cut-vertex of G, which
implies that w has x on all its shortest paths towards vertices in Nu

v .
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If agent w buys the edge wv, then the above inequalities guarantee that this
purchase does not increase her cost. This is easy to see, since with the edge wv
agent w has the same distance-cost as agent u towards all the vertices in Nu

v and
additionally she has to pay α for the edge wv itself. It remains to show that buying
the edge wv strictly decreases agent w’s cost. By assumption, we have dG(w, x) ≥ 2,
which implies dG(w, u) ≥ 3, since u 6= x. Thus, buying the edge wv decreases agent
w’s distance towards u by at least 1. Since u /∈ Nu

v , it follows that agent w can
strictly decrease her cost by buying one edge, which is a contradiction to (G,α)
being in Sum-GE. �

Remark 5.4.3 Fig. 5.2 (left) shows a Sum-GE network where the bridge-free com-
ponent contains a cut-vertex for α = 1.

Figure 5.2.: Left: A Sum-GE network for α = 1 where the bridge-free component
contains a cut-vertex. Right: A biconnected diameter 3 Sum-GE net-
work for 2 < α < 3.

Corollary 5.4.4 Let (G,α) be a non-tree network in Sum-GE. If the unique bi-
connected component of (G,α) has diameter D, then G has diameter O(D).

Proof Clearly, if (G,α) is a biconnected network, then the statement follows triv-
ially. Thus, let us assume that (G,α) contains at least one cut-vertex. In this case,
the statement follows by the argument given in the proof of Theorem 5.4.2. Let Cbc
be the unique biconnected component of G and let w /∈ V (Cbc) be a vertex of G
having maximum distance to its nearest vertex x of Cbc. Clearly, vertex x must be
a cut-vertex of G. We assume that dG(w, x) ≥ 2, since otherwise we are trivially
done. We show that dG(w, x) < D, which implies the statement.
Let Cl be the longest simple cycle in Cbc which contains x and we choose vertices

u and v as in the proof of Theorem 5.4.2. Clearly, since Cbc has diameter D, we
have that dG(u, x) ≤ D. Thus, if dG(w, x) ≥ D, then we have that agent w can buy
the edge wv and thereby strictly decrease her cost, which contradicts that (G,α) is
in Sum-Greedy Equilibrium. �

Now we show that bounding the diameter of the unique biconnected component of
all networks in Sum-Greedy Equilibrium suffices to bound the Price of Anarchy.

Lemma 5.4.5 (Lemma 19.4 in [NRTV07]) If a network (G,α) in Sum-NE has
diameter D, then its social cost is at most O(D) times the minimum possible cost.
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By inspecting the proof of Lemma 19.4 in [NRTV07], it is easy to see that only
greedy strategy-changes are used. Hence, the above statement directly carries over
to Sum-GE. Together with Corollary 5.4.4, we obtain the following statement.

Corollary 5.4.6 If the biconnected component of a network (G,α) in Sum-GE has
diameter D, then its social cost is at most O(D) times the minimum possible cost.

This leads to the following statement.

Corollary 5.4.7 The Price of Anarchy in the Sum-NCG and in the Sum-GBG is
constant for all connected n-vertex networks having at most n edges.

Proof For connected n-vertex networks having n − 1 edges, that is, for tree
networks, this statement for the Sum-NCG was already shown by Fabrikant et
al. [FLM+03]. For tree networks in the Sum-GBG the statement follows easily,
since, by Theorem 3.3.2, we have that the set of tree networks in Sum-GE and the
set of tree networks in Sum-NE coincides.
The statement for exactly n edges in the Sum-NCG follows from Corollary 5.3.2

and the fact that every Sum-NE is in Sum-GE. For the Sum-GBG we use The-
orem 3.3.9, which guarantees that every network in Sum-GE is in 3-approximate
Sum-NE. Thus, agents in any Sum-GE network on n-vertices have in the worst-case
a cost which is three times their cost in the Sum-NE network on n-vertices having
the highest social cost. Thus, the social cost of any n-vertex network in Sum-GE is
at most three times the cost of the n-vertex network in Sum-NE having the highest
social cost. Since this cost is at most a constant times the minimum possible social
cost for n-vertex networks, it follows that the Price of Anarchy in the Sum-GBG
on n-vertex networks having n-edges is constant. �

Extensive computer simulations and attempts to construct Sum-GE networks hav-
ing large diameter lead us to to following conjecture. We remark that there are
biconnected Sum-GE networks having diameter 3, see Fig. 5.2 (right). Even con-
structing a diameter 4 Sum-GE network seems challenging.

Conjecture 5.4.8 The diameter of the unique biconnected component of a Sum-
GE network is constant.

Note that settling the above conjecture would settle the long-standing problem of
proving that the Price of Anarchy in the Sum-NCG is constant.

5.5. The Boundary between Tree and Non-Tree
Equilibria

We investigate for which values of α non-tree equilibria are possible in the Sum-
version. It was shown by Albers et al. [AEED+06] that for any positive n0 there is
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a non-transient non-tree network in Sum-NE containing n ≥ n0 agents for all 1 <
α ≤

√
n/2. This result disproved the Tree Conjecture by Fabrikant et al. [FLM+03].

Their construction uses finite affine planes and is rather involved. Interestingly in
the same paper the authors give another construction which shows that transient
non-tree networks in Sum-NE for α ≤ n/2 exist. This result can be improved as
follows.

Theorem 5.5.1 For any n0 ≥ 5 there is a transient non-tree Sum-Nash Equilib-
rium network on n ≥ n0 agents for 3

5n < α ≤ 4
5n.

Proof We give a family of networks (G0, α0), (G1, α1), . . . , with αi = 4
5 |V (Gi)|,

which are in transient Sum-Nash Equilibrium.
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Figure 5.3.: The networks (G0, α0), (G1, α1) and (Gk, αk).

The network (Gk, α) is constructed as follows: Take a directed cycle of length
5 and connect every cycle-vertex to exactly k new vertices with edges pointing
towards the non-cycle vertices. Let a, b, c, d, e be the cycle-vertices and let ui be
the non-cycle vertices of vertex u for u ∈ {a, b, c, d, e} and 1 ≤ i ≤ k. See Fig. 5.3
for an illustration of the construction. The network (Gk, αk) is derived from this
directed network by interpreting edge-directions as edge-ownership information2

and ignoring directions otherwise.
For (Gk, αk) to be a transient Nash Equilibrium network, we have to make sure

(1) that no leaf-agent can improve by buying at least one edge (since they do not
own any edge) and (2) that every cycle-agent has chosen an optimal strategy.
We first show (1). By symmetry of the construction, we can focus on one leaf-

vertex only. Moreover, by Lemma 3.3.1, we have that if an agent can improve by
buying j edges, then this agent can improve by buying one edge as well. Thus, it
suffices to show that leaf-agents cannot improve by buying one edge. Let us consider
agent a1. A best possible edge for a1 is the edge a1d. The edge a1d decreases agent
a1’s distance to agent d by 2 and to agent c by 1. Furthermore, this edge decreases
a1’s distances to di by 2 and to c′i by 1, for 1 ≤ i ≤ k. Hence, the distance decrease

2Edges point away from their owner.
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of edge a1d for agent a1 is 3k + 3. Thus, to satisfy (1), we have to enforce that
αk > 3k + 3. If k = 0, then (1) is trivially satisfied.
Now we consider a cycle-agent of (Gk, αk) and again, by symmetry, it suffices

to argue for one specific agent. Let this be agent a. Observe that agent a cannot
remove any edge towards a leaf, since this would disconnect the network. Let
(G′k, αk) be the network (Gk, αk) without agent a’s edge ab. In (G′k, αk) agent a’s
distance to each of the agents b, b1, . . . , bk increases by 3 and to each of the agents
c, c1, . . . , ck increases by 1. Observe that no other distance increases. Hence, we
have that agent a’s distance-cost in (G′k, αk) is increased by 4k + 4. It follows that
we have to enforce that αk ≤ 4k+4, since otherwise agent a would be better off not
to buy edge ab. Furthermore, observe that the edge ab is a best possible additional
edge for a in the network (G′k, αk). This is true since it is always better for agent
a to buy an edge towards a cycle-agent than towards a leaf-agent and because the
edge ac yields the same distance decrease of 4k + 4. Thus, agent a’s strategy in
(Gk, αk) is a best possible strategy which buys exactly k + 1 edges.
Now we show that agent a cannot improve by buying one additional edge, which,

by the same argument as above, implies that a cannot improve by buying j ≥ 1
edges. It is easy to see that a best possible additional edge for a in (Gk, αk) is edge
ac, which yields a distance decrease of k + 1. Hence, if αk > k + 1, then no set of
additional edges yields a cost decrease for agent a.
It remains to show that a cannot strictly decrease her cost by removing edge ab

and buying at least two edges instead. First, let us assume that a can remove ab,
buy two edges ax and ay and thereby strictly decrease her cost compared to a’s
cost in (Gk, αk). Observe that x 6= b and y 6= b must hold, since otherwise the edge
not connecting to b would be an additional edge in (Gk, αk). Furthermore, it is
easy to see that x 6= y must hold and that x or y cannot be leaves, since leaves are
always dominated by their corresponding cycle-neighbors. Hence, the only possible
strategy for agent a, which satisfies the mentioned constraints, is to buy the edges
ac and ad. This strategy yields a distance decrease of 5k + 5 compared to buying
no edge. Clearly, every edge in an Sum-equilibrium strategy must yield at least
a distance decrease of αk, since otherwise the agent would be better off without
buying that edge. Since 5k + 5 < 2(3k + 3) < 2αk, we have that agent a’s new
cost is strictly higher than a’s cost in (Gk, αk). Observe that removing edge ab
and buying three edges ax, ay, az, with x 6= b, y 6= b and z 6= b, yields a distance
decrease of 6k + 6 < 3(3k + 3) < 3αk. Hence, agent a cannot strictly decrease her
cost by buying three edges. For more than three edges, where no edge is allowed
to connect to b, an analogous argument yields that a cannot strictly decrease her
cost. Hence, agent a cannot change her strategy to strictly decrease her cost.
Thus, we have that (Gk, αk) is in transient Sum-Nash Equilibrium for 3k + 3 <

αk ≤ 4k + 4. Since the number of agents in (Gk, αk) is 5k + 5 we have that
3
5n < αk ≤ 4

5n. Observe that for all k, the edge ab yields the same distance decrease
as edge ac for agent a. Hence, (Gk, αk) is a transient Sum-Nash Equilibrium, even
if we choose 3k + 3 < αk < 4k + 4. �
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Remark 5.5.2 Independently from us the above construction was given as an ex-
ample by Eilts [Eil08]. To the best of our knowledge, for k ≥ 1 the network
(Gk, 3k + 3 < α ≤ 4k + 4) is the only known non-tree Sum-Nash Equilibrium
network having a diameter larger than 3.

If we consider Sum-Greedy Equilibria instead of Sum-Nash Equilibria, then we
can find non-tree equilibria for even higher edge-cost α. In fact, we can choose α
arbitrarily close to n.

Theorem 5.5.3 For any ε > 0 and any n0 ≥ 9 there is a transient non-tree Sum-
Greedy Equilibrium network on n ≥ n0 agents for n− ε < α < n.

Proof The desired network (G′k, α′k) is constructed as follows: We modify the
construction of network (Gk, αk) provided in the proof of Theorem 5.5.1, starting
with k = 1. We remove agents a1, . . . , ak and agent a now owns both incident
cycle-edges towards b and e. See Fig. 5.4 for an illustration.

a

b

cd

e

b1

bk

e1

ek

c1 ckdkd1

...

. . . . . .

...

Figure 5.4.: A transient non-tree Sum-Greedy Equilibrium network on n agents for
n− ε < α < n for any ε > 0.

We claim that for any ε > 0 and any n0 ≥ 9 there is a k such that (G′k, α′k) has at
least n ≥ n0 agents and is in transient Sum-Greedy Equilibrium for n− ε < α′k < n.
This can be seen as follows: Analogous to the proof of Theorem 5.5.1, we have that
in (G′k, α′k) no leaf-agent can improve by buying an edge if α′k > 3k + 3 and that
no cycle-agent wants to delete an edge if α′k ≤ 4k+ 4. Furthermore, no cycle-agent
can perform an edge-swap and thereby strictly decrease her cost. Since (G′k, α′k)
has n = 4k + 5 agents, this implies that we can choose α′k = 4k+4

4k+5n. Clearly, since
limk→∞

4k+4
4k+5 = 1, the edge-cost α′k can get arbitrarily close to the number of agents

in the network.
Observe that (G′k, α′k) is only in Sum-Greedy Equilibrium but not in Sum-Nash

Equilibrium, since agent a could remove both her edges and buy one edge to agent
c instead. This strategy-change yields a strict cost decrease for agent a. �
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5.6. On the Structure of Sum-Nash Equilibria for
high α

In this section we provide new insights into the structure of Sum-NE networks,
which we believe are promising for a new line of attack on settling the Price of
Anarchy for the Sum-NCG.
We start with some easy properties of cycles in a Sum-NE network. Then we

introduce our main actors: Min-Cycles and Critical Pairs. Finally we set our actors
to work.

Lemma 5.6.1 If α > bn2 c, then no Sum-GE network can have a cycle of length 3.

Proof Assume that there is a network (G,α) which is in Sum-Greedy Equilibrium
for some α > bn2 c which contains a cycle of length 3. Let this cycle be uvw. There
are two cases.

1. Assume that one of the cycle agents owns two cycle-edges. Let this be agent
u. In this case both edges must each yield a distance-cost decrease of at least α
for agent u. That is, removing the edge uv or uw increases agent u’s distance-
cost by at least α, respectively. Let Avu denote the set of agents to which all of
agent u’s shortest paths in (G,α) use the edge uv. Analogously, let Awu be the
set of agents to which all of agent u’s shortest paths in (G,α) use the edge uw.
Removing the edge uv increases agent u’s distance to all agents in Avu by exactly
one. Since we assume that deleting uv does not yield a strict cost decrease for
agent u, we have α ≤ |Avu|. Analogously, we obtain that α ≤ |Awu |. Now, notice
that Avu ∩ Awu = ∅, which implies that the set of agents in G can be partitioned
into V = X ∪Avu∪Awu , with X ∩Avu = ∅ and X ∩Awu = ∅. Since u ∈ X, it follows
that |Avu|+ |Awu | ≤ n− 1. Since α ≤ min{|Avu|, |Awu |} we have that α ≤ bn2 c.

2. The second case is if all cycle agents own exactly one cycle edge. W.l.o.g
let uv be owned by u, vw be owned by v and wu be owned by w. Thus,
α ≤ min{|Avu|, |Awv |, |Auw|}. We claim that the sets Avu, Awv and Auw are pair-
wise disjoint. This can be seen as follows: Let x ∈ Avu ∩ Awv . Let d(v, x) = k.
Since x ∈ Awv we have that all shortest paths from agent v to x must use the edge
vw. Thus, d(w, x) < k − 1. It follows that x /∈ Avu, since agent u has a shortest
path to x of length j < k + 1. The other disjointness proofs are analogous. It
follows that |Auv |+ |Awv |+ |Auw| ≤ n, which implies α ≤ n

3 ≤ b
n
2 c. �

Lemma 5.6.2 If α > 2n−6, then there is no Sum-GE network having a chordless3

cycle of length at most 4.
3A chord is an edge which joins two cycle-vertices which are not adjacent in the cycle.
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Proof Let (G,α) be in Sum-Greedy Equilibrium and let C be a chordless cycle
of length at most 4 in (G,α). Clearly, by Lemma 5.6.1, we have that C must have
length exactly 4.
Let v be a vertex of C who owns at least one edge of C. Let this be the edge

vx. Since (G,α) is in Sum-Greedy Equilibrium, it follows that removing the edge
vx does not decrease agent v’s cost. By this deletion, agent v’s edge-cost decreases
by α and her distance-cost increases by at most 2(n − 3), since agent v’s distance
to all other vertices of C, including herself, does not change and all other distances
may increase by 2, since the cycle has length 4. It follows that α ≤ 2n − 6 must
hold for (G,α) being in Sum-Greedy Equilibrium.

5.6.1. Min-Cycles
We introduce Min-Cycles and define various structural properties.

Definition 5.6.3 (Min-Cycle) Let C be a cycle in a network G. We call the cycle
C a Min-Cycle, if for any two cycle vertices u ∈ V (C) and v ∈ V (C) we have that
dC(u, v) = dG(u, v).

Remark 5.6.4 Note that any smallest cycle in a network G is a Min-Cycle of G.

Definition 5.6.5 (Overlapping Cycles and Well-Connected Cycles) Let C
and C ′ be two cycles in a network G. We say that the cycles C and C ′ overlap
if they share at least one edge, that is, if E(C)∩E(C ′) 6= ∅. We call E(C)∩E(C ′)
the overlapping edge set of C and C ′. We say that the overlapping cycles C and C ′
are well-connected, if their shared subgraph C ∩ C ′ forms a simple path in G.

Definition 5.6.6 (Path of Min-Cycles) A path of Min-Cycles from C1 to Cj is
a sequence of different Min-Cycles C1, C2, . . . , Cj such that only neighboring Min-
Cycles in the sequence overlap. That is, Min-Cycle Ci overlaps with Ci−1 and Ci+1,
for 2 ≤ i ≤ j − 1, but not with any other Min-Cycle from the sequence. The length
of a path of Min-Cycles is the number of cycles in the sequence minus 1.

Definition 5.6.7 (Connected Set of Min-Cycles) Let C = {C1, . . . , Cl} be a
set of Min-Cycles of a graph G. We say that C is connected, if for every pair
Ci, Cj ∈ C there is a path of Min-Cycles from Ci to Cj which entirely consists of
Min-Cycles from C.

Lemma 5.6.8 Let C be a cycle in G which contains the edge uv and uw. There
is a Min-Cycle C ′ which contains the edge uv and there is a Min-Cycle C ′′, which
contains the edge uw. Furthermore, there exists a connected set of Min-Cycles C
which contains C ′ and C ′′ and all Min-Cycles in C contain vertex u.
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Proof If C itself is a Min-Cycle, then we are trivially done by setting C = {C}.
Thus, assume that C is not a Min-Cycle, that is, there must be a pair of vertices
whose shortest path on C is strictly longer than their shortest path in G.
First, let us assume that there is a pair x, y ∈ V (C), where dG(x, y) < dC(x, y)

and whose shortest path P xy in G does not contain vertex u. W.l.o.g. let x be
closer than y to v on the path C − {u}. Let P ij

C be a shortest path from i to j on
the cycle C. Note that x 6= u and y 6= u must hold since vertex u is not on the path
P xy. In this case we can replace the cycle C by the strictly shorter cycle

C̃ = uv ∪ P vx
C ∪ P xy ∪ P yw

C ∪ uw ,

which contains the edges uv and uw. See Fig. 5.5 (left).
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z1 = z1
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Cz2w

Figure 5.5.: Left: A pair x, y having a shortest path outside C which does not
contain u. Right: The pairs u, xi and the smaller cycles Cvz1 , . . . , Czkw.
In this example we have l(z1) = x1, h(z1) = x3 and h(z2) = x5.

Thus, we assume in the following that no such pair x, y exists. Having ruled out
such pairs the only possibility for C not being a Min-Cycle is that there is a set
of vertices U = {u1, . . . , ul} ⊂ V (C), where dG(u, ui) < dC(u, ui) for all i. Among
those vertices U , there must be a subset of vertices X ⊆ U , which have a shortest
path to vertex u which does not use any edge of the cycle C. Let xi ∈ X be the
vertex which is the i-th closest vertex to v on the path from v to w in C − u. See
Fig. 5.5 (right).
Let P uxi be a shortest path in G from u to xi and let zi be the neighbor of u on

P uxi . Note that zi = xi is possible and that zi /∈ V (C) \ {xi}, that is, zi 6= v and
zi 6= w, since otherwise the pair v, xi or w, xi has a shortest path which does not
contain vertex u.
The ordering x1, . . . , xi induces an ordering for the zi-vertices as follows: Let z1

be the neighbor of u on P ux1 . Let Z1 ⊆ X be the set of vertices from X which all
have z1 on their shortest path to vertex u in G. We set X ′ = X \ Z1 and let l be
the smallest index in X ′. Vertex zl is the neighbor of u on P uxl and the set Zl ⊂ X ′

is defined analogously to Z1. We remove Zl from X ′ and iterate this process on the
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remaining xi-vertices until all of them are assigned to a zj-vertex. For any zj-vertex,
let s(zj) be the xi vertex with the smallest index in the set Zj. Furthermore, let
h(zj) be the xi-vertex having the highest index in Zj. Let Y be the set of zj-vertices
and we can order it increasingly by their index. Let z1, z2, . . . , zk be this ordering
of Y . The vertices in Y “split” the cycle C into a sequence of k + 1 smaller cycles

SC = Cvz1 , Cz1z2 , Cz2z3 , . . . , Czk−1zk , Czkw .

They are defined as follows:

Cvz1 = P
us(z1)
C ∪ P us(z1), Czqzq+1 = P uh(zq) ∪ P h(zq)h(zq+1)

C ∪ P uh(zq+1) ,

for all 1 ≤ q ≤ k − 1, and

Czkw = P uh(zk) ∪ uw ∪ Pwzk

C ,

where Pwzk

C is the w-zk path along cycle C which does not contain the edge uw. See
Fig. 5.5 (right) for an illustration. Observe that all cycles are strictly shorter than
cycle C and that all cycles contain vertex u. Furthermore, the cycle Cvz1 contains
the edge uv and the cycle Czkw contains the edge uw. Moreover, each neighboring
pair of cycles in the sequence SC overlaps in at least one edge.
For all those k + 1 cycles we do the following: If the cycle Cab is a Min-Cycle,

then we set C = C ∪ {Cab}. If not, then we proceed recursively for this cycle Cab
until we have found a Min-Cycle containing the edge ua and a Min-Cycle containing
the edge ub and connected set of Min-Cycles Cab which contains both of them. We
set C = C ∪ Cab. Note that the recursion must terminate, because the considered
cycles become strictly smaller in every iteration. Thus we get a sequence of sets of
Min-Cycles

SC = Cvz1 , Cz1z2 , Cz2z3 , . . . , Czk−1zk , Czkw ,

where each set in the sequence is a connected set of Min-Cycles and for every two
neighboring sets Czi−1zi and Czizi+1 there are Min-Cycles C ′ ∈ Czi−1zi and C ′′ ∈ Czizi+1

which overlap in the edge uzi.
Thus, we get a connected set of Min-Cycles

C = Cvz1 ∪ Cz1z2 ∪ Cz2z3 ∪ · · · ∪ Czk−1zk ∪ Czkw ,

which contains a Min-Cycle having the edge uv and a Min-Cycle having the edge
uw and all Min-Cycles in C contain vertex u by construction. �

Definition 5.6.9 (Min-Cycle Cover) Let G be a graph and let GBC be a bicon-
nected component of G. A Min-Cycle cover of GBC is a connected set of Min-Cycles
C = {C1, . . . , Cl} such that every edge of GBC is contained in at least one Min-Cycle
from C.
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Corollary 5.6.10 Every biconnected component GBC of a network G has a Min-
Cycle cover C.

Proof The Min-Cycle cover C can be constructed as follows. Since GBC is a
connected component, it must contain a shortest cycle C. By definition, any shortest
cycle in a network must be a Min-Cycle as well.4 We set C = {C}. Let E(C) =⋃
Ci∈C E(Ci) and let V (C) = ⋃

Ci∈C V (Ci). Clearly, we have that E(C) ⊆ E(GBC)
and in the following this property will be invariant.
We iterate the following process until E(C) = E(GBC) holds: If E(C) 6= E(GBC),

then, since GBC is connected, there must be a non-bridge edge uw, where u ∈ V (C)
and w ∈ V (GBC) \ V (C). This edge uw is not yet covered by a Min-Cycle. By
definition, vertex u cannot be a cut-vertex and u is contained in at least one Min-
Cycle Cu ∈ C. Let v be a neighbor of u in the Min-Cycle Cu. Since uw is not a
bridge and since u is not a cut-vertex, there must be a cycle C which contains the
edges uv and uw. By Lemma 5.6.8, GBC must have a Min-Cycle C ′ which contains
the edge uv and a Min-Cycle C ′′ which contains the edge uw and a connected set of
Min-Cycles Cvw which contains C ′ and C ′′. Note that the cycles Cu and C ′ overlap
in edge uv. Thus, by setting C = C ∪ Cvw we obtain a larger connected set of
Min-Cycles, which now contains the edge uw. �

Definition 5.6.11 (Cycle, Wheel and Ring of Min-Cycles) A cycle of Min-
Cycles is a path of Min-Cycles C = C1, C2, . . . , Ck, C1, where k > 2 and where only
neighboring Min-Cycles in the sequence overlap. If the cycle contains an odd (even)
number of Min-Cycles, then we say that the cycle of Min-Cycle is odd (even).
If all Min-Cycles in a cycle of Min-Cycles C contain the same vertex u, then

we call C a wheel of Min-Cycles. Otherwise we call C a ring of Min-Cycles. See
Fig. 5.6 for an illustration.

Remark 5.6.12 Observe that we explicitly rule out cycles of Min-Cycles of length
two. In such a cycle C = {C,C ′}, we have that the Min-Cycles C and C ′ cannot
be well-connected, since C ∩ C ′ consists of at least two vertex disjoint paths. We
will show later that we can assume that all overlapping Min-Cycles must be well-
connected.

Lemma 5.6.13 Let C1 and C2 be two well-connected Min-Cycles in a network G
and let P be their shared path, that is, P = C1 ∩ C2. If V (P ) is not a separator of
G, then G contains a cycle of Min-Cycles.

Proof If V (P ) is not a separator of G, then there must be vertices a ∈ V (C1) \
V (P ) and b ∈ V (C(w) \ V (P )) and a shortest path Pab in G, which does not use
any edge of C1 or C2. Let Pab have the vertex sequence a, z1, z2, . . . , zk, b, for some

4Note that the opposite is not true in general.
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Figure 5.6.: Left: An even wheel of Min-Cycles. The paths P ′′1 , P ′′2 , P ′′3 and P ′′4 all
consist only of the single vertex u. Middle: An even ring of Min-Cycles
having no twist. Note that the path P ′′7 consists only of vertex v and
path P ′8 consists only of vertex w. Right: An odd ring of Min-Cycles
having a twist. All shown overlapping Min-Cycles are well-connected.

k, and we have that zi /∈ V (C1) ∪ V (C2) for 1 ≤ i ≤ k. Let p be one endpoint of
path P . Let Qap be the path from a to p on C1 which does not use any edge of P
and let Qpb be the path from p to b on C2 which does not use any edge of P . Let
aa′ be the first edge on Qap and let b′b be the last edge on Qpb. Let Rab = Qap∪Qpb.
We will proceed along the path Pab and we will iteratively use Lemma 5.6.8 until

we have found a cycle of Min-Cycles in G. We start with the cycle Pab∪Rab and we
consider the edges az1 and aa′. By Lemma 5.6.8 there must be a set of Min-Cycles
Ca′z1 which contains a Min-Cycle Caa′ which contains edge aa′ and a Min-Cycle
Caz1 which contains edge az1. Moreover, Caa′ and Caz1 are connected via a path
of Min-Cycles from Ca′z1 . Let q1 be the other neighbor of z1 in Caz1 . We proceed
with the edges z2z1 and z1q1, which both are part of a cycle in G and obtain a
set of Min-Cycles connecting Caa′ and a Min-Cycle which contains the edge z1z2.
We iterate until we have a set of Min-Cycles connecting Caa′ with a Min-Cycle
Czkb, which contains the edge zkb. In a last step, we consider the edges zkb and bb′
and apply Lemma 5.6.8 again to obtain a set of Min-Cycles connecting Caa′ and
a Min-Cycle Cbb′ which contains edge bb′. If we have found a cycle of Min-Cycles
with this process, then we are already done. Otherwise, observe that Caa′ overlaps
with C1 and that Cbb′ overlaps with C2. Thus, we have found a cycle of Min-Cycles
C1, Caa′ , . . . , Caz1 , . . . , Czkb, . . . , Cbb′ , C2. �

Definition 5.6.14 (Twist in a Cycle of Min-Cycles) Let C = C1, . . . , Ck be a
cycle of Min-Cycles in a network G. For each cycle Ci ∈ C there exist two vertex-
disjoint paths P ′i and P ′′i on the cycle Ci, which are as short as possible and which
connect Ci−1 mod k and Ci+1 mod k. We say that C has a twist if P ′1 ∪ P ′′1 ∪ P ′2 ∪ P ′′2 ∪
· · · ∪ P ′k ∪ P ′′k forms one cycle in G. Otherwise P ′1 ∪ P ′′1 ∪ P ′2 ∪ P ′′2 ∪ · · · ∪ P ′k ∪ P ′′k
either forms two vertex-disjoint cycles in G or one cycle an one separate vertex and
we say that C has no twist. See Fig. 5.6.
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Remark 5.6.15 Note that wheels of Min-Cycles cannot have a twist. This is true
since the union of all P ′i and P ′′i paths must form a cycle and a separate vertex,
where the separate vertex is the one vertex which is contained in all Min-Cycles.

Lemma 5.6.16 Let G be a network where all overlapping Min-Cycles are well-
connected. If G contains a cycle of Min-Cycles, then G contains a wheel of Min-
Cycles.

Proof Let C = C1, . . . , Ck be the cycle of Min-Cycles in G. Since we assume that
all overlapping Min-Cycles in G are well-connected, it follows that k ≥ 3. Clearly,
if C is a wheel of Min-Cycles, then we are done. Hence, we assume in the following
that C is a ring of Min-Cycles.
Let Cp and Cp+1 be neighboring Min-Cycles in C and let P = Cp ∩Cp+1 be their

shared path in G. Let u be an endpoint of P and let Cu = {Cq | Cq ∈ C and u ∈
V (Cq)} be the subset of Min-Cycles in C which all contain vertex u. If Cu is a cycle
of Min-Cycles in G, then we have found a wheel of Min-Cycles, since each Min-Cycle
in Cu contains vertex u. Thus, we can assume that Cu contains a maximal path of
Min-Cycles Pu ⊂ Cu. Let Ci and Cj be the first and the last Min-Cycle on the path
Pu.
We claim that we can choose neighbors v ∈ V (Ci) and w ∈ V (Cj) of vertex u

such that v, w /∈ V (P ), v ∈ V (Ci) \ V (Cj) and w ∈ V (Cj) \ V (Ci) holds. To see
this, notice that u has two neighbors in Ci and two neighbors in Cj and exactly
one neighbor in P . Thus, if one neighbor in Ci or Cj belongs to V (P ), then we can
choose the respective other neighbor. Hence, we have satisfied that v, w /∈ V (P ).
Moreover, if we assume that v ∈ V (Ci) ∩ V (Cj), then, since both v and w are
neighbors of u, it follows that either v = w, which implies that u is not an endpoint
of P or that Cu is a wheel of Min-Cycles, or, if v 6= w and v ∈ V (Ci) ∩ V (Cj),
it follows that Ci and Cj overlap in the edge uv, which again implies that Cu is a
wheel of Min-Cycles. The argument for the case w ∈ V (Ci) ∩ V (Cj) is analogous.
With our choice of u, v and w we are in a situation where we have a path of Min-

Cycles Pu where all Min-Cycles of the path contain vertex u and the first Min-Cycle
on Pu, w.l.o.g. Min-Cycle Ci, contains the edge uv and the last Min-Cycle on Pu,
w.l.o.g. Min-Cycle Cj, contains the edge uw. Now, since C is a cycle of Min-Cycles
and since Pu ⊂ C, there must exist a cycle C∗ in G which contains both edges uv
and uw and which does not contain any edge from any Min-Cycle in Pu \ {Ci, Cj}.
We can apply Lemma 5.6.8 on cycle C∗ and the vertices u, v, w and get a con-

nected set of Min-Cycles C ′, where all Min-Cycles in C ′ contain vertex u. If C ′ is
a path of Min-Cycles, then this implies that Pu ∪ C ′ is a wheel of Min-Cycles or
that there are two overlapping Min-Cycles Cr ∈ Pu and Cs ∈ C ′ which are not
well-connected, which contradicts our assumption. On the other hand, if C ′ is not a
path of Min-Cycles, then, since all Min-Cycles in C ′ contain vertex u, it follows that
there are two Min-Cycles Cr, Cs ∈ C ′ which are not well-connected and we have a
contradiction. �
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5.6.2. Critical Pairs
Definition 5.6.17 (Critical Pair) Let (G,α) be a network and let v be an agent
of (G,α) who owns two non-bridge edges va and vb. Let u be another agent in
(G,α) who owns at least one edge towards x 6= v. We say that u and v form a
Critical Pair if the following four properties hold.

(1) dG(v, u) = k ≥ 2.
(2) Agent u has a shortest path to vertex a which does not use the edge va.
(3) Agent u has a shortest path to vertex b which does not use the edge vb.
(4) Agent v has a shortest path to vertex x which does not use the edge ux.

See Fig. 5.7 (left) for an illustration.

The next theorem shows that Critical Pairs are indeed a powerful tool for analyzing
Sum-Nash Equilibria.

Theorem 5.6.18 If α > 2n − 6, then no Sum-NE network can have a Critical
Pair.

Proof Let v be an agent who owns two non-bridge edges of network (G,α) towards
a and b and let u be another agent who owns at least one edge towards x 6= v. Let
v and u form a Critical Pair in (G,α). Furthermore, we assume that (G,α) is in
Sum-Nash Equilibrium.
We will first consider a possible strategy-change performed by agent u. Let (G′, α)

be the network obtained from (G,α) if agent u removes the edge ux and buys the
edge uv. See Fig. 5.7 (middle) for an illustration.

(G,α)

v

b

a

u

x

k

≤ k + 1

≤ k + 1

≤ k + 1

(G′, α)

v

b

a

u

x≤ k + 1

(G′′, α)

v

b

a

u

x

≤ k + 1

≤ k + 1

Figure 5.7.: Illustration of a Critical Pair u, v and possible strategy-changes by agent
u and agent v.

Since we assume that (G,α) is in Sum-Nash Equilibrium, it follows that agent
u’s cost in (G′, α) cannot be less than her cost in (G,α). Thus, we have

cu(G,α)− cu(G′, α) ≤ 0 . (5.1)



5.6.2 Critical Pairs 137

We claim that agent u’s strategy-change does not increase agent v’s distance-cost,
that is, δv(G′) ≤ δv(G). This is true, since v and u form a Critical Pair. We have
that all shortest paths of agent v in (G,α) which traverse vertex x but not vertex u
are still present in (G′, α). All shortest paths of agent v in (G,α) which first traverse
x and then u are strictly shorter in network (G′, α). Finally, for each shortest path
of v in (G,α) which first traverses u and then x there exists another shortest path
in (G,α) which only traverses x but not u and which has the same length. Thus,
this path exists in network (G′, α) as well.
We can upper bound agent u’s cost in network (G′, α) as follows:

cu(G′, α) ≤ eu(G,α) + n− 1 + δv(G′)− 1 ,

since eu(G′, α) = eu(G,α) and

δu(G′) =
∑

z∈V (G′)
dG′(u, z) ≤

∑
z∈V (G′)\{u}

(
1 + dG′(v, z)

)
= n− 1 + δv(G′)− 1 .

Since agent u’s strategy-change does not increase agent v’s distance to any vertex,
we have

δv(G′)− 1 = δv(G′)− dG′(u, v) =
∑

z∈V (G′)\{u}
dG′(v, z)

≤
∑

z∈V (G)\{u}
dG(v, z) = δv(G)− dG(u, v) .

This implies that

cu(G′, α) ≤ eu(G,α) + n− 1 + δv(G)− dG(u, v) .

Together with inequality (5.1), this yields

cu(G,α)−
(
eu(G,α) + n− 1 + δv(G)− dG(u, v)

)
≤ cu(G,α)− cu(G′, α) ≤ 0 ,

which, since cu(G,α) = eu(G,α) + δu(G), gives

δu(G)− n+ 1− δv(G) + dG(u, v) ≤ 0 .

Thus, we have the following upper bound for δu(G):

δu(G) ≤ δv(G) + n− dG(u, v)− 1 . (5.2)

Now let us consider a possible strategy-change by agent v in network (G,α).
Suppose that agent v removes both her edges towards a and b and buys the edge
towards u instead. Let (G′′, α) be the network induced by this strategy-change. See
Fig. 5.7 (right).
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Since (G,α) is in Sum-Nash Equilibrium, we have that agent v cannot have
strictly less cost in network (G′′, α) compared to her cost in network (G,α), that is,

cv(G,α)− cv(G′′, α) ≤ 0 . (5.3)
We claim that δu(G′′) ≤ δu(G). This is true, since v and u form a Critical Pair.

All shortest paths from u in (G,α) which traverse vertex a but not vertex v are still
present in network (G′′, α). The same holds true for all shortest paths of agent u in
(G,α) which traverse vertex b but not vertex v. Moreover, all shortest paths of u in
(G,α) which first traverse a and then traverse v or which first traverse b and then
traverse v must be strictly shorter in network (G′′, α). Finally, for each shortest
path of u in (G,α) which first traverses v and then a or b, there must be another
path in (G,α) which only traverses a or b but not v and which has the same length.
This path is present in network (G′′, α).
Analogous to above, we can upper bound agent v’s cost in network (G′′, α) as

follows:
cv(G′′, α) ≤ ev(G,α)− α + n− 1 + δu(G′′)− 1 .

Here we have used that ev(G′′, α) = ev(G,α)−α because v’s strategy-change removes
two edges and buys only one edge. Since v’s strategy-change does not increase
agent u’s distance to any vertex, we have, by an analogous argument as above, that
δu(G′′)− 1 ≤ δu(G)− dG(u, v) , which implies

cv(G′′, α) ≤ ev(G,α)− α + n− 1 + δu(G)− dG(u, v) .

Together with inequality (5.3) this yields

cv(G,α)−
(
ev(G,α)− α + n− 1 + δu(G)− dG(u, v)

)
≤ cv(G,α)− cv(G′′, α) ≤ 0 ,

which gives
δv(G) + α− n+ 1− δu(G) + dG(u, v) ≤ 0 .

From this we get an upper bound for α:

α ≤ δu(G)− δv(G) + n− 1− dG(u, v). (5.4)

Inequality (5.4) together with inequality (5.2) yields

α ≤ δv(G) + n− dG(u, v)− 1− δv(G) + n− 1− dG(u, v)
= 2n− 2dG(u, v)− 2
≤ 2n− 6 ,

where the last inequality follows from the assumption that dG(u, v) ≥ 2. Thus, if
α > 2n − 6, then we have that agent u or agent v can perform a strategy-change
which strictly decreases her cost, which contradicts the assumption that (G,α) is
in Sum-Nash Equilibrium. �
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5.6.3. The Relation between Min-Cycles and Critical Pairs
We begin with showing that if there are no Critical Pairs in a network (G,α), then
the edge-ownership within a Min-Cycle in (G,α) must be very specific.

Lemma 5.6.19 Let C be a Min-Cycle having length at least 5 in a network (G,α).
If an agent v ∈ V (C) owns two edges of the Min-Cycle C, then (G,α) contains a
Critical Pair.

Proof Let C be a Min-Cycle in network (G,α) and let |V (C)| ≥ 5. Furthermore,
let v ∈ V (C) own two edges of the Min-Cycle towards a and b.
If |V (C)| is even, then there is a unique vertex z ∈ V (C) having maximum

distance k ≥ 3 towards v. By definition of a Min-Cycle, we have that dG(z, a) =
dG(z, b) = k − 1. Let x and y be the cycle-neighbors of z in C and, by definition
of a Min-Cycle, we have that dG(v, x) = dG(v, y) = k − 1. If z owns an edge of
C, then we have that v and z form a Critical Pair. If z does not own an edge
of C, then x must own the edge xz. Since k ≥ 3, we have that dG(x, v) ≥ 2.
W.l.o.g. let a be the unique vertex of C which has maximum distance to x. We
have dG(x, a) ≤ dG(x, v) + 1 and we have that there is a shortest path from x to a
which does not traverse v. It follows that v and x form a Critical Pair.
If |V (C)| is odd, then there are exactly two vertices x, y ∈ V (C) which have

maximum distance k ≥ 2 towards v. The edge xy must have an owner and w.l.o.g.
let this be agent x. In this case, it is easy to see that v and x form a Critical Pair.�

Definition 5.6.20 (Non-Critical Network) We call a network (G,α) non-critical
if there is no Critical Pair in (G,α).

Corollary 5.6.21 If (G,α) is non-critical for some α > 2n− 6, then we have for
every Min-Cycle C in (G,α) that −→C must be a directed cycle.

Proof Recall that −→C is the cycle C where every edge is replaced by a directed arc
which points away from the owner of the respective edge.
Since α > 2n− 6 and Lemma 5.6.2, we have all cycles in (G,α) must have length

at least 5. Thus, assume that for some Min-Cycle C in (G,α) we have that −→C is
not a directed cycle. Then, by the pigeonhole principle, there must be an agent
who owns exactly two edges of C and by Lemma 5.6.19, it follows that (G,α) must
contain a Critical Pair. �

Since we focus on high edge-cost α > 2n − 6 and having Lemma 5.6.19, we may
assume in the following that every agent in a Min-Cycle owns exactly one edge
of the Min-Cycle. The next observation yields that overlapping Min-Cycles in a
non-critical network must overlap in exactly one path.

Lemma 5.6.22 Let C1 and C2 be two overlapping Min-Cycles in a network (G,α),
let every agent in Ci own exactly one edge of Ci. If C1 and C2 are not well-connected,
then (G,α) contains a Critical Pair.
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Proof Clearly, since agents of Ci own exactly one edge of Ci, both
−→
C1 and −→C2

must be directed cycles. Let uv ∈ E(C1) ∩ E(C2) be a shared edge and let P be
a maximal path of shared edges which contains uv. Let −→P = a1, a2, . . . , al be the
directed version of path P , where the arcs (aj, aj+1) are directed from aj to aj+1,
for 1 ≤ j ≤ l − 1. Let X = (V (C1) ∩ V (C2)) \ V (P ). Since we assume that C1 and
C2 are not well-connected, it follows that X 6= ∅. Hence, let x ∈ X be the vertex
in X which has the smallest distance on C1 to any vertex in V (P ). There are two
cases:

1. If dC1(x, al) ≤ dC1(x, a1), then let −→P1 be the directed path on −→C1 from al to x and
let −→P2 be the path on −→C2 from al to x. Clearly, dC1(x, al) ≥ 2, since otherwise
there would be a multi-edge in (G,α). Let p be the neighbor of al on

−→
P1 and let

q be the neighbor of al on
−→
P2. See Fig. 5.8 (left). Note that both −→P1 and −→P2 must

be directed from al to x. This is true, since the edge al−1al is owned by al−1 and
is contained in both directed cycles.

The next observation is that |−→P1| = |
−→
P2|. This holds because otherwise either C1

or C2 cannot be a Min-Cycle in C since there is a shorter path between al and
x which is not on the respective cycle.

Let −→P3 be the directed path from x to a1 on −→C1. Since dC1(x, al) ≤ dC1(x, a1),
we have that |−→P3| ≥ |

−→
P1| and that |−→P3| + |

−→
P | > |

−→
P1|, since

−→
P contains at least

the edge uv. Let
−→
P ′ = −→P3 +−→P and let z be a vertex on C1 which has maximum

distance to al on C1. Note that since |−→P1| ≥ 2, |−→P3| ≥ |
−→
P2| and |

−→
P | ≥ 1, we have

that dC1(al, z) ≥ 2.

v

u

x

al

−→
C1

−→
C2

P1

P2

a1

P3

z

al
p

q

p

q

xza1uv

z′

z′

≤ k + 1

≤ k + 1

k

≤ k + 1

Figure 5.8.: Left: The setting in case 1. Right: Illustration of the Critical Pair al, z.

We claim that the pair al, z forms a Critical Pair in (G,α). This can be seen as
follows: Let dC1(al, z) = k ≥ 2. Clearly, since both al and z are contained in
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the Min-Cycle C1, we have that there is no shorter al-z-path in (G,α), that is,
dG(al, z) = k. Let z′ be the neighbor of z on C1 to which z owns an edge. Since
the path

−→
P ′ in −→G is directed from x to al, since V (

−→
P ′) ⊂ V (C1) and by choice of

z, we have that dC1(z′, al) ≤ dC1(z, al) = k and that al has a shortest path to z′
in (G,α) of length less than k+ 1 which does not use the edge zz′. Furthermore,
by choice of z, agent z has shortest paths to p and q which have length at most
k + 1 and which do not use the edge alp or alq. See Fig. 5.8 (right).

2. If dC1(x, al) > dC1(x, a1), then let −→P1 be the on −→C1 from x to a1 and let −→P2 be the
path on −→C2 from x to a1. See Fig. 5.9 (left). Analogous to case 1 we have that
both paths must be directed from x to a1 that |−→P1| = |

−→
P2| and that |−→P1| ≥ 2. Let

p be the neighbor of x on −→P1 and let q be the neighbor of x on −→P2. Let
−→
P3 be the

directed path from al to x on −→C1 and we have |−→P3| > |
−→
P1|. Let

−→
P ′ = −→P +−→P3 and

let z be a vertex on C1 having maximum distance to x on C1 and analogous to
case 1 we have dC1(x, z) ≥ 2.

v
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P3
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q

a1z uvz′

≤ k + 1

≤ k + 1

k

≤ k + 1

P1
p

q

z′

Figure 5.9.: Left: The setting in case 2. Right: Illustration of the Critical Pair x, z.

We claim that x, z forms a Critical Pair in (G,α). The proof is analogous to
case 1: Since C1 is a Min-Cycle, we have dC1(x, z) = dG(x, z) = k ≥ 2. Let z′
be the neighbor of z on C1 to which z owns an edge. By choice of z and since
V (
−→
P ′) ⊂ V (C1), there is a shortest path in (G,α) from x to z′ which has length

at most k + 1 and which does not use the edge zz′. Moreover, again by choice
of z, agent z has shortest paths to p and q which have length at most k + 1 and
which do not use the edges xp or xq. See Fig. 5.9 (right).

In both cases we have established that (G,α) contains a Critical Pair. �

Remark 5.6.23 Note that by Lemma 5.6.22 we have that there are no cycles of
Min-Cycles of length 2 unless there exists a Critical Pair.

We assume in the following that if two Min-Cycles overlap, then they overlap in
exactly one path. The next result restricts the length of such a path.
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Lemma 5.6.24 Let C1 and C2 be two overlapping Min-Cycles in a network (G,α),
where no agent in Ci owns two edges of Ci and |Ci| ≥ 5. Let P be the maximal path
of shared edges. If |P | ≥ min

{
|C1|

2 − 1, |C2|
2 − 1

}
, then (G,α) contains a Critical

Pair.

Proof We assume that |C1| ≤ |C2| and let P = a1, . . . , al such that agent ai owns
the edge aiai+1 for 1 ≤ i ≤ l − 1. We show that there exists a Critical Pair, if
|P | = l−1 ≥ |C1|

2 −1. Let P1 be the path along C1 from al to a1 which does not use
the edge alal−1 and let P2 be the path along C2 from al to a1 which does not use
the edge alal−1. Let p be the neighbor of al on P1 and let q be the neighbor of al
on P2. Since P ∪ Pj = Cj, for j ∈ {1, 2}, we have |P1| ≤ |P2|. See Fig. 5.10 (left).

a1

al

a2

a3

p

q

C1

C2

P P1

P2

al

p

q

a1a2a3

z

z′

≤ k + 1

≤ k + 1

k
≤ k + 1

Figure 5.10.: Left: The overlapping cycles C1 and C2. Right: Illustration of the
Critical Pair al, z in the case |P2| > |P1|.

There are two cases:

1. If |P1| = |P2|, then we claim that the pair al, a1 forms a Critical Pair. This can
be seen as follows: Since l − 1 ≥ |C1|

2 − 1 and |C1| = |P | + |P1| it follows that
|P1| ≤ l + 1. We have

dG(al, a1) = l − 1 ≥ |C1|
2 − 1 ≥ 2 ,

since |C1| ≥ 5. Furthermore, a1 owns the edge towards a2 and we have that
dG(al, a2) ≤ l and there is a shortest path from al to a2 which does not use the
edge a1a2. Agent a1 has a shortest path of length |P1| − 1 ≤ l to p which does
not use the edge alp and, since |P2| = |P1| agent a1 also has a shortest path of
length at most l to q which does not use the edge alq.

2. If |P2| > |P1|, then consider the cycle C ′ = P1 ∪ P2 and let z be a vertex on C ′
which has maximum distance to al in (G,α). See Fig. 5.10 (right). We claim
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that al, z forms a Critical Pair in (G,α). Let z′ be the neighbor of z on C ′ to
which z owns an edge. Since |P2| > |P1|, it follows that z, z′ ∈ V (P2). We have

dG(al, z) = k ≥ |P1|+ |P2|
2 ≥ 2 ,

which implies k ≥ l. Moreover, agent al has a shortest path to z′ of length at
most k+ 1 which does not use the edge zz′. The latter is true by choice of z and
since z′ must be closer to a1 than z. The path from al to z′ via P1 and from a1
to z′ has length at most k + 1. By choice of z, agent z has a shortest path to q
of length at most k + 1 which does not use the edge alq, because both q and z
lie on the path P2. Furthermore, agent z has a shortest path to p of length at
most k + 1 and which does not use the edge alp. This is true, since z’s path P ′
to p via a1 and then from a1 along P1 to p has length

|P ′| = dG(z, a1) + |P1| − 1 ≤ dG(z, a1) + l ,

which shows that this path has at most the length of the path via a1 and P and
edge alp. Furthermore, by choice of z we have dG(z, a1) ≤ k−l+1, since otherwise
vertex z′ has strictly larger distance than z to al in G. Thus, |P ′| ≤ k + 1. �

Lemma 5.6.25 Let (G,α) be a network which does not contain a Critical Pair and
all Min-Cycles in (G,α) have length at least 4. Let C1 and C2 be Min-Cycles in
(G,α) which overlap in the path P . If V (P ) is a separator of G, then G is not in
Sum-ASE.

Proof First of all, note that since we assume that (G,α) does not contain a
Critical Pair, we have, by Lemma 5.6.22, that V (C1) ∩ V (C2) = V (P ). Moreover,
by Lemma 5.6.19, we have that every agent in C1 owns exactly one edge of C1 and
every agent in C2 owns exactly one edge of C2.
Since V (P ) is a separator of G we have that the network G′ = G− P consists of

at least two connected components, that is G′ = G′1 ∪ · · · ∪G′l, for some l ≥ 2. Let
G′1 be the connected component of G′ which contains all vertices V (C1) \V (P ) and
let G′2 be the connected component of G′ which contains all vertices V (C2) \ V (P ).
Let G′3, . . . , G′l be the remaining connected components of G′, if there are more
than two. Since all vertices of G are either contained in V (P ) or in some connected
component of G′, it follows that

|V (G′1)|+ |V (P )|+
l∑

j=3
|V (G′j)| ≥

n

2

or
|V (G′2)|+ |V (P )|+

l∑
j=3
|V (G′j)| ≥

n

2 .
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This implies that |V (G′1)| ≤ n
2 or |V (G′2)| ≤ n

2 . W.l.o.g. we will assume that
|V (G′1)| ≤ n

2 holds.
Let |V (P )| = k, for some k ≥ 2. Lemma 5.6.24 and our assumption that no

Critical Pair exists yields that

k < min
{
|V (C1)|

2 − 1, |V (C2)|
2 − 1

}
.

It follows that

|V (C1) \ V (P )| ≥ |V (C1)| − |V (C1)|
2 + 1 = |V (C1)|

2 + 1 ≥ k + 3 .

Thus, the path Q = C1 − P has length at least k + 3. Since (G,α) has no Critical
Pair, we have that the edge-ownership in Q must be directed along the path. Let
V (Q) = {q1, . . . , qr}, where qi and qi+1, for 1 ≤ i ≤ r− 1 are neighbors on the path
and let q1 be the unique agent of Q who does not own an edge of Q. Thus the edge
qiqi+1, for 1 ≤ i ≤ r − 1 is owned by agent qi+1. We will focus on agent q2 who
owns the edge q1q2. Since C1 is a Min-Cycle and since |V (Q)| ≥ k+ 3 we have that
dG(q2, qr) ≥ k + 1. Let p ∈ V (P ) be the other neighbor of q1 on Min-Cycle C1 and
let p′ be the other neighbor of qr on C1.
We claim that agent q2 can strictly decrease her cost by swapping the edge q1q2

towards edge pq2. Since C1 is a Min-Cycle, we have that edge pq2 /∈ E(G) so
this is indeed a valid edge-swap. By performing this move, agent q2 decreases her
distance to all vertices in V (P ) by 1. This is true because C1 is a Min-Cycle,
dG(q2, qr) ≥ k + 1 and dG(q2, p

′) ≥ k + 1. Since V (P ) is a separator of G, this
implies that the swap decreases agent q2’s distances to all vertices in the set

X = V (G′2) ∪ V (P ) ∪
l⋃

j=3
V (G′j)

by 1. Our observation from above yields that |X| ≥ n
2 . Thus, the swap decreases

agent q2’s distance-cost by at least n
2 . On the other hand, this swap increases agent

q2’s distances to some vertices Y ⊂ V (G′1) by exactly 1, since the length of q2’s
shortest path to vertex q1 is increased by 1. We have that |Y | < n

2 , since, by
assumption, |V (G′1)| ≤ n

2 and q2 /∈ Y . Thus, the swap from edge q1q2 to edge
pq2 strictly decreases agent q2’s cost, which implies that G cannot be in Sum-
Asymmetric Swap Equilibrium. �

The so far presented results bring us very close to proving that the Price of Anarchy
in the Sum-NCG for α > 2n − 6 is constant. Essentially, we reduce the problem
to one special case which has strong structural constraints. This can be seen as
follows.



5.6.3 The Relation between Min-Cycles and Critical Pairs 145

By Theorem 5.4.2, any network (G,α) having more than one biconnected com-
ponent cannot be in Sum-GE. Thus, we may assume that the network (G,α) has
exactly one biconnected component Cbc.5
If Cbc is a cycle, that is, if (G,α) is a n-vertex network having exactly n edges,

then, by Corollary 5.4.6 and Theorem 3.3.9 it follows that the Price of Anarchy is
constant.
Otherwise, that is, if (G,α) is a n-vertex network having at least n+ 1 edges, we

can, by Corollary 5.6.10, construct a Min-Cycle cover C of Cbc.
If any Min-Cycle in C has length at most 4, then, by Lemma 5.6.2, (G,α) cannot

be in Sum-GE, which implies that (G,α) cannot be in Sum-NE. Moreover, if any
two overlapping Min-Cycles in C are not well-connected, then, by Lemma 5.6.22,
there must be a Critical Pair in (G,α) and with Theorem 5.6.18 it follows that
(G,α) cannot be in Sum-NE.
If there are two overlapping Min-Cycles such that the vertices of their overlapping

path form a separator of G, then, by Lemma 5.6.25, we know that either G is not
in Sum-ASE or that (G,α) contains a Critical Pair. In both cases we know that
(G,α) is not in Sum-NE.
The only remaining case is that the vertices of all overlapping paths of two Min-

Cycles do not form a separator of G. But then, by Lemma 5.6.13, there must be a
cycle of Min-Cycles in (G,α). We know even more: By Lemma 5.6.16, it follows that
(G,α) either contains an odd wheel of Min-Cycles or an even wheel of Min-Cycles.
Thus, we have shown that for α > 2n − 6 any n-vertex network (G,α) having

at least n + 1 edges either is not in Sum-NE or it must contain an odd wheel of
Min-Cycles or an even wheel of Min-Cycles.
The next theorem rules out the case that (G,α) contains an odd wheel of Min-

Cycles. Note that by Remark 5.6.15 we have that a wheel of Min-Cycles cannot have
a twist. The theorem is even stronger, it also rules out even cycles of Min-Cycles
having a twist.

Theorem 5.6.26 Let (G,α) be a network and let C be a cycle of Min-Cycles con-
tained in (G,α) and let every Min-Cycle C ∈ C have length at least 5. Network
(G,α) contains a Critical Pair if C is an odd cycle of Min-Cycles with no twist or
if C is an even cycle of Min-Cycles with a twist.

Proof Let C = C1, C2, . . . , Ck, C1 be a cycle of Min-Cycles contained in (G,α). By
Lemma 5.6.19 we can assume that for every Min-Cycle Ci ∈ C we have that −→Ci is a
directed cycle, since otherwise we are trivially done. Furthermore, by Lemma 5.6.22,
we can assume that all overlapping Min-Cycles are well-connected.
We show that if C is an odd cycle of Min-Cycles with no twist or if C is an even

cycle of Min-Cycles with a twist, then we get a contradiction to the assumption
above. We consider each case separately.

5If there is no such component, then we know that (G,α) must be a tree and we already
know [FLM+03] that the Price of Anarchy is constant for tree networks.
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1. Let C be an odd cycle of Min-Cycles with no twist. In this case we have that C
is planar. Let Ce = Ce

1 , C
e
2 , . . . C

e
k, C

e
1 be any planar embedding of −→C and w.l.o.g.

let Ce
1 be directed in clockwise order. Since Ce

1 and Ce
2 share at least one edge,

it follows that Ce
2 must be directed in counter-clockwise direction. Generally, all

directed Min-Cycles having an odd index must be directed clockwise and all di-
rected Min-Cycles having an even index must be directed counter-clockwise. Fur-
thermore, overlapping directed Min-Cycles must have opposite direction. Thus,
if Ce contains an odd number of directed Min-Cycles, then there must be two
neighboring directed Min-Cycles, which both have odd index. Thus, both must
be directed in clockwise direction, but since they overlap, we get a contradiction.
It follows that if |C| is odd, then in −→C it is impossible that each agent u has
outdegree 1 in every directed Min-Cycle −→Cj which contains u. Thus, there must
be a Min-Cycle Cj ∈ C where one agent of Cj owns two edges of Cj and we have
a contradiction since −→Cj is not a directed cycle.

2. Let C be an even cycle of Min-Cycles with a twist. There must exist an embedding
Ce = Ce

1 , C
e
2 , . . . , C

e
k, C

e
1 of −→C in the plane such that exactly two edges cross.

Moreover, these two crossing edges must belong to the same cycle in Ce and
w.l.o.g. let this be cycle Ce

k. We can assume that Ce
1 is directed in clockwise

direction and by an analogous argumentation as above we have that among
the cycles Ce

1 , C
e
2 , . . . , C

e
k−1 all cycles with odd index are directed clockwise and

all cycles with even index are directed counter-clockwise. Since k is even, we
have that k − 1 must be odd. Thus, Ce

1 and Ce
k−1 are both directed clockwise.

Let P ′k and P ′′k be the two vertex-disjoint paths, which both consist of vertices
from V (Ck) and which connect Ce

k−1 and Ce
1 in Ce. Since two edges from Ce

k

cross in Ce, it follows that both paths P ′k and P ′′k contain at least one edge. Let
Pk−1,k = Ce

k−1∩Ce
k be the shared subgraph of Ce

k−1 and Ce
k and let Pk,1 = Ce

k∩Ce
1

be the shared subgraph of Ce
k and Ce

1 . By Lemma 5.6.22 and our assumption
from above, we have that if Pk−1,k or Pk,1 is not a directed path in Ce, then we
have found a Critical Pair. Thus, we can assume that Pk−1,k and Pk,1 both are
directed paths in Ce and it follows that we can decompose the cycle Ce

k as follows:
Ce
k = Pk−1,k ∪ P ′k ∪ Pk,1 ∪ P ′′k and we can traverse the cycle Ce

k be traversing the
paths in this order. Let a be the first vertex in the directed path Pk−1,k and let
b be its last vertex. Let c be the first vertex in the directed path Pk,1 and let d
be its last vertex. It follows that P ′k either contains the vertices a and c or the
vertices b and d. In the first case, if P ′k is directed from a to c, then it follows that
agent a owns two edges of the Min-Cycle Ck in G. Otherwise, if P ′k is directed
from c to a, then agent c owns two edges of Ck in G. The case where P ′k contains
b and d is analogous. In both cases we have identified a Min-Cycle of C which is
not a directed cycle in −→C and we have a contradiction. �

The above theorem leads us to a strong structural property of all Sum-NE networks
for large edge-cost α.
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Corollary 5.6.27 If α > 2n−6, then no Sum-NE network (G,α) can have an odd
cycle of Min-Cycles with no twist or an even cycle of Min-Cycles with a twist.

Proof Since α > 2n − 6, we have by Lemma 5.6.2 that all Min-Cycles in (G,α)
must contain at least five vertices. Now, if (G,α) contains an odd cycle of Min-
Cycles with no twist or an even cycle of Min-Cycles with a twist, then, by The-
orem 5.6.26, it follows that (G,α) contains a Critical Pair. In this case, Theo-
rem 5.6.18 directly yields that (G,α) cannot be in Sum-NE. �

As outlined above, the only remaining case is that (G,α) contains an even wheel of
Min-Cycles. Which leads us to the following property.

Corollary 5.6.28 Any non-tree Sum-NE network with n vertices and at least n+1
edges must contain an even wheel of Min-Cycles if α > 2n− 6.

Finally, we conjecture that this structural property is too strong to be fulfilled in
any Sum-NE network.

Conjecture 5.6.29 If α > 2n − 6, then no network in Sum-NE can contain an
even wheel of Min-Cycles.

We emphasize that settling this innocent-looking conjecture would imply a constant
Price of Anarchy in the Sum-Network Creation Game for α > 2n−6. This would be
a considerable improvement over the current best bound of α > 273n by Mihalák
and Schlegel [MS13] and would significantly reduce the range of α for which no
constant bound is known to [n1−ε, 2n− 6], for any fixed ε ≥ 1

logn .



6. Discussion and Open Problems
In this thesis we have considered Network Creation Games, as introduced by Fab-
rikant, Luthra, Maneva, Papadimitriou and Shenker [FLM+03], and several versions
thereof. Our analysis of these games focused on three different points of view: The
approximation perspective, the dynamics perspective and the structure perspec-
tive. All those perspectives yield very different problems that have to be tackled
and we have coped with them using very different techniques. But interestingly,
each perspective also has led to insights for other perspectives.

The Approximation Perspective The study of the approximation of equilib-
rium states in the Network Creation Games arose from the fact that computing a
best response in both the Sum- and the Max-version is computationally hard. If we
want to understand selfish network creation as observed in real networks, then we
cannot assume that agents have unlimited computational power. Moreover, selfish
agents in real networks will refrain from radical infrastructural changes if these lead
to only a tiny improvement in service quality. Besides the exposition to a high risk
of service disruption during the change, such radical restructurings are more likely
to lead to adaptions by other agents. In our study of networks created by very
simple agents, we have incorporated both these aspects, that is, we have restricted
agents who can compute their best response in polynomial time and who can only
perform smooth strategy-changes. We believe that studying networks created by
such simple agents is well-suited to understand (communication-)networks in prac-
tice. Our agents employ a simple local search heuristic and it seems realistic to
assume that many agents in practice will use such sub-optimal algorithms.
We have shown that at least for the Sum-NCG, these very simple agents create

networks which are remarkably stable and efficient, that is, they are very close to
pure Nash Equilibria in terms of stability and in terms of social cost. Specifically
we have shown that any network in Sum-GE is in 3-approximate Sum-NE. Further-
more, if we focus on tree networks, then we have established the quite surprising
result that all tree networks in Sum-GE are in Sum-NE as well. Thus, if the cre-
ated network is a tree network, then simple agents incur no loss in stability or social
cost. Unfortunately, the situations is worse for the Max-NCG. We could show that
only for tree networks there is no substantial difference between simple agents and
agents having the computational power to solve NP-hard problems. For non-tree
networks, the outcomes found by simple agents may be far away from the optimal
outcomes, at least in terms of stability. The reason for this dichotomy between
the Sum- and the Max-version is the different locality of the agents’ distance-cost
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function. In the Sum-version, the distance-cost of an agent is determined by several
more or less independent parts of the networks. Changing edges in one part of the
network often has no or only low influence on the distances to agents in some other
part. Thus, simple moves like adding, deleting or swapping one edge can decrease
an agent’s cost locally without affecting many other distances. In contrast, in the
Max-version the distance-cost of an agent is spread throughout the network. It is
possible that many agents are in maximum distance to some agent and that the
respective shortest paths do not overlap. Thus, to decrease the distance cost in
such a situation it is necessary to change many shortest paths with one operation.
Clearly this is exactly what our simple agents are not able to do.
One very interesting open problem regarding the approximation of equilibria is

determining the exact approximation ratio in the Sum-NCG. We have shown that
any Sum-GE network is in 3-approximate Sum-NE and that there are Sum-GE
networks which are not in β-approximate Sum-NE for any β < 3

2 . We are confi-
dent that the upper bound may be improved. Improving the lower bound seems
challenging.

The Dynamics Perspective Nash Equilibria or other stable states are the main
actors in (Algorithmic) Game Theory. They represent outcomes of a strategic game
where - almost magically - all selfish agents are happy in the sense that they do
not want to change their current strategy if all other agents stick to their current
strategy as well. But, a solution concept for a strategic game is a purely descriptive
notion. There is no built-in guidance on how to find these interesting outcomes.
Especially for Network Creation Games it is very hard to construct non-trivial
stable networks "by hand". The reason is simple: One has to satisfy the needs of n
different selfish agents at the same time. That is, even with central coordination it
seems to be very difficult to find equilibria. Clearly, the same task without central
coordination seems to be even harder. This naturally raises the question how a
collection of selfish agents can find such desirable stable states. Studying social
networks or the evolution of the Internet suggests that stable networks may be
found by repeated and sequential interaction among the agents. Starting from any
initial network, agents may sequentially adapt their strategies until this process
eventually stabilizes and an equilibrium network emerges.
We have studied such a stabilization process, or game dynamics, for several vari-

ants of the Network Creation Game. In our dynamics, agents move sequentially and
every move will decrease the moving agent’s cost. Our results imply that besides
the class of (Asymmetric) Swap Games having trees as initial networks, there is no
hope for a convergence guarantee for such dynamics in Network Creation Games.
On the other hand, if stabilization occurs, then this happens in a surprisingly low
number of agents’ moves. This observation holds for the cases where convergence
is guaranteed and for all the billions of runs we have simulated in our empirical
study. Especially the strongly positive results of the latter indicate why and how
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stable networks may be actually found in practice. Thus, such repeated adaptions
of selfish agents may be a suitable method for creating stable and efficient overlay
networks of for creating ad-hoc networks among mobile network nodes.
In all our negative theoretical results, that is, in all our best response cycle con-

structions, we have that there is one step in the cycle, where the moving agent can
decrease her cost only by a tiny amount. If this agent performs the corresponding
strategy-change then the cycle keeps on going. This observation raises the ques-
tion, whether convergence towards c-approximate equilibria, for some constant c,
is always guaranteed. Another question is, if this observation can be turned into
a stabilization mechanism as follows: Agents perform improving moves but if they
find themselves repeatedly in the same situation, then they gradually become more
and more tolerant of sub-optimal outcomes. Thus, agents gradually relax their de-
sire to minimize their local cost to achieve global stability. This reminds of the
well-known simulated annealing heuristic in optimization.

The Structure Perspective Most of the works which have analyzed Network
Creation Games essentially focused on studying the structure of (swap)-stable net-
works. Besides some almost trivial stable networks like trees or for some α even
cliques, there is a surprisingly broad spectrum of other (swap)-stable networks hav-
ing all sorts of properties. Clearly, the exact structure of equilibrium networks
depends heavily on the edge-cost parameter α and this is the reason why most
previous work specified on proving structural results for certain ranges of α. In-
terestingly, the study of (Asymmetric) Swap Games tries to avoid this parameter
dependence and properties of networks in Asymmetric Swap Equilibrium carry over
to the other considered solution concepts. The downside of this approach is that the
Asymmetric Swap Equilibrium is a very weak solution concept and much stronger
structural properties are to be expected for networks in Nash Equilibrium or in
Greedy Equilibrium. (Asymmetric) Swap Games remove one of the most interest-
ing features of Network Creation Games: the possibility to create or delete links.
In this thesis we have contributed new structural insights for all considered so-

lution concepts. We have strengthened some of the properties known for networks
in Asymmetric Swap Equilibrium to networks in Greedy Equilibrium and we espe-
cially focus on non-tree networks in Greedy or Nash Equilibrium for relatively high
edge-cost α.
It is conjectured by Alon et al. [ADHL13] that networks in Sum-Swap Equi-

librium have polylogarithmic diameter. Mihalák and Schlegel [MS12] conjecture
that this diameter is constant and that the diameter of n-vertex networks in Sum-
Asymmetric Swap Equilibrium is in O(log n). We believe that both conjectures
by Mihalák and Schlegel are correct. Moreover we conjecture that the diameter of
non-tree networks in Sum-Greedy Equilibrium is constant. Settling this question
is one of the most interesting and challenging open problems for Network Creation
Games. Since it is known that the Price of Anarchy for tree networks in Sum-Nash
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Equilibrium is constant and since tree networks in Sum-GE are in Sum-NE and
since Sum-NE is a subset of Sum-GE, proving a constant diameter for non-tree
networks in Sum-GE would imply a constant Price of Anarchy in the Sum-NCG
and thus answer the decade old question which essentially started the study of
Network Creation Games. We believe that an important step towards answering
this question is to find the value of α where all stable networks in the Sum-version
are guaranteed to be trees. If our Conjecture 5.6.29 is true, then this would imply
that for α > 2n − 6 any n-vertex network in Nash Equilibrium must have n − 1
or n edges, that is, these networks are trees or they contain exactly one cycle. We
believe that an even stronger statement may be true: For α ≥ n all networks in
Sum-Greedy Equilibrium are trees. This would be a tight result, since there are
non-tree networks in Sum-GE for n− ε < α < n, for any ε > 0.

Further Research Directions So far, Network Creation Games capture the
agents’ desire to have good connection quality at low cost. The outcomes of these
games are often tree networks or very sparse non-tree networks. Thus, they provide
the necessary structure to maintain short communication paths but almost no re-
dundant paths. This implies that such networks may be highly vulnerable to edge
or node failure. We believe that incorporating a certain desire for robustness in the
agents’ cost function is highly realistic and should lead to networks which are much
closer to real networks built by selfish agents.
There are several ways to incorporate robustness. On way is to restrict the

degrees of the vertices in the network. This leads to better behavior under single
node-failure since there are no communication-critical central nodes as in star-like
topologies. Another way would be to enforce that the network is k-connected by
penalizing agents who could be cut off from the network by removing at most
k edges. Still another way is to introduce an adversary who removes edges at
random and the agents’ cost is the expected number of agents to which they become
disconnected. This approach was proposed by Kliemann [Kli11, Kli13] but with a
restricted adversary who is allowed to remove only one edge.
Another interesting research direction is the removal of the implicit assumption

that agents know the complete network topology. Especially for large networks, it
seems unrealistic that any agent has a global view of the current network structure.
Thus, agents could be restricted to act within some local neighborhood and thereby
implicitly influencing the global structure. Distances to all agents could still be
used in the cost function but agents now no longer know their exact shortest paths
to any other node, but only some prefix of these paths.
Last but not least, there is an obvious extension of the NCG which could be

investigated. Distances in the NCG are measured by hop-count but what happens
if edges have lengths? That is, edges may still be bought, but there is a host graph
which specifies the length of any edge. So far, the works [DHMZ09, BGLP12]
assume that edges in the host graph only have length 1 or length ∞.
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A. Code for Simulations
For all our simulations we used scripts written in Python 2.7.3 with the Python
graph package NetworkX version 1.7.1 We use undirected graphs with edge-labels
specifying the owner of the respective egde.

A.1. Python Code for the Empirical Study of the
ASG

We give the code for the Sum-ASG employing the max cost policy. The initial
network is randomly generated such that it is connected and every agent owns
exactly k edges.

Listing A.1: Code for SUM ASG with identical budgets and max cost policy
1 from sys import s td in , s tde r r , argv , stdout
2 from c o l l e c t i o n s import deque
3 import networkx as nx
4 import random
5 import math
6 import p i c k l e
7
8 def ca l c_cos t (G, v , alpha ) :
9 s = 0

10 d i s t = 1
11 q1 = deque ( )
12 q1 . append ( v )
13 q2 = deque ( )
14 unmarked = set (G. nodes ( ) )
15 while q1 or q2 :
16 i f q1 :
17 while q1 :
18 u = q1 . pop ( )
19 i f u in unmarked :
20 unmarked . remove (u)
21 for w in G. ne ighbor s_ i t e r (u ) :
22 i f w in unmarked :
23 q2 . append (w)
24 unmarked . remove (w)
25 s = s+d i s t
26 i f unmarked :
27 d i s t = d i s t+1
28 i f q2 :
29 while q2 :
30 u = q2 . pop ( )
31 i f u in unmarked :
32 unmarked . remove (u)

1The NetworkX package is available at http://networkx.github.io/.
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33 for w in G. ne ighbor s_ i t e r (u ) :
34 i f w in unmarked :
35 q1 . append (w)
36 unmarked . remove (w)
37 s = s+d i s t
38 i f unmarked :
39 d i s t = d i s t+1
40 i f unmarked : #i f network d i sconnec ted
41 return 99999999
42 else :
43 return s
44
45 def check_best_swap (G, v , alpha , c o s t b e f o r e ) :
46 dec rea se = 0
47 bad_neighbor = −1
48 new_neighbor = −1
49 change_l i s t = [ ]
50 N = set (G. ne ighbors ( v ) )
51 Q = set ( ) #s e t o f ne ighbors to which v owns an edge
52 for u in N:
53 i f G[ v ] [ u ] [ ’ owner ’ ] == v :
54 Q. add (u)
55 R = set (G. nodes ( ) ) − N
56 R. remove ( v ) #s e t o f non−ne ighbors o f v
57 for u in Q:
58 for w in R:
59 G. remove_edge (v , u)
60 G. add_edge (v ,w, owner=v )
61 newcost = ca lc_cos t (G, v , alpha )
62 G. remove_edge (v ,w)
63 G. add_edge (v , u , owner=v )
64 c o s t d i f f = c o s t b e f o r e − newcost
65 i f c o s t d i f f > 0 :
66 i f c o s t d i f f > dec rea se :
67 dec rea se = c o s t d i f f
68 change_l i s t = [ ]
69 change = (u ,w)
70 change_l i s t . append ( change )
71 e l i f c o s t d i f f == dec rea se :
72 change = (u ,w)
73 change_l i s t . append ( change )
74 i f change_l i s t :
75 changepair = random . sample ( change_l i s t , 1 ) [ 0 ]
76 bad_neighbor = changepair [ 0 ]
77 new_neighbor = changepair [ 1 ]
78 return decrease , bad_neighbor , new_neighbor
79
80 def count_own_edges (G, v ) :
81 count = 0
82 for u in G. ne ighbor s_ i t e r ( v ) :
83 i f G[ v ] [ u ] [ ’ owner ’ ] == v :
84 count = count + 1
85 return count
86
87 def perform_local_search_step (G, v , alpha ) :
88 changed = False
89 H = G. copy ( )
90 c o s t b e f o r e = ca l c_cost (H, v , alpha )
91 own_edges = count_own_edges (H, v )
92 i f own_edges > 0 :
93 check_swap = check_best_swap (H, v , alpha , c o s t b e f o r e )
94 else :
95 check_swap = [ 0 ]
96 decs = check_swap [ 0 ]
97 maxdec = decs
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98 i f maxdec == 0 :
99 improving = False

100 else :
101 changed = True
102 H. remove_edge (v , check_swap [ 1 ] )
103 H. add_edge (v , check_swap [ 2 ] , owner=v )
104 i f not changed :
105 return True ,G
106 else :
107 return False ,H
108
109 def check_costs (G, alpha ) :
110 c o s t _ l i s t = [ ]
111 for v in G. nodes_iter ( ) :
112 cost_v = ca lc_cos t (G, v , alpha )
113 c o s t _ l i s t . append ( ( v , cost_v ) )
114 return sorted ( c o s t _ l i s t , key=lambda entry : entry [ 1 ] )
115
116 def randomconverge (G, alpha ) :
117 random . seed ( )
118 s t a b l e = False
119 s t e p s = 0
120 diam_start = nx . diameter (G)
121 while not s t a b l e :
122 node_l i s t = check_costs (G, alpha )
123 s t a b l e = True
124 while node_l i s t :
125 i = node_l i s t . pop ( ) [ 0 ]
126 t e s t = perform_local_search_step (G, i , alpha )
127 i f not t e s t [ 0 ] :
128 s t a b l e = False
129 new_graph = t e s t [ 1 ]
130 break
131 i f s t a b l e :
132 diam = nx . diameter (G)
133 return G, diam_start , diam , s t e p s
134 else :
135 s t e p s = s t e p s + 1
136 G = new_graph
137
138 def graphgen (n ,m, k ) :
139 #genera te s random connected graph where every node owns k edges
140 random . seed ( )
141 done = False
142 while not done :
143 done = True
144 G = nx . empty_graph (n)
145 connected = set ( )
146 remaining = set ( range (0 , n ) )
147 ownerset = set ( range (0 , n ) )
148 o w n e r l i s t = [ ]
149 for i in range (0 , n ) :
150 o w n e r l i s t . append ( k )
151 s t a r t = random . rand int (0 , n−1)
152 connected . add ( s t a r t )
153 remaining . remove ( s t a r t )
154 for i in range (0 , n−1): #genera te s random spanning t r e e
155 u _ l i s t = random . sample ( remaining , 1 )
156 u = u _ l i s t [ 0 ]
157 v _ l i s t = random . sample ( connected , 1 )
158 v = v _ l i s t [ 0 ]
159 remaining . remove (u)
160 connected . add (u)
161 owners = [ u , v ]
162 i f o w n e r l i s t [ v ] == 0 : #i f v has enough edges
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163 randowner = u
164 else :
165 randowner = random . sample ( owners , 1 ) [ 0 ]
166 i f randowner in ownerset :
167 o w n e r l i s t [ randowner ] = o w n e r l i s t [ randowner ]−1
168 i f o w n e r l i s t [ randowner ] == 0 :
169 ownerset . remove ( randowner )
170 G. add_edge (u , v , owner=randowner )
171 edgenum = n−1
172 i f m > n−1:
173 while edgenum < m:
174 owner = False
175 i f ownerset :
176 owner = True
177 x = random . c h o i c e ( l i s t ( ownerset ) )
178 i f G. degree ( x ) == n−1:
179 done = False
180 break
181 o w n e r l i s t [ x ] = o w n e r l i s t [ x]−1
182 i f o w n e r l i s t [ x ] == 0 :
183 ownerset . remove ( x )
184 else :
185 x_done = False
186 x_candidates = set ( range (0 , n ) )
187 while not x_done :
188 x = random . c h o i c e ( l i s t ( x_candidates ) )
189 i f G. degree ( x ) == n−1:
190 x_candidates . remove ( x )
191 else :
192 x_done = True
193 checkedge = False
194 y_candidates = set ( range (0 , n ) )
195 y_candidates . remove ( x )
196 while ( not checkedge ) :
197 checkedge = False
198 y = random . c h o i c e ( l i s t ( y_candidates ) )
199 i f ( not G. has_edge (x , y ) ) :
200 checkedge = True
201 else :
202 y_candidates . remove ( y )
203 i f owner :
204 G. add_edge (x , y , owner=x )
205 else :
206 owners = [ x , y ]
207 randowner = random . sample ( owners , 1 ) [ 0 ]
208 G. add_edge (x , y , owner=randowner )
209 edgenum = edgenum + 1
210 return G
211
212 def main ( ) :
213 random . seed ( )
214 range_min = int ( argv [ 1 ] )
215 range_max = int ( argv [ 2 ] )
216 minedge = int ( argv [ 3 ] )
217 t a b l e = [ ]
218 a = 0 .0
219 for i in range (0 , range_max+1):
220 t a b l e . append ( [ 0 , 0 ] )
221 t e s t s = 10000
222 for j in range ( 1 , 1 0 0 1 ) :
223 for nodes in range ( range_min , range_max +1 ,5) :
224 maxsteps = t a b l e [ nodes ] [ 0 ]
225 edges = minedge ∗ nodes
226 count = 0
227 stepsum = t a b l e [ nodes ] [ 1 ]
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228 while count < 10 :
229 count = count + 1
230 gr = graphgen ( nodes , edges , minedge )
231 conv = randomconverge ( gr , a )
232 stepsum = stepsum + conv [ 3 ]
233 i f conv [ 3 ] > maxsteps :
234 maxsteps = conv [ 3 ]
235 t a b l e [ nodes ] [ 0 ] = maxsteps
236 t a b l e [ nodes ] [ 1 ] = stepsum
237 plotpointsmax = [ ]
238 for i in range ( range_min , range_max +1 ,5) :
239 plotpointsmax . append ( [ i , t a b l e [ i ] [ 0 ] ] )
240 name = ’ plot l i st5step_id_mc_ ’+str ( minedge)+ ’__’+str ( range_min )
241 +’_ ’+str ( range_max)+ ’_ ’+str ( t e s t s )+ ’_max. txt ’
242 o u t _ f i l e = open(name , "w" )
243 p i c k l e . dump( plotpointsmax , o u t _ f i l e )
244 o u t _ f i l e . c l o s e ( )
245 p l o t p o i n t s a v g = [ ]
246 for i in range ( range_min , range_max +1 ,5) :
247 p l o t p o i n t s a v g . append ( [ i , t a b l e [ i ] [ 1 ] / ( j ∗ count ) ] )
248 name = ’ plot l i st5step_id_mc_ ’+str ( minedge)+ ’__’+str ( range_min )
249 +’_ ’+str ( range_max)+ ’_ ’+str ( t e s t s )+ ’_avg . txt ’
250 o u t _ f i l e = open(name , "w" )
251 p i c k l e . dump( p lotpo int savg , o u t _ f i l e )
252 o u t _ f i l e . c l o s e ( )
253
254 main ( )

The Max-version is simulated simply be returning the value dist in the function
calc_cost(G,v,alpha). For employing the random move policy, we use the following
modification of the function randomconverge(G,alpha).

Listing A.2: Modification for random cost policy
1 def randomconverge (G, alpha ) :
2 random . seed ( )
3 s t a b l e = False
4 s t e p s = 0
5 diam_start = nx . diameter (G)
6 while not s t a b l e :
7 s t a b l e = True
8 nodeset = set (G. nodes ( ) )
9 while nodeset :

10 i = random . sample ( nodeset , 1 ) [ 0 ]
11 t e s t = perform_local_search_step (G, i , alpha )
12 i f not t e s t [ 0 ] :
13 s t a b l e = False
14 new_graph = t e s t [ 1 ]
15 nodeset = set ( )
16 else :
17 nodeset . remove ( i )
18 i f s t a b l e :
19 diam = nx . diameter (G)
20 return G, diam_start , diam , s t e p s
21 else :
22 s t e p s = s t e p s + 1
23 G = new_graph
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A.2. Python Code for the Empirical Study of the
GBG

We give the code for the Sum-GBG employing the max cost policy. The initial
network is randomly generated such that it is connected and has exactly m edges.

Listing A.3: Code for SUM GBG with max cost policy
1 from sys import s td in , s tde r r , argv , stdout
2 from c o l l e c t i o n s import deque
3 import networkx as nx
4 import random
5 import math
6 import p i c k l e
7
8 def ca l c_cost (G, v , alpha ) :
9 s = 0

10 d i s t = 1
11 q1 = deque ( )
12 q1 . append ( v )
13 q2 = deque ( )
14 unmarked = set (G. nodes ( ) )
15 while q1 or q2 :
16 i f q1 :
17 while q1 :
18 u = q1 . pop ( )
19 i f u in unmarked :
20 unmarked . remove (u)
21 for w in G. ne ighbor s_ i t e r (u ) :
22 i f w in unmarked :
23 q2 . append (w)
24 unmarked . remove (w)
25 s = s+d i s t
26 i f unmarked :
27 d i s t = d i s t+1
28 i f q2 :
29 while q2 :
30 u = q2 . pop ( )
31 i f u in unmarked :
32 unmarked . remove (u)
33 for w in G. ne ighbor s_ i t e r (u ) :
34 i f w in unmarked :
35 q1 . append (w)
36 unmarked . remove (w)
37 s = s+d i s t
38 i f unmarked :
39 d i s t = d i s t+1
40 i f unmarked : #i f network d i sconnec ted
41 return 99999999
42 else :
43 ownedges = 0
44 for u in G. ne ighbor s_ i t e r ( v ) :
45 i f G[ v ] [ u ] [ ’ owner ’ ] == v :
46 ownedges = ownedges + 1
47 return s+(alpha ∗ownedges )
48
49 def check_best_delet ion (G, v , alpha , c o s t b e f o r e ) :
50 dec rea se = 0
51 bad_neighbor = −1
52 bad_l i s t = [ ]
53 for u in G. ne ighbor s_ i t e r ( v ) :
54 i f G[ v ] [ u ] [ ’ owner ’ ] == v :
55 G. remove_edge (v , u)
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56 newcost = ca lc_cos t (G, v , alpha )
57 G. add_edge (v , u , owner=v )
58 c o s t d i f f = c o s t b e f o r e − newcost
59 i f c o s t d i f f > 0 :
60 i f c o s t d i f f > dec rea se :
61 dec rea se = c o s t d i f f
62 bad_l i s t = [ ]
63 bad_l i s t . append (u)
64 e l i f c o s t d i f f == dec rea se :
65 bad_l i s t . append (u)
66 i f bad_l i s t :
67 bad_neighbor = random . sample ( bad_list , 1 ) [ 0 ]
68 return decrease , bad_neighbor
69
70 def check_best_swap (G, v , alpha , c o s t b e f o r e ) :
71 dec rea se = 0
72 bad_neighbor = −1
73 new_neighbor = −1
74 change_l i s t = [ ]
75 N = set (G. ne ighbors ( v ) )
76 Q = set ( ) #s e t o f ne ighbors to which v owns an edge
77 for u in N:
78 i f G[ v ] [ u ] [ ’ owner ’ ] == v :
79 Q. add (u)
80 R = set (G. nodes ( ) ) − N
81 R. remove ( v ) #s e t o f non−ne ighbors o f v
82 for u in Q:
83 for w in R:
84 G. remove_edge (v , u)
85 G. add_edge (v ,w, owner=v )
86 newcost = ca lc_cos t (G, v , alpha )
87 G. remove_edge (v ,w)
88 G. add_edge (v , u , owner=v )
89 c o s t d i f f = c o s t b e f o r e − newcost
90 i f c o s t d i f f > 0 :
91 i f c o s t d i f f > dec rea se :
92 dec rea se = c o s t d i f f
93 change_l i s t = [ ]
94 change = (u ,w)
95 change_l i s t . append ( change )
96 e l i f c o s t d i f f == dec rea se :
97 change = (u ,w)
98 change_l i s t . append ( change )
99 i f change_l i s t :

100 changepair = random . sample ( change_l i s t , 1 ) [ 0 ]
101 bad_neighbor = changepair [ 0 ]
102 new_neighbor = changepair [ 1 ]
103 return decrease , bad_neighbor , new_neighbor
104
105 def check_best_addit ion (G, v , alpha , c o s t b e f o r e ) :
106 dec rea se = 0
107 new_neighbor = −1
108 buy_l i s t = [ ]
109 N = set (G. ne ighbors ( v ) )
110 R = set (G. nodes ( ) ) − N
111 R. remove ( v ) #s e t o f non−ne ighbors o f v
112 for w in R:
113 G. add_edge (v ,w, owner=v )
114 newcost = ca lc_cos t (G, v , alpha )
115 G. remove_edge (v ,w)
116 c o s t d i f f = c o s t b e f o r e − newcost
117 i f c o s t d i f f > 0 :
118 i f c o s t d i f f > dec rea se :
119 dec rea se = c o s t d i f f
120 buy_l i s t = [ ]
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121 buy_l i s t . append (w)
122 e l i f c o s t d i f f == dec rea se :
123 buy_l i s t . append (w)
124 i f buy_l i s t :
125 new_neighbor = random . sample ( buy_list , 1 ) [ 0 ]
126 return decrease , new_neighbor
127
128 def count_own_edges (G, v ) :
129 count = 0
130 for u in G. ne ighbor s_ i t e r ( v ) :
131 i f G[ v ] [ u ] [ ’ owner ’ ] == v :
132 count = count + 1
133 return count
134
135 def perform_local_search_step (G, v , alpha ) :
136 changed = False
137 H = G. copy ( )
138 c o s t b e f o r e = ca l c_cost (H, v , alpha )
139 own_edges = count_own_edges (H, v )
140 i f own_edges > 0 :
141 check_del = check_best_delet ion (H, v , alpha , c o s t b e f o r e )
142 check_swap = check_best_swap (H, v , alpha , c o s t b e f o r e )
143 else :
144 check_del = [ 0 ]
145 check_swap = [ 0 ]
146 check_add = check_best_addit ion (H, v , alpha , c o s t b e f o r e )
147 decs = [ check_del [ 0 ] , check_swap [ 0 ] , check_add [ 0 ] ]
148 maxdec = max( decs )
149 i f maxdec == 0 :
150 improving = False
151 else :
152 changed = True
153 i f check_del [ 0 ] == maxdec : #d e l e t i o n i s p r e f e r r e d over swap and add
154 H. remove_edge (v , check_del [ 1 ] )
155 e l i f check_swap [ 0 ] == maxdec : #swap i s p r e f e r r e d over add
156 H. remove_edge (v , check_swap [ 1 ] )
157 H. add_edge (v , check_swap [ 2 ] , owner=v )
158 else :
159 H. add_edge (v , check_add [ 1 ] , owner=v )
160 i f not changed :
161 return True ,G
162 else :
163 return False ,H
164
165 def check_costs (G, alpha ) :
166 c o s t _ l i s t = [ ]
167 for v in G. nodes_iter ( ) :
168 cost_v = ca lc_cos t (G, v , alpha )
169 c o s t _ l i s t . append ( ( v , cost_v ) )
170 return sorted ( c o s t _ l i s t , key=lambda entry : entry [ 1 ] )
171
172 def randomconverge (G, alpha ) :
173 random . seed ( )
174 s t a b l e = False
175 s t e p s = 0
176 diam_start = nx . diameter (G)
177 while not s t a b l e :
178 node_l i s t = check_costs (G, alpha )
179 s t a b l e = True
180 while node_l i s t :
181 i = node_l i s t . pop ( ) [ 0 ]
182 t e s t = perform_local_search_step (G, i , alpha )
183 i f not t e s t [ 0 ] :
184 s t a b l e = False
185 new_graph = t e s t [ 1 ]



165

186 break
187 i f s t a b l e :
188 diam = nx . diameter (G)
189 return G, diam_start , diam , s t e p s
190 else :
191 s t e p s = s t e p s + 1
192 G = new_graph
193
194 def graphgen (n ,m) : #genera te s random connected graph with m edges
195 random . seed ( )
196 G = nx . empty_graph (n)
197 connected = set ( )
198 remaining = set ( range (0 , n ) )
199 s t a r t = random . rand int (0 , n−1)
200 connected . add ( s t a r t )
201 remaining . remove ( s t a r t )
202 for i in range (0 , n−1):
203 u _ l i s t = random . sample ( remaining , 1 )
204 u = u _ l i s t [ 0 ]
205 v _ l i s t = random . sample ( connected , 1 )
206 v = v _ l i s t [ 0 ]
207 remaining . remove (u)
208 connected . add (u)
209 owners = [ u , v ]
210 randowner = random . sample ( owners , 1 ) [ 0 ]
211 G. add_edge (u , v , owner=randowner )
212 for j in range (0 ,m−n+1):
213 checknodes = False
214 checkedge = False
215 while ( not checkedge ) and ( not checknodes ) :
216 checknodes = False
217 checkedge = False
218 x = random . rand int (0 , n−1)
219 y = random . rand int (0 , n−1)
220 i f x!=y :
221 checknodes = True
222 i f not G. has_edge (x , y ) and checknodes :
223 owners = [ x , y ]
224 randowner = random . sample ( owners , 1 ) [ 0 ]
225 G. add_edge (x , y , owner=randowner )
226 checkedge = True
227 return G
228
229 def main ( ) :
230 random . seed ( )
231 range_min = int ( argv [ 1 ] )
232 range_max = int ( argv [ 2 ] )
233 minedge = int ( argv [ 3 ] )
234 a l p h a f a c t o r = f loat ( argv [ 4 ] )
235 t a b l e = [ ]
236 for i in range (0 , range_max+1):
237 t a b l e . append ( [ 0 , 0 ] )
238 t e s t s = 5000
239 for j in range ( 1 , 5 0 1 ) :
240 for nodes in range ( range_min , range_max +1 ,10) :
241 maxsteps = t a b l e [ nodes ] [ 0 ]
242 edges = minedge ∗ nodes
243 count = 0
244 stepsum = t a b l e [ nodes ] [ 1 ]
245 a = a l p h a f a c t o r ∗ nodes
246 while count < 10 :
247 count = count + 1
248 gr = graphgen ( nodes , edges )
249 conv = randomconverge ( gr , a )
250 m = conv [ 0 ] . number_of_edges ( )
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251 stepsum = stepsum + conv [ 3 ]
252 i f conv [ 3 ] > maxsteps :
253 maxsteps = conv [ 3 ]
254 t a b l e [ nodes ] [ 0 ] = maxsteps
255 t a b l e [ nodes ] [ 1 ] = stepsum
256 plotpointsmax = [ ]
257 for i in range ( range_min , range_max +1 ,10) :
258 plotpointsmax . append ( [ i , t a b l e [ i ] [ 0 ] ] )
259 name = ’ plot l i s t10step_mc_ ’+str ( minedge)+ ’_ ’+str ( a l p h a f a c t o r )
260 +’__’+str ( range_min)+ ’_ ’+str ( range_max)+ ’_ ’+str ( t e s t s )+ ’_max. txt ’
261 o u t _ f i l e = open(name , "w" )
262 p i c k l e . dump( plotpointsmax , o u t _ f i l e )
263 o u t _ f i l e . c l o s e ( )
264 p l o t p o i n t s a v g = [ ]
265 for i in range ( range_min , range_max +1 ,10) :
266 p l o t p o i n t s a v g . append ( [ i , t a b l e [ i ] [ 1 ] / ( j ∗ count ) ] )
267 name = ’ plot l i s t10step_mc_ ’+str ( minedge)+ ’_ ’+str ( a l p h a f a c t o r )
268 +’__’+str ( range_min)+ ’_ ’+str ( range_max)+ ’_ ’+str ( t e s t s )+ ’_avg . txt ’
269 o u t _ f i l e = open(name , "w" )
270 p i c k l e . dump( p lotpo int savg , o u t _ f i l e )
271 o u t _ f i l e . c l o s e ( )
272
273 main ( )

The Max-version is simulated by returning dist+(alpha∗ownedges) in the function
calc_costs(G,v,alpha). Moreover the random policy is simulated with the same
modification of the function randomconverge(G,alpha) as in the simulation of the
ASG.



Erklärung
Hiermit erkläre ich,

• dass ich die vorliegende Dissertationsschrift On Selfish Network Creation
selbstständig und ohne unerlaubte Hilfe angefertigt habe,

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe oder
einen solchen besitze, und

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakul-
tät II der Humboldt-Universität zu Berlin bekannt ist, gemäß amtlichem Mittei-
lungsblatt Nr. 34/2006.

Berlin, den ................................ ....................................................


	1 Introduction
	1.1 Motivation and Context
	1.2 Structure and Outline of this Thesis

	2 Model and Basic Definitions
	2.1 A Brief Introduction to Game Theory
	2.2 Modeling Selfish Network Creation
	2.2.1 The Network Creation Game
	2.2.2 Other Solution Concepts for NCGs
	2.2.3 Variants of NCGs

	2.3 Measuring (In-)Efficiency
	2.4 A Brief Survey of other Models

	3 Approximating Equilibria
	3.1 Preliminaries
	3.1.1 Additional Definitions
	3.1.2 Related Work
	3.1.3 Our Contribution

	3.2 Greedy Agents and Greedy Equilibria
	3.3 The Quality of Sum Greedy Equilibria
	3.3.1 Tree Networks in Sum Greedy Equilibrium
	3.3.2 Non-Tree Networks in Sum Greedy Equilibrium

	3.4 The Quality of Max Greedy Equilibria
	3.4.1 Tree Networks in Max Greedy Equilibrium
	3.4.2 Non-Tree Networks in Max Greedy Equilibrium


	4 The Dynamics of Selfish Network Creation
	4.1 Preliminaries
	4.1.1 Additional Definitions
	4.1.2 Classifying Games According to their Dynamics
	4.1.3 Related Work
	4.1.4 Our Contribution

	4.2 Dynamics in Sum-Swap Games
	4.2.1 Dynamics on Trees
	4.2.2 Playing on General Networks

	4.3 Dynamics in Max Swap Games
	4.3.1 Dynamics on Trees
	4.3.2 Dynamics on General Networks

	4.4 Dynamics in Asymmetric Swap Games
	4.4.1 Asymmetric Swap Games on Trees
	4.4.2 Asymmetric Swap Games on General Networks
	4.4.3 The Boundary between Convergence and Non-Convergence
	4.4.4 Empirical Study of the Bounded-Budget Version

	4.5 Dynamics in (Greedy) Buy Games
	4.5.1 Convergence Results
	4.5.2 Empirical Study of Greedy Buy Games

	4.6 Dynamics in Bilateral Buy Games with Cost-Sharing

	5 On the Structure of Selfishly Created Networks
	5.1 Preliminaries
	5.1.1 Additional Definitions
	5.1.2 Related Work
	5.1.3 Our Contribution

	5.2 On the Structure of Sum Swap Equilibria
	5.3 On the Structure of Sum Asymmetric Swap Equilibria
	5.4 On the Structure of Sum-Greedy Equilibria
	5.5 The Boundary between Tree and Non-Tree Equilibria
	5.6 On the Structure of Sum-Nash Equilibria for high 
	5.6.1 Min-Cycles
	5.6.2 Critical Pairs
	5.6.3 The Relation between Min-Cycles and Critical Pairs


	6 Discussion and Open Problems
	Bibliography
	Appendix A Code for Simulations
	A.1 Python Code for the Empirical Study of the ASG
	A.2 Python Code for the Empirical Study of the GBG


