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The number one criticism of average-case analysis is that we do not actually know the probability distribution 

of real-world inputs. Thus, analyzing an algorithm on some random model has no implications for practical 

performance. At its core, this criticism doubts the existence of external validity ; i.e., it assumes that algorith- 

mic behavior on the somewhat simple and clean models does not translate beyond the models to practical 

performance real-world input. 

With this article, we provide a first step toward studying the question of external validity systematically. 

To this end, we evaluate the performance of six graph algorithms on a collection of 2,740 sparse real-world 

networks depending on two properties: heterogeneity (variance in the degree distribution) and locality (ten- 

dency of edges to connect vertices that are already close). We compare this with the performance on generated 

networks with varying locality and heterogeneity. We find that the performance in the idealized setting of 

network models translates surprisingly well to real-world networks. Moreover, heterogeneity and locality 

appear to be the core properties impacting the performance of many graph algorithms. 
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 INTRODUCTION 

he seminal papers of Cook in 1971 [ 19 ] and Karp in 1972 [ 34 ] establish that many fundamental
ombinatorial problems are NP-hard and thus cannot be solved in polynomial time unless P =

P . Since then, the list of NP-hard problems has grown every year; see the book by Garey and
ohnson [ 29 ] for an extensive list of problems that were shown to be hard in the early years of
omplexity theory. 

Though the non-existence of polynomial time algorithms (unless P = NP ) is major bad news,
he concept of NP-hardness is limited to the worst case. It thus leaves the possibility of imperfect
lgorithms that fail sometimes but run correctly and in polynomial time on most inputs. Many
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lgorithms used today are slow in the worst case but perform well on relevant instances. An early
ttempt to theoretically capture this “good in practice” concept is the average-case analysis . There,
ne assumes the input to be randomly generated and then proves a low failure probability or a
ood expected performance. 1 On that topic, Karp wrote in 1983 [ 35 ]: 

One way to validate or compare imperfect algorithms for NP-hard combinatorial 
problems is simply to run them on typical instances and see how often they fail. 
[ . . . ] While probabilistic assumptions are always open to question, the approach 

seems to have considerable explanatory power [ . . . ]. (Karp in 1983) 

With this promising starting point, one could have guessed that average-case analysis is an im-
ortant pillar of algorithmic research. However, it currently plays only a minor role in theoretical
omputer science. The core reason for this was summarized by Karp almost 40 years later in 2020
n the Lex Fridman podcast 2 : 

The field tended to be rather lukewarm about accepting these results as meaningful 
because we were making such a simplistic assumption about the kinds of graphs 
that we would be dealing with. [ . . . ] After a while I concluded that it didn’t have 
a lot of bite in terms of the practical application. (Karp in 2020) 

At its core, this describes the issue that an average-case analysis is lacking external validity ; i.e.,
he insights on randomly generated graphs do not transfer to practical instances. 

The simplistic probabilistic assumption mentioned in the above quotes is that input graphs are
rawn from the Erdős–Rényi model [ 27 ], where all edges exist independently at random with
he same probability. This assumption has the advantages that it is as unbiased as possible and
ufficiently accessible to allow for mathematical analyses. However, in its simplicity, it is unable
o capture the rich structural properties present in real-world networks, leading to the lack of
xternal validity. 

That being said, since the beginnings of average-case considerations, there have been several
ecades of research in the field of network science dedicated to understanding and explaining
roperties observed in real-world networks. This in particular includes the analysis of random
etwork models and the transfer of insights from these models to real networks, indicating external
alidity. Thus, we believe that it is time to revisit the question of whether average-case analyses
f graph algorithms can have external validity. With this article, we present a first attempt at
ystematically studying this question. 

Before describing our approach and stating our contribution, we want to give two examples
rom network science, where the existence of external validity is generally accepted. 

Examples from Network Science. The Barabási–Albert model [ 3 ] uses the mechanism of prefer-

ntial attachment to iteratively build a network. Each newly added vertex chooses a fixed number
f neighbors among the existing vertices with probabilities proportional to the current vertex de-
rees. This simple mechanism yields heterogeneous networks, i.e., networks with power-law degree
istributions where most vertices have a small degree while few vertices have a very high degree. 3 
 We note that within the scope of this article the term average case refers to exactly those situations where the input is 

rawn from some probability distribution. This includes proving bounds that hold with high probability (instead of in 

xpectation), which would technically be better described as typical case . Moreover, it excludes the case of randomized 

lgorithms on deterministic inputs. 
 Transcript of the Lex Fridman Podcast #111. The quote itself starts at 1:39:59. For the full context, start at 1:37:28 ( https: 

/youtu.be/KllCrlfLuzs?t=5848 ). 
 Barabási and Albert were not the first to study a preferential attachment mechanism; see, e.g., Price’s model [ 23 ]. However, 

here is no doubt that their highly influential article [ 3 ] popularized the concept. 
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t is well known that networks generated by this model are highly artificial, exhibiting properties
hat are far from what is observed in real-world networks. Nonetheless, beyond the specific model,
t is generally accepted that the mechanism of preferential attachment facilitates power-law distri-
utions. Thus, assuming external validity, the Barabási–Albert model can serve as an explanation
f why we regularly observe power-law distributions in real-world data. Moreover, whenever we
eal with a process involving preferential attachment, we should not be surprised when seeing a
ower-law distribution. 
The Watts–Strogatz model [ 44 ] first starts with a ring lattice; i.e., the vertices are distributed

niformly on a circle and vertex pairs are connected if they are sufficiently close. This yields a
egular graph with high locality ; i.e., all connections are short and we observe many triangles.
oreover, ring lattices have high diameter. The second step of the Watts–Strogatz model intro-

uces noise by randomly rewiring edges. This diminishes locality by replacing local connections
ith potentially long-range edges. Watts and Strogatz demonstrate that only little locality has to
e sacrificed before getting a small-world network with low diameter. Again, this model is highly
rtificial and thus far from being a good representation for real-world networks. However, it seems
enerally accepted that these observations have implications beyond the specific model, namely
hat there is a simple mechanism that facilitates the small-world property even in networks with
ostly local connections. Thus, in real-world settings where random long-range connections are

ossible, one should not be surprised to observe the small-world property. 

Contribution. We consider algorithms for six different problems that are known to perform bet-
er in practice than the worst-case complexity would suggest. We evaluate them on network mod-
ls that allow for varying amounts of locality and heterogeneity. 4 This shows us the impact of
hese two properties on the algorithms’ performance in the controlled and clean setting of gen-
rated networks. We compare this with practical performance by additionally evaluating the al-
orithms on a collection of 2740 sparse real-world networks. Our overall findings can be sum-
arized as follows. Though the real-world networks yield a less clean and more noisy picture

han the generated networks, the overall dependence of the performance on locality and het-
rogeneity coincides with surprising accuracy for most algorithms. This indicates that there is
xternal validity in the sense that if, e.g., increasing locality in the network models improves per-
ormance, we should also expect better performance for real-world networks with high locality.

oreover, it indicates that locality and heterogeneity are the core properties to impact the per-
ormance for many networks. More specifically, we have the following findings for the different
lgorithms: 

—The bidirectional BFS for computing shortest paths in undirected networks runs in sublin-
ear time except on homogeneous and local networks. The running times are very similar
for the generated and real-world networks. 

—The iFUB algorithm [ 20 ] for computing the diameter performs well on heterogeneous net-
works when starting it with a vertex of highest degree. When choosing the starting vertex
via 4-sweep instead, it additionally performs well on networks that are homogeneous and
local. This trend is true for generated and real-world networks. 

—The dominance rule, a reduction rule for the vertex cover problem, performs well for net-
works that are sufficiently local or heterogeneous. Again, this trend can be observed for
generated and real-world networks. 
 For non-local networks, we use the Erdős–Rényi and the Chung–Lu model for homogeneous and heterogeneous degree 

istributions, respectively. For local networks, we use geometric inhomogeneous random graphs (GIRGs) , which let us vary 

he amount of locality and heterogeneity. 

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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—The Louvain algorithm [ 4 ] for clustering graphs requires few iterations for most generated
and real-world networks independent of locality and heterogeneity. Though the experi-
ments indicate that low locality increases the chance for hard instances, the results are
inconclusive as locality and heterogeneity do not seem to be the main deciding factors. 

—The runtime for enumerating all maximal cliques mainly depends on the output size, which
can be exponential in the worst case. Surprisingly, all generated networks have at most m
maximal cliques, where m is the number of edges. Moreover, the number decreases for
increasing locality. We make the identical observation (not only asymptotically but with
the same constant factors) on 93 % of the real-world networks. 

—A reduction rule for computing the chromatic number of a graph with clique number ω
is to reduce it to its ω-core [ 42 ]. It works well if the degeneracy is low compared to ω.
For generated and real-world networks, the clique number and the degeneracy behave al-
most identically, both increasing for higher locality and heterogeneity. The reduction rule
itself has decent performance on very heterogeneous networks. On less heterogeneous
networks, it performs better for higher localities. In addition, we observe an interesting
threshold behavior in the average degree, depending on the locality, for the generated
networks. 

Our insights for the specific algorithms are interesting in their own right, independent of the
uestion of external validity. Moreover, our experiments led to several interesting findings that are
eyond the core scope of this article. These can be found in the appendix. 
In Section 2 , we introduce some basic notation and formally define measures for heterogeneity

nd locality. In Section 3 , we describe the set of real-world and generated networks we use in our
xperiments. Section 4 compares generated and real-world networks for the different algorithms.
elated work as well as our insights specific to the algorithms are discussed in this section. In
ection 5 , we conclude with a discussion of our overall results. 

Our source code is available on GitHub. 5 It is additionally archived at Zenodo, 6 together with a
ocker image for easier reproducibility. The latter repository additionally includes the real-world
etwork dataset as well as all generated data (networks and statistics). 

 BASIC DEFINITIONS, HETEROGENEITY, AND LOCALITY 

et G = (V , E) be a graph. Throughout the article, we denote the number of vertices and edges
ith n = | V | and m = | E | . For v ∈ V , let N (v ) = { u | { u , v} ∈ E} be the neighborhood of v , and let
eg ( v ) = |N ( v ) | be the degree of v . Additionally, N [ v] = N (v ) ∪ { v} is the closed neighborhood of
. An edge e ∈ E is a bridge if G − e is disconnected, where G − e denotes the subgraph induced by
 \ { e} . 

.1 Heterogeneity 

e define the heterogeneity of a graph as the logarithm (base 10) of the coefficient of variation
f its degree distribution. To make this specific, let μ = 1 

n 

∑ 

v ∈V deg (v ) be the average degree of

 = ( V , E), and let σ 2 = 1 
n 

∑ 

v ∈V ( deg ( v ) − μ ) 2 be the variance. Then, the coefficient of variation is
/μ, i.e., the standard deviation relative to the mean. Thus, the heterogeneity is log 10 (σ/μ ). The
esulting distribution of heterogeneity values is shown in Figure 1 . The figure includes thresholds
or extreme heterogeneity values that we use to filter real-world graphs in our visualizations; see
ection 4 for details. 
 https://github.com/thobl/external-validity 
 https://doi.org/10.5281/zenodo.8058432 
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Fig. 1. The density (kernel density estimation) of heterogeneity, degree locality, distance locality, and locality 
of the networks in our dataset of real-world networks. 
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.2 Locality 

e define locality as a combination of two different notions of locality on edges. The degree locality
f an edge is high if its endpoints have many common neighbors. This is similar to the commonly
nown local clustering coefficient of vertices. Our second measure, the distance locality, captures
he locality of edges that do not have common neighbors. In the following, we first introduce these
arameters. The subsequent discussion helps to interpret them and justifies our choices. For the
istribution of the different locality values over the networks, see Figure 1 . 

Degree Locality. For u , v ∈ V , let deg (u , v ) = |N (u ) ∩ N (v ) | be the common degree of u and v . For
 non-bridge edge { u , v} ∈ E, the degree locality is defined as 

L deg ({ u , v} ) = deg (u , v ) 

min ( deg (u ) , deg (v ) ) − 1 
. 

he −1 in the denominator accounts for the fact that u is always in v’s neighborhood but never in
he common neighborhood. With this, we get L deg ({ u , v} ) ∈ [0 , 1] and L deg ({ u , v} ) = 0 if and only
f the neighborhoods of u and v are disjoint. Moreover, L deg ({ u , v} ) = 1 if and only if u is only
onnected to v and to neighbors of v or vice versa. Essentially, L deg ({ u , v} ) measures in how many
riangles { u , v} appears. Note that the denominator is never 0 as we require the edge to not be a
ridge and thus u and v both have degree at least 2. 

The degree locality L deg (G ) of G is the average degree locality over all non-bridge edges. 

Distance Locality. For u, v ∈ V , let dist (u, v ) be the distance between u and v in G. If dist (u, v ) = 1 ,
.e., { u , v} is an edge, we are additionally interested in the detour we have to make when not
llowing to use the direct edge { u , v} . To this end, we define the detour distance dist + (u, v ) to be
he distance between u and v in G − {u, v}. 

For a set of vertex pairs P ⊆ ( V 2 ), we define dist (P ) to be the average distance of P , i.e., 

dist (P ) = 
1 

|P | 
∑ 

{ u, v } ∈P 

dist (u, v ). 

nalogously, we define dist + (P ) to be the average detour distance of P . 

Let E = ( V 2 ) \ E be the non-edges of G and assume that E � ∅ . Note that dist ( E ) ≥ 2 , as non-

djacent vertex pairs have distance at least 2. Assume for now that dist ( E ) > 2 . For a non-bridge
dge { u , v} ∈ E, we define the distance locality as 

L dist ({ u , v} ) = 1 − dist + (u , v ) − 2 

dist ( E ) − 2 
. 

ote that the numerator is 0 if and only if u and v have a common neighbor, which yields
 dist ({ u , v} ) = 1 . Moreover, we have L dist ({ u , v} ) = 0 if and only if the detour distance between
and v equals the average distance between non-adjacent vertex pairs in G. Finally, L dist ({ u , v} )
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 2. Comparison of the average local clustering coefficient to the degree locality (left), the distance locality 
(center), and the locality (right). Each dot represents one network from our dataset of real-world networks. 
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an be negative if { u , v} connects a vertex pair that is otherwise more distant than one would ex-
ect for a non-adjacent vertex pair. Thus, the distance locality essentially measures how short the

dge { u , v} is compared to the average distance in the graph. In the special case of dist ( E ) = 2 , we
efine L dist ({ u , v} ) = 0 . 
The distance locality L dist (G ) of G is the maximum of 0 and the average distance locality over all

on-bridge edges. 

Locality. The locality L(G ) of G is the average of the degree and the distance locality, i.e., L(G ) =
 L deg ( G ) + L dist ( G ) ) / 2 . 

To interpret this parameter, let L( e ) = 1 
2 ( L deg ( e ) + L dist ( e ) ) be the edge locality of a non-bridge

dge e = { u , v} ∈ E . Note that L(G ) is basically 

7 the average of all edge localities. Observe that
 deg (e ) > 0 and L dist (e ) = 1 if u and v have a common neighbor. Otherwise, L deg (e ) = 0 and
 dist (e ) < 1 . Thus, we in particular get the following regimes for L(e ): 

—L(e ) ∈ ( 1 2 , 1] if u and v have a common neighbor. The more common neighbors u and v
have, the higher L(e ). 

—L( e ) ∈ ( 0 , 1 2 ) if u and v have no common neighbor but are closer in G − e than the average
non-adjacent vertex pair in G. The closer u and v are, the higher L(e ). 

Discussion and Comparison to the Clustering Coefficient. The degree locality is closely related to
he commonly known local clustering coefficient. Note that the degree locality (like the clustering
oefficient) only cares for triangles. Though this is desirable in some cases, it does not provide a
ood separation between graphs with few triangles. An extreme case is bipartite graphs that have
o triangles and thus degree locality and clustering coefficient 0. However, we would regard, e.g.,
rids as highly local. The distance locality solves this issue by essentially defining a measure of
ocality that distinguishes between graphs of low degree locality. Figure 2 shows a comparison of
ur locality values to the local clustering coefficient. Note how, for high values, the locality behaves
s the clustering coefficient (scaled by a factor of 2), while it provides additional separation for
etworks with clustering close to 0. See Section B.1 for an extended discussion. 

Limitations. We note that our locality definition has some limitations; e.g., it is undefined for
rees as trees have no non-bridge edges. However, these limitations do not pose an issue in the
ontext of this article; see Section B.2 for more details. 
 This is true unless the average over all distance localities is negative, in which case we capped the distance locality at 0. 

ee Section B.2 for a detailed discussion. 

CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 



On the External Validity of Average-case Analyses of Graph Algorithms 10:7 

 

S  

a  

T  

S
 

i  

n  

e  

o  

t  

r  

t

3

3

W  

a  

W  

r  

o  

r

 

 

3

W  

a  

g  

F  

m

 

r

v

T  

l

8

e

p

Computing the Locality. Computing the distance locality efficiently is not straightforward. In
ection B.3 , we show how to compute it by computing two values for a given graph: the aver-
ge distance between all vertex pairs and the average detour distance over all non-bridge edges.
he latter can be computed exactly in reasonable time using some insights from Section 4.1 (see
ection B.3 for details). 

For the average distance between all vertex pairs, we use an approximation. Specifically, we
mplemented the algorithm by Chechik et al. [ 12 ]. We observed that there is a simple way to sig-
ificantly improve its approximation ratio by conditioning on random choices that have been made
arlier in the algorithm. Additionally, we compared the algorithm with the straightforward method
f computing the shortest path between uniformly sampled vertex pairs. Our experiments indicate
hat the preferable method depends on the locality and heterogeneity of a network. Though these
esults are interesting in their own right, they are somewhat beyond the scope of this article and
hus deferred to Appendix C . 

 NETWORKS 

.1 Real-world Networks 

e use 2740 graphs from Network Repository [ 39 ], which we selected as follows. We started with
ll networks with at most 1 M edges and reduced each network to its largest connected component.
e removed multi-edges and self-loops and ignored weights or edge directions. We tested the

esulting connected, simple, undirected, and unweighted graphs for isomorphism and kept only
ne copy for each group of isomorphic networks. This resulted in 2977 networks. From this we
emoved 237 networks for different reasons. 

—We removed 111 networks that were randomly generated and thus do not count as real-
world networks. 8 

—We removed two trees. They are not very interesting, and locality is not defined for trees. 
—We removed 124 graphs with density at least 10 % . Our focus lies on sparse graphs and

network models for sparse graphs. Thus, dense graphs are out of scope. 

.2 Random Networks 

e use three random graph models to generate networks: the Erdős–Rényi model [ 27 ] (non-local
nd homogeneous), the Chung–Lu model [ 15 , 16 ] (non-local and varying heterogeneity), and the
eometric inhomogeneous random graphs (GIRG) model [ 11 ] (varying locality and heterogeneity).
or the latter, we use the efficient implementation in [ 8 ]. In the following we briefly define the
odels, discuss the model choice, and specify what networks we generate. 

Network Model Definitions. Given n and m, the Erdős–Rényi model draws a graph uniformly at
andom among all graphs with n vertices and m edges. 

Given n weights w 1 , . . . , w n with W = 
∑ 

w v , the Chung–Lu model generates a graph with n
ertices by creating an edge between the uth and vth vertex with probability 

p u,v = min 

{w u w v 

W 

, 1 
}
. 

he expected degree of v is then roughly proportional to w v . We use weights that follow a power
aw. Specifically, for a constant c and a power-law exponent β > 2 , we choose 

w v = c · v 

− 1 
β−1 . 
 Finding generated networks was done manually by searching for suspicious naming patterns or graph properties. For 

ach candidate, we checked its source to verify that it is a generated network. Though we checked thoroughly, there are 

robably a few random networks hiding among the real-world networks. 

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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hus, the parameters are the number of vertices n, the expected average degree (controlled via c),
nd the power-law exponent β . The latter controls the heterogeneity of the network: heterogeneity
s high for small β , and for β → ∞ we get uniform weights. 

The Geometric inhomogeneous random graphs (GIRG) model augments the Chung–Lu model with
n underlying geometry. In a first step, each vertex v is mapped to a random position v in some d-
imensional ground space. Let ‖ u −v ‖ denote the distance between vertices u and v in that space.
hen, for a so-called temperature T ∈ (0 , 1 ), the vertices u and v are connected with probability 

p u,v = min 

⎧ ⎪ ⎨ ⎪ ⎩ 

( 
1 

‖ u −v ‖ d 
· w u w v 

W 

) 1 
T 

, 1 
⎫ ⎪ ⎬ ⎪ ⎭ 

. 

dditionally, for T = 0 , a threshold variant is obtained, with p u,v = 1 if ‖ u −v ‖ d ≤ w u v w 

/W and
 u,v = 0 otherwise. For the weights, we use the same power-law weights as for the Chung–
u model. As ground space, we usually use a two-dimensional torus T 

2 = [0 , 1] × [0 , 1] with
aximum norm, which is basically just a unit square with distances wrapping around in

oth dimensions. More precisely, for u = (x u , y u ) ∈ T and v = (x v , y v ) ∈ T , we have ‖ u −v ‖ =
ax { min {| x u − x v | , 1 − | x u − x v | } , min { | y u − y v | , 1 − | y u − y v | } } . With this, the parameters that

emain to be chosen for the GIRG model are the same as for the Chung–Lu model plus the tem-
erature T , which mainly controls the locality. 

Discussion of the Network Models. We note that there is a plethora of network models out there.
o, why did we choose these particular models? To answer this, consider two different use-cases
or network models: first, to explain why and how certain properties emerge in networks assuming
ome mechanism existing in the real world, and second, to draw conclusions from the existence
f certain properties in a network. 
An example of the first perspective is the Barabási–Albert model [ 3 ], where the simple and

elievable mechanism of preferential attachment yields a power-law degree distribution. 
The second perspective is what we are concerned with in this article. We do not aim at explaining

ow locality or heterogeneity emerge in networks. Instead, we want to study the implications of
hese properties on algorithmic performance. For this purpose, we believe that it is crucial for the
odel to be maximally unbiased beyond the explicitly assumed properties. Ideally, one uses the
aximum entropy model with respect to the given constraints. 
With this in mind, note that the Erdős–Rényi model draws graphs uniformly at random, given

he number of vertices and edges. This is the maximum entropy model and thus maximally unbi-
sed with the constrains that the number of vertices and edges are given. 

For graphs whose degree distribution follows a power law, one could use the above-mentioned
arabási–Albert model. However, this model is biased in all sorts of ways that go beyond assuming
 power-law degree distribution (e.g., the resulting graphs are k-degenerate for average degree 2 k).
he maximum entropy model for graphs with power-law distribution is the (soft) configuration
odel [ 41 ]. The Chung–Lu model we use is close to the soft configuration model but much easier

o work with. Thus, it is a good compromise between being unbiased beyond the assumptions we
ant to make and being able to efficiently generate networks or conduct theoretical analyses. 
Finally, the GIRG model enhances the Chung–Lu model with locality by assuming an underlying

eometry. Though the model is set up to be as unbiased as possible beyond this assumption, we
re not aware of a formal proof for this. Moreover, it is up for debate whether a geometry is the
est way to introduce locality. Instead, one could, e.g., assume a fixed set of communities like in
he stochastic block model [ 32 ]. However, assigning vertices to geometric positions seems like the
ost straightforward way of introducing a smooth notion of similarity. Thus, at the current state

f research, we believe that assuming an underlying geometry is the best way to achieve locality
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 3. Heterogeneity and locality of the generated networks from the different models. Each point is the 
average of five samples with the given parameter configuration. 
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or our purpose. As an added bonus, the amount of locality can be controlled with just a single
arameter (the temperature) and there is an efficient generator [ 8 ] readily available. 

Generated Networks and Parameter Choices. For all models, we generate networks with n = 50 k
ertices and (expected) average degree 10. For the power-law exponent β in Chung–Lu graphs and
IRGs as well as for the temperature T in GIRGs, we chose the values shown in Figure 3 , yielding
 rather uniform distribution of heterogeneity and locality. 

Note that we have 10 different values for each of the parameters β and T , which results in
00 different parameter configurations for GIRGs, 10 configurations for Chung–Lu graphs, and a
ingle configuration for Erdős–Rényi graphs. For each of these 111 configurations, we generated
ve networks. In the plots, we always use a single dot for each configuration representing the
verage over five individual networks. 

As for the real-world networks, we reduce each generated graph to its largest connected com-
onent. With the above parameter choices, this does not change the size of the networks by too
uch; see Section D.1 . 
In Section 4.6 , we additionally consider networks of average degree 20, using otherwise the same

arameter settings. 
We note that the power-law weights converge to uniform weights for β → ∞ . Thus, in the

imit, the probability distribution of the Chung–Lu model (almost) 9 coincides with that of the
 The distributions are not exactly the same, as the Chung–Lu model achieves the desired number of edges only in expec- 

ation. But conditioning on the average degree having its expected value, the two coincide. 
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Fig. 4. The exponent x of the average cost c = m 

x of the bidirectional BFS over 100 st-pairs. 
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rdős–Rényi model. It is thus not surprising that the Erdős–Rényi graphs and the Chung–Lu
raphs with β = 25 occupy almost the same spot in Figure 3 . 

Geometric Ground Space. We usually use a torus with dimension d = 2 as ground space of the
IRG model. For temperature T = 0 , we have a threshold model where two vertices are connected

f and only if their distance is sufficiently small compared to the product of their weights. Thus,
or β → ∞ , this converges to the commonly known model of random geometric graphs, just on
he torus T instead of the more commonly used unit square in the Euclidean plane. Moreover,
or smaller β , we basically get hyperbolic random graphs [ 36 ], just in one more dimension than
sual. 
The reason for using a torus instead of a square in the GIRG model is that a square leads to special

ituations close to the boundary, while the torus wraps around and thus is completely symmetric.
his usually simplifies theoretic analysis without changing too much otherwise. Interestingly, we
bserve in our experiments that the choice of torus vs. square makes a substantial difference for
omputing the diameter; see Section 4.2 . To make this comparison, we additionally generated five
IRGs with a square as ground space for each of the parameter settings; see Section D.2 for details
n how we generated these networks. 

 COMPARISON BETWEEN THE MODELS AND REAL-WORLD NETWORKS 

ach of the following subsections compares the performance of a different algorithm between
enerated and real-world networks. For the cost c of the algorithm, we plot c depending on het-
rogeneity and locality using color to indicate the cost; see, e.g., Figure 4 . The left and middle plots
how one data point for each parameter setting of the models and each real-world network, re-
pectively. The right plot aggregates real-world networks with similar locality and heterogeneity.
ach point represents a number of networks indicated by its radius (log scale). We regularly as-
ume the cost c to be polynomial in m (or n), i.e., c = m 

x , and plot x = log 

m 

c . In this case, the color
n the left and right plots shows the mean exponent x aggregated over the networks. 

The set of real-world networks contains some networks with extreme heterogeneity; their in-
lusion in the plots would squeeze the non-extreme data points together and make interpretation
f the middle and right plots more difficult. Thus, in these plots we only consider real-world net-
orks with a heterogeneity value between −1 . 0 and 1 . 5 . We refer to Appendix F for full versions
f such plots including all networks with extreme heterogeneity. This restriction only affects such
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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lots; in our statistics and discussions, we consider all real-world networks, including those with
xtreme heterogeneity. 

.1 Bidirectional Search 

e can compute a shortest path between two vertices s and t using a breadth-first search (BFS) . The
FS explores the graph layer-wise, where the ith layer contains the vertices of distance i from s .
y exploring the ith layer, we refer to the process of iterating over all edges with an endpoint in

he ith layer, thereby finding layer i + 1 . The search can stop once the current layer contains t . 
The bidirectional BFS alternates the exploration of layers between a forward BFS from s and a

ackward BFS from t . The alternation strategy we study here greedily applies the cheaper of the
wo explorations in every step. The cost of exploring a layer is estimated via the sum of degrees of
ertices in that layer. The search stops once the current layers of forward and backward search in-
ersect. The resulting algorithm is called balanced bidirectional BFS [ 10 ], which we often abbreviate
ith just bidirectional BFS in the following. 
The cost c for the bidirectional BFS is the average number of edge explorations over 100 random

t-pairs. Note that c ≤ 2 m, as each edge can be explored at most twice, once from each side. Figure 4
hows the exponent x for c = m 

x depending on heterogeneity and locality. 

Impact of Locality and Heterogeneity. For the generated data, we see that networks with high
ocality and homogeneous degree distribution (top-left corner) have an exponent of around 1 (red).
hus, the cost of the bidirectional BFS is roughly m, which matches the worst-case bound. If the
etwork is heterogeneous (right) or less local (bottom), we get significantly lower exponents of
round 0 . 5 , indicating a cost of roughly 

√ 

m . The cost is particularly low for very heterogeneous
etworks. Overall, we get a strict separation between hard (high locality, low heterogeneity) and
asy (low locality or high heterogeneity) instances. 

For real-world networks, we observe the same overall behavior that instances that are local and
omogeneous tend to be hard, while all others tend to be easy. There are only few exceptions to
his, indicating that the heterogeneity and locality are usually the crucial properties impacting the
erformance of the bidirectional BFS. 

Discussion. Borassi and Natale [ 10 ] found that the bidirectional BFS is surprisingly efficient on
any networks, which they used to efficiently compute the betweenness centrality. Additionally,

hey studied the bidirectional BFS theoretically on random network models where the edges are
rawn independently, i.e., when there is no locality. They in particular prove that the search re-
uires with high probability only O ( 

√ 

n ) time for degree distributions with bounded variance.
his includes the Erdős–Rényi model and the Chung–Lu or the configuration model with power-

aw degree distribution with power-law exponent β ≥ 3 . For β ∈ (2 , 3 ) (unbounded variance), the
ound is O (n 

x ) for x ∈ (0 . 5 , 1 )10 . 
For graphs with locality, it is known that the bidirectional BFS requires linear ( x = 1 ) and sub-

inear ( x ∈ (0 . 5 , 1 )) 10 time on geometric random graphs in Euclidean and hyperbolic space, respec-
ively [ 7 ]. We note that geometric random graphs in Euclidean and hyperbolic space essentially
orrespond to the top-left and top-right corner of Figure 4 , as they can be viewed as special cases
f GIRGs without or with heterogeneity, respectively. 
Overall, the theoretical results on network models cover all four corners of the space spanned

y heterogeneity and locality. Moreover, the predictions on the models match the observations
0 We note that the bounds for heterogeneous networks consider the worst case over all st -pairs (which is dominated by the 

aximum degree for low power-law exponents), while our experiments consider the average over 100 random st -pairs. 

his explains why the theoretic bounds, though sublinear, seem to be worse than the empirical bounds. 

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 



10:12 T. Bläsius and P. Fischbeck 

o  

n  

f

4

T  

d  

i  

p  

T  

e  

d
 

c  

r  

d  

c  

i

 

f  

x  

1  

o  

b

 

r  

n  

g  

a  

t  

b  

v  

s  

p

 

s  

u  

H  

n  

a
 

w  

s  

e  

s  

s  

h  

A

n real-world networks; i.e., for most networks, the practical runtime of the bidirectional BFS is
ot surprising but as expected. This indicates that locality and heterogeneity are the core deciding
eatures for the performance of the bidirectional BFS. 

.2 Diameter 

he eccentricity of s ∈ V is max t ∈V dist (s, t ), i.e., the distance to the vertex farthest from s . The
iameter of the graph G is the maximum eccentricity of its vertices. It can be computed using the
FUB algorithm [ 20 ]. It starts with a root r ∈ V from which it computes the BFS tree T . It then
rocesses the vertices bottom up in T and computes their eccentricities using a BFS per vertex.
his process can be pruned when the distance to r is sufficiently small compared to the largest
ccentricity found so far. Pruning works well if r is a central vertex in the sense that it has low
istance to many vertices and a shortest path between distant vertices gets close to r . 
There are different strategies of choosing the central vertex r . The iFUB+hd algorithm simply

hooses a vertex of highest degree as the starting vertex. A more sophisticated way of selecting
works as follows. A double sweep [ 38 ] starts with a vertex u, chooses a vertex v at maximum
istance from u, and returns a vertex w from a middle layer of the BFS tree from v . A 4-sweep [ 20 ]
onsists of two double sweeps, starting the second sweep with the result w of the first sweep. The
FUB+4-sweephd algorithm chooses r by doing a 4-sweep from a vertex of maximum degree. 

The cost c of iFUB+hd and iFUB+4-sweephd is the number of BFSs it performs (including the
our initial BFSs of the 4-sweep for iFUB+4-sweephd). Note that c ≤ n. Figure 5 shows the exponent

for c = n 

x depending on heterogeneity and locality. For iFUB-hd and iFUB+4-sweephd, 17 and
6 real-world networks, respectively, are excluded from the plots as they exceeded the time limit
f 30 min . The GIRG model uses a square as ground space instead of the usual torus; see discussion
elow for details. 

Impact of Locality and Heterogeneity. The general dependence is the same for generated and
eal-world networks. For iFUB+hd (Figure 5 (a)), an almost linear number of BFSs is required for
etworks lacking heterogeneity. On heterogeneous networks, i.e., if there are vertices of high de-
ree, the number of BFSs is substantially sublinear. The more sophisticated iFUB+4-sweephd vari-
nt (Figure 5 (b)) additionally performs well on homogeneous networks with locality. Observe that
he picture for real-world networks shows some noise, which indicates that there are properties
esides locality and heterogeneity that impact the performance. We note, however, that this obser-
ation agrees with the models, where we get highly varying exponents for individual parameter
ettings; e.g., for iFUB+4-sweephd on the five GIRGs with power-law exponent β = 3 . 35 and tem-
erature T = 0 . 62 , we get exponents ranging from 0 . 18 to 0 . 77 for the five generated instances. 

Impact of the Ground Space: Torus vs. Square. As mentioned in Section 3.2 , the default ground
pace for the GIRG model is a torus. Though this might seem less natural than using a unit square,
sing the torus often simplifies theoretical analysis while not making a big difference otherwise.
owever, in the particular case of the iFUB+4-sweephd algorithm, the ground space makes a sig-
ificant difference. Figure 5 (c) compares the efficiency of iFUB+4-sweephd between torus-GIRGs
nd square-GIRGs. 

Observe that the difference mainly shows for homogeneous and local networks (top-left corner),
here iFUB+4-sweephd requires an almost linear number of BFSs on torus-GIRGs, while being

ublinear for square-GIRGs (as we have already observed in Figure 5 (b)). This difference can be
xplained as follows. For square-GIRGs, the 4-sweep can find a vertex in the center of the ground
pace, which has relatively low distance to many vertices. As mentioned above, starting iFUB from
uch a vertex lets us prune the search early. In a torus, however, all points are identical and thus
omogeneous torus-GIRGs do not have central vertices, rendering the iFUB approach ineffective.
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 5. The exponent x of the number of BFSs c = n x of the iFUB algorithms. Different from the rest of the 
article, the GIRG ground space is a square instead of a torus. 
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Fig. 6. Graph drawings of the real-world networks man_5976 , tube1 , and barth4 (from left to right). The 
graphs were drawn with the OGDF implementation [ 14 ] of the FM 

3 algorithm [ 30 ]. 
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As mentioned above, iFUB+4-sweephd performs well on most homogeneous and local real-
orld networks (Figure 5 (b)). This indicates that square-GIRGs are a better representation for

hese networks than torus-GIRGs. There are, however, exceptions. Three such cases are the local
nd homogeneous networks man_5976 , tube1 , and barth4 with exponents of 0 . 894 , 0 . 873 , and
 . 89 , respectively. Interestingly, all three graphs exhibit torus-like structures in the sense that they
wrap around” in some way, which obstructs the existence of a central vertex; see Figure 6 . Thus,
lso in this case, the predictions of the models match the real-world behavior. 

4-Sweep Lower Bound. Diameter approximation methods such as the double-sweep lower bound
re known to perform well on real-world graphs [ 21 , 38 ] and heterogeneous graph models [ 9 ]. As
ur experiments involve doing a 4-sweep anyway, we report the quality of the resulting 4-sweep
ower bounds on our dataset of real-world networks. We know the exact diameter for 2726 real-
orld networks (no timeout in iF UB+hd or iF UB+4-sweephd). The 4-sweep lower bound matched

he diameter for 2218 ( 81 % ) of these networks. For 2703 ( 99 % ) networks, the difference between
he lower bound and the exact diameter is at most 2. 

Discussion. The problem of computing the diameter of a graph is closely related to the all pairs

hortest path (APSP) problem, i.e., computing the distance between all pairs of points. It is an open
roblem whether one can compute the diameter of arbitrary graphs faster than APSP [ 17 ]. The
est-known algorithms for APSP run in time O (n 

ω ) with ω < 2 . 38 [ 2 ] or O (nm). Both running
imes are infeasible for large real-world networks. 

In practice, however, Crescenzi et al. [ 20 ] introduced the iFUB algorithm and demonstrated that
t performs much better on most real-world networks than the worst case suggests. They note that
t works particularly well on networks with high difference between radius and diameter. This
orresponds to the existence of a central vertex with eccentricity close to half the diameter. Our
xperiments confirm this and provide the following more detailed picture. First, in heterogeneous
etworks, the high-degree nodes serve as central vertices. The results of Borassi et al. [ 9 ] provide a
heoretical foundation for this phenomenon. They in particular show that heterogeneous Chung–
u graphs allow the computation of the diameter in sub-quadratic time, indeed using a vertex of
igh degree as central vertex. Second, for homogeneous networks, locality facilitates the existence
f a central vertex, unless the graph exhibits a toroidal structure. 
Our results point to some practical as well as theoretical open questions. The highest potential

or practical improvements can be achieved by focusing on homogeneous graphs without locality
r with a toroidal underlying geometry. Erdős–Rényi graphs or random geometric graphs with a
orus as underlying geometry may help guide the development of such an algorithm. Moreover, it
ould be interesting to strengthen the theoretical foundation by complementing the above results
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 7. The relative kernel size of the vertex cover domination rule. 
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y Borassi et al. [ 9 ] on Chung–Lu graphs to network models exhibiting locality (homogeneous as
ell as heterogeneous). 

.3 Vertex Cover Domination 

 vertex set S ⊆ V is a vertex cover if every edge has an endpoint in S , i.e., removing S from G
eaves a set of isolated vertices. We are interested in finding a vertex cover of minimum size. For
wo adjacent vertices u, v ∈ V , we say that udominates v if N [ v ] ⊆ N [ u] . The dominance rule states
hat there exists a minimum vertex cover that includes u. Thus, one can reduce the instance by
ncluding u in the vertex cover and removing it from the graph. 

To evaluate the effectiveness of the dominance rule, we apply it exhaustively, i.e., until no dom-
nant vertices are left. Moreover, we remove isolated vertices. We refer to the number c of vertices
n the largest connected component of the remaining instances as the kernel size . Figure 7 shows
he relative kernel size c/n with respect to locality and heterogeneity. 

Impact of Locality and Heterogeneity. We see a sharp separation for the generated networks. For
ow locality and heterogeneity (bottom left), the reduction rule cannot be applied. For high locality
nd heterogeneity (top right), the dominance rule completely solves the instance. For real-world
etworks, the separation is less sharp; i.e., there is a larger range of locality/heterogeneity values

n the middle where the dominance rule is effective sometimes. Nonetheless, we see the same trend
hat the reduction rule is more likely to be effective the higher the locality and heterogeneity. In
he extreme regimes (bottom left or top right), we observe the same behavior as for the generated
etworks with relative kernel sizes close to 1 and 0, respectively, for almost all networks. Moreover,
here is dichotomy in the sense that many instances are either (almost) completely solved by the
ominance rule or the rule is basically inapplicable. In fact, 30 . 9 % of the real-world networks are
educed to below 5 % of their original size, while 16 . 3 % are reduced by less than 5 % . 

Discussion. Though vertex cover is NP-hard [ 34 ], it is rather approachable: it can be solved in

 . 1996 n n 

O (1 ) time [ 46 ] and there is a multitude of FPT algorithms with respect to the solution size
[ 22 ], the fastest one running in O (1 . 2738 k + kn) [ 13 ]. This basis was improved by Harris and
arayanaswamy in a recent preprint [ 31 ] stating a running time of O 

∗ (1 . 25400 k ), where O 

∗ sup-
resses polynomial factors. Moreover, there are good practical algorithms [ 1 , 45 ]. Both algorithms
pply a suite of reduction rules, including the dominance rule or a generalization. We note that
he dominance rule is closely related to Weihe’s reduction rules for hitting set [ 45 ]. Our previous
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 8. Number of iterations of the first local search of the Louvain algorithm. The color scale is logarithmic. 
Four outliers (real-world) with more than 1 k iterations are excluded. 
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xperiments for Weihe’s reduction rules match our results: they work well if the instances are local
nd heterogeneous [ 6 ]. Concerning theoretic analysis on models, we know that on hyperbolic ran-
om graphs, the dominance rule is sufficiently effective to yield a polynomial time algorithm [ 5 ].
hus, it is not surprising that the top-right corner in Figure 7 is mostly green. 
We see two main directions for future research. First, concerning the dominance rule, we have

een that heterogeneity and locality are good predictors for the effectiveness in the extreme
egimes. However, there is a regime of moderate heterogeneity and locality where we see a mix
f high and low effectiveness. This indicates that other properties are the deciding factor for these
nstances and it would be interesting to figure out these properties. The second direction is to in-
estigate the effectiveness of other techniques for solving vertex cover depending on the network
roperties. This includes the study of techniques used in existing solvers [ 1 , 45 ] but also the de-
elopment of new techniques that are tailored toward less local or less heterogeneous instances.
pecifically, the algorithm of Akiba and Iwata [ 1 ] performs well on social networks (high locality
nd heterogeneity) but fails on road networks (low heterogeneity). Thus, techniques tailored to-
ard solving homogeneous instances could lead to an algorithm that is more efficient on a wider

ange of instances. 

.4 The Louvain Algorithm for Graph Clustering 

et V 1 ·∪ . . . ·∪ V k = V be a clustering where each vertex set V i is a cluster . One is usually inter-
sted in finding clusterings with dense clusters and few edges between clusters, which is formal-
zed using some quality measure, e.g., the so-called modularity. A common subroutine in clus-
ering algorithms is to apply the following local search. Start with every vertex in its own clus-
er. Then, check for each vertex v ∈ V whether moving v into a neighboring cluster improves
he clustering. If so, v is moved into the cluster yielding the biggest improvement. This is iter-
ted until no improvement can be achieved. Doing this with the modularity as the quality mea-
ure (and subsequently repeating it after contracting clusters) yields the well-known Louvain
lgorithm [ 4 ]. 

The runtime of the Louvain algorithm is dominated by the number of iterations of the initial
ocal search. Figure 8 shows this number of iterations. It excludes four real-world networks with

ore than 1 k iterations (1,403, 1,403, 5,003, and 19,983). 
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Impact of Locality and Heterogeneity. For the generated instances, the number of iterations is
enerally low but increasing when decreasing the locality. To discuss this in more detail, recall
hat each dot in the left plot represents the average of five networks randomly generated with the
ame set of parameters. Moreover, recall that the bottom-left dot represents Erdős–Rényi graphs,
he rest of the bottom row represents Chung–Lu graphs, and all other points represent GIRGs. 

For GIRGs, the average number of iterations ranges from 9 . 4 to 55 . 4 for the different parameter
onfigurations. Moreover, the number of iterations starts to rise only for low localities. For 83 %
f the configurations, the average number of iterations lies below 20. For the Erdős–Rényi graphs
e obtain an average of 196 . 4 iterations, and for Chung–Lu graphs it goes up to 443 . 40 for one

onfiguration. However, these average values over five generated instances have to be taken with a
rain of salt as there is a rather high variance; e.g., the number of iterations for the five Chung–Lu
raphs with power-law exponent 25 ranges from 104 up to 333. 
For the real-world networks, there is no clear trend depending on locality or heterogeneity. In

eneral, the number of iterations is rather low except for some outliers. While the strongest outlier
equires almost 20 k iterations, 98 . 6 % of the networks have at most 100 iterations. 

Discussion. The Louvain algorithm has been introduced by Blondel et al. [ 4 ]. Discussing the
lethora of work building on the Louvain algorithm is beyond the scope of this article. Concern-
ng its running time, the worst-case number of iterations of the Louvain algorithm can be upper
ounded by O (m 

2 ) due to the fact that the modularity is bounded and each vertex move improves
t by at least Ω(1 /m 

2 ). Moreover, there exists a graph family that requires Ω(n) iterations for the
rst local search [ 33 , Proposition 3.1]. Note that a linear number of iterations leads to a quadratic
unning time, which is prohibitive for larger networks. 

Our experiments indicate that locality or heterogeneity are not the properties that discriminate
etween easy and hard instances. For generated instances, there is the trend that low locality
ncreases the number of iterations, which does not transfer to the real-world networks (or is at
east less clear). However, the general picture that most instances require few iterations while
here are some outliers coincides for generated and real-world networks. 

We believe that the observed behavior can be explained as follows. There are two factors that
ncrease the number of iterations. First, one can craft very specific situations in which individual
ertices move into a cluster, trigger a change there, and then continue into another cluster. These
pecific structures are unlikely to appear in practice as well as in random instances, which is why
e observe the overall low number of iterations in our experiments. The second factor increasing

he number of iterations is a lack of clear community structure. A vertex that fits more or less
qually well to different communities is likely to swap its cluster more often when the clustering
lightly changes during the local search. This is why we see an increased number of iterations on
he generated networks with low locality. This interpretation is also supported by the fact that
ouvain performs provably well on the stochastic block model [ 18 ], a network model with a very
lear community structure of non-overlapping clusters. 

For future research, we believe it is highly interesting to support our above interpretation
ith theoretical evidence. In particular, it would be interesting to understand how the local

earch behaves on a model with underlying geometry, which facilitates structures of overlapping
ommunities. 

.5 Maximal Cliques 

 clique is a subset of vertices C ⊆ V such that C induces a complete graph; i.e., any pair of vertices
n C is connected. A clique is maximal if it is not contained in any other clique. In the following, we
re never interested in non-maximal cliques. Thus, whenever we use the term clique , it implicitly
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 9. The number of maximal cliques relative to m depending on the heterogeneity and locality, restricted 

to networks where this value is at most 1 ( 93 % of the networks). 
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efers to a maximal clique. To enumerate all cliques, we used the algorithm by Eppstein et al. [ 24 ],
sing their implementation [ 25 , 26 ]. 
As the cliques of a network can be enumerated in polynomial time per clique [ 40 ], the number

f maximal cliques is a good indicator for the hardness of an instance. To our surprise, the number
f cliques does not exceed the number of edges m for all generated and most real-world networks.
ut of the 2,740 real-world networks, 2,552 ( 93 % ) have at most m and 187 have more than m

liques. For the remaining one network, the timeout of 30 min was exceeded. Figure 9 shows the
umber of cliques relative to m for all networks with at most m cliques. 

Impact of Locality and Heterogeneity. One can see that the networks (generated and real-world)
ith low locality have roughly m cliques, while the number of cliques decreases for increasing

ocality. Moreover, among networks with locality, there is the slight trend that networks with
igher heterogeneity have more cliques. 
It is not surprising that networks with low locality have roughly m cliques, as graphs without

riangles have exactly m cliques. For graphs with higher locality, there are two effects counteract-
ng each other. On the one hand, multiple edges combine into larger cliques, which decreases the
umber of cliques. On the other hand, each edge can be contained in multiple cliques, which in-
reases the number of cliques. Our experiments show that the former effect usually supersedes the
atter; i.e., the size of the cliques increases more than the number of cliques each edge is contained
n. 

Discussion. There are many results on enumerating cliques and on the complementary problem
f enumerating independent sets; discussing them all is beyond the scope of this article. Here, we
ocus on discussing two results that are closely related. They are based on the degeneracy and the
o-called (weak) closure 11 of a network. 

The degeneracy is a robust measure for the sparsity of a network; i.e., the degeneracy is low
nly if the graph does not include a dense subgraph. Eppstein et al. [ 25 ] give an algorithm for enu-
erating all cliques that runs in O (dn3 d/3 ) time, where d is the degeneracy. We use this algorithm

or our experiments as it performs very well in practice. 
1 For a formal definition of degeneracy and (weak) closure, see the original papers or Section E.1 . 
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Fox et al. [ 28 ] introduced the closure as a measure that captures the tendency that common
eighbors facilitate direct connections, i.e., as a measure for locality. Additionally, they intro-
uced the weak closure as a more robust measure. Fox et al. show that weakly c-closed graphs

ave at most 3 (c−1 )/3 n 

2 cliques. For c-closed graphs they give the additional upper bound of

 

( c+4 )( c−1 )/2 n 

2 −2 1 −c 
. Together with an algorithm that takes polynomial time per clique [ 40 ], this

hows that enumerating all cliques is fixed-parameter tractable with respect to the (weak) closure.
Comparing this to our empirical observations, the number of cliques is at most m for 93 % of

eal-world networks, while the theoretical results give exponential bounds on how much bigger
han m the number cliques can be. Nonetheless, qualitatively speaking, the bounds for degeneracy
nd closure show that sparsity and locality lead to a low number of cliques. This matches our
bservations on real-world networks, i.e., most of them are sparse and have few cliques and the
umber of cliques decreases with increasing locality. Unfortunately, this interpretation does not
ithstand a closer look. To study how indicative the degeneracy and (weak) closure actually are for

he number of cliques, we also computed 

12 these parameters for the networks in our dataset. We
hen study how the number of cliques depends on these parameters as well as the relation between
he parameters. As this is somewhat beyond the core focus of the article, we only mention the main
nsights here. The detailed results can be found in Appendix E . 

For the 93 % of networks with at most m cliques, the closure does not correlate with the number
f cliques. Even worse, the weak closure and the degeneracy have a slight negative correlation; i.e.,
 lower parameter corresponds to a higher number of cliques. On the remaining 7 % of networks,
he picture is somewhat different. While the closure is still a bad indicator for the number of
liques, the number of cliques is highly correlated with the degeneracy and the weak closure. Thus,
egeneracy and weak closure provide a good measure of hardness at least for the few somewhat
ard instances with more than m cliques. However, we note that degeneracy and weak closure are
lmost identical on these networks. Thus, weak closure is mostly a measure of sparsity rather than
f locality. 
To summarize, although the existing theoretical results provide valuable insights, they cannot

xplain the observed behavior on the majority of the networks. While providing strong upper
ounds, these parameterized results suffer from the same issue that a worst-case analysis often
as. The worst case is usually harder than the typical case, and this does not change by restricting
he set of considered instances to those with small degeneracy or closure. In contrast, our exper-
ments show that the network models yield surprisingly accurate predictions. They predict that
ne should generally expect sparse networks to have at most m cliques and that the number of
liques is lower for networks with high locality. Moreover, even the slight increase with increasing
eterogeneity is given for the generated as well as for the real-world networks. For future research,
e believe that it is highly interesting to complement our empirical findings theoretically by prov-

ng that the expected number of cliques is below m. Moreover, our findings reopen the question of
nding deterministic parameters that allow to give strong bounds on the number of cliques while
apturing most real-world networks. 

.6 Chromatic Number 

he chromatic number χ of G is the smallest number of colors one can use to color the vertices of
without assigning adjacent vertices the same color. The size of any clique in G is a lower bound

n the chromatic number. Thus, for the clique number ω of G, which is the size of the maximum
lique in G, we have χ ≥ ω. To compute χ , it is safe to reduce G to its ω-core, i.e., to iteratively
2 We give an algorithm for efficiently computing the weak closure in Section E.2 . 
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Fig. 10. The exponent x of the kernel size c = n x after applying the chromatic number reduction rule. 
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emove all vertices with degree less than ω. After coloring the resulting kernel optimally, one can
lways color the previously removed vertices with at most ω colors [ 42 ]. 

The size of the kernel after applying this reduction is a good indicator for the hardness of an
nstance. For each network in our dataset, we first compute the clique number ω by enumerating
ll maximal cliques as described in Section 4.5 . We then compute the ω-core to obtain the kernel.
et c be the number of vertices of the kernel. Figure 10 (a) shows the exponent x for the kernel size
 = n 

x , excluding one network where the clique computation exceeded the timeout of 30 min. As
e observed that the average degree of the generated instances has a substantial impact on the
ernel size, we additionally consider generated instances with average degree 20 (instead of the
sual average degree of 10). 

Impact of Locality and Heterogeneity. For the generated networks, one can make three main
bservations. First, graphs with higher locality have smaller kernels. Second, for highly heteroge-
eous networks, the kernel size is always moderate independent of the locality. Third, the average
egree has a strong impact on the applicability of the reduction rule, with much smaller kernels
or lower average degrees. 
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Many real-world instances are either heavily reduced or the reduction rule is almost inappli-
able, yielding a very noisy picture. The noisiness indicates that locality and heterogeneity are
ot the only relevant factors for the kernel size. However, the overall trend is similar to the gener-
ted instances. Moreover, the noisiness is also present in the network models: the kernel size varies
trongly with the average degree, but even for fixed average degree we observe high variance; e.g.,
he exponents we get for the five generated GIRGs with average degree 20, power-law exponent
 . 1 , and temperature 0 . 76 are 0 . 00 , 0 . 00 , 0 . 99 , 0 . 99 , and 0 . 99 . 

In the following, we first discuss the impact of the average degree in more detail and then offer
 potential explanation for the observed variance in kernel size. 

Average Degree of Generated Instances. As mentioned above, the comparison of Figures 10 (a)
nd 10 (b) shows that a higher average degree leads to larger kernels and thus harder instances.
his dependence on the average degree can be seen in more detail in Figure 10 (c). It shows the
xponent (averaged over 30 sampled instances) for GIRGs with three parameter settings depending
n the average degree. For GIRGs with high temperature (low locality), we see a threshold behavior
oing from small kernels for low average degree to large kernels for high average degree. For
ower temperatures (high locality), the transition happens later and less steeply. This fits to the
reviously observed separation between difficult non-local and easy local instances, which moves
p to higher locality values for an increasing average degree. 

Variance in the Kernel Size: Clique Number and Degeneracy. Studying the clique number in com-
arison to the degeneracy yields a potential explanation for the observed variance in the kernel
ize; see Figure 11 . 

Recall that we use the clique number ω as the lower bound for the chromatic number. Thus,
 larger ω yields a better lower bound, implying that the reduction rule can remove vertices of
igher degree. However, the size of the kernel still depends on the structure of the remaining
raph, i.e., on whether there are sufficiently many low-degree vertices that can be removed. This
roperty is captured by the degeneracy d of the graph. In particular, note that the degeneracy is

ower-bounded by ω − 1 . If the degeneracy is exactly ω − 1 , then the reduction rule completely
olves the instance. If the degeneracy is higher, the kernel can be very large. 

In Figure 11 , we can make multiple observations. Locality and heterogeneity seem to be the core
actors impacting the clique size and the degeneracy, and the dependence is similar for generated
nd real-world networks. However, the dependence is almost identical for clique size and degen-
racy. Thus, whether d = ω − 1 , which yields an empty kernel, or d > ω − 1 , yielding a non-empty
ernel, often comes down to a property other than locality and heterogeneity, which explains the
igh variance observed above. Also observe how the difference between clique size and degener-
cy is slightly higher for less local graphs, which fits to the previous observation that non-local
raphs tend to have larger kernels. 

Discussion. The reduction rule we considered here has been described by Verma et al. [ 42 ], who
emonstrated that the clique number is a good lower bound for the chromatic number on real-
orld instances. Another lower-bound method based on degree-bounded independent sets per-

orming very well in practice has been introduced by Lin et al. [ 37 ]. Concerning the clique num-
er, Walteros and Buchanan [ 43 ] have shown that in many real-world networks, the clique-core

ap д = d + 1 − ω is small and provide an O (m 

1 .5 ) algorithm for the clique number if this gap is
onstant. However, they leave a potential parameterization for the chromatic number based on the
lique-core gap as an open problem. 

Concerning the impact of locality and heterogeneity, our results reveal a highly interest-
ng effect. We have two characteristics (clique number and degeneracy), where locality and
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 11. Comparison between the clique number and the degeneracy. 
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eterogeneity are the crucial factors. However, for an algorithm whose efficiency is essentially
ased on the comparison of the two characteristics, properties besides locality and heterogeneity
ave to tip the scale for whether the algorithm performs well or not. This is an interesting

nsight as this effect might pose a threat to external validity when considering more complicated
lgorithms based on multiple structural properties. In this specific case, however, the behavior
bserved on real-world instances is nonetheless quite similar to that on generated instances,
ncluding the high variance due to the above effect. 

For future research, it would be interesting to study the reduction rule based on maximum
liques theoretically on the different network models. We believe that this can give a better under-
tanding of what properties tip the scale in case the degeneracy is higher than the clique number,
otentially leading to improved algorithms. This can also lead to interesting technical contribu-
ions like, e.g., understanding the potential threshold behavior when it comes to the dependence
n the average degree. 

 DISCUSSION AND CONCLUSION 

etworks from different domains have varying structural properties. Thus, trying to find proba-
ility distributions that match or closely approximate those of real-world networks seems like a
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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opeless endeavor. Moreover, even if we knew such a probability distribution, it would most likely
e highly domain specific and too complicated for theoretical analysis. 

Our View on Average-case Analysis. A more suitable approach to average-case analysis is the use
f models that assume few specific structural properties and are as unbiased as possible beyond
hat. If the chosen properties are the dominant factors for the algorithm’s performance, we obtain
xternal validity; i.e., the results translate to real-world instances even though they do not actually
ollow the assumed probability distributions. There are two levels of external validity: 

—The models capture the performance-relevant properties sufficiently well that algorithms
perform similarly on generated and real-world networks. 

—The models are too much of an idealization for this direct translation to practical perfor-
mance. However, varying a certain structural property in this idealized world has the same
qualitative effect on performance as it has on real-world networks. 

hough an average-case analysis cannot yield strong performance guarantees, with the above
otions of external validity, it can give insights into what properties are crucial for performance
first level) and how the performance depends on a property (second level). Moreover, even a lack of
xternal validity can yield valuable insights in the following sense. Assume we have the hypothesis
hat property X is the crucial factor for algorithmic performance and thus we study a model with
roperty X as the null model. Then, a lack of external validity lets us refute the hypothesis as there
learly has to be a different property impacting the performance. 

Impact of Locality and Heterogeneity. Unsurprisingly, the performance on real-world networks
epending on locality and heterogeneity is more noisy compared to the generated networks, as
eal-world networks are diverse and vary in more than just these two properties. That being said,
he observations on the models and in practice coincide almost perfectly for the bidirectional
earch and the enumeration of maximal cliques. For the maximal cliques, the match even includes
onstant factors, which is particularly surprising, as these numbers are below m, while the worst
ase is exponential. 

For the vertex cover domination rule as well as the iFUB algorithm, we obtain a slightly noisier
icture. However, the overall trend matches well, which indicates that locality and heterogeneity
re crucial factors for the performance, but not the only ones. For the iFUB algorithm, we already
dentified the existence of central vertices as an additional factor (difference between torus and
quare as underlying geometry). 

For the chromatic number, we observe that heterogeneity and locality are important but not
he only factors impacting performance. Nonetheless, the performance is similar on the models
ompared to real-world networks. 

For the Louvain clustering algorithm, the models and real-world networks coincide insofar as
he number of iterations is low, with few exceptions. This indicates that locality and heterogeneity
re not the core properties for differentiating between hard and easy instances. 

Conclusions. Locality and heterogeneity have significant impact on the performance of many
lgorithms. We believe that it is useful for the design of efficient algorithms to have these two
imensions of instance variability in mind. Moreover, GIRGs [ 11 ] with the available efficient gen-
rator [ 8 ] provide an abundance of benchmark instances on networks with varying locality and
eterogeneity. Finally, we believe that average-case analyses on the four extreme cases can help
o theoretically underpin practical runtimes. The four extreme cases can, e.g., be modeled using
eometric random graphs for local plus homogeneous, hyperbolic random graphs 13 for local plus
3 GIRGs can be seen as a common generalization of geometric and hyperbolic random graphs. 
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eterogeneous, Erdős–Rényi graphs for non-local plus homogeneous, and Chung–Lu graphs for
on-local plus heterogeneous networks. 

PPENDICES 

 APPENDIX: OVERVIEW 

he appendix provides additional details and findings that divert from the core focus of the article
ut are nonetheless worth mentioning. Appendix B contains additional details on the locality mea-
ure. In Appendix C , we discuss how we approximate the average distance of a graph. Appendix D
ontains some technical details on the randomly generated networks. Appendix E studies the num-
er of maximal cliques depending on the degeneracy and (weak) closure parameters. Appendix F
ontains figures including the real-world networks with extreme heterogeneity. 

The following list highlights some findings contained in the appendix that we believe are inter-
sting in their own right: 

—We describe how we can compute the locality of a graph. This in particular involves com-
puting the detour distance quickly, which we can do exactly, using the knowledge about
the bidirectional search from Section 4.1 . 

—To compute the locality, we also have to compute the average distance of a graph. For
this, we provide an improved version of a previously known approximation algorithm [ 12 ]
based on weighted sampling. Moreover, we observe that uniform sampling might be more
efficient at least if the bidirectional search is fast. 

—We provide an efficient algorithm for computing the weak closure of a graph. 
—We give a detailed comparison of the weak closure with other measures (in particular with

the degeneracy). 

 LOCALITY 

his section contains an extended discussion of our measure of locality. In Section B.1 , we com-
are locality with the more commonly known clustering coefficient. In Section B.2 , we discuss

imitations of the measure. In Section B.3 , we describe how we approximate the locality. 

.1 Comparison with the Clustering Coefficient 

et G = (V , E) be a graph and let v ∈ V be a vertex with deg (v ) > 1 . Let further G[ N (v )] be the
raph induced by v’s neighborhood N (v ). The local clustering coefficient of v is the density of

[ N (v )] , i.e., the number of edges of G[ N (v )] divided by ( deg (v ) 
2 ). Thus, the local clustering coef-

cient of v ranges between 0 if its neighborhood is an independent set and 1 if it is a clique. The
verage local clustering coefficient (or just clustering coefficient for short) of G is the average over
ll vertices with degree at least 2. 14 

Note that, roughly speaking, the clustering coefficient is high if the graph contains many trian-
les. A triangle uvw contributes the edge {v, w } to the neighborhood of u, thereby increasing its
ocal clustering coefficients (and symmetrically for v and w). This shows the similarity to the de-
ree locality we introduced in Section 2.2 . There, the triangle uvw makes w a common neighbor of
he edge { u , v} , increasing the degree locality of { u , v} (and symmetrically for { v, w } and { w, u } ). It
s thus not surprising that the clustering coefficient and the degree locality of graphs behave very
imilarly, as can be seen in the left plot of Figure 12 (which is the same as Figure 2 but reappears
ere for better readability). 
4 Note that the local clustering coefficient is undefined for vertices of lower degree as we divide by ( deg (v ) 
2 ) = 0 if deg (v ) 

≤ 1 . 
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Fig. 12. Comparison of the average local clustering coefficient to the degree locality (left), the distance local- 
ity (center), and the locality (right). Each dot represents one network from our dataset of real-world networks. 
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The main disadvantage of the clustering coefficient (and of the degree locality for that matter)
s that some types of graphs we would regard as highly local get very small values. An extreme
ase is bipartite graphs that have no triangles and thus clustering coefficient and degree locality 0.
owever, we would regard, e.g., grids as highly local. The goal of bringing the distance locality into

he mix was to get a more fine-grained view on these networks with few triangles while keeping
 measure similar to the clustering coefficient for networks with many triangles. 

In the middle plot of Figure 12 , we can see that the networks with low clustering coefficients
ield a wide range of distance locality values. Moreover, most networks with a higher clustering
oefficient have distance locality close to 1. This should not come as a surprise as the distance
ocality of an edge is 1 for every edge contained in a triangle. 

Averaging the degree and distance locality yields the locality, which is compared to the cluster-
ng coefficient in the right plot of Figure 12 . This plot shows that our measure of locality achieved
hat we hoped for. For networks with high clustering, it behaves similarly to the clustering co-

fficient but scaled to the interval [0 . 5 , 1] . Moreover, graphs with a clustering coefficient close to
 are mapped to lower localities in the [0 , 0 . 5] range, yielding a more fine-grained perspective for
hose networks. 

Note that the above-mentioned example of a grid has a locality close to 0 . 5 . If G = (V , E) is a
 

n ×
√ 

n -grid, then every edge { u , v} ∈ E has detour distance 3, while the average distance of non-
djacent vertex pairs grows with growing n. This yields a distance locality that converges to 1 for
 → ∞ . 

.2 Limitations 

ur definition of locality has three limitations. We mentioned them earlier in Section 3 but want
o discuss them here in more detail. 

The first limitation is that the locality is not defined for trees. In a tree, every edge is a bridge,
ut the distance and edge locality are only defined for non-bridge edges. However, we do not see
his as a real issue as the concept of locality does not really make sense for trees anyway. 

The second limitation is that distance locality is not defined for cliques. In a clique, there are no
on-edges and thus looking at the average non-edge distance does not make sense. 
As already mentioned in Section 3 , we circumvent these first two limitations by removing trees

nd dense graphs. We note that trees are not very interesting in the context of this article and
ense graphs are out of scope. 

The third limitation is less clear-cut but also concerns the average non-edge distance dist ( E ) in

he definition of distance locality. As mentioned before, it can happen that dist ( E ) = 2 , e.g., for a
heel graph. In this case we formally defined L dist ({ u , v} ) = 0 . However, there is also already an
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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ssue if dist ( E ) is only slightly greater than 2. In this case, the distance locality is rather volatile,
ielding negative values without much meaning. This issue is increased by the fact that we ap-
roximate the average distances. Generally, the distance locality seems not the best measure for

ocality in the regime where it is negative. 
We circumvent this issue by capping the distance locality of graphs at 0, as mentioned in

ection 2.2 . We note, however, that this happens only rarely. Out of all networks, the uncapped
istance locality is negative for only 43 networks. Moreover, the average non-edge distance is 2 for
hree additional networks. In Table 1 , we list all networks with average non-edge distance 2 and
ll networks with distance locality below −0 . 1 . Note that there are two types of instances where
his appears. The instances at the top of the table have low average distances, which makes the
istance locality non-robust. The instances at the bottom are close to trees with few long cycles,
hich yields large detour distances. 

.3 Computing the Locality 

n our implementation, we compute three aggregated values: the average degree locality L deg (G ) of

he graph G, the average detour distance dist + (E 

′ ) of all non-bridges E 

′ , and the average distance

ist (E ∪ E ) of all vertex pairs (recall that E = ( V 2 ) \ E). In the following, we first discuss how we
ompute these values and then prove some lemmas that show how these three values suffice to
ompute the locality L(G ) of G. 

Computing the degree locality L deg (G ) in time O ( 
∑ 

v ∈V ( deg (v ) ) 2 ) is more or less straightfor-
ard (very similar to computing the clustering coefficient). This yields runtimes that are feasible

or all networks in our dataset. 
For the average detour distance dist + (E 

′ ) of all non-bridges E 

′ , we generally have to compute
 shortest path for a linear number of start–destination pairs. Though this appears to require
uadratic running time, which would be infeasible, we can make use of the following win–win
ituation. We know that the bidirectional search is sublinear unless the network is homogeneous
nd local; see Section 4.1 . Moreover, if the network is homogeneous and local, the detour distances
re short and thus the shortest path search can terminate after few steps. Thus, just running the
idirectional search for each non-bridge edge E 

′ is efficient for all networks. 

The straightforward way of computing the average distance dist (E ∪ E ) of all vertex pairs is
o run a BFS from every vertex. As this is infeasible for the larger networks, we instead only
pproximate the average distance. Details on that can be found in Section C . 

The following lemma states how we can compute the distance locality of the graph from the

verage detour distance dist + (E 

′ ) of all non-bridges E 

′ and the average distance dist ( E ) of non-

dges E . 

Lemma B.1. The average distance locality L dist (G ) is 

L dist ( G ) = max 

{ 

1 − dist + ( E 

′ ) − 2 

dist ( E ) − 2 
, 0 

} 

. 

Proof. First recall from Section 2.2 that the maximum with 0 is part of the definition of L dist (G ).
eyond that, we have to show that computing the distance locality of a single edge based on its
etour distance commutes with taking the average over all non-bridge edges. We obtain 

L dist (G ) = 
1 

m 

′ 

∑ 

{ u, v } ∈E ′ 

L dist ({ u , v} ) 

= 
1 

m 

′ 

∑ 

{ u, v } ∈E ′ 

( 
1 − dist + (u, v ) − 2 

dist ( E ) − 2 

) 
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Table 1. The Networks with (Uncapped) Distance Locality below −0 . 1 or 
Average Non-edge Distances 2 

Graph n m dist (E ∪ E ) dist ( E ) dist + (E 

′ ) L dist (G ) L deg (G )
Chebyshev1 261 1,542 1 . 95 2 . 00 2 . 00 0 . 00 0 . 93 
fs_541_1 541 2,466 1 . 98 2 . 00 2 . 00 0 . 00 0 . 62 
lp_d6cube 6,184 37,681 2 . 00 2 . 00 2 . 00 0 . 00 0 . 66 
lp_fit2d 10,524 129,040 2 . 00 2 . 00 2 . 16 −116 . 88 0 . 15 
bibd_17_8 24,310 680,232 2 . 00 2 . 00 2 . 01 −0 . 53 0 . 40 
lp_fit1d 1,049 13,426 1 . 98 2 . 01 2 . 14 −17 . 96 0 . 13 
arc130 130 715 1 . 98 2 . 07 2 . 15 −1 . 18 0 . 69 
air02 6,774 61,529 2 . 19 2 . 19 2 . 35 −0 . 81 0 . 17 
rt_lolgop 9,765 10,075 2 . 23 2 . 23 2 . 40 −0 . 78 0 . 54 
nw14 123,409 904,906 2 . 31 2 . 31 2 . 94 −2 . 07 0 . 01 
rt_occupywallstnyc 3,609 3,830 2 . 37 2 . 37 2 . 53 −0 . 42 0 . 41 
blockqp1 60,012 300,011 2 . 44 2 . 44 2 . 67 −0 . 51 0 . 20 
stat96v4 63,076 491,329 2 . 47 2 . 47 2 . 56 −0 . 18 0 . 13 
bibd_9_3 84 249 2 . 56 2 . 68 2 . 86 −0 . 27 0 . 06 
rt_barackobama 9,631 9,772 2 . 84 2 . 84 3 . 37 −0 . 64 0 . 15 
n3c5-b4 252 1,165 2 . 84 2 . 91 3 . 02 −0 . 12 0 . 01 
rt_onedirection 7,987 8,100 2 . 91 2 . 91 3 . 25 −0 . 36 0 . 09 
lp_standmps 1,274 3,878 2 . 98 2 . 99 3 . 10 −0 . 12 0 . 05 
lp_afiro 51 100 2 . 88 3 . 04 3 . 16 −0 . 12 0 . 12 
lp_standata 1,274 3,230 3 . 09 3 . 09 3 . 28 −0 . 17 0 . 00 
primagaz 10,836 20,116 3 . 27 3 . 27 3 . 77 −0 . 39 0 . 00 
lp_sc50a 77 155 3 . 25 3 . 38 3 . 59 −0 . 16 0 . 01 
lp_sc50b 76 143 3 . 38 3 . 51 3 . 78 −0 . 18 0 . 02 
lpi_ex72a 215 463 3 . 94 4 . 00 4 . 24 −0 . 12 0 . 01 
lpi_woodinfe 89 138 4 . 12 4 . 24 4 . 76 −0 . 24 0 . 11 
ENZYMES123 90 127 6 . 13 6 . 29 7 . 00 −0 . 16 0 . 15 
ENZYMES 125 141 12 . 94 13 . 16 17 . 49 −0 . 39 0 . 01 
NCI1 106 107 13 . 04 13 . 28 17 . 57 −0 . 38 0 . 00 
FRANKENSTEIN 214 217 22 . 25 22 . 46 40 . 08 −0 . 86 0 . 00 
pivtol 102 103 25 . 50 26 . 01 97 . 15 −2 . 96 0 . 02 
odepa400 400 402 99 . 75 100 . 25 391 . 10 −2 . 96 0 . 01 

The columns are the number of vertices n, number of edges m, the average distance dist (E ∪ E ), the average non- 

edge distance dist ( E ), the average detour distance dist + (E 

′ ) of non-bridges E 

′ , the (uncapped) distance locality 

L (G ) of G , and the degree locality L (G ) . 
dist deg 

= 1 − 1 

m 

′ 

∑ 

{ u, v } ∈E ′ 

dist + (u, v ) − 2 

dist ( E ) − 2 

= 1 −
1 

m 

′ 
∑ 

{ u, v } ∈E ′ dist + (u, v ) − 2 

dist ( E ) − 2 

= 1 − dist + (E 

′ ) − 2 

dist ( E ) − 2 
. 

�
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Table 2. The Results of 50 Runs of Approximating the Average Distance with Weighted Sampling 
Using k = 400 Samples (in Expectation) in Each Run 

Graph n m loc het avg dist min max error 
crack 10,240 30,380 0 . 77 −0 . 50 41 . 00 40 . 48 41 . 68 0 . 44 % 

inlet 11,730 220,296 0 . 82 −0 . 56 33 . 81 33 . 24 34 . 60 0 . 38 % 

socfb-Columbia2 11,706 444,295 0 . 61 0 . 05 2 . 84 2 . 81 2 . 86 0 . 33 % 

ca-HepPh 11,203 117,618 0 . 90 0 . 36 4 . 67 4 . 63 4 . 71 0 . 21 % 

sinc15 11,532 564,607 0 . 10 −0 . 38 3 . 05 3 . 00 3 . 08 0 . 43 % 

fd15 11,532 44,206 0 . 30 −0 . 58 6 . 02 5 . 96 6 . 10 0 . 37 % 

escorts 10,106 39,016 0 . 24 0 . 26 4 . 20 4 . 18 4 . 24 0 . 29 % 

air03 10,757 91,006 0 . 13 0 . 83 2 . 46 2 . 44 2 . 48 0 . 21 % 

The columns are the number of vertices ( n) and edges ( m), the locality (loc) and heterogeneity (het), the exact 

average distance (avg dist), the smallest (min) and largest (max) estimated average distance among the 50 runs, 

and the median relative error (error) over the 50 runs. 
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Finally, the following lemma shows how we can derive the average distance dist ( E ) of non-edges

 with m = | E | from the average distance dist (E ∪ E ) of all vertex pairs. 

Lemma B.2. The average distance dist ( E ) between non-edges is 

dist ( E ) = dist ( E ∪ E ) +
m 

m 

( dist ( E ∪ E ) − 1 ). 

Proof. It holds that 

dist ( E ) = 
1 

m 

∑ 

{ u, v } ∈ E 

dist (u, v ) 

= 
1 

m 

	

�

∑ 

{ u, v } ∈ E 

dist ( u, v ) +
∑ 

{ u, v } ∈E 

dist ( u, v ) −
∑ 

{ u, v } ∈E 

dist ( u, v ) �

�

= 
1 

m 

∑ 

{ u, v } ∈E∪ E 

dist ( u, v ) − 1 

m 

∑ 

{ u, v } ∈E 

dist ( u, v ) 

= 
m +m 

m 

dist (E ∪ E ) − m 

m 

= dist ( E ∪ E ) +
m 

m 

( dist ( E ∪ E ) − 1 ). 

�

 APPROXIMATING AVERAGE DISTANCES 

o approximate the average distance of a graph, we implemented the algorithm by Chechik
t al. [ 12 ], with a small improvement that is discussed in Section C.1 . For a parameter k , it computes
he BFS trees from roughly k vertices. We used k = 400 for all graphs. 

To evaluate how good the approximation is, we selected eight networks with roughly 10 k ver-
ices and ran the algorithm 50 times on each of them; see Table 2 . We measure the quality of the
pproximation using the relative error , which is defined as follows. Let G be a graph with (exact)
verage distance d and let d ′ be the approximation computed by the algorithm. Then the rela-
ive error is | d − d ′ | /d . Table 2 shows that the relative errors are low. Also note that the networks
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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ere selected to have varying values of locality and heterogeneity. Specifically, the first two net-
orks are local and homogeneous, the next two are local and heterogeneous, the fifth and sixth

re non-local and homogeneous, and the last two are non-local and heterogeneous. 
In the remainder of this section, we want to discuss two aspects of computing the average

istances that are besides the point of this article but nonetheless interesting in their own right.
irst, there is a simple way to improve the approximation quality of the algorithm by Chechik
t al. [ 12 ], which we describe in Section C.1 . Moreover, in Section C.2 , we compare the algorithm
o just sampling vertex pairs uniformly. 

.1 Improved Approximation Quality 

iven a graph G = (V , E) and a parameter k , the algorithm by Chechik et al. [ 12 ] works roughly as
ollows. It first computes a probability p v for each vertex v ∈ V such that the sum of all probabilities
s in O (k ). Then, a sample S ⊆ V is created by including v in S with probability p v , independently
f the other vertices. Note that S has expected size E [ | S | ] ∈ O (k ). Finally, for each vertex u ∈ S , a
FS from u is run, summing the distances from u to other vertices, scaled with the factor 1 /p u to
ccommodate for the fact that u was chosen as sample with probability p u . 

Our improvement is the following. Once we have sampled the set S , we know how large S
ctually is. Thus, we can condition on the size of S when looking at the probability that u was
hosen as a sample. Formally, after sampling S , we set p ′ u = p u · |S |/ E [ |S | ] , which is the probability
hat u ∈ S conditioned on the size of S . Then, when summing the distances from u to other vertices,
e scale these distances with 1 /p ′ u instead of with 1 /p u . 
To evaluate this change, we ran both variants of the algorithm (with and without conditioning

n the size of | S | ) for different values of k on the instances in Table 2 . We ran each configuration
0 times. The resulting relative errors are shown in Figure 13 . Note that the our improved variant
onditioning on the size of S yields a substantially better approximation. 

.2 Uniform vs. Weighted Sampling 

n this section, we want to compare the above algorithm with the most straightforward method of
pproximating the average distance: averaging over the distance between k uniformly and inde-
endently sampled vertex pairs. In the following, we refer to this as uniform sampling . Moreover,
e refer to the algorithm from [ 12 ] with our improvement described in the previous section as
eighted sampling . Figure 14 shows a comparison of the average errors of uniform and weighted

ampling depending on the parameter k . 15 One can see that the weighted sampling performs better,
hich is the expected outcome. 
However, this has to be taken with a grain of salt, as weighted sampling runs a full BFS for ev-

ry sampled vertex, while uniform sampling only computes the shortest path between the sampled
ertex pairs. While both take linear time per sample in the worst case, we know that the bidirec-
ional BFS can compute shortest paths substantially quicker on many networks; see Section 4.1 .
o make a more fair comparison, we additionally ran the uniform sampling for up to k = 6 , 400
ertex pairs and compare the relative errors of uniform and weighted sampling with respect to
unning time in Figure 15 . Given our knowledge from Section 4.1 , it is not surprising to see that
eighted sampling is preferable over uniform sampling on the two networks with high locality

nd low heterogeneity, as the bidirectional search is not much faster than running a full BFS for
hese networks. For the other networks, however, doing the weighted sampling for more samples
ields comparable, if not better, approximations in less time. 
5 Note that for the weighted sampling, the expected size of S is in O (k ) but not exactly k . In our experiments, | S | was on 

verage 1 .19 · k . Uniform sampling uses exactly k samples. 
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Fig. 13. Relative error depending on the parameter k , which roughly corresponds to the number of samples 
| S | . Each box corresponds to 50 runs. Green boxes show errors for the original algorithm as proposed by 
Chechik et al. [ 12 ]. Blue boxes show errors after our adjustment of conditioning on | S | . Note that both axes 
are logarithmic. 

Fig. 14. Relative errors depending on the parameter k . Each box corresponds to 50 runs. Red and blue boxes 
show errors for uniform and weighted sampling, respectively. Note that both axes are logarithmic. 
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Fig. 15. Relative errors depending on the runtime. The parameter k determining the sample size ranges from 

50 to 800 for the weighted sampling and from 50 to 6400 for the uniform sampling. The plot shows 50 runs 
for each value of k . Note that both axes are logarithmic. 
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This suggests the conclusion that one should use the weighted sampling on graphs that are
ocal and uniform, while the uniform sampling is preferable on all other networks. To cement this
onclusion, more thorough experiments would be necessary, which is beyond the scope of this
rticle. 

 TECHNICAL DETAILS CONCERNING RANDOM NETWORKS 

n Section D.1 , we observe that reducing the generated graphs to their largest connected compo-
ents does not change the graph size by too much. In Section D.2 we discuss how we generate
IRGs with square as ground space, instead of the usual torus. 

.1 Giant Component 

he generated graphs are not necessarily connected. Thus, as we reduce all networks to their
argest connected component, the resulting graphs do not necessarily have n = 50 k vertices. How-
ver, the average degree of 10 is sufficiently large, so that the largest connected component is not
oo much smaller. Among the 500 generated GIRGs, the smallest graph has still 45,771 vertices,
ith an average of 49 . 5 k vertices. For the Chung–Lu graphs, the minimum is 45,389 and the aver-

ge 49 . 2 k . For Erdős–Rényi, the minimum is already 49,994. Moreover, the average degrees of all
enerated networks are close to 10. 

.2 GIRGs With Square as Ground Space 

ecall that the GIRG model uses a torus as ground space. Note that the torus is completely symmet-
ic in the sense that every point can be treated the same. In contrast, if using a square (or hypercube
n higher dimensions) as ground space, there are special cases for points closer to the boundary
f the square, which complicates theoretical analysis. For reasons described in Section 4.2 , the
round space makes a difference for the diameter computation. Here we describe how we used
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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he GIRG generator, which usually works with the torus, to generate GIRGs with unit square as
round space (still using the maximum norm). 

Recall that the d-dimensional torus T 

d = [0 , 1] d behaves like the d-dimensional cube except that
istances wrap around the boundaries in each dimension. Thus, when restricting T 

d to points in
0 , 0 . 5] d , the distances within this part of the torus behave exactly as distances in a d-dimensional
ube. We use this to generate GIRGs with a d-dimensional hypercube as follows. The generator
rst samples a point in [0 , 1] d for each vertex. Before sampling the edges based on these vertex
ositions, we scale all coordinates by 0.5, yielding points in [0 , 0 . 5] d . To accommodate for the fact
hat this leads to smaller distances, we scale the vertex weights by 0 . 5 d . Afterward, we generate
he edges as for the torus [ 8 ]. 

To see that scaling all weights by 0 . 5 d achieves roughly the right average degree, recall that the
robability for two vertices u and v to be connected is 

p u,v = min 

⎧ ⎪ ⎨ ⎪ ⎩ 

( 
1 

‖ u −v ‖ d 
· w u w v 

W 

) 1 
T 

, 1 
⎫ ⎪ ⎬ ⎪ ⎭ 

. 

ote that scaling all weights by 0 . 5 d increases w u w v by 0 . 5 2 d and the sum of all weights W by 0 . 5 d ,
hich yields a total increase of 0 . 5 d contributed by the weights. Moreover, scaling all coordinates

y 0.5 decreases most distances by a factor of 0.5, which cancels out with the 0 . 5 d coming from
he weights. Note that not all distances are actually scaled by 0.5: if the geodesic between u and
 wraps around the torus, then the distance between them might actually be increased due to

he scaling. However, in the context of GIRGs, this is only relevant for a sublinear fraction of
ertex pairs and is thus not too relevant. Moreover, by just scaling the weights, we also ignore the
inimum in the formula of p u,v . However, the deviation from the desired average degree was not

oo big, as we report in the following. 
Among the 500 generated GIRGs with square as ground space, the smallest graph still has 45,468

ertices, with an average of 49 . 3 k vertices. The average degrees are slightly below the target value,
anging from 8 . 99 to 10 . 24 with an average of 9 . 56 . 

 MAXIMAL CLIQUES, DEGENERACY, AND (WEAK) CLOSURE 

n this section we provide additional experiments on the number of maximal cliques in the context
f degeneracy and (weak) closure. Section E.1 gives a formal definition of these parameters. In
ection E.2 we provide an algorithm for efficiently computing the weak closure, which might be
nteresting in its own right. In Section E.3 we discuss the dependence of the number of cliques on
he parameters. In Section E.4 we study how the parameters relate to each other. 

.1 Degeneracy and (Weak) Closure 

he degeneracy d of a network is the smallest number such that iteratively removing vertices of
egree at most d eliminates the whole graph. 
A network is c-closed if every pair of vertices with at least c common neighbors is connected.

ote that a single pair of vertices with many common neighbors already leads to a high closure.
he weak closure addresses this issue as follows. A pair of non-adjacent vertices is a c-bad pair

f they have at least c common neighbors. We call a vertex c-bad if it appears in a c-bad pair.
therwise, we call it c-good . A graph is weakly c-closed if iteratively removing c-good vertices

liminates the whole graph. Note that a c-closed graph is also weakly c-closed. 
Also note the similarity between weak closure and degeneracy. Both are defined via an elimina-

ion order on the vertices. Moreover, a vertex v can have at most deg (v ) common neighbors with
nother vertex. Thus, for a weakly c-closed graph with degeneracy d , it holds that c − 1 ≤ d . 
CM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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.2 Computing the Weak Closure 

efore we describe how we compute the weak closure, note that the closure can be computed as
ollows. For every vertex v , look at the first two layers of the BFS-tree from v , and for each node w
n the second layer, count the number of length-2 paths from v to w . The node v is c-good if this
ount is strictly lower than c for all vertices w in the second layer. Moreover, the graph is c-closed
f all vertices are c-good. The running time for each vertex is dominated by the sum of degrees of
ertices in the first layer of the BFS-tree. Overall, every vertex v appears deg (v ) times in the first
ayer, yielding a running time of O ( 

∑ 

v ∈V deg 

2 (v ) ) . This is sufficiently fast for all networks in our
ataset. 
A naive approach to compute the weak closure is as follows. Start with c = 1 . Then run the

bove procedure to find the minimum value c ′ such that there exists a c ′ -good vertex. If c < c ′ , set
 = c ′ and then remove all c-good vertices. Repeat this until the graph is completely eliminated.
he graph is then weakly c-closed for the final value of c . Though this is fast for many networks,

t is prohibitively slow for some. In the following, we describe how to improve the running time
t the cost of a higher memor y consumption. After ward, we discuss how to decrease the memory
ootprint to a reasonable level. 

For every vertex v , we have a priority queue Q v that contains all vertices of distance 2 from
. For such a vertex w , the priority is set to the number of common neighbors of v and w ; i.e., a
riority of c v,w 

indicates that v and w form a c v,w 

-bad pair. Let c v be the largest priority in Q v .
ote that v is c v -bad but (c v + 1 )-good. Thus, we want to iteratively remove the vertex v with
inimum c v . To this end, we maintain one additional priority queue Q containing all vertices,

sing c v as priority for v . 
When removing a vertex u, we have to update the neighbors of u, as they lose u as a common

eighbor. This is done as follows. Let v and w be two neighbors of u that are not connected by an
dge. Recall that the queue Q v contains w with the priority c v,w 

indicating the number of common
eighbors of v and w . As they lost u as common neighbor, we have to decrease this priority in Q v 

y 1. If this decreases c v , i.e., the maximum priority in Q v , we also have to adapt the priority of v
n the queue Q accordingly. 

This algorithm takes O ( 
∑ 

v ∈V deg 

2 (v ) ) time to initialize the data structures. Moreover, when
emoving vertex u, we have to update deg 

2 (u) neighbor pairs. Assuming all queue operations
ake constant time, 16 this takes overall O ( 

∑ 

v ∈V deg 

2 (v ) ) time. Unfortunately, it also requires that
mount of memory, which is prohibitive for some instances. 

To improve the memory consumption, we make use of the following observation. Taking the
quares of the degrees is particularly bad if the graph contains vertices of high degree. A vertex
f high degree is responsible for many pairs of vertices that have distance 2. However, most of
hese pairs do not have many common neighbors and thus will never be a c-bad pair for a relevant
alue of c . To phrase it differently, if we want to show that the graph is weakly c-closed, we can
gnore all distance-2 pairs v, w ∈ V that have fewer than c common neighbors. Thus, using the
bove notation for the queues, we do not have to insert w in the queue Q v if c v,w 

< c . 
Thus, we start with the guess that the given graph is ̄c -closed for some value ̄c . Then, we compute

he elimination order as above, but in the initialization of the data structures, we ignore all pairs
ith fewer than ̄c common neighbors. Assume the procedure concludes that the graph is c-closed,

.e., all vertices were c-good at the time of removal, but some (c − 1 )-bad vertices had to be removed.
f c ≥ c̄ , then the ignored vertex pairs have fewer than c common neighbors. Thus, none of these
ertex pairs turns a c-good vertex into a c-bad vertex, implying that the result is correct despite
6 This can be achieved using a bucket heap that makes use of the fact that the range of possible integer priorities is bounded. 
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gnoring some vertex pairs. On the other hand, if c < c̄ , we may have ignored some crucial pairs
nd have to rerun the procedure with lower c̄ . 

Preliminary experiments showed that guessing ̄c even slightly too low can lead to high memory
onsumption, while guessing c̄ too high is computationally not very expensive. Starting with c̄ =
0 and successively decreasing it by 1 if necessary yields acceptable 17 running times and memory
ootprints for all instances in our dataset. 

.3 Impact of Degeneracy and Closure on the Number of Cliques 

igures 16 and 17 show a pairwise comparison of degeneracy, weak closure, closure, heterogeneity,
ocality, and number of cliques (relative to m) for all networks with at most m cliques and more
han m cliques, respectively. The bottom row and the right-most column compare the number of
liques with the other parameters. 

E.3.1 Networks with at Most m Cliques. In Figure 9 , we already saw that the number of cliques
ncreases for decreasing locality and we saw a slight increase for increasing heterogeneity. This

atches to what we observe here: a strong negative correlation to the locality and a weaker positive
orrelation to the heterogeneity. 

For degeneracy and (weak) closure, theoretical results show that low values for these param-
ters guarantee a low number of cliques [ 25 , 28 ]. Though these theoretical bounds operate in a
ompletely different regime (above m by factors exponential in the parameter, not below m), one
ould nonetheless hope that these parameters serve as a good measure for the hardness of an in-
tance, i.e., that the number of cliques positively correlates with them. Figure 16 shows that this
ope is not justified. There is little to no correlation with the closure and even a slightly negative
orrelation with degeneracy and weak closure. 

E.3.2 Networks with More Than m Cliques. For the networks with more than m cliques
Figure 17 ), one can see a strong positive correlation of the number of cliques with the degeneracy
nd the weak closure. Thus, for these fewer somewhat hard instances, the degeneracy and weak
losure serve as good measures for how hard an instance actually is. This qualitatively matches

he theoretical bounds of O (dn3 d/3 ) [ 25 ] and n 

2 3 (c−1 )/3 [ 28 ], where d is the degeneracy and c the
eak closure. For the closure, on the other hand, there is only a slight correlation. 

.4 Relation between the Parameters 

esides studying the number of cliques with respect to the different parameters, it is also inter-
sting to compare the parameters with each other. Closure and weak closure have both been in-
roduced to formalize the same concept (triadic closure), and thus one would suspect them to be
imilar. Moreover, recall that the weak closure and the degeneracy are both defined via elimination
rders on the vertices and that c − 1 ≤ d for weakly c-closed graphs with degeneracy d . Thus, one
an expect them to be similar on networks with few triangles. For graphs with many triangles
high locality), it is interesting to see whether the weak closure captures the concept of triadic
losure well, i.e., whether c − 1 is substantially smaller than d . 

Though the study of the relation between these parameters is independent of the number of
liques, we still consider the partition into networks with at most or more than m cliques for the
ollowing reason. Our interest in degeneracy and (weak) closure comes from trying to understand
ow many cliques a network has. As we have seen before, these parameters do not work well in
his regard for networks with at most m cliques; i.e., they are more relevant for the networks with
7 We note that there is probably still plenty room for fine-tuning. However, this is beyond the scope of this article. 
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Fig. 16. Pairwise comparison of different variables for the networks with at most m cliques. The upper tri- 
angle shows the Spearman correlation between the two corresponding variables. The colors go from green 

(positive correlation) over white (no correlation) to red (negative correlation). The stars indicate p-values 
(“*** ”: < 0 . 001 , “** ”: < 0 . 01 , “* ”: < 0 . 05 , “. ”: < 0 . 1 , “ ”: otherwise). The diagonal shows the density of each 

individual variable. The lower triangle shows scatter plots of the networks with respect to two variables. 
The colors indicate the number of cliques (relative to m). Axes for degeneracy, weak closure, and closure are 
logarithmic. 
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ore than m cliques. If we, however, would consider all networks together, the networks with at
ost m cliques would dominate the overall picture as they make up 93 % of all networks. 

E.4.1 Networks with at Most m Cliques. We can see in Figure 16 that degeneracy, closure, and
eak closure are all positively correlated. We can also see that the degeneracy and the weak closure

ange in the same order of magnitude, while the closure is orders of magnitude larger. 
Concerning correlation to heterogeneity and locality, we can observe a slight positive corre-

ation of all three with the heterogeneity. This makes sense as all three parameters can only be
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Fig. 17. Pairwise comparison as in Figure 16 but for the networks with more than m cliques. In addition to 
degeneracy, weak closure, and closure, the axis for the relative number of cliques is logarithmic. 
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igh if there are vertices of high degree. Moreover, the correlation with locality is weaker or not
resent at all. For the (weak) closure, this is unexpected as they are meant to capture the existence
f many triangles, which corresponds to a high locality. It is particularly surprising that there is a
light positive correlation of the weak closure with locality; i.e., a higher locality tends to lead to
 larger weak closure, which is the opposite of what one would expect. 

A possible explanation for this can be obtained by observing that closure focuses on non-edges,
hile our definition of locality focuses on edges. Slightly simplifying, this difference can be stated

s follows: 

high locality: { u , v} ∈ E → u and v have many common neighbors. 
small closure: { u , v} � E → u and v do not have many common neighbors. 
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Fig. 18. Distribution of the relative differ- 
ence between degeneracy and weak closure 
values for the networks with more than m
cliques. 

Fig. 19. Relative difference between degen- 
eracy and weak closure depending on the lo- 
cality. They show only a slight correlation 

( 0 . 10 for networks with at most m cliques and 

0 . 24 for networks with more than m cliques). 
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E.4.2 Networks with More Than m Cliques. For the networks where the degeneracy and weak
losure were good predictors for the number of cliques, we see an even stronger correlation be-
ween these two parameters. To quantify how much the degeneracy and the weak closure differ,
ee Figure 18 . One can see that the weak closure is usually not much smaller than the upper
ound given by the degeneracy. Thus, the weak closure is indeed very similar to the degener-
cy. Hence, it mostly captures the sparsity of a network rather than the tendency to have many
riangles. 

On these networks the correlation of the closure to degeneracy and weak closure is less pro-
ounced than for the networks with at most m cliques. Concerning locality and heterogeneity,
here is no correlation with degeneracy or weak closure. The closure correlates positively with
eterogeneity and to a smaller extent negatively with locality. As for the other set of networks,
his again indicates that the parameter closure is more susceptible to the degree distribution than
o the existence of triangles. 

E.4.3 Weak Closure and Locality. As mentioned earlier, the correlation between weak closure
nd degeneracy is not surprising as degeneracy is an upper bound to weak closure (minus 1). Here
e want to study whether the difference between these two is correlated with the locality. If this
ifference comes mostly from the existence of many triangles, then one would expect a bigger
ifference for graphs with high locality. However, Figure 19 shows that this is not really the case.
his consolidates the previous observation that (weak) closure does not capture the concept of

ocality well. 

 NETWORKS WITH EXTREME HETEROGENEITY 

n this section, we provide the figures from Section 4 including real-world networks with extreme
eterogeneity. Figures 20 to 22 show the respective middle plots; the thresholds for extreme
eterogeneity are marked with vertical lines, with triangle-shaped data points representing
eal-world networks with extreme heterogeneity, i.e., data points outside the thresholds. Across
ACM Transactions on Algorithms, Vol. 20, No. 1, Article 10. Publication date: January 2024. 
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Fig. 20. Full versions of the middle plots of several figures from Section 4 including real-world networks 
with extreme heterogeneity. The thresholds for extreme heterogeneity are marked with vertical lines, with 

triangle-shaped data points representing real-world networks with extreme heterogeneity. 

a  

t  

a

A

ll considered algorithms, the behavior on networks with extreme heterogeneity roughly follows
hose of the other networks, showing similar trends of algorithm behavior dependence on locality
nd heterogeneity. 
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Fig. 21. Additional full versions of the middle plots of several figures from Section 4 including real-world 

networks with extreme heterogeneity. The thresholds for extreme heterogeneity are marked with vertical 
lines, with triangle-shaped data points representing real-world networks with extreme heterogeneity. 
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Fig. 22. Additional full versions of the middle plots of several figures from Section 4 including real-world 

networks with extreme heterogeneity. The thresholds for extreme heterogeneity are marked with vertical 
lines, with triangle-shaped data points representing real-world networks with extreme heterogeneity. 
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