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Abstract. Real-world networks typically display a complex structure
that is hard to explain by a single model. A common approach is to
partition the edges of the network into disjoint simpler structures. An
important property in this context is locality—incident vertices usually
have many common neighbors. This allows to classify edges into two
groups, based on the number of the common neighbors of their incident
vertices. Formally, this is captured by the common-neighbors (CN) met-
ric, which forms the basis of many metrics for detecting outlier edges.
Such outliers can be interpreted as noise or as a substructure.

We aim to understand how useful the metric is, and empirically ana-
lyze several scenarios. We randomly insert outlier edges into real-world
and generated graphs with high locality, and measure the metric accu-
racy for partitioning the combined edges. In addition, we use the metric
to decompose real-world networks, and measure properties of the parti-
tions. Our results show that the CN metric is a very good classifier that
can reliably detect noise up to extreme levels (83% noisy edges). We
also provide mathematically rigorous analyses on special random-graph
models. Last, we find the CN metric consistently decomposes real-world
networks into two graphs with very different structures.

Keywords: Noise · Clustering · Networks

1 Introduction

The structure of real-world processes across a large variety of scientific domains,
such as biology, ecology, sociology, or technology, typically results in highly com-
plex networks [3,14]. These networks display many structural properties, such as
high heterogeneity (many different vertex degrees) and high locality (vertices that
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share a large common neighborhood are likely to be connected), which seem to
play a crucial role for reasoning about the networks [4]. Thus, it comes as no sur-
prise that these properties are utilized in order to decompose complex networks
into simpler ones. A prominent approach for this task is graph clustering [18].

Graph clustering aims to partition the vertices of a network into sets such
that vertices from the same set have a similar value based on some metric, for
example, the nearest neighbors of each vertex [22]. An important special case of
clustering, also typically performed as a pre-processing step in clustering [6], is
outlier detection [1], which aims to separate vertices with suspicious metric values
from the rest. Algorithms for outlier detection vary in the amount of information
they utilize. Some settings consider graphs annotated with features [10,13,15].
Other settings work exclusively with the structure of the network, that is, its
vertices and edges [20]. Many approaches define a metric for vertices [9].

An alternative approach is to classify the edges of a network instead of its
vertices [2]. In this setting, outlier detection is the opposite of link prediction [12].
Results for edge outlier detection are scarce, with the article by Zhang, Kiranyaz,
and Gabbou [21] being the most extensive one. The authors consider different
edge metrics based on the common-neighbors (CN) metric, which counts the
number of shared vertices of the two vertices incident to a given edge. The
authenticity of an edge is determined by how largely its metric score differs from
the expected score of an edge, assuming the outlier-free graph follows a certain
random-graph distribution. This approach is evaluated on real-world networks
with randomly added edges. Although the real-world networks do not necessarily
match the theoretical assumptions required for the authenticity of an edge, the
authors show that their different metrics typically achieve an area-under-ROC-
curve value of at least 0.85. This shows these metrics are rather robust to noise,
making edge outlier detection a promising tool for noise detection in networks.

Contribution. Motivated by the good performance of the metrics by Zhang,
Kiranyaz, and Gabbou [21], we focus on the usefulness of the pure CN metric for
edge outlier detection, that is, we use the CN metric without any assumptions
about the underlying graph model. Our intention is to use the CN metric in
order to partition the edge set of a graph into two sets, each of which represents
the connections of a different graph. Ideally, the two resulting graphs differ in
locality, a very defining graph property, as we remarked above. If one of the
resulting graphs is close to a (random) noise graph, then our setting resembles
noise detection in graphs. However, it is more general than that, as we do not
require any of the graphs to follow a noise model.

Setting. We consider mixed graphs, which are the superposition of two graphs
defined over the same set of vertices but with different edge sets. One of the two
graphs that make up the mixed graph is the base graph, which we consider to
be the graph that consists of no outlier edges. The other graph is the overlay
graph. We apply the CN metric to the mixed graph and evaluate how well it can
separate the base graph from the overlay graph.
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Methodology. We evaluate the performance of the CN metric empirically in
three different settings (Sect. 4). In the first setting (Sect. 4.1), both the base
and the overlay graph follow well-established random-graph distributions. As
base graphs, we use graphs that place their vertices randomly with respect to
a geometry: random geometric graphs [16] and hyperbolic random graphs [11].
These models have a high locality, the second one also high heterogeneity. For
the overlay graph, we use the Erdős–Rényi model [8], that is, we add edges
independently, each with the same probability. As this model does not make use
of locality, the separation should work well.

In the second setting (Sect. 4.2), we exchange the base graph for real-world
networks. The overlay graph still follows the Erdős–Rényi model. Thus, the edges
of the overlay graph remain to not follow any locality. Here, we aim to see how
sufficient the natural locality of real-world networks is for a good separation.

In the final setting (Sect. 4.3), the mixed graph is a real-world network, i.e.,
we have no ground truth information anymore. The aim is to see how well the
CN metric separates a real-world network into two distinct graphs. To this end,
we vary the threshold that determines when an edge is classified as an outlier,
and we compare graph properties in the resulting base and overlay graphs.

Results. For all three settings, the CN metric performs very well. For the first
setting (Sect. 4.1), the CN metric achieves an area-under-ROC-curve (AUC)
value of at least 0.96—in many cases of at least 0.98. These results hold even
for extreme scenarios where the amount of random/outlier edges is 5 times the
amount of edges in the base graph. This shows that the CN metric is immensely
robust with respect to non-local noise.

For the second setting (Sect. 4.2), the quality depends more on the base graph,
with some settings having a (still rather high) AUC value of 0.80, whereas others
have a value of over 0.90. This shows the locality of real-world networks is high
enough such that non-local noise is well detected. However, our experiments
indicate the quality also depends on other graph properties like graph density.

For the final setting (Sect. 4.3), the number of components as well as the
global clustering coefficient (GCC) of the two resulting graphs indicate that the
CN metric does indeed classify non-local edges as overlay edges, as the GCC of
the base graph increases with the removal of overlay edges, and the number of
connected components also quickly increases.

In addition to our empirical results, we prove mathematically rigorously what
the expected CN score of an edge in mixed graphs is, with respect to whether
the edge was present in the base graph (Theorem 1) or only in the overlay graph
(Theorem 2). In these analyses, we assume that the base graph is a random
geometric graph and the overlay graph an Erdős–Rényi graph, which we assume
to be sparse. We find that the expected difference between the CN score of an
edge in the mixed graph that is already present in the base graph versus the
score if the edge is only present in the overlay graph is in the order of magnitude
of the expected vertex degree of the base graph. Thus, a higher expected vertex
degree of the base graph makes it easier to detect outliers.
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Conclusion. Our results indicate that the CN metric is very well suited for
classifying real-world networks into two distinct, simpler networks. Neither the
CN metric nor the classification method require any problem-specific knowledge.
Especially, the CN metric is highly robust to noise. This all suggests that the
simple CN metric is a very good tool for handling the detection of outlier edges.

2 Preliminaries

Let N denote the set of all natural numbers (incl. 0). For all m,n ∈ N, let
[m..n] := [m,n] ∩N, and let [n] := [1..n]. We consider undirected, simple graphs
G = (V,E), with vertices in V and edges in E. For all v ∈ V , we denote the
(exclusive) neighborhood of v by ΓG(v) = {u ∈ V | {u, v} ∈ E}. Further, let(
V
2

)
:= {{u, v} | u, v ∈ V ∧ u �= v} denote the set of all unordered pairs over V .

2.1 Setting

We consider mixed graphs G = (V,E) that are the superposition a base graph
Gb = (V,Eb) and an overlay graph Go = (V,Eo), that is, E = Eb ∪ Eo. We say
that G is composed of Gb and Go.

We consider the common-neighbors (CN) metric. For a graph G = (V,E), the
CN metric (over G) is the function cnG :

(
V
2

) → [0..|V | − 2] that maps each pair
of vertices to the size of their shared neighborhood. That is, for all {u, v} ∈ (

V
2

)
,

it holds that cnG({u, v}) = |ΓG(u)∩ΓG(v)|. Note that u and v are not accounted
for, as u /∈ ΓG(u) and v /∈ ΓG(v). We call cnG({u, v}) the CN score of {u, v}.

2.2 Random-Graph Models

We consider various formal random-graph models, which we introduce in the fol-
lowing. In addition to those, we also consider (deterministic) real-world networks,
which we explain in Sect. 4.2. For all of the following models, when we introduce
a graph, it actually represents a random element following a distribution over
the set of all graphs that can be constructed as described. This distribution is
defined implicitly via the random choices for how the vertices and/or edges are
drawn. We do not introduce special notation for such a distribution.

Random Geometric Graphs. A random geometric graph (RGG) is a graph
G = (V,E) with V ⊂ [0, 1]2 together with a radius r ∈ [0, 1/

√
2]. The vertices of

an RGG lie in the unit torus, that is, for all u, v ∈ V , the distance between u and v
is wrapping around the borders, formally, dist(u, v) :=

√|u1 − v1|2o + |u2 − v2|2o,
where, for all i ∈ [2], it holds that |ui − vi|o := min{|ui − vi|, 1 − |ui − vi|}.

The vertices of an RGG are placed independently and uniformly at random
into the unit torus, that is, the probability for a vertex to be placed in an area
of size A ∈ [0, 1] is A. After placing the vertices, the edges are determined
deterministically by connecting two vertices if and only if their distance is at
most r. That is, E = {{u, v} ∈ (

V
2

) | dist(u, v) ≤ r}. Since a vertex u is
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connected to another vertex v if and only if v is in a circle of radius r around u,
the expected degree of u is (|V | − 1)πr2.

Erdős–Rényi Graphs. An Erdős–Rényi graph (ER) is a graph G = (V,E)
together with an edge probability p ∈ [0, 1]. In contrast to an RGG, the vertices
of an ER have no geometric interpretation and can be anything. The edges
of G are all drawn independently, each with probability p. That is, for each
{u, v} ∈ (

V
2

)
, it holds that Pr[{u, v} ∈ E] = p. Since a vertex u is connected to

another vertex v with probability p, the expected degree of u is (|V | − 1)p.

Hyperbolic Random Graphs. A hyperbolic random graph (HRG) is a graph
G = (V,E) together with a power-law exponent β ∈ (2, 3) and a radius R. All
vertices are positioned in a disk of radius R in the hyperbolic plane according
to a probability distribution based on β, and two vertices are connected by an
edge if and only if their hyperbolic distance is at most R. The expected average
degree can be controlled via R, while β determines the exponent of the power-law
degree distribution. The resulting graphs have high heterogeneity and locality.

Randomness in Mixed Graphs. When we consider mixed graphs G composed
of a base graph Gb and an overlay graph Go, we make sure that at most one model
determines how vertices are placed. This guarantees that no random choices
conflict with each other, so G is well-defined. Since Gb and Go have their own
edges, the randomness in drawing the edges cannot conflict with each other.

3 Theoretical Results

We consider mixed graphs G = (V,E) composed of an RGG Grgg = (V,Ergg)
with radius r ∈ [0, 1/4] as base graph and an ER Ger = (V,Eer) with edge
probability p ∈ [0, 1] as overlay graph. We mathematically analyze the CN score
of an edge e ∈ E, depending on whether e is present in the base graph or not
(Sect. 3.2). Our main results are Theorems 1 and 2, which show together that
for p = o(1) (with respect to |V |), that is, the overlay graph is not dense, the
expected difference of the CN score of e with respect to whether it is present
in the base graph or not is in the order of nr2, which is the same order as the
expected vertex degree in an RGG. Thus, the higher the expected vertex degree
of the base graph, the further the CN scores in the mixed graph differ from edges
present in the base graph and those only present in the overlay graph.

Before we introduce and discuss the results, we discuss important properties
relevant to the results. These revolve around the probabilities for vertices to lie
at a certain distance with respect to two given vertices u and v, whose CN score
we are interested in. We omit proofs due to space restrictions.

3.1 Probabilities of Vertex Placements

Let u and v be vertices from a mixed graph G = (V,E) based on an RGG
Grgg = (V,Ergg) of radius r ∈ [0, 1/4] and an ER Ger = (V,Eer) with edge
probability p ∈ [0, 1]. In order to determine how much the CN score of u and v
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changes from Grgg to G, we calculate how likely it is for other vertices to have
edges to u and v, both in Ergg and in Eer. In the following, we first determine
the probability of a vertex being connected to both u and v in Grgg. Then, we
determine the probability of a vertex that is not a common neighbor of u and v
in Grgg to be a common neighbor in G.

Common Neighbors in the Base Graph. In this setting, the shared area of
the two circles of radius r around u and v is important. We call this area μ(u∩v),
and we remark it is the probability of a vertex to be in ΓGrgg(u) ∩ ΓGrgg(v), as
they are drawn uniformly at random. Based on this, we derive the expectation
of μ(u ∩ v) with respect to whether u and v are themselves connected.

Lemma 1. Let Grgg = (V,Ergg) be an RGG with radius r ∈ [0, 1/4]. Further-
more, let {u, v} ∈ (

V
2

)
and let R := {{u, v} ∈ E}. Then

E[μ(u ∩ v) | R] =
4π − 3

√
3

4
r2 and E[μ(u ∩ v) | R] =

3
√

3πr2

4(1 − πr2)
r2. (1)

Common Neighbors in the Mixed Graph. We consider the probability of
a vertex w to be a common neighbor of u and v in G, given that it is not a
common neighbor in Grgg. This happens because of one of the following reasons.

1. w ∈ ΓGrgg(u): In this case, w /∈ ΓGrgg(v). Since w ∈ ΓG(u) ∩ ΓG(v), there is
an edge in Eer \ Ergg.

2. w ∈ ΓGrgg(v): This case is symmetric to the previous one when exchanging u
with v, as all vertices are handled symmetrically in RGGs.

3. w ∈ ΓGrgg(u) ∪ ΓGrgg(v): In this case, there are two edges in Eer \ Ergg.

The following lemma determines the probability of w falling into one of these
three cases.

Lemma 2. Let G = (V,E) be a mixed graph composed of an RGG Grgg =
(V,Ergg) with radius r ∈ [0, 1/4] as base graph and an ER G = (V,Eer) with
edge probability p ∈ [0, 1] as overlay graph. Furthermore, let {u, v} ∈ (

V
2

)
and

w ∈ V \{u, v}. Last, let O denote the event {w /∈ ΓGrgg(u)∩ΓGrgg(v)}, and let R

denote the event {{u, v} ∈ Ergg}. Then, abbreviating a := (3
√

3)/4,

Pr[w ∈ ΓG(u) ∩ ΓG(v) ∧ O | R] = pr2
(
2a − (π + a)p

)
+ p2 and (2)

Pr[w ∈ ΓG(u) ∩ ΓG(v) ∧ O | R] = pπr2
(

2(1 − p) − (2 − p)
ar2

1 − πr2

)
+ p2. (3)

3.2 The CN Score of Different Edges

Using the probabilities from Sect. 3.1, we derive the expected CN score of an
edge in the mixed graph. The following theorem assumes that the edge is already
present in the base graph. Afterward, we consider the case that the edge is only
present in the overlay graph. At the end, we conclude.
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Theorem 1. Let G = (V,E) be a mixed graph over n ∈ N≥2 vertices composed
of an RGG Grgg = (V,Ergg) with radius r ∈ [0, 1/4] as base graph and an ER
G = (V,Eer) with edge probability p ∈ [0, 1] as overlay graph. Furthermore, let
{u, v} ∈ E, let NG = cnG({u, v}), let NGrgg = cnGrgg({u, v}), let q denote the
left expected value from Eq. (1), let s denote the probability from Eq. (2), and
let R denote the event {{u, v} ∈ Ergg}. Then

E[NG | R] = E[NGrgg | R] + (n − 2)s and E[NGrgg | R] = (n − 2)q.

The following theorem shows how the CN score changes if the edge is only in
the overlay graph. It looks similar to Theorem 1 but considers other probabilities.

Theorem 2. Let G = (V,E) be a mixed graph over n ∈ N≥2 vertices composed
of an RGG Grgg = (V,Ergg) with radius r ∈ [0, 1/4] as base graph and an
ER G = (V,Eer) with edge probability p ∈ [0, 1] as overlay graph. Further, let
{u, v} ∈ E, let NG = cnG({u, v}), let NGrgg = cnGrgg({u, v}), let q denote the
right expected value from Eq. (1), let s be the probability from Eq. (3), let R
denote the event {{u, v} /∈ Ergg}, and let K denote the event {{u, v} ∈ Eer}.
Then

E[NG | R,K] = E[NGrgg | R,K] + (n − 2)s and E[NGrgg | R,K] = (n − 2)q.

Let qrgg and srgg, respectively, denote q and s from Theorem 1, and let qer
and ser be defined analogously with respect to Theorem 2. If (qrgg + srgg)
and (qer + ser) are sufficiently separated, then so are the respective CN scores
for edges in the mixed graph that are present in the base graph or only in
the overlay graph, which makes separating these two edge types not difficult.
By Lemma 1, it holds that qrgg − qer =

(
π − 3

√
3/

(
4(1 − πr2)

))
r2 = Θ(r2),

which is non-negative for all r ∈ [0, 1/4]. Similarly, by Lemma 2, we get that
srgg−ser = −(2−p)pr2(π−(3

√
3)/4−π2r2)/(1−πr2) = −Θ(pr2), which is non-

positive for all r ∈ [0, 1/4] and all p ∈ [0, 1]. Due to the difference of the signs,
a general comparison is difficult. However, assuming that the overlay graph is
sparse, that is, p = o(1), we see that (qrgg + srgg) − (qer + ser) = Θ

(
r2

)
. Thus,

the difference in the expected CN score of edges present in the base graph and
those only present in the overlay graph is Θ

(
r2n

)
, which is in the same order

as the expected vertex degree of an RGG. Thus, an increased average degree in
the base graph results in a larger expected difference in scores.

4 Empirical Results

We present empirical findings on the quality of the CN metric for different sce-
narios. We first consider scenarios where we know both the base graph and the
overlay graph. As base graph, we consider two random graph models (Sect. 4.1)
as well as real-world networks (Sect. 4.2). Last, we consider the case where the
mixed graph is a real-world network, and we partition its edges according to the
CN metric (Sect. 4.3). We briefly explain how we carry out our study.
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Fig. 1. (Top) The AUC score for an RGG as base graph and an ER as overlay graph.
We fix the number of vertices to 5 000 and the expected average degree of the base
graph k ∈ {10, 25, 50}. The overlay edge factor varies from 0.5 to 5, and we display 50
samples per configuration. (Bottom) The AUC score for an HRG as base graph and an
ER as overlay graph. We fix the number of vertices to 5 000, expected average degree of
the base graph k = 25, and vary the power-law degree exponent β ∈ {2.2, 2.6, 2.9}. The
overlay edge factor varies from 0.5 to 5, and we display 50 samples per configuration.

AUC Metric. When evaluating the quality of the CN metric for separation of
the two known edge sets, we measure the well-established area-under-the-ROC-
curve (AUC) score. This measure is commonly used for classification models and
provides an aggregate measure for the true-positive and false-positive rate of a
binary classifier across all possible thresholds. We treat our scenario as a binary
classification task, with base edges being positive. The AUC essentially is the
probability that a random positive example has a higher score than a random
negative example, i.e., that the CN score of a random base edge is higher than
that of a random overlay edge. A random metric would yield an AUC score
of 0.5, while a perfect metric would yield 1.0.

Experimental Setup. Our Python implementation uses the libraries Net-
worKit [19] and igraph [7] for generating and analyzing graphs. They provide
implementations for random graph models and graph properties. All experiments
were run on a system with an Apple M1 chip and 16 GB RAM. However, note we
do not consider run times, and all experiments were finished in minutes. All code
and data is published at https://github.com/PFischbeck/cn-noise-experiments.

4.1 Graph Model as Base Graph

We consider two graph models as base graph, which are known to be highly
clustered due to the use of an underlying geometry in the generation process.
As base graph, we consider RGGs as well as HRGs (see Sect. 2.2 for details).
As overlay graph, we consider ERs with an expected number of edges relative
to the number of edges in the base graph. For example, an overlay edge factor

https://github.com/PFischbeck/cn-noise-experiments
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Fig. 2. The distribution of the CN scores for an RGG with 5 000 vertices and varying
expected degree k as base graph, and an ER as overlay graph with overlay edge factor 5.
The color shows whether the edges are from the base (red) or overlay graph (blue).
(Color figure online)

of 2 means that there are twice as many overlay edges as there are base edges,
in expectation. For a fixed model configuration and overlay edge factor, we take
50 samples and display them as box plots.

Random Geometric Graphs. For RGGs as base graph, we fix the number
of vertices to 5 000 and vary the expected average degree to be 10, 25, and 50.
Figure 1 (top) shows the resulting AUC scores for varying overlay edge factors.

One clearly sees that in all scenarios, the AUC score is very high, staying
above 0.98. As one would expect, an increased overlay edge factor leads to lower
scores, as the overlay edges make it harder to tell the two edge sets apart. The
dependence on the average degree seems to consist of two parts. First, there is an
increase of the AUC score for increased average degree, as predicted in Sect. 3. In
addition, for higher average degree, the increase in overlay edges has a reduced
effect on the AUC score. Recall that the number of overlay edges is relative to
the number of base edges and thus also scales with increased average degree.

In order to understand this behavior better, we also provide a view on the
distribution of scores for the two edge partitions. We fix an overlay edge factor
of 5 and look at one sample for all three considered average degrees. Figure 2
shows the score distribution for these configurations.

As the average degree is increased, the CN scores increase for both base and
overlay edges. However, they also increase their variance, and thus their overlap
increases. Nonetheless, the high average degree still makes it easy to distinguish
between the high number of edges outside of the overlap for k = 50.

Hyperbolic Random Graphs. For HRGs as base graph, we fix the number
of vertices to 5 000, expected average degree k = 25, and vary the power-law
degree exponent to be 2.2, 2.6, and 2.9. Figure 1 (bottom) shows the resulting
AUC scores for varying overlay edge factors.

Across all three configurations, the AUC score is relatively high, although
not as high as for the RGGs as base graph (Fig. 1 (top)). Recall that a lower
power-law exponent corresponds to a more heterogeneous degree distribution,
leading to many low-degree and few high-degree vertices. For base graphs with
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Table 1. The real-world networks we use as base graph, with their number of vertices n,
their number of edges m, and global clustering coefficient (GCC).

Graph n m GCC

advogato 6 k 43 k 0.11

bio-WormNet-v3-benchmark 2 k 79 k 0.72

ca-HepPh 11 k 118 k 0.66

ia-digg-reply 30 k 86 k 0.02

soc-brightkite 57 k 213 k 0.11

web-indochina-2004 11 k 48 k 0.57

low power-law exponent, edges connected to low-degree vertices have low CN
scores, making them harder to differentiate from the overlay edges. This leads
to a lower AUC score. Further, a higher overlay edge factor yields a lower AUC
score. This is because the CN score of overlay edges is increased by other over-
lay edges. As the power-law exponent increases, the variance of the AUC score
decreases.

4.2 Real-World Network as Base Graph

We consider various real-world networks as base graph, with an ER as overlay
graph. The real-world networks are shown in Table 1. They are part of the Net-
workRepository collection [17], and we use them in a cleaned format [5]. The
networks are from different contexts (including biological, social, and web net-
works) and vary both in graph size and in their locality. We measure locality via
the global clustering coefficient (GCC), which can be interpreted as the proba-
bility that a triplet of vertices with at least two edges also has the third edge.
Thus, it is an indicator for how clustered or local a graph is.

For every real-world network, we add an ER overlay graph with the same
number of vertices as the base graph, and we vary the overlay edge factor from
0.5 to 5. We take 50 samples per configuration (recall that the ER overlay graph
is random), and we consider the resulting AUC score of the CN scores.

The AUC scores for almost all real-world networks are at a high level, even
with 5 times as many overlay edges as base edges. In addition, for most graphs,
the AUC score remains constant as the overlay edge factor varies. The exceptions
are the graphs bio-WormNet-v3-benchmark and ca-HepPh. Both graphs have
few vertices and high clustering, which might lead to higher CN scores for overlay
edges, both via other overlay edges and base edges.

Overall, there is a strong relation between the graph clustering (via the global
clustering coefficient) and the AUC score of the CN metric. The ia-digg-reply
network has a very low GCC and low AUC scores. Based on our experiments,
we think the metric quality depends on several graph properties, including clus-
tering, degree heterogeneity, graph density, and number of low-degree vertices.
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Fig. 3. The number of connected components and the global clustering coefficient
of the base graph (red) and overlay graph (blue) when splitting the edges of the
soc-brightkite network according to the CN metric. The ratio rsplit defines that
the rsplit · |E| edges with lowest CN score are classified as overlay edges. (Color figure
online)

The results are under the assumption that the real-world base graphs do not
contain any overlay edges themselves, which cannot be known. In order to better
understand this real-world edge set, we also consider real-world networks as the
mixed graph in the following section.

4.3 Real-World Graph as Mixed Graph

In the experiments above, we had control over the base and overlay graph and
thus were able to evaluate the quality of the CN score based on this ground
truth. However, when partitioning a given graph without ground truth, we have
to turn to other properties. In particular, if this metric does indeed help partition
the given graph into a local, clustered structure and a global, random structure,
this should be reflected in the properties of the two partition sets. We investigate
this here. To this end, we take the real-world network soc-brightkite and treat
it as a mixed graph. We measure the CN scores of its edges and sort the edges
according to this score, with ties solved uniformly at random. For a fixed ratio
rsplit, the rsplit · |E| edges with the lowest score are classified as overlay edges,
while the remaining edges are classified as base edges. We build the base graph
and overlay graph according to this edge partitioning, and we measure the global
clustering coefficient as well as the number of connected components of the two
parts. Figure 3 shows the resulting values for varying ratio rsplit.

As the split ratio increases, the number of components of the base graph
quickly rises, with an average of roughly two vertices per component for rsplit =
0.3. On the other hand, the number of components of the overlay graph quickly
decreases, which indicates that the edges classified as overlay edges are in fact
global in the sense that they often connect previously disconnected components.

Also, as more edges are classified as overlay edges, the global clustering com-
ponent of the base graph increases, indicating the overlay edges are indeed non-
local, leaving local edges responsible for high clustering untouched. This is also
seen in the very low clustering coefficient of the overlay graph even for rsplit = 0.9.
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5 Conclusion

We have taken a closer look at the common-neighbors (CN) metric—a metric
that forms the basis of many approaches and techniques in outlier detection and
graph clustering. Considering a scenario of mixed graphs made up of a base
graph with high locality and an overlay graph representing noise, we have shown
empirically that the simple CN metric is very accurate and robust for partition-
ing the edge set, even in the presence of much noise. In addition, the metric
can handle real-world networks and partition them into two edge sets of dif-
fering properties, helping understand the underlying structures. Our theoretical
analysis also gives indications to why the metric works for simple graph models.

A better understanding of this foundational metric is the basis for under-
standing and designing improved metrics in the fields of outlier detection and
graph clustering. We have shown how the metric relates to locality and clus-
tering, and our work indicates interesting related questions. In particular, it
would be helpful to further analyze the metric for more complex graph models,
including different noise models. In addition, it would be valuable to determine
the other factors besides locality that influence the quality of the CN metric,
including the degree distribution or density.
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