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ABSTRACT

Island models in evolutionary computation solve problems by a

careful interplay of independently running evolutionary algorithms

on the island and an exchange of good solutions between the islands.

In this work, we conduct rigorous run time analyses for such island

models trying to simultaneously obtain good run times and low

communication e�ort.

We improve the existing upper bounds for the communication

e�ort (i) by improving the run time bounds via a careful analysis,

(ii) by se�ing the balance between individual computation and com-

munication in a more appropriate manner, and (iii) by replacing the

usual communicate-with-all-neighbors approach with randomized

rumor spreading, where each island contacts a randomly chosen

neighbor. �is epidemic communication paradigm is known to

lead to very fast and robust information dissemination in many

applications. Our results concern islands running simple (1+1) evo-

lutionary algorithms, we regard d-dimensional tori and complete

graphs as communication topologies, and optimize the classic test

functions OneMax and LeadingOnes.

CCS CONCEPTS

•�eory of computation → Evolutionary algorithms; Com-
munication complexity; Distributed algorithms; •General and ref-

erence→ General conference proceedings;

1 INTRODUCTION

To speed up evolutionary algorithms, island models can be used as

a means of distributing the work load over many computing nodes.

Each island runs a simple evolutionary algorithm, occasionally shar-

ing information with other nodes. One of the most common ways

of sharing information is to send a copy of the best-so-far solution

to other islands, a process called migration. Many applications of

this paradigm are known to be successful [1, 2, 4].

One main choice for designing an e�cient algorithm following

the island model is to choose the way migration is carried out.
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For example, the islands can be equipped with a neighborhood

structure, determining for each island, which other islands to mi-

grate its individuals to; this is referred to as the migration topology.

Dense migration topologies, such as the complete graph, lead to

a fast spread of good solutions at the price of a high communica-

tion overhead. �e impact of the migration topology on algorithm

performance has been analyzed both experimentally [19] and the-

oretically [14]. Another choice lies in the frequency of migration.

A frequent approach is to introduce a parameter τ indicating that

once every τ generations all islands engage in communication with

all neighbors. A high value of τ can thus save on the communi-

cation overhead, at the price of delays in the spread of new good

individuals. Se�ing the migration interval correctly is a challenge

for designing e�cient island algorithms [17]. It has been noted that

island models are also particularly useful for dynamic optimization

problems [16] and when employing crossover [18]. An overview

of practical concerns of research in the area of island models can

be found in [2]; for an overview of theoretical work, see [20].

In this work, we will consider λ islands running a (1+1) EA, a

standard evolutionary algorithm (EA) considered in theoretical anal-

yses [10]. For various migrations topologies (such as d-dimensional

tori and the complete graph) and migration intervals τ , we are

interested in the expected time until some island evolves the opti-

mal solution for the given �tness function, of which we consider

the two standard functions OneMax and LeadingOnes. It is not

surprising that in this simple se�ing of unimodal �tness functions,

fast migration topologies, such as the complete graph, perform best

in terms of the number of generations, while performing badly

in terms of communication [14]. We improve the analysis espe-

cially pertaining to the combined costs (number of generations plus

number of communications per island) in the following ways.

First, we analyze the run time of the island models carefully.

We see that, for the number of generations that any of the topolo-

gies require on OneMax, the dependence on τ is not linear, but,

surprisingly, logarithmic. For the complete topology we further

improve the bounds on the number of generations by making a

detailed analysis of di�erent optimization phases and employing

a variable dri� theorem; we show this analysis to be tight by pro-

viding matching lower bounds. Second, we use the parameter τ
to avoid communication overhead. By �nding the right balance

between individual computation of the islands and spreading the

information to the neighbors, we see that the combined costs for

the complete graph on OneMax are as low as O(n log logn), using

λ = lnn islands and a migration interval of τ = lnn. Similarly, we

obtain combined costs for the complete graph on LeadingOnes
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Table 1: Overview of Results. �e optimization times of the island model on λ islands with migration interval τ on �tness functions OneMax and

LeadingOnes of length-n bit strings. Shown are the run times for the push protocol on complete graphs as well as for the d-dimensional torus and the

complete graph using broadcast communication. �e best optimization time is the parallel run time for the optimal choice of parameters λ and τ . �e best

combined costs refer to the parameters that minimize the sum of the optimization time and communication costs.

Objective Model Optimization Time Best Optimization Time Best Combined Costs

OneMax

Push O

(
n logn
λ + n logτ

)
O(n) O(n)

d-Torus O

(
n logn
λ + n logτ

)
O(n) O(n)

Complete

Θ
(
n logn
λ + nτ

log λ log

(
log λ
τ

))
, if τ = o(log λ)

Θ
(
n logn
λ + n

)
, if τ = Θ(log λ)

Θ
(
n logn
λ + n log

(
τ

log λ

))
, if τ = ω(log λ)

Θ
(
n

log logn
logn

)
Θ(n log logn)

LeadingOnes

Push O

(
n2

λ + nτ log

( n
τ
))

O(n logn) O(n logn)

d-Torus O

(
n2

λ + n
d+2

d+1 τ
d
d+1

)
O

(
n
d+2

d+1

)
O

(
n
d+2

d+1

)
Complete Ω

(
n2

λ +
n

log
2 n
τ
)

; O

(
n2

λ + nτ
)

Ω
(

n
log

2 n

)
; O(n) Ω

(
n3/2
logn

)
; O

(
n3/2

)
of O(n3/2) ∩ Ω(n3/2/logn), using λ =

√
n islands and a migration

interval of τ =
√
n for the positive bound. Finally, we question

the method of broadcasting the information to all available neigh-

bors. Instead, we propose to employ the push protocol, known

from the area of epidemic algorithms or rumor spreading, where

in each communication round each island chooses one neighbor

uniformly at random to send the best individual to. It is known

that for the complete topology the process requires logarithmically

many communication rounds until all islands are informed [6, 8].

�is is signi�cantly faster than the ring and torus topologies consid-

ered previously (and also faster than d-dimensional tori in general),

while the communication overhead is still constant per island and

communication round (compared with the linear overhead of com-

plete topologies). By proving lower bounds on the performance of

the complete topology, we show that the push protocol is superior

even to broadcast communication in some se�ings.

In Table 1 we give an overview of our results. Section 2 intro-

duces the island models and test functions more formally. Section 3

concerns the Push Protocol; in Section 4 we give run time bounds

for tori; �nally, Section 5 concerns the complete topology.

2 ISLAND MODELS

In this paper we examine the maximization of pseudo-Boolean

functions f : {0, 1}n → R+
0

on bit strings x = x1x2 . . . xn of length

n. We interpret the value f (x) as the �tness of the individual x. A

�tness function is called unimodal if every non-optimal bit string

has a Hamming-neighbor of higher �tness. We investigate

OneMax(x) =
n∑
i=1

xi , LeadingOnes(x) =
n∑
i=1

i∏
j=1

xj

as prototypes of unimodal functions with n + 1 di�erent values.

�e main di�erence between these two functions is the number

of improving Hamming-neighbors. While every bit string x with

OneMax(x) = i < n has n − i neighbors of higher �tness, the

improving neighbor w.r.t. LeadingOnes is unique.

We employ the island model as a common framework for dis-

tributed evolutionary computation, cf. [14, 18, 19]. Suppose an

undirected graph G = (V ,E), the migration topology, on λ = |V |
vertices to be given. Every vertex, called island, marks an indepen-

dent instance of the (1+1) Evolutionary Algorithm using standard

bit mutation. Prior to the �rst iteration all islands are initialized uni-

formly at random, a�er that they operate in lockstep. Occasionally,

governed by a migration protocol, the islands share copies of their

currently best solutions along the edges of G. A maximum-�tness

migrant replaces the solution of a receiving island if the �tness

of the former is not smaller than that of the la�er. Ties among

incoming migrants (with maximum �tness) are broken uniformly

at random. We employ migration periodically every τ rounds, the

migration interval. �e simplest migration protocol is a broadcast

of the currently best solution to all neighboring islands. �is leads

to Algorithm 1. Here x(j) denotes the best individual on island j.
We are mainly interested in two measures of complexity. First,

we count the number of generations until an optimal individual is

sampled for the �rst time, we call this random variable the opti-
mization time and denote it withT . Second, we count the messages

sent during the migration phases leading up to an optimal solu-

tion (line 10 in Algorithm 1). We adopt an amortized view on the

communication costs as we only account for the average number of

messages per island. Let C denote this average. Observe that even

in the case of a deterministic migration protocol, C is a random

variable. We refer to the sum T + C as the combined costs. �is

implicitly assumes that generating and evaluating a new individual

is as expensive as sending a message to one neighboring island.
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Algorithm1: Island model with migration topologyG = (V ,E)
on λ islands and migration interval τ .

1 t ← 0;

2 for 1 ≤ j ≤ λ in parallel do

3 x(j) ← solution drawn u.a.r. from {0, 1}n ;

4 repeat

5 t ← t + 1;

6 for 1 ≤ j ≤ λ in parallel do

7 y(j) ← �ip each bit of x(j) independently w/ prob. 1/n;

8 if f (y(j)) ≥ f (x(j)) then x(j) ← y(j) ;

9 if t mod τ = 0 then

10 Send x(j) to all islands k with {j,k} ∈ E;

11 N = {x(i) | {i, j} ∈ E};
12 M = {x(i) ∈ N | f (x(i)) = maxx∈N f (x)};
13 y(j) ← solution drawn u.a.r. from M ;

14 if f (y(j)) ≥ f (x(j)) then x(j) ← y(j) ;

15 until termination condition met;

However, as the theorems below quantify both measures separately

all results can easily be extended to the weighted case.

In this work we derive asymptotic bounds on the expectations

E[T ] and E[C] for several migration topologies and protocols. To

distinguish the two �tness functions also in notation, we let E[TOM]
and E[COM] stand for the respective cost measures when optimizing

OneMax, and E[TLO] and E[CLO] for LeadingOnes. All bounds

will be in terms of n, λ, and τ simultaneously. More formally, we

regard λ = λ(n) and τ = τ (n) as positive, non-decreasing, integer-

valued functions and characterize the univariate asymptotics of the

expected costs w.r.t. n for arbitrary choices of λ and τ .

2.1 �e Spreading Time

Our main tool to establish upper bounds on the expected optimiza-

tion time is a �tness level argument [21]. We say that Algorithm 1

is on �tness level i if the maximum �tness over all islands equals i .
OneMax and LeadingOnes both induce n + 1 �tness levels. Due

to the elitist selection the level never decreases and T measures

the number of rounds until the algorithm enters level n. We split

T in the partial optimization times (Ti )0≤i<n , where Ti is the time

needed to leave level i . Ti crucially depends on the number of is-

lands whose individual has the currently best �tness i . By preferring

��er individuals, migration helps to spread good solutions so that

more islands can e�ectively contribute to the overall progress. �e

ability of a topology to speed up computation through migration is

quanti�ed in the notion of the spreading time.

De�nition 2.1. Suppose a migration topology G = (V ,E) and a

natural number 1 ≤ k ≤ λ is given. For a vertex v ∈ V , let Sv (k)
be the number of communication steps needed to inform at least

k islands starting from v . �e spreading time of G is the function

S(k) = maxv Sv (k).

Communication steps happen only during migration phases (i.e.,

once every τ rounds). �e number of generations that pass until a

good solution is su�ciently widespread is thus by a factor τ larger

than the spreading time.

�e following lemma is also implicitly given in [14, Lemma 1].

Lemma 2.2. Let pi be (a lower bound on) the probability that the
(1+1) EA samples an individual of �tness larger than i from one of
�tness exactly i and 1 ≤ λi ≤ λ. �en,

E[Ti ] ≤ 1 + τ S(λi ) +
1

pi λi
.

Proof. A�er τ S(λi ) iterations, λi islands have adopted a solu-

tion of maximum �tness i via migration. �e expected waiting time

until one of the λi islands creates a solution of larger �tness results

in an upper bound on E[Ti ]. �e probability of not �nding a be�er

solution in one round is at most (1 − pi )λi , thus the waiting time is

1

1 − (1 − pi )λi
≤ 1 +

1

pi λi
. �

�e spreading time S is non-decreasing, so it worsens the es-

timate when λi gets larger. On the other hand, if more islands

share a good solution, the probability to complete the current level

increases. �e extreme value of λi = 1 completely eliminates the

in�uence of the spreading time (as S(1) = 0), but in turn also bars

migration from contributing to the optimization process. �e re-

sult below allows us to choose λi independently for every �tness

level to balance out these two opposing trends. It is an immediate

consequence of the linearity of expectation.

Corollary 2.3. Let (λi )0≤i<n be any sequence of integers be-
tween 1 and λ, then

E[T ] ≤ n +
n−1∑
i=0

(
τ S(λi ) +

1

pi λi

)
.

In case of a randomized migration protocol the spreading time is

no longer a deterministic function but a random variable, parame-

terized by the target number λi of islands to reach. However, if we

replace S(λi ) with its expectation the reasoning above stays valid.

3 PUSH PROTOCOL

We start the analysis with a probabilistic approach to migration,

namely, the push protocol. �e migration interval is �xed at value

τ , but the transmission itself is randomized. Every island chooses a

neighbor uniformly and sends its current best solution to it. Using

probabilistic communication is a robust way to save on the com-

munication costs, even in densely connected migration topologies.

We prove this for the complete graph Kλ on λ vertices.

�e push protocol is well-analyzed in literature. To bound the

expected spreading time, we use the following adaption of a more

general result by Doerr and Künnemann [8]. Let ldx denote the

base-2 logarithm of x .

Lemma 3.1. [8, Lemma 3.3] Consider the complete graph Kλ as
migration topology using the push protocol. �en, there is a constant
c ≥ 1 such that E[S(k)] ≤ ldk for all 1 ≤ k ≤ λ/c .

Theorem 3.2. Consider the complete graph Kλ as the migration
topology using the push protocol. �en,

(1) E[TOM] = O

(
n logn
λ + n logτ

)
;

(2) E[COM] = O

(
n logn
λτ +

n log τ
τ

)
.
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Proof. (2) can be obtained from (1) and the fact that every island

sends exactly one message every τ generations.

We now prove part (1). A standard computation shows that the

probability pi (formally de�ned in Lemma 2.2) to �nd an improving

Hamming-neighbor of an individual x with OneMax(x) = i is at

least (n − i)/(en). We want to use (the randomized version of)

Corollary 2.3 in the proof and thus de�ne a sequence (λi )0≤i<n ,

its members represent the minimum target number of islands to

which we want to distribute the best solution. Let constant c be as

in Lemma 3.1 and let

λi =


1, if i <

(
1 − 1

τ

)
n;

n
τ (n−i) , if

(
1 − 1

τ

)
n ≤ i <

(
1 − c

λτ

)
n;

λ
c ,

d
d+1 otherwise.

Let L1 denote the lower limit and L2 the upper limit of the range

of i de�ned in the second case of above equation. From this se-

quence we get the following upper bounds on the spreading times

in level i ,

E[S(λi )] ≤


0, if i < L1;

ld

(
n

τ (n−i)

)
, if L1 ≤ i < L2;

ld

(
λ
c

)
, otherwise.

Intuitively speaking, while the �tness i < L1 is small, a single

island is capable of making signi�cant progress on its own and does

not require any migration. �e middle range is designed such that

the sum τE[S(λi )] + 1/(piλi ) ≤ τ ld λi + en/(λi (n − i)) stemming

from Lemma 2.2 is minimized (up to constant factors). �is balances

the time needed to spread good solutions with the waiting time to

complete the level. If i > L2 is already quite large, we need a lot of

generations to make further progress, it is thus bene�cial to inform

(almost) all islands in the meantime. We tacitly assume λ/c > 1.

Otherwise, λ is constant and we get the usual O(n logn) bound.

Applying Corollary 2.3 to the sequence (λi )i gives

E[TOM] ≤ n +
L1−1∑
i=0

( en

n − i

)
+

n−1∑
i=L2

(
τ ld λ +

cen

λ(n − i)

)
+

L2−1∑
i=L1

(
τ ld

(
n

τ (n − i)

)
+

en

n − i

(
τ (n − i)

n

))
.

We handle the partial sums separately.

P1 =

L1−1∑
i=0

( en

n − i

)
= en

n∑
j=n−L1+1

1

j
≤ en ln

(
n

n − L1

)
+ en.

�e last inequality is due to the estimate

∑n
j=k 1/j ≤ ln(n/(k−1))+1,

with k > 1, of the harmonic series. Substituting n − L1 = n/τ gives

P1 ≤ en (lnτ + 1).

P2 =

n−1∑
i=L2

(
τ ld λ +

cen

λ(n − i)

)
= (n − L2)τ ld λ + ce

n

λ

©­«
n−L2∑
j=1

1

j

ª®¬
≤ (n − L2)τ ld λ + ce

n

λ
(ln(n − L2) + 1).

With n − L2 = n/(λτ ) we get

P2 ≤
n ld λ

λ
+ ce

n

λ

(
ln

( cn
λτ

)
+ 1

)
.

Regarding the third part, we have

P3 =

L2−1∑
i=L1

(
τ ld

(
n

τ (n − i)

)
+

en

n − i

(
τ (n − i)

n

))
= τ

©­«
n−L1∑

j=n−L2+1

ld

(
n

τ j

)ª®¬ + (L2 − L1)eτ .

We insert L2 − L1 = (1 − c/λ) · n/τ ≤ n/τ and bound the sum by

an integral,

P3 ≤ τ
(∫ n/τ

n/(λτ )
ld

(
n

τ j

)
dj

)
+ en ≤ (e + 1)n − n ld λ

λ
.

As a result, the (n ld λ)/λ terms in P2 and P3 cancel out and

E[TOM] ≤ P1 + P2 + P3 = O

(
n logτ +

n

λ
log

( n
λτ

))
= O

(
n logτ +

n logn

λ

)
. �

For the push protocol on a complete graph a linear parallel

optimization time can be enforced by se�ing λ = Ω(logn) and τ
a constant. �is parameter se�ing also minimizes the expected

combined costs E[TOM +COM]. Observe that the communication

costs are always dominated by the optimization time. However,

when choosing the migration interval τ = Ω(n) (e.g. to reduce

communication costs even more) the island model behaves like a

single (1+1) EA and the in�uence of migration is diminished.

Lässig and Sudholt [14] consider, instead of deterministic mi-

gration intervals, a migration probability p, with which any two

neighboring islands communicate. �is loosely corresponds to

a migration interval of τ = 1/p. While �eorem 3.2.(1) gives a

logarithmic dependence on τ , the corresponding bound from [14,

�eorem 18] gives a linear dependence in 1/p.

Theorem 3.3. Consider the complete graph Kλ as the migration
topology using the push protocol. �en,

(1) E[TLO] = O

(
n2

λ + nτ log

( n
τ
))
;

(2) E[CLO] = O

(
n2

λτ + n log

( n
τ
))
.

Proof. It is clearly enough to show (1). �e proof follows the

same ideas as that of �eorem 3.2 but is somewhat easier. �e

reason being that for LeadingOnes the bound on the probability

pi does not depend on the current level, and it is always at least

1/en. Let again c ≥ 1 be such that S(k) ≤ ldk whenever k ≤ λ/c .

We choose λi = min{n/τ , λ/c} for all 0 ≤ i ≤ n− 1. Assume for the

moment that the λi de�ned that way are all larger than 1. We split

the analysis into two cases. First, suppose that the above minimum
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is n/τ . From Corollary 2.3 we get

E[TLO] ≤ n+n

(
τS

(n
τ

)
+

en

n/τ

)
≤ nτ

(
ld

(n
τ

)
+ 2e

)
= O

(
nτ log

(n
τ

))
.

Now suppose λi = λ/c , then

E[TLO] ≤ n + n

(
τ S

(
λ

c

)
+
cen

λ

)
≤ n

(
τ ld

(
λ

c

)
+
cen

λ
+ 1

)
.

Using the assumption λ/c ≤ n/τ gives the claimed bound.

If n/τ is smaller than 1, we choose λi = 1 instead for all i . �is

corresponds to the migration interval τ being too large to bene�t

the optimization. However, also the in�uence of the spreading

time S is reduced to zero. �e optimization time degenerates to the

usual O(n2) generations of a single (1+1) EA (which can be seen

by another application of Corollary 2.3). �is can only happen if

τ = Ω(n). �e observation that this implies O(n2) = O(nτ log(n/τ ))
completes the proof. �

For LeadingOnes, an expected optimization time of O(n logn)
can be reached by se�ing λ = Ω(n/logn) and τ = Θ(1). �e same

parameter se�ing applies to E[TLO +CLO].
�e bound given in �eorem 3.3 is never worse than the O(n2/λ+

nτ log λ) proven in [14] and for all reasonable parameter se�ings

they are equivalent.

4 MULTIDIMENSIONAL TORI

In this section we investigate the broadcast model. Every τ gen-

erations all islands send their best solution to all their neighbors

simultaneously. Now the spreading time is a deterministic function.

Also, the communication costs are functionally determined by the

optimization time and the structure of the underlying graph. Let

d(G) denote the average degree of a given migration topology G,

then random variables C and T di�er by a factor d(G)/τ . Conse-

quently, we focus again on bounding the optimization time.

As a proof of concept we consider the d-dimensional torus as

topology. It can be constructed from a (�nite) d-grid by connecting

the outermost vertices through wrapping edges. More formally,

�x two integers d and ` at least 1 and de�ne the vertex set V =

{0, ..., ` − 1}d . E = {{u,v} ∈
(V

2

)
| ∃i : (ui − vi = 1 mod `) ∧

(∀j , i : uj = vj )} is the edge set. Symbol ui denotes the i-th
component of vector u. In dimension one this de�nition gives a

bidirectional ring and in two dimensions the usual torus.

We would like to point out that throughout this section d is

regarded as a constant independent of n.

A characteristic property of d-tori is that the spreading time is

in the order of the d-th root, provided that only a constant fraction

of the nodes needs to be informed.

Lemma 4.1. Consider the d-dimensional torus as the migration
topology using broadcast communication. De�ne constant c = 1, if
d = 1, and c = 4

d (d − 1)d−1 otherwise. �en, for every 1 ≤ k ≤ λ/c ,
S(k) ≤ 2d

d√
k .

Proof. Let integers d and ` be as de�ned above. First assume

d ≥ 2. As long as no wrapping edges are involved, the collection of

informed nodes make up a d-dimensional diamond shape. W.l.o.g.

it is centered at node (0, ..., 0) ∈ V . �is polytope is bounded by 2
d

(d−1)-dimensional faces consisting of exactly the islands that have

still uninformed neighbors. �ey are the only ones contributing to

the rumor spreading in the next round. In order to avoid double

counting, we only consider a single face, namely the one pointing in

the “direction” of vector (1, . . . , 1). A�er t ≥ 0 communication steps

this face consists of exactly the points (a1,a2, . . . ,ad ) satisfying

a1 + a2 + · · · + ad = t . Basic combinatorics tells us that there are(d+t−1

d−1

)
many of them.

Let the growth rate [3], F (t), be the total number of informed

nodes a�er t communication steps (i.e., the size of the whole dia-

mond).

F (t) ≥
t∑
i=0

(
d + i − 1

d − 1

)
≥

t∑
i=0

(
i

d − 1

)d−1

≥ 1

(d − 1)d−1

( t
2

)d
.

�is implies that the spreading time S(k) = mint {t | F (t) ≥ k} is at

most 2(d − 1)
d−1

d
d√
k , which is smaller than the claimed bound.

�e condition of not using the wrapping edges is surely satis�ed

for the �rst `/2 steps. During this period at least

F

(
`

2

)
≥ 1

(d − 1)d−1

(
`

4

)d
=
λ

c

nodes can be informed. Here, we used that `d = λ by construction.

�e result for d = 1 can be derived by elementary means. It is

easy to see that F (t) = 2t + 1 for the bidirectional ring and thus

S(k) = d(k − 1)/2e. �is imposes no further conditions on k . �

Theorem 4.2. Consider the d-dimensional torus as the migration
topology using broadcast communication. �en,

(1) E[TOM] = O

(
n logn
λ + n logτ

)
;

(2) E[COM] = O

(
n logn
λτ + n

log τ
τ

)
;

(3) E[TLO] = O

(
n2

λ + n
d+2

d+1 τ
d
d+1

)
;

(4) E[CLO] = O

(
n2

λτ + n
d+2

d+1 τ−
1

d+1

)
.

We omit the proof due to space limitations. �e results can be

obtained using the same techniques as in the proofs of �eorem 3.2

and �eorem 3.3. Note that the d-torus is a 2d-regular graph and d
a constant, which implies E[C] = O(E[T ]/τ ).

�eorem 4.2.(1) improves on the bounds in [14, �eorem 7] for

OneMax (with a migration probability equal to 1/τ ) in showing

that the dependency of the optimization time on τ is logarithmic

instead of

√
τ for the ring or τ 2/3

for the torus. Part (3) generalizes

their bounds for LeadingOnes to arbitrary dimensions d ≥ 1.

We get an expected optimization time of E[TOM] = O(n) with

λ = Ω(logn), and E[TLO] = O

(
n
d+2

d+1

)
with λ = Ω

(
n

d
d+1

)
. For both

cases a constant migration interval τ is best. �ese bounds extend

to the respective combined optimization costs.

5 THE COMPLETE GRAPH

We now cover the special case of broadcast communication on

a complete graph as the migration topology. �is se�ing di�ers

from all examples above in that the spreading time degenerates

into a step function. �at means in the vast majority of iterations

the islands compute their local improvements in total isolation.

However, periodically all islands obtain a globally best solution in
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a network-spanning communication e�ort, only to be le� alone for

another phase of τ generations.

If the migration interval is too large, namely, if τ > en, one can ex-

pect every island to �nd its own improving mutation w.r.t. Leading-

Ones (and even more so for OneMax) between migrations. �en,

inter-node communication is obsolete, eroding the characteristics

of an island model. �is can also be seen from the �eorems 3.2

through 4.2 as for t = Ω(n) the parallel optimization times exceed

the run time of a simple (1+1) EA on the same �tness function.

Consequently, we assume τ ≤ en throughout this section.

For the other extreme of τ = 1, it has been pointed out that the

island model using broadcast on a complete graph is very similar to

the (1+λ) EA [14]. �e only distinction is that di�erent islands can

store di�erent solutions of the same maximum �tness. Tight run

time bounds for the (1+λ) EA on OneMax are known [9]. Hence,

by characterizing the optimization time of the island model we can

precisely quantify the in�uence of the migration interval τ .

In this section we give tight bounds for the expected optimization

time for the OneMax �tness function and upper and lower bounds

for LeadingOnes. �e expected communication costs can be ob-

tained from this value by multiplying with a factor Θ(λ/τ ) since

every islands sends (λ − 1) messages every τ iterations. Although

these bounds will be proven for the Kλ as migration topology, the

lower bounds extend to any connected graph. �is is due to the fact

that additional informed islands can only bene�t the optimization

and no topology spreads solutions faster than the complete graph.

5.1 OneMax

Theorem 5.1. Consider the complete graph Kλ as the migration
topology using broadcast communication and a migration interval
τ ≤ en. If τ = o(log λ), we have

E[TOM] = Θ

(
n logn

λ
+

nτ

log λ
log

(
log λ

τ

))
.

If τ = Θ(log λ), we have

E[TOM] = Θ

(
n logn

λ
+ n

)
.

If τ = ω(log λ), we have

E[TOM] = Θ

(
n logn

λ
+ n log

(
τ

log λ

))
.

In the remainder of this section we prove the various bounds

given in the theorem, starting with the upper bounds. Prior to this

we need the following two lemmas. Due to space limitations we

omit their proofs.

Lemma 5.2. Suppose a positive integer n, probability 0 < p < 1,
and a constant ε > 0 to be given. Let c = (1−p)n and letX ∼ Bin(n,p)
be a binomially distributed random variable. If ln(c/ε) ≥ enp,

P

[
X ≥ ln(c/ε)

ln( ln(c/ε)/(npε))

]
≥ ε .

Lemma 5.3 ([5, Prop. 9]). Consider the (1+1) EA with mutation
probability p on OneMax and suppose the current search point has
k 0-bits remaining. If k ≤ 0.6n, then the probability that the search
point of the next iteration has less than k/2 0-bits is exp(−Ω(k)).

Proof of Theorem 5.1. Upper Bound. Since we aim to opti-

mize OneMax, we consider the number of remaining 0-bits in

a solution as the distance to the optimum. We divide the opti-

mization process into three phases depending on the minimal dis-

tance of all islands. �e cuto� points between the phases are at

d0 = min{n,n ln(λ)/(2τ )} and d1 = n/(τ ln λ). Note that the �rst

phase is only relevant if 2τ ≥ ln λ. In a �rst step, we estimate the

time it takes for Algorithm 1 to achieve a distance of at most d0.

�is is bounded by the time to reach a distance of at most d0 on

a single island and an additional phase of τ iterations until this

solution is sent to all islands. Regarding a single island, we can

resort to the well-known run time bounds for the (1+1) EA, cf.

e.g. [7]. �ey imply that the time for an island to reach distance d0

is O(n log(n/d0)) = O(n log(τ/log λ)), if 2τ ≥ ln λ, and 0 otherwise.

Before considering the second phase between d0 and d1, we

analyze the third phase of optimization from d1 all the way to

the optimum. To that end, suppose that one island has a non-

optimal solution of distance d ≤ d1. Using Corollary 2.3 adapted to

the landscape of the d1 �tness levels in question, we see that the

expected remaining optimization time is at most

d1∑
d=1

(
1 + τ +

en

dλ

)
= O

(
τd1 +

n logd1

λ

)
= O

(
n

log λ
+
n logn

λ

)
.

Now we turn to the more involved phase of optimization between

distances d0 and d1. If we consider a point in time where migration

just occurred, all islands now have an individual with �tness d
(where d0 > d > d1) and τ rounds of evolution without migration

will follow. �e probability that a speci�c 1-bit is gained during any

iteration is at least 1/en. �us, the probability that it is not gained

during τ iterations is at most (1− 1/en)τ ≤ 1−τ/2en, using τ ≤ en.

As a result, the number of gained bits in τ iterations is dominated

by a binomially distributed random variable with parameters d
and τ/2en. We use Lemma 5.2 to derive a bound on the possible

improvements of λ islands during τ iterations. We put ε = 1/λ so

that we can conclude that, with constant probability, at least one

island will have made the progress described in the lemma. Note

that the c in Lemma 5.2 may be o(1) if d ≥ 2en/τ ; in this case we

only consider 2en/τ many missing bits, giving c constant. Note that

the lemma requires ln(cλ) > dτ/(2en). �us, for small λ, we might

need to restrict to an even smaller number d of bits (but again only

by a constant factor). In any way, there is a constant c ′ such that

h(d) = c ′ ln λ

/
ln

(
n ln λ

τd

)
is a lower bound on the expected progress in the phase between

subsequent migrations. Since we are only interested in asymptotic

bounds, we will omit this constant in what follows.

We now use the Variable Dri� �eorem [13, �eorem 4.6] with

h as a bound to the improvement. Observe that h is monotonically

increasing in d . We get that the expected time to reach distance d1

when starting from d0 is at most

τ

∫ d0

d1

dx

h(x) =
τ

ln λ

∫ d0

d1

ln

(
n ln λ

τx

)
dx = − τ

ln λ

∫ d0

d1

ln

( τx

n ln λ

)
dx .
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We use integration by substitution with y = τ x
n ln λ and arrive at

− τ

ln λ

n ln λ

τ

∫ τd0/n ln λ

τd1/n ln λ
lny dy = −n

∫ τd0/n ln λ

1/(ln λ)2
lny dy.

�e integral of the natural logarithm is y 7→ y(ln(y) − 1). In the

case of d0 = n, i.e., τ < ln λ, we thus resolve the integral to

−n
[
y(ln(y) − 1)

]τ /ln λ
1/(ln λ)2

=
n

ln λ

(
τ

(
ln

(
ln λ

τ

)
+ 1

)
− 2 ln ln λ + 1

ln λ

)
,

in accordance with the claimed bound. If τ ≥ ln λ, we get

−n
[
y(ln(y) − 1)

]
1

1/(ln λ)2
= n

(
1 − 2 ln ln λ + 1

(ln λ)2

)
,

which is O(n). Combined with the bounds already established

above and the additive term 1/h(d1) = O(1) from the variable dri�

theorem, this gives the desired upper bounds on the expected opti-

mization time in the three cases stated in the theorem.

Lower Bound. It is straightforward to prove a lower bound of

Ω((n logn)/λ) from the observation that the unary unbiased black-
box complexity of OneMax is Ω(n logn) [15]. �e (1+1) EA needs

an expected number of Ω(n logn) �tness evaluations to optimize

OneMax. So λ copies of it need at least Ω((n logn)/λ) generations

to provide this many evaluations.

For the remaining terms we will give phases of the optimization

which have the claimed run time as a lower bound. In order to see

that none of these phases is skipped, we use Lemma 5.3. First, we

examine the case of τ = ω(log λ). We show that the expected time

it takes until any island samples a solution with at most (n log λ)/τ
0-bits for the �rst time is Ω(n log(τ/log λ)), which establishes the

bound in this case. Again, we consider the progress of a single

island in the τ iterations between migrations. Suppose the current

solution has distance d ≥ (n log λ)/τ to the optimum. �e expected

progress between subsequent generations is at most d/n, cp. [23,

Lemma 6.7]. �erefore, within τ iterations the expected progress

is at most dτ/n ≥ log λ. For any constant C ≥ 6, the probability

of progress at least Cdτ/n is at most 2
−Cdτ /n ≤ 2

−C log λ = λ−C ,

using a standard Cherno� bound. In particular, the probability

that there is one among the λ islands which makes a progress of

at least Cdτ/n is λ−C+1
. �is shows that the expected progress of

the best out of the λ islands between migrations is O(dτ/n). Using

a Multiplicative Dri� �eorem for lower bounds from [22], we

get that the time the island model takes to optimize a randomly

initialized bit string into one with at most n log λ/τ 0-bits is

τ · n
τ
·
(
lnn − ln

(
n log λ

τ

))
= Ω

(
n log

(
τ

log λ

))
.

Next we consider the case of τ = Θ(log λ), where we want to

show a bound of Ω(n). To that end, we measure the time Algo-

rithm 1 takes to get from distance n(ln λ)/τ to distance n(ln λ)/(2τ )
from the optimum. �e reasoning is similar as above. Suppose

the number of bits set to 0 in the currently best individual is still

d ≥ n(ln λ)/(2τ ). In expectation the �tness on this island improves

by at most dτ/n ≥ (ln λ)/2 within τ rounds and for any C ≥ 6,

the probability that the island makes progress of at least Cdτ/n is

at most 2
−Cdτ /n ≤ λ−C/2. Using the assumption d ≤ n(ln λ)/τ ,

we get an expected progress of O(log λ) over all λ islands and τ
iterations. �e Additive Dri� �eorem in [12] implies Ω(n) steps

are needed to �nd a solution of distance at most n(ln λ)/(2τ ).
Finally, suppose τ = o(log λ). We want to show a lower bound

of Ω( nτ
log λ log

log λ
τ ). �is time we consider the range between dis-

tance n(ln λ)/τ and n/τ to the optimum. Suppose the current best

individual of an island has d ≥ n/τ 0-bits. �e expected progress

in τ iterations of this island is at most dτ/n. We de�ne

h(d) = ln λ

/
ln

(
n ln λ

τd

)
and abbreviate r = ln(n(ln λ)/(dτ )), that is, h(d) = (ln λ)/r . �e

Cherno� bound argument is a bit more involved but still shows that

for any C su�ciently large, the probability that one island makes

progress of at least Ch(d) is at most

exp

(
− ln

( n

edτ
Ch(d)

)
Ch(d)

)
= exp

(
− ln

(
Cn ln λ

eτdr

)
C

ln λ

r

)
≤ exp

(
− ln

(
n ln λ

τd

)
C

ln λ

2r

)
= exp

(
−C ln λ

2

)
= λ−

C
2 .

Once again we conclude that the maximum progress of λ islands

in τ iterations is O(h(d)). With a Variable Dri� �eorem for lower

bounds [11] we can employ the same integration method as for the

upper bound to get a matching run time. �

�e tight bounds on the expected optimization time translate

to the following optimal parameter se�ing. To minimize the par-

allel optimization time (for λ bounded from above by a polyno-

mial) one should choose λ = nΘ(1) and τ a constant to obtain

E[TOM] = Θ(n (log logn)/logn). If, however, the total optimization

costs E[TOM +COM] for both the computation and communication

are to be optimized, the ideal choice is λ = Θ(logn) and τ = Θ(logn)
which leads to a bound of Θ(n log logn).

5.2 LeadingOnes

An upper bound on the optimization time of LeadingOnes on the

complete graph can be obtained from the results in [14] or an easy

application of Corollary 2.3.

Theorem 5.4. Consider the complete graph Kλ as the migration
topology using broadcast communication. �en,

E[TLO] = O

(
n2

λ
+ nτ

)
.

We proceed to prove a lower bound on the expected optimization

time. �e main di�culty in applying �tness-level arguments to

lower bounds is the possibility that the optimization process may

skip several levels with a single improvement. We handle this issue

by combining a poly-logarithmic number of consecutive levels to

one block; skipping a block then is unlikely. �is technique has

already been used in [3]. We omit the proof.

Lemma 5.5. Consider the complete graph Kλ optimizing Leading-

Ones using broadcast communication and amigration interval τ ≤ en.
If λ = poly(n), there is a constant c > 0 such that the probability of
any island �nding a �tness improvement of more than c ln

2n between
consecutive migrations is o(1/n).
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Theorem 5.6. Under the conditions of Lemma 5.5, we have

E[TLO] = Ω

(
n2

λ
+

n

log
2n
τ

)
.

Proof. Ω(n2/λ) clearly is a lower bound on the optimization

time, again from the unbiased black-box complexity of Leading-

Ones, cp. [15]. �e second term stems from the time the islands

spend on �nding independent improvements between migrations.

We prove this bound by coupling several random variables.

Let the constant c > 0 be as in Lemma 5.5 and, for integers 0 ≤ j ≤
(n+1)/(c ln

2n), de�ne the j-th �tness block as the �tness levels from

j (c ln
2n) to (j + 1)(c ln

2n) − 1. Note that optimization on all islands

starts in block 0 with probability superpolynomially close to 1, by

Cherno� bounds. We de�ne a simpli�ed random process of block
discovery that models the computation on a single island but, at the

same time, incorporates the bene�cial in�uence of migration. �ere

are two ways for the island to discover a block. Every mutation

�ipping the le�-most 0-bit and none of the leading 1s, called an

essential step, leads to the discovery of a new block. Migration,

happening every τ iterations, grants another one.

Let T ′ stand for the random variable denoting the number of

rounds the process needs to discover all (n + 1)/(c ln
2n) + 1 blocks.

Lemma 5.5 implies that the probability of the original optimization

skipping a full block in nτ iterations is o(1). Hence, TLO �rst-order

stochastically dominates T ′ and any lower bound on E[T ′] extends

to E[TLO] (if it does not exceed nτ ).

To establish the estimate E[T ′] = Ω(nτ/log
2n), it is enough to

prove the existence of a constant c ′ > 0 such that

lim

n→∞
P

[
T ′≤ c ′

nτ

ln
2n

]
= 0.

We �x some real number c ′< 1/(c (e+1)). �e reason for this choice

will become apparent in the following discussion. For the moment,

it is su�cient that it ensures C = (1/c) − c ′ > 0.

De�ne t = c ′nτ/ln2n. �e discovery process guarantees t/τ =
c ′n/ln2n blocks via migration. If T ′ ≤ t shall hold, the essential

steps have to make up for the remaining blocks. Let X denote the

number of essential steps during t rounds. X , in turn, is dominated

by a binomially distributed variable Y ∼ Bin(t , 1/n). �at is,

P[T ′≤ t] ≤ P

[
X >

n + 1

c ln
2n
− t

τ

]
≤ P

[
Y > C

n

ln
2n

]
.

It is best to split the remaining argument into two cases de-

pending on the limit behavior of E[Y ] = t/n = c ′τ/ln2n. First,

suppose the expected value is bounded for all n, then Var[Y ] =
E[Y ] (1 − (1/n)) is bounded as well. By Chebyshev’s inequality,

lim

n→∞
P

[
Y > C

n

ln
2n

]
≤ lim

n→∞
Var[Y ](

C n
ln

2n
− E[Y ]

)
2
= 0.

In case E[Y ] diverges, we de�ne

1 + δ =
Cn

E[Y ] ln
2n
=

1

c − c ′

c ′
· n
τ
.

�e assumptions τ ≤ en and c ′< 1/(c (e+1)) together imply δ > 0.

Using Cherno� bounds, we �nally arrive at

P

[
Y > C

n

ln
2n

]
= P

[
Y > (1 + δ )E[Y ]

]
≤ exp

(
−δ

3

E[Y ]
)
.

�e right member of the inequality converges to 0. �

�e upper and lower bounds for LeadingOnes yield the follow-

ing optima. To minimize E[TLO] choose λ = Θ(n) and a constant

τ , resulting in O(n). �e lower bound Ω(n/log
2 n) follows imme-

diately because τ cannot be sub-constant. For the combined costs

E[TLO + CLO] set λ = Θ(
√
n) and τ = Θ(

√
n) to get O(n3/2). �e

lower bound Ω(n3/2/logn) follows from the following observation.

Set λ = Θ(
√
n logn) and τ = Θ(

√
n logn). All terms of the lower

bound are Ω(n3/2/logn), and changing any parameter will increase

either of the terms.
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