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Abstract. The Paired Domination problem is one of the well-studied
variants of the classical Dominating Set problem. In a graph G on n
vertices, a dominating set D (set of vertices such that N [D] = V (G)) is
called a paired dominating set of G, if G[D] has perfect matching. In the
Paired Domination problem, given a graph G and a positive integer
k, the task is to check whether G has a paired dominating set of size at
most k. The problem is a variant of the Dominating Set problem, and
hence inherits most of the hardness of the Dominating Set problem;
however, the same cannot be said about the algorithmic results. In this
paper, we study the problem from the perspective of parameterized com-
plexity, both from solution and structural parameterization, and obtain
the following results.
1. We design an (non-trivial) exact exponential algorithm running in

time O(1.7159n).
2. It admits Strong Exponential Time Hypothesis (SETH) optimal

algorithm parameterized by the treewidth (tw) of the graph G. The
algorithm runs in time 4twnO(1); and unless SETH fails, there is no
algorithm running in time (4 − ε)twnO(1) for any ε > 0.

3. We design an 4dnO(1) algorithm parameterized by the distance to
cluster graphs. We complement this result by proving that the prob-
lem does not admit a polynomial kernel under this parameterization
and under parameterization by vertex cover number.

4. Paired Domination admits a polynomial kernel on graphs that
exclude a biclique Ki,j .

5. We also prove that one of the counting versions of Paired Domina-
tion parameterized by cliquewidth admits n2cwnO(1) time algorithm
parameterized by cliquewidth (cw). However, it does not admit an
FPT algorithm unless #SETH is false.
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1 Introduction

Given a graph G, a set D ⊆ V (G) is called a dominating set if every vertex not in
D has a neighbor in D. Given a graph G and an integer k, the Dominating Set

problem asks if there exists a dominant set of size at most k. The combinational
and algorithmic aspects of the problem are extensively studied in the literature
[16,17]. To get an idea of the variants and generalizations of domination, refer
to the books [14,15].

The Dominating Set problem generally models a guarding problem in
which one needs to use the smallest number of guards to protect a certain object.
This object is represented by a graph. Guards can be placed only in vertices, and
if a guard occupies vertex v, then he is controlling vertex v and all its neighbors.
Under this model, it is natural to require an additional property: each guard has
a partner with whom they back up each other. This model was introduced by
Haynes and Slater [18]. In this case, the problem is called Paired Domination

instead of Dominating Set.
Given a graph G, a dominating set D ⊆ V is called a paired dominating set

(PD-set for short), if the induced subgraph G[D] has a perfect matching. Let
M be a perfect matching in G[D], then for an edge uv ∈ M , we say that u
is paired with v. Given a graph G and an integer k, the Paired Domination

problem asks if G has a PD-set of size at most k. It is important to note that the
problem Paired Domination does not generalize Dominating Set. The prob-
lem is known to be NP-complete even for restricted graph classes such as split
graphs [5], bipartite graphs [5], and planar graphs [23]. For results on Paired

Domination, we refer to a survey paper [8] and the book [14]. Although there
have been several findings on complexity issues, the exploration of algorithmic
approaches to address NP-hardness has not been as extensive. In this paper we
fill this gap by studying the problem within the framework of parameterized
complexity. We note that Paired Domination problem almost was not studied
from the parameterized complexity point of view. The only result, known to us,
is obtained by Hanaka et al. [13]. They studied an r-Grouped Dominating Set

and for r = 2 this problem coincides with the Paired Domination problem.
Hanaka et al. [13] presented an 3vcnO(1) algorithm for Paired Domination.

As stated above, the problem is a close variant of the Dominating Set

problem. Therefore, it is natural to find similarities and dissimilarities between
Dominating Set and Paired Domination. The Dominating Set problem is
well studied in the context of parameterized complexity. The problem is known to
be a canonical W[2]-hard when parameterized by the solution size [10]. The prob-
lem remains W[2]-hard even in some restricted graph classes, including bipartite
and split graphs [21], where the parameter is the solution size. On the positive
side, the problem is FPT on restricted graph classes such as planar graphs [1,4],
nowhere dense graphs [7], d-degenerate graphs [2], Ki,j-free graphs [20] (a com-
plete bipartite graph with one side of size i and the other of size j), and graphs
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of bounded genus [12]. The problem is also known to be FPT with respect to
structural parameters, such as treewidth [19,22], cliquewidth, and vertex cover
number of a graph.

Our Results
We design the first non-trivial exact exponential time algorithm running in time
O(1.7159n) to compute a minimum cardinality PD-set of a graph. The algo-
rithm first enumerates all the minimal dominating sets of a given graph G in
time O(1.7159n) and then for each of them uses a subroutine based on maximum
matching algorithm to complete it to a PD-set of a graph. Finally, we output
the one with a minimum cardinality. Designing an exact algorithm whose exe-
cution time is better than the number of minimal dominating sets of a graph G
(O(1.7159n)) is an interesting question.

Next, we consider structural parameters, treewidth (tw), vertex cover number
(vc) of a graph, and distance to cluster graphs. Recall that distance to cluster
graphs does not exceed vertex cover number. It is known that Dominating Set

admits an algorithm with running time 3twnO(1); and unless SETH fails, there
is no algorithm running in time (3 − ε)twnO(1) for any ε > 0 [19]. We show a
similar result for Paired Domination. That is, we give an algorithm that runs
in time 4twnO(1); and unless SETH fails, there is no algorithm running in time
(4 − ε)twnO(1) for any ε > 0. The algorithm is a classical dynamic programming
algorithm over graphs of bounded treewidth with a subset convolution trick
applied to join node to speed up the computation. Then we design a 4dnO(1)

algorithm where d is the distance to cluster graphs. We complement this result
by proving that the problem does not admit a polynomial kernel when param-
eterized by the vertex cover number. As d ≤ vc we conclude that the Paired

Domination problem does not admit a polynomial kernel when parameterized
by the distance to cluster graphs.

One of the largest family of graphs where Dominating Set is known to
admit a FPT algorithm parameterized by the solution size k is Ki,j-free graphs.
We show that Paired Domination behaves similarly to Dominating Set on
biclique-free graphs. Towards this, we design a polynomial kernel for Paired

Domination on graphs that exclude a biclique Ki,j . The kernelization algorithm
is inspired by the kernelization algorithm designed by Philip et al. [20] for the
Dominating Set problem.

All graphs considered in this paper are simple and finite. For the basic graph
theoretic notations and definitions refer to the book [9], and for the notations
and definitions related to parameterized complexity refer to the book [6]. For
k ≥ 1, an integer, we use [k] to denote the set of integers {1, 2, . . . , k}.

2 Exact Exponential Time Algorithm

In this section, we design an exact exponential-time algorithm for Paired Domi-

nation. Note that if a graph G contains isolated vertices, then there is no PD-set
in G; that is, G is a No-instance. Therefore, we assume that the graph G has
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no isolated vertex. We first design an algorithm that, given a graph G and a
dominating set D, constructs a PD-set D′ such that D ⊆ D′.

Algorithm 1. Dom-set to PD-set

Input: A graph G without an isolated vertex and a dominating set D of G.
Initialize: D′ = D;
begin

Compute a maximum matching M of induced subgraph G[D′];
Let A = D′ \ V (M);
while (A �= ∅) do

Pick a vertex v ∈ D′;
if (NG(v) ⊆ D′) then

D′ = D′ \ {v};
A = A \ {v};

else
Let u ∈ NG(v) \ D′;
D′ = D′ ∪ {u};
A = A \ {v};

return D′

Lemma 1 (♣1). Let G be a graph, D be a PD-set of G, and D′ ⊆ D be a
minimal dominating set of G. If S is a PD-set of G constructed from D′ using
Algorithm 1, then |S| ≤ |D|.

The above lemma concludes that if D is a minimum size PD-set of a graph
G and D′ is a minimal dominating set of G contained in D, then we can obtain
another PD-set S of G containing D′ such that |S| ≤ |D|. More specifically, as D
is a minimum-sized PD-set of G, |S| = |D|. Thus, if for a graph G, D1,D2, . . . , Dr

are all possible minimal dominating sets of G, and S1, S2, . . . , Sr are the corre-
sponding PD-sets such that Di ⊆ Si, and D is a minimum size PD-set of G,
then D = Si, where Si has minimum size among the sets S1, S2, . . . , Sr. Fomin
et al. [11] propose an algorithm that enumerates all minimal dominating sets of
a graph in time O(1.7159n). Formally the result is stated below.

Theorem 1. [11] For a graph G on n vertices, all the minimal dominating sets
of G can be enumerated in time O(1.7159n).

Using the above results, we obtain the following theorem.

Theorem 2. For a graph G on n vertices, Paired Domination can be solved
in time O(1.7159n).

1 Proofs of the results marked with (♣) are omitted due to space constraint.
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3 Parameterization by Treewidth and Pathwidth

In this section, we give a dynamic programming-based FPT algorithm for
Paired Domination parameterized by the treewidth of the input graph G
and prove matching lower bound assuming SETH. To compute a minimum car-
dinality PD-set of a graph G, we use a nice tree decomposition of G with an
edge introduce node. For the definition and properties of tree decomposition,
see [6]. We use the following notations in our algorithm. Consider two nonempty
sets, A and B. Then A \ B = {x ∈ A | x /∈ B}. Let f : A �→ B be a function.
Then for a ∈ A, the function fa�→b : A �→ B is defined as fa�→b(x) = f(x) for all
x ∈ A \ {a} and fa�→b(a) = b, and the function fa1 �→b1,a2 �→b2 : A �→ B is defined
as fa1 �→b1,a2 �→b2(x) = f(x) for all x ∈ A\{a1, a2} and fa1 �→b1,a2 �→b2(a1) = b1 and
fa1 �→b1,a2 �→b2(a2) = b2. For a set A′ ⊆ A, the restriction of f denoted by fA′ is
defined as fA′(a) = f(a) for each a ∈ A′. In this case, the function f is called
an extension of fA′ .

Let (T, {Xt}t∈V (T )) be a tree decomposition of the given graph G with width
tw. For a node t ∈ V (T ), let Tt denotes the subtree of T rooted at t and
Gt = (Vt, Et) be the graph associated with Tt, where Vt =

⋃
t∈V (Tt)

Xt and
Et = {e | e is introduced in the subtree rooted at t}). Note that Vr = V (G)
and Gr = G, where r is the root node of T . We define a function f : Xt �→
{1, 1̂, 0, 0̂} that labels the vertices in bag Xt. Each label in the set {1, 1̂, 0, 0̂} has
the following definition:

1 – vertices that are mapped to 1 are part of the partial solution D ⊆ Vt and
are paired with a vertex in D.

1̂ – vertices that are mapped to 1̂ are part of the partial solution D ⊆ Vt but are
not paired in D.

0 – vertices that are mapped to 0 are not part of the partial solution D ⊆ Vt

but must be dominated by D.
0̂ – the vertices mapped to 0̂ are not part of the partial solution D ⊆ Vt and do

not need to be dominated by D.

Let t be a node in the tree T , and Xt be the corresponding bag. There are 4|Xt|

possible labelling of Xt. A set D ⊆ Vt respects a function f : Xt �→ {1, 1̂, 0, 0̂} on
Xt, if D satisfies the following properties:

1. D ∩ Xt = f−1(1) ∪ f−1(1̂).
2. D dominates all the vertices in the set Vt \ f−1(0̂).
3. There is a perfect matching M in G[D\f−1(1̂)], that is, matching M saturates

all the vertices in D \ f−1(1̂). In this case, we say that vertices in D \ f−1(1̂)
are paired.

For a node t ∈ V (T ) and a function f : Xt �→ {1, 1̂, 0, 0̂}, we define PD[t, f ] to
be the minimum cardinality of a set D such that D respects f on Xt. If for a
node t and labeling f of Xt, no such minimum cardinality set D exists, then we
set PD[t, f ] = +∞. Depending on the node type, we now compute the value of
PD[t, f ] for each node t ∈ V (T ) and f : Xt �→ {1, 1̂, 0, 0̂}, traversing the tree T
in a bottom-up manner.
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1. If t is a leaf node: By the definition of nice tree decomposition Xt = ∅. It
implies that each color class is an empty set in any labeling f of Xt. Moreover,
PD[t, f ] = 0, as Vt = ∅.

2. If t is a vertex introduce node: Since t is a vertex introduce node, t has
exactly one child t′ such that Xt = Xt′ ∪ {v}, where v /∈ Xt′ . We observe
that v /∈ Vt′ by the definition of nice tree decomposition. Since there is no
edge incident on v introduced at the current node t, v cannot be dominated
or paired in Gt. Consider a labelling f : Xt �→ {1, 1̂, 0, 0̂} of Xt, then:

PD[t, f ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+∞ if f(v) = 1;
1 + PD[t′, fXt′ ] if f(v) = 1̂;
+∞ if f(v) = 0;
PD[t′, fXt′ ] if f(v) = 0̂.

3. If t is an edge introduce node: Since t is an edge introduce node, t has
exactly one child, say t′, such that Xt = Xt′ and there is an edge uv ∈ E(G)
that is introduced at node t. That is, uv ∈ Gt but uv /∈ Gt′ . For a labeling
f : Xt �→ {1, 1̂, 0, 0̂}, we derive the following recurrence based on the labeling
of vertices u and v.

PD[t, f ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{PD[t′, fu �→1̂,v �→1̂],PD[t′, f ]} if (f(u), f(v)) = (1, 1);

PD[t′, fv �→0̂] if (f(u), f(v)) ∈ {(1, 0), (1̂, 0)};
PD[t′, fu �→0̂] if (f(u), f(v)) ∈ {(0, 1), (0, 1̂)};
PD[t′, f ] otherwise.

4. If t is a forget node: By the definition of nice tree decomposition, t has
exactly one child t′ such that Xt = Xt′ \ {v} for some vertex v ∈ Xt′ . Note
that v does not appear in any bag above Xt in T as v /∈ Xt. Therefore, v
should be dominated (or belongs to the dominating set) in Gt′ . We give the
following recurrence: PD[t, f ] = min{PD[t′, fv �→1],PD[t′, fv �→0]}.
Note that every path decomposition of a graph G is also a tree decomposition
with no join node. Moreover, for introduce node, introduce edge node, and
forget node we considering 4|Xt| labellings of Xt and for each labelling f ,
PD[t, f ] can be computed in time |V (G)|O(1). From this we can infer that
Paired Domination can be solved in time O(4pw|V (G)|O(1)).

5. If t is a join node: By the definition of nice tree decomposition, t has
exactly two children t1 and t2 such that Xt = Xt1 = Xt2 . Let f1, f2 and f
be labellings of Xt1 , Xt2 , and Xt, respectively. We say that f1 and f2 are
compatible with f , if the following conditions hold, for all v ∈ Xt:
(a) f(v) = 1 if and only if (f1(v), f2(v)) ∈ {(1, 1̂), (1̂, 1)},
(b) f(v) = 1̂ if and only if (f1(v), f2(v)) = (1̂, 1̂),
(c) f(v) = 0 if and only if (f1(v), f2(v)) ∈ {(0, 0̂), (0̂, 0)},
(d) f(v) = 0̂ if and only if (f1(v), f2(v)) = (0̂, 0̂).
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Observe that there are 6 choices for a compatible triplet (f(v), f1(v), f2(v)) and
so 6tw choices for all the vertices in bag Xt. We use subset convolution for faster
computation of the compatible functions. For this, we rewrite the above four
conditions for compatible functions as follows:

(a) f−1(1) = f−1
1 (1) ∪ f−1

2 (1),
(b) f−1

1 (1) ∩ f−1
2 (1) = ∅,

(c) f−1(0) = f−1
1 (0) ∪ f−1

2 (0),
(d) f−1

1 (0) ∩ f−1
2 (0) = ∅.

We would fix the set of vertices mapped to 1 or 1̂ and apply the subset convo-
lution to compute such functions. Let us fix R ⊆ Xt and let F(R) be the set of
all functions f such that f−1(1) ∪ f−1(1̂) = R. Recall that we want to compute
the value of PD[t, f ] for all f ∈ F(R). We can represent each function in F(R)
as two sets S ⊆ Xt \ R and Q ⊆ R such that S is a pre-image of 0 and Q is a
pre-image of 1. Thus, a function f represented by S and Q can be defined as:

ΦQ
S (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if x ∈ Q;
1̂ if x ∈ R \ Q;
0 if x ∈ S;
0̂ if x ∈ Xt \ (R ∪ S).

Therefore, for every labeling f ∈ F(R) we have:

PD[t, f ] = min
Q⊆R

{

min
A∪B=f−1(0)

A∩B=∅

{
PD[t1, Φ

Q
A] + PD[t2, Φ

Q
B ] − |R|

}
}

.

We show that using subset convolution computations at join node can be
done in 4twnO(1) time. The correctness proofs of each recurrence and running
time analysis are omitted due to space constraints.

Theorem 3 (♣). Given a graph G of treewidth tw, Paired Domination can
be solved in O(4tw · |V (G)|O(1)) time.

Fig. 1. Gadget G′

Now we prove a matching lower bound.

Theorem 4. Unless SETH fails, there is no algorithm for
Paired Domination with running time O∗((4−ε)pw) for
any ε > 0, where pw is the pathwidth of the input graph.

Proof. From SETH, it follows that there is no
O∗ ((2 − ε)n) running time algorithm for SAT, where n
is the number of variables in the input formula. To estab-
lish our lower bound, we transform a given CNF formula
F with n variables and m clauses into a graph G with a path decomposition of
width at most k = n

2 +C for some constant C. Moreover, F is satisfiable if and
only if the graph G has a PD-set of a special size, which we will determine later.
Therefore, if we can solve PD-set in O∗ (

4λk
)

time for λ < 1, then we would
have a O∗ (

4λ(n/2+C)
)
= O∗ ((2 − ε)n) running time algorithm for SAT, which

leads to a contradiction. Now we proceed with the details of the transformation.
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We assume that F = C1∧C2∧· · ·∧Cm. Without loss of generality, we assume
that F depends on variables x1, x2, . . . , xn−1, xn, where n = 2p. For each j ∈ [p]
we consider a pair of variables x2j−1, x2j . For each such pair of variables, we
assign a gadget G′ shown in Fig. 1. Consider all four possible assignments for
these pairs of variables: 00, 01, 10, 11. We associate these assignments with the
following pairs of vertices {v3, v4}, {v1, v4}, {v2, v3}, {v1, v2} in the correspond-
ing gadget. We note that if an assignment ab corresponds to a pair {vi, vj}, then
the vertex xab is not connected to vertices vi, vj in the gadget. For each pair of
vertices x2j−1, x2j we create a chain of gadgets G′ such that the vertex v1 of one
gadget is connected to the vertex v4 of the preceding gadget. Each such chain
contains m gadgets, and the i-th gadget corresponds to a clause Ci from F . For
each i ∈ [m], we create a vertex named Ci for the clause Ci. We connect the
vertex x′

ab from the i-th gadget of a the pair x2j−1, x2j with the vertex Ci if
the assignment x2j−1 = a, x2j = b satisfies clause Ci. We denote obtained con-
struction by H. H is schematically shown in the left square of Fig. 2. We repeat
this construction, H, exactly 3

2n + 1 times, and connect these parts in a chain
fashion, as shown in Fig. 2. Additionally, we add vertices l, l′, r, r′, and edges
(l, r), (l, l′), (r, r′). The first vertices of the leftmost H (the left blue rectangle in
Fig. 2) are combined into a clique and are connected respectively to l. Similarly,
the last vertices in the right-most H (the right blue rectangle in Fig. 2) generate
a clique and are connected to the vertex r. This completes the construction. The
entire construction is depicted schematically in Fig. 2. In Fig. 2, each block of
four consecutive vertices corresponds to the vertices v1, v2, v3, v4 of the gadget
G′. The remaining vertices from the gadget are not shown in the figure to avoid
clutter.

Fig. 2. General scheme of the constructed graph

Now, we are ready to prove the following lemma.

Lemma 2 (♣). Formula F has a satisfying assignment if and only if the con-
structed graph G has a PD-set of size at most 2nm

(
3
2n + 1

)
+ 2.

We have demonstrated that the constructed instance of PD-set is equivalent
to the original formula F . Now, we need to verify that the constructed graph
indeed has a pathwidth of at most n

2 + C.
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Lemma 3 (♣). For each formula F , the constructed graph G (see Fig. 2) has a
pathwidth of at most n

2 + C for some constant C.

From Lemmas 2 and 3 we deduce the statement of Theorem 4. ��

4 Parameterization by Distance to Cluster Graphs

A graph is called a cluster graph if all its connected components are cliques (i.e.,
complete graphs). We say that a graph G has a distance d to a cluster graph if
there exists a subset X ⊆ V (G) such that |X| ≤ d, and G−X is a cluster graph.

It is trivial to find a PD-set in cluster graphs in polynomial time if there
exists one. Hence, it is natural to consider Paired Domination parameterized
by the distance to cluster graphs.

Theorem 5. Paired Domination can be solved in O∗(4d) time, where d is the
distance of the input graph to a cluster graph.

Proof. Recall that a graph is a cluster graph if and only if it does not contain a
P3 (a path of length three) as an induced subgraph. Consequently, a minimum-
size modulator to cluster graphs can be found in O∗(3d) time, where d is the
distance to cluster graphs. From now on we assume that we are given a modulator
to cluster graphs, denoted as X ⊂ V (G), such that G \ X is a cluster graph and
|X| = d. Let us denote G − X by C. Without loss of generality, we assume that
C = C1 � C2 � · · · � Ck where for each i ∈ [k] graph Ci is a clique in G − X.

Our goal is to find a set of vertices D such that D is a dominating set, and
there exists a perfect matching in G[D]. We represent D as D1 ∪ D2, where
D1 = D ∩ X, D2 = D ∩ C. Since we do not know the actual value of D or
D1, we consider 2d potential values for D1 ⊆ X. For each such set D1, we find
the smallest set D′

2 ⊆ C such that D1 ∪ D′
2 forms a PD-set. Subsequently, we

output the smallest among these PD-sets. Note that D1 ∪ D′
2 is a PD-set if (i)

D′
2 dominates the set X \ N [D1], (ii) D′

2 contains at least one vertex in a clique
Ci if Ci �⊆ NG(D1), (iii) G[D1 ∪ D′

2] contains a perfect matching.
In order to find such D′

2 for each potential value of D1, we employ a dynamic
programming. We order the vertices of the cluster graph C such that firstly
we list all vertices of clique C1, then vertices of C2 and so on up to Ck. Let
v1, v2, . . . , v|C| be the ordering. By C[i], we denote a maximal clique in C that
contains the vertex vi, i.e., C[i] = Cj , if the vertex vi is contained in Cj . We
consider a function PDS with arguments i, x, y, S′,D′, where i ∈ [|C|], x, y ∈
{0, 1}, S′ ⊂ X \NG[D1], D′ ⊆ D1. The function PDS(i, x, y, S′,D′) denotes any
subset Y ⊆ {v1, v2, . . . , vi} of minimum size such that:

– Let C[i] = Cj i.e., the vertex vi is contained in clique Cj then for any k < j
we have Y ∩ Ck �= ∅ or Ck ⊆ NG[D1];

– if x = 1, then C[i] ∩ Y �= ∅;
– if y = 0, then G[D′ ∪ Y ] has a perfect matching;
– if y = 1 then G[D′ ∪ Y ] has a matching that covers all vertices except one

vertex from Cj ∩ Y (recall that (C[i] = Cj));
– The set Y dominates the set S′.
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If such Y does not exist, then PDS(i, x, y, S′,D′) = null. It is easy to see that the
required D′

2 is given by PDS(|C|, x, 0,X \NG[D1],D1), where x = 1 if C[|C|] �⊆
NG[D1] (i.e., the last clique is not fully dominated by D1), otherwise x = 0.
Now we show how to calculate the values PDS(i, x, y, S′,D′) using dynamic
programming.

Base Cases: If S′ = ∅, x = 0, y = 0 and there exists a perfect matching in D′

then PDS(0, x, y, S′,D′) = ∅; otherwise, PDS(0, x, y, S′,D′) = null.
To compute the value in our dynamic programming table for a cell

(i, x, y, S′,D′) we consider two cases: 1) vi is not the first vertex in the clique
C[i], 2) vi is the first vertex in the clique C[i].

Case 1: Vertex vi is not the first vertex in the clique C[i].
If vertex vi does not belong to Y , then we have Y = PDS(i − 1, x, y, S′,D′).

Otherwise, vi ∈ Y and we explore several potential scenarios:

1. The vertex vi has a pair u among its neighbors in D′ (i.e., edge viu is part of
the matching in a paired dominating set). In this case,
Y = {vi} ∪ PDS(i − 1, 0, y, S′ \ NG[vi],D′ \ {u}).

2. The vertex vi matches with some vertex vj ∈ C[i], where j < i. If y = 0, then
vj ∈ (Y ∩ C[i]) \ {vi}. Hence, Y = {vi} ∪ PDS(i − 1, 0, 1, S′ \ NG[vi],D′).
If y = 1, then there is a vertex vk such that vk ∈ Y ∩ C[i], k �= i, k �= j),
and vk belongs to the paired dominating set but does not have a pair yet, i.e.
its pair is a vertex vq. Therefore, in (D ∩ C[i]) \ {vi}, there are two unpaired
vertices, vj and vk. In this situation, we have edges vjvi and vkvq as edges
in the matching within the paired dominating set. However, we can replace
these edges in a matching within paired dominating set with edges vjvk, vivq.
Thus, in this case, the following recurrence relation holds: Y = {vi}∪PDS(i−
1, 0, 0, S′ \ NG[vi],D′). Hence, cases y = 0 and y = 1 can be combined by the
following formula: Y = {vi} ∪ PDS(i − 1, 0, 1 − y, S′ \ NG[vi],D′).

3. The vertex vi is the only unpaired vertex in the clique. In that case, y = 1.
Similarly to the previous case, we get the following formula: Y = {vi} ∪
PDS(i − 1, 0, 1 − y, S′ \ NG[vi],D′).

Combining all the subcases in this case, we obtain the following recurrence:

PDS(i, x, y, S′,D′) = min{PDS(i − 1, x, y, S′,D′),
{vi} ∪ PDS(i − 1, 0, 1 − y, S′ \ NG[vi],D′),

min
u∈NG[vi]∩D′

{{vi} ∪ PDS(i − 1, 0, y, S′ \ NG[vi],D′ \ u)}.}

Case 2: The vertex vi is the first vertex in its clique, i.e., C[i − 1] �= C[i]. We
introduce a new variable x1. If i > 1 and C[i − 1] �⊆ NG[D1] we set x1 = 1;
otherwise, we set x1 = 0.

Depending on the values of x and y, we show how to compute
PDS(i, x, y, S′,D′). In the case when x = y = 0, we either can take vi or not. If
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we do not take vi then we have PDS(i, 0, 0, S′,D′) = PDS(i − 1, x1, 0, S′,D′)
since vi �∈ Y . If we take vi, then vi must have a pair inside D′. Hence,
in this case PDS(i, 0, 0, S′,D′) = minu∈NG[vi]∩D′{vi} ∪ PDS(i − 1, x1, 0, S′ \
NG[vi],D′\u). Combining two cases we have PDS(i, 0, 0, S′,D′) = min{PDS(i−
1, x1, 0, S′,D′),minu∈NG[vi]∩D′{vi} ∪ PDS(i − 1, x1, 0, S′ \ NG[vi],D′ \ u)}. If
x = 1 and y = 0, then vi ∈ Y . Hence, for similar reasons as for the case
x = y = 0 we have PDS(i, 1, 0, S′,D′) = minu∈NG[vi]∩D′{PDS(i − 1, x1, 0, S′ \
NG[vi],D′ \u)}. If y = 1, then vi ∈ Y . Therefore, we have PDS(i, 0, 1, S′,D′) =
PDS(i, 1, 1, S′,D′) = {vi} ∪ PDS(i − 1, x1, 0, S′ \ NG[vi],D′).

Summarizing, we have PDS(i, x, y, S′,D′) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
{
PDS(i − 1, x1, 0, S

′, D′),

minu∈NG[vi]∩D′ {vi} ∪ PDS(i − 1, x1, 0, S
′ \ NG[vi], D

′ \ u)
}
, if x = y = 0;

minu∈NG[vi]∩D′{PDS(i − 1, x1, 0, S
′ \ NG[vi], D

′ \ u)}, if x = 1, y = 0;

{vi} ∪ PDS(i − 1, x1, 0, S
′ \ NG[vi], D

′), otherwise.

In all cases we showed how to compute PDS(i, x, y, S′,D′) based on previous
values. Now we proceed with a running time analysis. Note that for a fixed
D1 ⊆ X, the size of the dynamic programming table is at most |C| · 2 · 2 ·
2|X\NG[D1]| ·2|D1| = O∗(2|X|) = O∗(2d). Therefore, the total running time of the
algorithm is at most O∗(4d). ��

To complement the previous result, we show that Paired Domination does
not admit a polynomial kernel parameterized by the distance to cluster graphs
(d). Actually, we prove a stronger result using another parameter, that is, the
vertex cover size of the input graph as d ≤ vc. We derive a polynomial parameter
transformation from the Red-Blue Dominating set problem to accomplish
this task. Given a bipartite graph G = (R,B,E) and an integer k, where R
and B are the set of red vertices and blue vertices, respectively, the Red-Blue

Dominating set problem asks to if there exists a set R′ ⊆ R (called a red-blue
dominating set) of size at most k such that R′ dominates all the vertices in
set B, that is, N(R′) = B. It is known that the Red-Blue Dominating set

problem does not admit a polynomial kernel parameterized by the cardinality
of R unless NP ⊆ co-NP/poly, see [6]. For the definitions and terminology of
polynomial parameter transformation, please refer to the book [6]. Now, we are
ready to prove the following result:

Theorem 6. The Paired Domination does not have a polynomial kernel when
parameterized by vertex cover size, unless NP ⊆co-NP/poly.

Proof. Given an instance (G = (R,B,E), k) of Red-Blue Dominating set

parameterized by |R|, we construct an instance (G′, k′, �) of Paired Domina-

tion parameterized by �, where � is the size of vertex cover as follows:
Take two copies of the set R, say R1 and R2, and two copies of B, say B1

and B2. For a vertex r ∈ R, let r1 and r2 be the copies of the vertex r in R1

and R2, respectively. Similarly, for a vertex b ∈ B, let b1 and b2 be the copies of
the vertex b in B1 and B2, respectively. If rb ∈ E(G) for some r ∈ R and b ∈ B,
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we add edges r1b1 and r2b2 in G′. Furthermore, for each r ∈ R, we make r1 and
r2 adjacent in G′. Next, we take a path on three vertices a, b, and c and make c
adjacent to all vertices in R1 ∪ R2. It is easy to observe that the size of a vertex
cover of G′ is at most 2|R| + 2 that is � ≤ 2|R| + 2. Let k′ = 2k + 2.

Next, we prove that the graph G has a red-blue dominating set of size at
most k if and only if G′ has a PD-set of size at most 2k + 2.

For the forward direction, let S be a red-blue dominating set of G′ of size at
most k. It is easy to see that the set D = {r1, r2 | r ∈ S} ∪ {b, c} is a PD-set of
G′ such that |D| ≤ 2k + 2.

For the reverse direction, consider a PD-set D of G′ of size at most 2k + 2.
To dominate the vertex a, either a or b must be in D. Furthermore, a vertex
in {a, b} can only be paired with another vertex in {a, b, c}. Thus, we have
|D ∩ {a, b, c}| ≥ 2. Therefore, if a, b ∈ D, we can safely replace the vertex a
with c in D. Thus, assume that c ∈ D. Note that |D \ {a, b, c}| ≤ 2k. Let
D1 = D ∩ (R1 ∪B1) and D2 = D ∩ (R2 ∪B2). Then either |D1| ≤ k or |D2| ≤ k.
Without loss of generality, let us assume that |D1| ≤ k. Note that a vertex in
B1 can only be dominated by itself or a neighbor in R1, and all the vertices
in R1 are already dominated by c, as c ∈ D. Thus, D1 dominates the set B1.
Observe that if b1 ∈ B1 ∩ D1, then for some r1 ∈ NG′(b1), the updated set
D1 = D1 \ {b1} ∪ {r1} also dominates all the vertices in B1. Repeating this
process ensures that D1 dominates all vertices in B1 and contains no vertex
from B1. Since the graph induced in R1 ∪ B1 is an exact copy of G, the set
S = {r | r1 ∈ D1} is a red-blue dominating set of size at most k. Hence, Paired
Domination does not admit a polynomial kernel when parameterized by vertex
cover. ��

5 Ki,j-Free Graphs, Counting Version Parameterized
by Cliquewidth

We show that Paired Domination behave similarly to Dominating Set on
Ki,j-free graphs. It is known that Dominating Set admits a polynomial kernel
on Ki,j-free graphs [20]. We adopt their technique for Paired Domination.

Theorem 7 (♣). For fixed j ≥ i ≥ 1, Paired Domination admits a polyno-
mial kernel on a graph that excludes Ki,j as a subgraph.

We also consider the counting version of Paired Domination parameterized
by cliquewidth. Specifically, we prove the following result.

Theorem 8 (♣). There exists a constant c ∈ N such that the following holds:
Assuming #SETH, there is no integer k ≥ 1 such that we can count the number
of minimum paired dominating sets with matchings (where the same paired dom-
inating set is counted several times depending on how many perfect matchings it
has) in time O(nk−c) on an n-vertex graph G given together with a k-expression.
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Furthermore, from Theorem 8, it immediately follows that computing the
number of minimum paired dominating sets with different matching inside is
unlikely to be in FPT under parameterization by cliquewidth. However, it is
possible to count the number of minimum dominating sets in O∗(4cw) as was
shown in [3].

Theorem 9 (♣). Given a graph G and a k-expression G, that introduce each
edge exactly once, we can compute the number of matching that generate a paired
dominating sets of size � in O(n2k+C) time for some constant C > 0.
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