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Abstract

We introduce and analyze the possibilities of a new model for network cre-
ation by autonomous selfish agents: Unlike in typical network formation games
such as the well-known model of Fabrikant et al. [25], the final network is not
directly shaped by the players of a game. Instead, we design mechanisms that
take edge preferences of agents as input for a social choice function and return
a network that respects those preferences. In addition, it caters for compli-
ance with global restrictions on the network topology and tries to establish
several properties, such as global efficiency, maximizing the individual utility
of agents, and building stable networks, especially in comparison to the result
of an anarchic network formation. The mechanism also aims to produce Nash
equilibria and encourages agents to honestly declare their preferences instead
of playing strategically.
Specifically, we suggest three social choice functions for unweighted and one

for weighted tree creation. We analyze them with regard to the introduced
properties in the context of four different utility functions. Highlighting the
power of the new model, we conclude with a mechanism for bounded-degree
networks that performs considerably better than an uncoordinated network
formation.
The mechanism approach is a true superset of both centralized network de-

sign and uncoordinated network creation games. To the best of our knowledge
this is the first attempt to explore the realm inbetween those extremes. As our
work is highly explorative, we do not yet attempt to find a perfect mechanism
for all properties and network types, but lay out several suggestions for future
work on this new model for network creation.



Zusammenfassung

Wir führen ein neues Modell zur Generierung von Netzwerken durch autonome,
egoistische Spieler ein, und analysieren dieses: Im Gegensatz zu typischen Spie-
len zur Netzwerkerstellung, wie dem bekannten Modell von Fabrikant et al. [25],
gestalten die Spieler das Ergebnisnetzwerk nicht direkt. Stattdessen entwickeln
wir Mechanismen, welche die Kantenpräferenzen von Agenten als Eingabe für
eine soziale Entscheidungsfunktion entgegennehmen, und ein Netzwerk zurück-
geben, das diese Präferenzen berücksichtigt. Zusätzlich sorgt der Mechanismus
für die Einhaltung globaler Einschränkungen an die Netzwerkstruktur und ver-
sucht, nützliche Eigenschaften zu erfüllen; zu diesen zählen die globale Effizienz
des Netzwerks, die Maximierung des individuellen Nutzens aller Spieler, sowie
die Konstruktion stabiler Netzwerke, vor allem im Vergleich zum Ergebnis eines
unkoordinierten Prozesses zur Netzwerkgenerierung. Auch zielt der Mechanis-
mus darauf ab, Nash-Gleichgewichte zu erzeugen, und fördert, dass Agenten
ihre Präferenzen wahrheitsgetreu mitteilen, anstatt strategisch zu spielen.
Konkret schlagen wir drei soziale Entscheidungsfunktionen für ungewichte-

te, und eine für gewichtete Bäume vor. Wir analysieren diese dann im Bezug
auf die eingeführten Eigenschaften im Kontext von vier verschiedenen Nut-
zenfunktionen. Abschließend stellen wir den Vorteil des Ansatzes mit Mecha-
nismen heraus, indem wir für Netzwerke mit Knotengradbeschränkung einen
Mechanismus präsentieren, der wesentlich bessere Ergebnisse liefert, als ein
unkoordinierter Prozess zur Netzwerkerstellung.
Der neue Ansatz, Netzwerke mit Mechanismen zu erstellen, ist eine echte

Obermenge bekannter Verfahren wie der zentralen Konstruktion von Netzwer-
ken und den unkoordinierten, dezentralen Spielen zur Netzwerkgenerierung.
Soweit uns bekannt, ist dies der erste Versuch, den Bereich zwischen diesen
zwei Extremen zu erforschen. Die Arbeit ist darauf ausgerichtet, initial die
Möglichkeiten des neuen Modells zu untersuchen. Daher versuchen wir noch
nicht, einen perfekten Mechanismus zu präsentieren, der alle Eigenschaften und
Netzwerktypen unterstützt. Stattdessen schlagen wir verschiedene Ansatzpunk-
te für zukünftige Forschung an diesem neuen Modell zur Netzwerkerstellung
vor.
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1. Introduction and
Related Work

Networks can be seen as the universal structure of our age. While networks for
infrastructure, for example for transportation, electricity, water and sewage,
have always been of major importance, virtual networks without a primary
physical representation now dominate our lives: Most importantly, the Internet
as network of communication networks, but also all other collaboration and
social interaction, processes and hierarchies, market relationships and resource
management can be thought of and analyzed as graphs. The corresponding
graph theory provides us with numerous insights into finding properties of or
operating on such networks.
Some of those networks have been planned and built deliberately to form a

specific topology. Others have grown naturally and still seem to incorporate
several reoccurring properties — but we have so far not been able to fully
understand how these properties come to be. As algorithm engineering can
make use of those properties to develop faster solutions to everyday problems,
building models that mimic real-world networks is a crucial task.
Implementations of such models could in addition help to build better net-

works for future requirements. This thesis explores a new approach by applying
mechanism design techniques to the problem of network creation. We will start
by summarizing existing algorithms for creating networks.

1.1. Central Authority
Some types of networks, such as Local Area Networks, water pipes in a new
building or communication protocols for emergency services, are designed by
a single central authority, such as an IT administrator, the building’s architect
or a legislative organ.
The designer of the network decides on the topology based on a global metric,

for example she might optimize the number of edges, distances or robustness
against edge or node failure. Usually, such networks are connected, thus all
participants can interact with all others and no entity is isolated.

1



1. Introduction and Related Work

1.1.1. Standard Network topologies
One of the typical topologies of such networks is a star (Figure 1.1, a), in which
one entity in the graph is charged with organizing all network traffic of all other
participants. This structure provides short paths of length two between all
pairs of nodes. Routing in such a network is easy, as the central node knows all
its neighbors and can directly relate traffic to the respective recipient. However,
this router bears all traffic load, and if it fails, no connectivity whatsoever
remains.
If the designer adds additional layers to the star, a hierarchy forms (Fig-

ure 1.1, b), in which there are several “more important” nodes that route
traffic between subtrees of the network. As this is more efficient than a single
router, a hierarchical network can grow larger. Should one of those nodes fail,
the graph breaks apart in several components. Nodes in those components are
then no longer able to interact with the rest of the network, but might still be
connected to some other participants.
In contrast to the first two structures, a ring of equal nodes (Figure 1.1, c) is

robust against failure of one node or edge. It is in fact the sparsest 2-connected
network, meaning that no network with fewer edges remains connected if a
node or an edge fails. However, some distances between pairs of nodes are
linear in the number of nodes in the network.
Being fully connected, cliques (Figure 1.1, d) provide the highest possible

robustness and the shortest possible interaction path lengths. Though, the
high node degrees and high number of edges can in some settings come with
enormous costs and efforts for the participating nodes.
Except for the trees, those network topologies assume, that (apart from

routers) participants in a network are of equal importance and are interested
in the overall service quality but do not care about their exact placement
in the graph. In the case of trees, the designer can implement a structural
grouping that respects for example spatial conditions or some information on
the interaction frequency distribution.

1.1.2. Algorithmic Network Design
Especially if the network in design has a spatial representation (in contrast
to being purely virtual), a design algorithm can be used to optimize some
measurement of quality. Such a design process can be thought of as a selection
of one network from the set of all possible graphs with the given nodes.
If for example the target network is to be a tree and all possible edges be-

tween nodes are weighted, Prim’s algorithm [50] or Kruskal’s algorithm [38] can
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1. Introduction and Related Work

(a) (b)

(c) (d)

Figure 1.1.: Stars (a), (tree-)hierarchies (b), rings (c) and cliques (d) are standard
network topologies, especially in IT networks.

be used to efficiently obtain a Minimum Spanning Tree, a tree that connects
all nodes and minimizes the sum of edge weights.
Even small changes to optimization criteria tend to lead to intractable algo-

rithmic problems. As an example, consider the following Problem: Given a set
of nodes and an edge weight function, is there a subset of edges, whose total
weight does not exceed a specified budget, that produces a k-connected graph?
For k = 1 the problem can be solved by calculating the Minimum Spanning
Tree. But for any fixed k > 1 the problem is NP-complete [27, Appendix 1.2,
GT31]. For k = 2 this can easily be proven, as with all edge weights set to 1
the problem is equivalent to finding a Hamilton Circuit.
Similarly, consider the (simple) network design problem as stated by Johnson

et al. [36] that again takes a set of nodes and an edge weight function as input.
This time, the algorithm is tasked to decide whether there exists a graph in
which the sum of the weights of the shortest paths between all node pairs is
smaller than some threshold, and the sum of all edge weights does not exceed
a specified budget. This problem is NP-complete even if all edge weights are
one and the solution graph must be a tree. Garey and Johnson [27, Appendix
A2] list several more NP-complete network design problems.

Due to the NP-completeness of many problems, approximate algorithms
have been developed that trade time for precision, for example heuristics for
networks that minimize the sum of shortest paths under the constraint of a
overall budget [e.g. 22, 52].
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1. Introduction and Related Work

Limitations of Centrally Designed Networks

For selected cases, a central authority might be able to design a network with
good quality according to some metric. This metric usually is global and thus
determines, whether the constructed graph is beneficial for the whole society.
As with the Minimum Spanning Tree, it is sometimes even possible to achieve
a social optimum, which is a state that yields the minimum/maximum value
for the optimized metric. However, lots of network design problems become
intractable for large numbers of nodes. Also, the bigger a network gets, the
more unrealistic it seems, that a central authority could enforce the structure
of a designed network.

1.2. Individual Actors
In fact, many real life instances such as the Internet, trans-regional transporta-
tion infrastructure or social networks are clearly not designed and implemented
by any single authority, but are shaped by many uncoordinated actors. These
actors no longer have global quality as a primary objective, but optimize their
individual metric. Even more so: If modeled as a game, thus as an interaction
between rational and selfish actors (called agents), the individual utility of an
agent (also called cost if the utility is negative) is the only thing an agent
optimizes by making decisions (called strategy) in that game.
The output network is then determined by the strategies of all agents. Either

those decisions are all declared at the same time without the possibility of
reconsidering — a so called one-shot game — or an iterative process enables
agents to dynamically adjust the network to their benefit.
As we no longer assume the presence of a powerful authority that enforces a

network structure, agents can be tempted to modify the topology in order to
improve their outcome. If no single agent can increase her utility by unilaterally
changing her strategy, a network is considered stable and the corresponding
strategies form a so-called Nash equilibrium. Otherwise, the network is unsta-
ble, as there is at least one agent with an incentive to deviate from her strategy.
Note, that it is not guaranteed, that there always is a Nash equilibrium.1

1.2.1. The Network Creation Game
Fabrikant et al. [25] proposed a network creation game in which each node of

1 We are only considering pure-strategies, thus agents have to decide on a single strategy
and cannot assign probabilities.
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1. Introduction and Related Work

the network represents an agent who decides on a subset of other players to
build an undirected edge to. The union of those edges forms the output graph.
Each agent has to pay a constant α per built edge and bears the sum of the
shortest path distances to all other players as additional cost. By choosing her
strategy (thus, the subset of other players) well, each agent tries to minimize
her costs.
Numerous variations of this and other network creation games have been

studied, especially in regards to how (worst-case) equilibrium networks look
like and how they perform in comparison to optimal networks [1, 2, 4, 20, 21,
31, 42, 44]. Amongst others are different models for edge creation and cost
sharing [5, 15, 16, 17, 18, 34], utility functions [8, 11, 29] and studies of game
dynamics [3, 41].
As it is unrealistic that every player is equally interested in interacting with

each other player, Halevi and Mansour [32] have suggested and analyzed an ex-
tension to the network creation game of Fabrikant et al. [25]. In this extension,
building an edge again costs α, but agents only suffer a distant cost for a subset
of players, called their friends. Cord-Landwehr et al. [19] introduced a similar
extension to the basic network creation game of Alon et al. [3]. Similarly to
these extensions we will also claim, that agents do not value all other players
as equally important partners. Section 3.4.1 will give additional reasoning to
this assumption. In contrast to Halevi and Mansour [32] and Cord-Landwehr
et al. [19], our model however won’t assume that friendship is symmetric.
Like [7, 24, 39, 40], we will argue, that real-life actors might be subject

to bounds on their node degree or budget. Lastly, as a lot of equilibrium
networks turn out to be trees, concepts of network failure have been introduced
to incentivize agents to build sparse but more resilient networks [12, 14, 30].

1.2.2. Inefficiency of Games
Even though network creation games closely reflect how many real life networks
are created — most prominently the Internet graph — the results might suffer
under the selfishness of agents. For example, a network game would yield a
disconnected network, if global connectivity is not part of the utility function
of agents. Moreover, not just the overall quality, fairness, but even the very
utility an agent tries to maximize can be worse in an uncoordinated setting
than in a controlled one. General game theory provides many examples for
that, prominent ones being the Prisoners’ Dilemma, the Hawk-Dove Game or
the Tragedy of the Commons which are presented in Appendix A. Closer to
our topic is a simple network routing game, that shows a similar effect as in
the Prisoners’ Dilemma and results in an unintuitive worsening of the agents’

5



1. Introduction and Related Work

utility due to their own selfish actions. This effect is known as Braess’s paradox
[13] and also presented in Appendix A.
In the network creation game of Fabrikant et al. [25], stable networks can

also perform worse than designed networks — especially if one inspects the
social cost, which here simply is the sum of the costs of all agents. Consider 20
agents, who selfishly create a network, in which they have to pay α = 4 for each
built edge, and suffer the shortest distance to all other players as additional
cost. Should they form a (α, k) clique of stars as depicted in network (a) in
Figure 1.2, it is stable for any clique size k, as shown by Albers et al. [2, Lemma
4.1]. However, the star shown in network (b) in the same figure performs better
in terms of social cost and also individual cost for the clique nodes of (a). More
specifically, the social cost of the clique of stars is 990, whereas the star only
accounts for 798 in edge and distance cost.

(a)
(b)

Figure 1.2.: Both networks are stable for α = 4, but both social and some individual
costs are higher for the (5, 4) clique of stars graph (a) than for the star (b).

A widely used measurement for this loss in quality is the Price of Anarchy
introduced by Koutsoupias and Papadimitriou [37]. This ratio compares the
worst possible Nash equilibrium2 to the social optimum and thus gives an idea
of how much worse stable results can possibly be due to the lack of coordination.
Both instances are either represented by a social cost or a social welfare value.
Fabrikant et al. [25] show, that for their model the price of anarchy is O(

√
α)

for α < n2, and at least 3− ε for any ε > 0 and large enough n. Exact values
for the Price of Anarchy in the model are not yet known for all values of α. For
2 For games in which there might not exist stable results, Berger et al. [9] propose a measure

of inefficiency that instead relies on expected values based on a defined or random order
of agents that are allowed to make changes to their strategy.
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large ranges it is known to be constant, as all equilibria for those α are trees
[44]; for even more values this is conjectured. Bilò and Lenzner [10] presented
a recent survey of the progress on this open tree conjecture and improved the
best known bound to α > 4n− 13.
In order to provide a valuable insight, one has to choose wisely how to assign

a social cost or social welfare to a result. Obvious candidates include the sum
of all agents’ utilities or the minimum utility of an agent in the game, but
game-specific values are also possible.

1.3. Mechanism Design
Between the centralized perspective of a governing authority or a private owner,
and the distributed anarchic process of an uncoordinated game, mechanism
design can be seen as a middle way: While the overall process still considers
selfish, rational players and their strategies, the outcome is no longer deter-
mined directly by those strategies; instead agents have to stick to a set of
game rules. One can try to design those rules in such way, that even though
the agents’ choices might still primarily define the outcome, a central author-
ity can be able to impose additional requirements on the result of the game.
As Nisan et al. [46, chap. 9.3.1] state, these rules can be seen as a concrete
implementation of an invisible hand that guides players towards socially good
behavior.

1.3.1. The Structure of Mechanisms
More formally, in the context of mechanism design, each player has a private
preference about the output, based on which she publicly declares her strategy.
A social choice function then takes all strategies as input and produces the
outcome. As the exact function is known to all players, they can choose their
strategy in such way that it optimizes their personal utility which is based on
the outcome itself and an possible payment or fee by the mechanism.
When designing a mechanism one has to define allowed inputs for the players,

possible outputs of the social choice function, and the function itself. As
agents often can freely choose to participate in a mechanism or not, it has
to ensure that no agent can be worse off by taking part in, than by ignoring
the mechanism, as we expect individual rationality from the agents. In order
to provide benefit over an uncoordinated game, the algorithm additionally
should guarantee some individual or social quality of the output. Usually
a mechanism should encourage agents to play truthfully, thus to state their

7
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true preference instead of declaring a tactical strategy to improve their utility.
Lastly, a mechanism should not rely on external subsidies, but has to be able
to finance payments to some players through fees from others. This property
is usually called budget balance.

1.3.2. Applications of Mechanism Design
The development of mechanisms has especially been popular for auctions, elec-
tions and voting systems. Even though mechanism design theory is generally
attributed to Hurwicz [35]3, one of the major results in the realm of voting
systems was published before by Arrow [6] and later extended by Gibbard [28]
and Satterthwaite [51].
Essentially Arrow’s impossibility theorem [6] states, that if agents are to

select from at least three alternatives by ranking them, there is no decision
mechanism that satisfies all of a set of seemingly reasonable fairness criteria:
Firstly, if an irrelevant alternative is added or removed from the election, the
outcome must not change (Independence of irrelevant alternatives). Secondly,
the order of any two alternatives must neither be defined by the vote of a single
dictator, nor the mechanism itself (Nondicatorship and Citizens’ sovereignty).
Finally, no alternative x can fall below an alternative y in the outcome, if the
only changes to the individual rankings were to improve x’s position (Positive
Association of social and individual values).

Impossibility theorems like Arrow’s theorem unveil the limits of mechanisms
in respect to their fairness. Nonetheless, there are equally important results
covering the positive potential of mechanisms. For example, Vickrey’s Second
Price Auction [54] is a strategy-proof mechanism, meaning that no bidder
can improve her chance of winning the auction by bidding a false value. The
generalized concept of Vickrey-Clarke-Groves Mechanisms can be used in many
contexts. Such a mechanism is able to select an outcome that maximizes the
social welfare, which is the sum of all players’ valuation of the outcome, whilst
ensuring that every agent has an incentive to play truthful [46, chap. 9.3.3].
In 2009, Elinor Ostrom was awarded the Nobel Memorial Prize in Economic
Sciences for researching several real-world non-governmental solutions of the
Tragedy of the Commons; those solutions basically being community-based
mechanisms [48].
Closest to our application of mechanism design to network creation is the

well-known stable marriage problem posed and solved by Gale and Shapley [26].

3 Leonid Hurwicz, Eric S. Maskin and Roger B. Myerson have been awarded the Nobel
Memorial Prize in Economic Sciences “for having laid the foundations of mechanism
design theory”[47]
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Even though not usually formulated in that nomenclature, their algorithm
essentially is a mechanism: A set of n men and n women declare their marriage
preferences as input to a social choice function, which then matches them in
couples. The mechanism makes sure that the matching is stable in the sense,
that there is no pair of a man and a woman who prefers each other over their
assigned partner. We will build on the same idea of preferred partners, but
construct a network of equal agents instead of a bipartite matching.

1.3.3. Algorithmic Mechanism Design
Mostly, mechanism design theory only deals with the properties of a mecha-
nism’s output, not with the computational aspects of the social choice function.
More recently, mechanism design theory and algorithm analysis have been com-
bined: Nisan and Ronen [45] coined the term Algorithmic Mechanism Design
and suggested both to use mechanism design to solve “algorithmic problems
in a distributed setting”[45] and to analyze whether mechanisms are poly-time
computable.
Most importantly for us, all computational parts of a mechanism, which

are both decisions made by the agents and the social choice function, are now
subject to algorithmic complexity (worst-case) analysis. Mechanisms that can
be implemented to run in polynomial time are of particular interest, as longer
runtimes are considered unrealistic for real-world applications of a mechanism.

1.4. Mechanisms for Network Creation
This thesis explores the potential of mechanisms if used for network creation.
Just like in the network creation game by Fabrikant et al. [25], participating
agents represent nodes in the network-to-be. A mechanism will take prefer-
ences on neighbors from each agent as input and generate an output graph
that tries to fulfill those preferences.
As a mechanism’s way to produce that output graph is not restricted in

any way, mechanisms are a true superset of both one-shot network games and
centrally designed networks: If each agent’s preferences are stated as subset
of all other agents, and the mechanism simply returns a graph that contains
exactly the edges that correspond to those preferences, the process is essentially
the same as in the network game. By ignoring the input completely and
generating an arbitrary network structure based only on the number of agents
or some public information, the mechanism resembles a central authority that
constructs the graph.

9



1. Introduction and Related Work

Our goal is to find mechanisms in the realm inbetween those extremes, that
are able to build properties into the network desirable for individual agents or
the society as a whole, and that are not achieved by either described “pure”
form of network generation. We will focus on six properties a mechanism
should fulfill. The reasoning for those properties follows here; we define them
more precisely in Section 2.4.

Profitable Participation To effectively implement a mechanism, agents have
to be willing to declare their neighbor preferences to the mechanism and accept
the result. As no rational agent would risk to end up with a lower utility
by joining such a network, the mechanism has to guarantee that each agent
receives at least as much (or even more) utility as she would in a anarchic
network creation process. For that, we will compare the individual utility
of each agent in worst-case instances of mechanism-generated networks and
worst-case results of the network game.

High individual Profit In addition to the lower bound on allowed utilities,
the mechanism should not only limit risks, but even promise high reward for
each agent. Preferably, agents achieve the utility of the (individual) best-case
network. As it might not be possible for all agents to simultaneously get the
maximum profit, the mechanism should at least guarantee to build a network
that yields close-to-optimal utility for many agents.

Stable networks As long as an agent could increase her utility by deviating
from the generated network, for example through dropping planned edges and
buying different ones instead, it seems unlikely that all agents are happy with
the mechanism’s output. On the other hand, we call a network stable, if for
some specified allowed deviations no agent can improve her profit. If such a
stable network exists, a mechanism should choose it over unstable ones. This
might not always be possible; in such cases the mechanism should aim for a
network that is approximately stable, meaning that no agent can improve her
utility by much.

Rewarding Honesty No agent should be able to manipulate the output net-
work and increase her utility by lying about her true preferences. As a mech-
anism only knows the declared strategies and not the preferences, it cannot
enforce honesty. Instead, it must incentivize honest strategies in such way,
that it is always better (or at least as good) for an agent to tell the truth than
to play tactically.
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High social Welfare As the tragedy of the commons and the prisoners’
dilemma show, dominating strategies might result in a worst-case outcome
for both individual agents and the society. One of the main advantages of a
mechanism over a game is, that it can try to avoid such an outcome by gen-
erating an output that optimizes the individual and social welfare — even if
this output does not correspond to dominating strategies. At the same time,
a mechanism can try to establish some kind of fairness among participating
agents. We will show examples later, in which some have to endure low utility
in order to maximize the utility of others. Rather, costs should be distributed
among participants in a way that no agent can free-ride the network at the
expense of others.

Global Properties A mechanism can also try to implement a structure that
benefits the society, even though this benefit might not influence the utilities
of individual agents. Such global properties are for example the guaranty,
that a generated network is connected, even when the agents’ preferences do
not require it. Similarly, a small diameter or a robustness against edge- or
node-failure is desirable.

Some of those properties might be achieved by simply comparing all possi-
ble (usually exponentially many) output graphs and selecting the best one.
We require however, that mechanisms are feasible, thus they have to run in
polynomial time.
This thesis explores several mechanisms and utility functions in order to

show that for each of the six properties there are mechanisms which achieve
them (see Table 1.1). It is not content of this work to find a single mechanism
that achieves all of them, this is left as future work.

11
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Social Choice
function

Utility
function

Individual
Rationality

Efficiency
global/individual

Stability
swap/anarchy

Truthfulness

Iterative Attachment Dist. Costs no no/no no/no yes
Bounded Dist. yes no/no no/no yes
Profit from all trivially yes — no/— —
Exp. Decrease trivially yes — no/— —

Cycle Breaking Dist. Costs for most yes/for most rarely/yes yes
Bounded Dist. yes no/for most sometimes/yes yes
Profit from all trivially yes — rarely/— —
Exp. Decrease trivially yes — rarely/— —

Cycle Replacement Dist. Costs mostly for all yes/2-approx for all rarely/better yes
Bounded Dist. yes yes/yes always/better yes
Profit from all trivially yes — sometimes/— —
Exp. Decrease trivially yes — rarely/— —

Greedy MST Ranked — some/— — no
Snowflakes — — — —/much better —

Table 1.1.: Overview of all social choice functions, utility functions and properties. The entries are heavily simplified; see the
respective chapters for exact statements. Dashes mark properties not analyzed in this work.
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2. Definitions and Notation
After informally introducing the concepts of mechanisms and network creation,
we will now define our model and related properties.

2.1. Mechanisms
All mechanisms in this thesis consider a set of n agents A = {a1, . . . , an}. Each
agent ai has private preferences that we call the type ti ∈ Ti of the agent, where
Ti is the set of possible types of agent ai. We denote the vector of all types
by t = (t1, . . . , tn) and the vector of the types of all agents except for ai by
t−i = (t1, . . . , ti−1, ti+1, . . . , tn). As a shorthand we will write (ti, t−i) for t.
While the type of each agent ai is fixed, she freely chooses her strategy si

from all of her possible strategies Si and publicly declares it. Usually, we will
chose Si = Ti for simplicity. Analogous to the agents’ types we denote the
vectors s, s−i and (si, s−i).

Taking the strategy vector s as input, the mechanism’s social choice function
f will return some outcome o ∈ O, where O is the set of all possible outcomes.
If the mechanism decides to pay some compensation to or charge a fee from
agents, f will additionally return a sequence of payments (pi)ni=1. A positive
value pi describes a payment from the mechanism to the agent, a negative
value is a payment from the agent to the mechanism.

Each agent ai then derives some value vi(o) ∈ R from the outcome. By
choosing her strategy, she tries to optimize her utility ui(o) = vi(o) + pi. This
implies that we only consider quasilinear preferences, meaning both the value
and the payment can be measured in money.
All combined, a mechanismM consists of a sequence of strategy sets (Si)ni=1,

a set of possible outcomes O and a social choice function f : (S1, . . . , Sn)→ O
or (with payments) f : (S1, . . . , Sn)→ O × Rn.

2.2. Mechanisms for Network Creation
In our context, based on the strategy vector s, mechanisms will produce an
output graph o(s) = G = (V,E), in which the participating agents A are

13



2. Definitions and Notation

represented by vertices V = A. We will therefore use the terms agent, vertex
and node interchangeable. Remember, that a mechanism is not entirely free
to construct o(s), but has to produce some o(s) ∈ O.
A strategy of an agent always describes a set of desired edges from the agent

to her preferred neighbors. The whole strategy vector s therefore resembles a
strategy graph Gs. We generally distinguish two categories:

In the unweighted case (see Figure 2.1), a strategy si is a subset of all other
agents A \ {ai}. The set si is then called the set of ai’s friends. Consequently,
the edges of the strategy graph Gs = (A,E) are given by E = {(ai, ap) | ai ∈
A, ap ∈ si}. If |si| = 1, we will usually omit the set braces.
Alternatively, agents can be allowed to rank other agents in order of de-

creasing importance to them (see Figure 2.2). Strategies si are then given as
tuple of k distinct preferred neighbors. The strategy graph Gs = (A,E,w) is
augmented with an edge-weight function w : E → {1, . . . , k}. If r is the rank
of agent aj in the strategy tuple si of agent ai, then w(ai, aj) = r. We denote
this agent aj with rank r in the strategy of ai by si[r], analogously we use ti[r].
The edge set E is defined the same as above.

Agent Strategy

a1 {a2, a3}
a2 {a3, a4, a5}
a3 {a4, a2}
a4 a5

a5 {a1, a2}

a1 a2

a3 a4

a5

Figure 2.1.: An example for unweighted strategies s (left) and the corresponding strategy
graph Gs (right).

The direction of an edge e ∈ E shows, which agent of the two endpoints
wished or even paid for the edge. An edge e = (ai, aj) is considered to be
directed from ai to aj. If edges are paid for by agents, e is owned by agent
ai, otherwise the direction simply shows, that ai initiated the connection by
including aj in her strategy. However, in terms of connectivity we will ignore
the direction; the edge can be equally used by both adjacent agents to derive
value.

We will use set operations as notation for changes to a graph. Thus, G\{e}
describes the removal of edge e from the graph G, and G ∪ {e} its addition;
same holds for vertices.

14



2. Definitions and Notation

Agent Strategy

a1 (a3, a2)
a2 (a3, a4)
a3 (a2, a4)
a4 (a5, a2)
a5 (a1, a2)

a1 a2

a3 a4

a5

2

1
1

2
1

2

2

1

1

2

Figure 2.2.: An example for weighted strategies s with k = 2 (left) and the corresponding
strategy graph Gs (right).

Finally, the undirected hop distance between two agents x and y in the graph
G is denoted by dG(x, y); we define this distance to be infinite if x and y are
not connected in G.

2.3. Anarchic Network Creation
To evaluate our mechanisms, we will compare their results with worst-case
graphs created in an anarchic process. While the agents in this process have
the same types and utility functions as in the mechanism, the network creation
itself is uncoordinated. Just as with mechanism-created networks, the resulting
graph however should be be a graph o ∈ O. Due to the lack of coordination,
agents cannot be forced to build edges essential to the constraints of O, but we
assume they can at least not add edges that would violate those constraints.
According to their utility function, the agents decide on a strategy that

describes which edges they would like to establish. Our anarchic process starts
with the empty graph (A, ∅), to which the agents one-by-one add their preferred
edges if they are conform with the conditions imposed by O. Each instance
of that process is defined by the build-order of participating agents. A worst
case instance thus corresponds to that permutation of agents, that produces
the lowest utility for the society or the agent in question. As with the agents’
strategies, we distinguish between unweighted and weighted edge preferences:
If an agent’s strategy represents a set of friends of equal importance, she

adds edges to all those friends at once, or at least to as many as possible
without violating a graph constraint. This simulates, that an agent ai wants
all her friends as close as possible, and for that immediately tries to build
direct edges.

15



2. Definitions and Notation

In the ranked version, the agents play k rounds and try in each round to add
an edge to the correspondingly ranked agent in their strategy tuple. Thereby,
the process represents their preference of some agents over other possible neigh-
bors in the network.
Both versions are similar to the network creation game proposed by Fab-

rikant et al. [25], in that the resulting graph is essentially the union of the
agents’ strategies. Only, in our case there are additional constraints on the
result graph and the utility functions differ.
Note that neither of those processes guarantees to result in an equilibrium

network. Even though it would be fair to compare mechanism outputs to
equilibrium networks only, not all utility functions have an equilibrium in O,
nor can it be guaranteed that an anarchic process reaches such an equilibrium
state. A simple example sets O to the set of connected graphs; if the agents’
strategies lead to disconnected components in the original network creation
game, the two introduced processes would do so as well. Depending on the
utility function, any additional or replaced edge that establishes connectivity
might then lead to an unstable result.

2.4. Properties
As stated before, we will only consider mechanisms with feasible social choice
functions:

Definition 1 (Poly-Time Mechanism). A mechanism is poly-time computable,
if and only if its social choice function can be implemented to run in polynomial
time complexity.

We will always request, that a mechanism works without external subsidies,
thus has to finance payments through fees:

Definition 2 (Budget Balance). The outcome of a mechanism is budget bal-
anced, if and only if the sum of all payments is non-positive, thus ∑n

i=0 pi ≤ 0.
If and only if a mechanism only produces budget balanced outcomes, it is

called a budget balanced mechanism.

To ensure a good outcome for the society as a whole, mechanisms should
try to maximize the agents’ derived value:

Definition 3 (Efficiency and Social Welfare). An outcome o is efficient, if and
only if it maximizes the sum of values (called social welfare), thus for all other
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2. Definitions and Notation

outcomes o′ ∈ O \ {o} it holds that ∑n
i=0 vi(o) ≥

∑n
i=0 vi(o′).

A mechanism is considered efficient, if and only if it produces efficient out-
comes for all possible strategy vectors s.

Maximizing the sum does not yet ensure that all agents actually derive value.
As no agent can be expected to endure negative utility, mechanisms have to
additionally ensure that agents participate voluntarily:

Definition 4 (Individual Rationality). An outcome o is individually rational,
if and only if no agent has a negative utility, thus ∀ai ∈ A : ui(o) ≥ 0.
If and only if for all strategy vectors s a mechanism only produces individ-

ually rational networks, the mechanism itself is individually rational.

Additionally, the outcomes produced by mechanisms should at least be as
good as the results of an anarchic network creation:

Definition 5 (Anarchy Stability). The outcome o and the corresponding pay-
ments (pi)ni=0 of a mechanism are anarchy stable, if and only if no agent has
lower utility than their type would yield in the anarchic network creation de-
fined in Section 2.3.
If and only if this holds for all strategy vectors s and the corresponding

outcome o and payments (pi)ni=0, we also call the mechanism anarchy stable.

Definitions 4 and 5 represent two different perspectives on the utility an
agent derives by not participating in a mechanism. The first one assumes
that an agent outside the mechanism has a utility of 0, as she neither earns
something from interaction with other agents, nor does she have to maintain
connections or pay for their usage. The second one considers that agents could
be better off if they all together decide to play a network creation game without
coordination. Effectively these stabilities assume that agents do not submit to
a mechanism when they would be strictly better of without it. On the other
hand, if they risked a decrease in utility by building a network themselves,
they would prefer the mechanism.
An even stronger property is that of individual high profit:

Definition 6 (Individual Efficiency). The outcome o of a mechanism is in-
dividually efficient for a set of agents A∗ ⊆ A, if and only if it maximizes
the individually derived value for those agents; thus for all other outcomes
o′ ∈ O \{o} it holds that ∀ai ∈ A∗ : vi(o) ≥ vi(o′). If and only if there is a con-
stant c such that ∀ai ∈ A∗ : vi(o) ·c ≥ vi(o′), the mechanism is c-approximately
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2. Definitions and Notation

individually efficient for A∗ and c.
A mechanism is (approximately) individually efficient, if and only if for all

strategy vectors s its social choice function f produces an outcome o = f(s)
that fulfills this property.

A weaker property does not require that the result is a global optimum for
the agents, but only requires a local optimum in respect of an agents ability
to change her direct neighborhood:

Definition 7 (Swap Stability). A resulting network o is swap-stable, if and
only if no agent can strictly increase her utility by replacing an adjacent edge
with an edge to some other player in the network. It is c-approximatively swap-
stable, if and only if no agent can strictly increase her utility by more than a
constant factor c.

Note that an agent must not violate structural limitations of the network by
swapping some edge; thus the new resulting network o′ after the swap must
still be a valid result from the set of all possible outcomes O. This stability
criterion already implies a detail of how connections can be established or
destroyed in the network: If one of the two agents that form the endpoints
of an edge should find it beneficial to cancel that edge, she can do so without
having to ask the other agent for permission, in the same way as Alon et al. [3]
define edge swaps in their basic network creation game.
Finally, mechanisms should encourage agents to play truthfully, thus to spec-

ify their true type as strategy:

Definition 8 (Truthfulness). A mechanism is truthful, if and only if for any
strategy vector (si, s−i) the social choice function f produces an outcome o
and payments (pi)ni=0, such that no agent ai can increase her utility by playing
a strategy si 6= ti, thus it holds that ∀ai ∈ A, ∀si 6= ti : u(f(ti, s−i)) ≥
u(f(si, s−i)).
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3. Simple Mechanisms for Trees
The first mechanisms we will design and analyze are restricted to trees, thus the
set of possible outcomes O is the set of all trees with the agents A as nodes.
For each agent ai, the set of possible types Ti is defined by Ti = A \ {ai},
meaning that each agent has exactly one friend she wants to interact with. As
we choose Si = Ti for all agents, the strategy an agent declares also consists of
one other agent she wants to be close to in the resulting network.
We consider three simple social choice functions, and four different utility

functions to illustrate the properties introduced in Section 2.4. For the first
utility function, we analyze all properties in detail, whereas we concentrate on
interesting results for the later ones.

3.1. Three Social Choice Functions
All functions presented here make use of some random selection of agents. This
selection should be made uniformly at random. However, as we mainly analyze
worst-case scenarios, we will assume that the mechanism always selects the
first agent from (a1, . . . , an) that fulfills the respective property and construct
our instances in such way, that this “random” selection leads to the intended
worst-case result.

3.1.1. Iterative Attachment
Starting with an arbitrary agent, the function iteratively attaches the remain-
ing agents to the resulting tree. If any of those remaining agents prefers to
build an edge to some agent already in the tree, it is selected to extend the
network. In the case that there is no extension of the tree possible based on the
declared strategies, some arbitrary agent from the remaining ones is selected
to build an edge to some arbitrary agent in the current tree. The function is
presented in Algorithm 3.1.
The social choice function can be implemented to run inO(n) by maintaining

a list of possible next agents to attach: Whenever an agent ai is attached to
the tree, each agent that declares ai as her strategy is added to this list. This
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3. Simple Mechanisms for Trees

Algorithm 3.1: Iterative tree construction
Input: Agents A = {a1, . . . , an}, Strategy vector s = (s1, . . . , sn)
Output: Generated tree

1 A0 ← A;
2 G0 ← ∅;
3 for r = 1 to n do
4 if ∃ai ∈ Ar−1 with si ∈ Gr−1 then
5 Gr ← Gr−1 ∪ {ai} ∪ (ai, si);
6 else
7 choose some ai ∈ Ar−1 ;
8 Gr ← Gr−1 ∪ {ai};
9 if Gr−1 6= ∅ then

10 choose some xi ∈ Gr−1 ;
11 Gr ← Gr ∪ (ai, xi);

12 Ar ← Ar−1 \ {ai};
13 return Gn

can be done in amortized time O(1) per agent by looking up those agents in
an adjacency list of the transposed strategy graph GT

s . In order to implement
the introduced tie-breaking for random choices one can use a priority queue
instead of a list and achieve a total complexity of O(n log n).
Clearly, the mechanism therefore is poly-time computable when using Algo-

rithm 3.1 as social choice function. As it does not issue any payments, it is
also budget balanced.

3.1.2. Cycle Breaking
The second social choice function starts with the graph Gs that is formed
by the agents’ strategies. This graph most likely consists of several disjoint
components. By pigeonhole principle there exists exactly one cycle in each of
those components. To connect the components, some arbitrary agent inside
such a cycle is selected and its edge removed from the graph. If the graph still
consists of multiple components, the mechanism introduces a new edge from
this agent to some arbitrary agent of some other component.
The function is presented in Algorithm 3.2 where CC(x) denotes the con-

nected component that contains agent x.
As the number of edges in G is in Θ(n), both finding connected components

and cycles can be done in O(n). Thus, the function can be implemented to
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Algorithm 3.2: Cycle breaking
Input: Agents A = {a1, . . . , an}, Strategy vector s = (s1, . . . , sn)
Output: Generated tree

1 G0 ← Gs ;
2 c← number of components in G0 ;
3 for r = 1 to c do
4 choose some ai ∈ A that is part of a cycle;
5 Gr ← Gr−1 \ (ai, si);
6 if r < c then
7 choose some xi ∈ A with CC(xi) 6= CC(ai);
8 Gr ← Gr ∪ (ai, xi);

9 return Gc

run in linear time. This holds even for the mentioned tie-breaking, as both for
components and cycles the respective “arbitrary” agent can be determined in
one go with finding those components and cycles.
Again, the mechanism is poly-time computable when using Algorithm 3.1 as

social choice function; it is also budget balanced.

3.1.3. Cycle Replacement
The third social choice function is based on the same idea as the second one.
Differently to the adjustments to Gs made there, this function however does
not eliminate cycles by removing one edge, but transforms them into stars with
one arbitrary agent of that cycle as center, as demonstrated in Figure 3.1.
The function is presented in Algorithm 3.3 where CC(x) again denotes the

connected component that contains agent x.
As every edge of each cycle in Gs is transformed exactly once, Algorithm 3.3

has the same complexity as Cycle breaking and therefore runs in linear time.
Analogously, the mechanism is poly-time computable and budget balanced.

3.2. Constant Profit with Distance Costs
Whereas the first two properties — poly-time computability and budget bal-
ancedness — are independent of the value agents make, the remaining six
properties depend on a defined utility function. As payments so far are always
zero, we only need to look on the value functions vi of the agents.
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ai

aj1

aj2
aj3

aj4

aj5
aj6

. .
.

→ ai

aj1

aj2
aj3

aj4

aj5
aj6

. . .

Figure 3.1.: The third social choice function replaces cycles with stars.

Algorithm 3.3: Cycle replacement
Input: Agents A = {a1, . . . , an}, Strategy vector s = (s1, . . . , sn)
Output: Generated tree

1 G0 ← Gs ;
2 c← number of components in G0 ;
3 for r = 1 to c do
4 choose some ai ∈ A that is part of a cycle C ;
5 construct star S from agents in C with ai as center node;
6 Gr ← (Gr−1 \ C) ∪ S ;
7 if r < c then
8 choose some xi ∈ A with CC(xi) 6= CC(ai);
9 Gr ← Gr ∪ (ai, xi);

10 return Gc

We start by assuming that an agent ai derives some constant value β ∈
R, β > 1 from interacting (e.g. communicating) with her preferred partner
ti. However, she has to pay do(ai, ti) for using the edges on the path to her
partner. The first utility function we analyze thus is defined as

ui,1(o) = vi,1(o) = β − do(ai, ti). (3.1)

Effectively, the function limits the maximum distance that an agent finds
acceptable for interacting with her preferred partner. All agents therefore
try to optimize the worst-case distance to their respective friend, as they only
derive the maximum value of β−1 by being directly adjacent to their respective
friend.
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3. Simple Mechanisms for Trees

For all but the analysis of truthfulness itself, we will assume that agents
declare their true type as strategy, thus that s = t.

3.2.1. Social Welfare and Efficiency
As all three social choice functions always produce a connected tree, the social
welfare is maximized if and only if the sum of distances between the players
and their respective preferred partners is minimized. For a resulting tree o we
define the social distance to be the sum of the undirected distances between
all players ai and their preferred partners ti. Remember that dG(x, y) is the
undirected hop distance between two agents x and y in the graph G, then we
define

Dist(o) =
n∑
i=1

do(ai, ti).

Clearly Dist(o) ≥ n, as the distance between some agent ai and her preferred
partner ti is at least 1. (As Theorem 3.1 shows, the exact value for this social
optimum is determined by the number of cycles and agents therein in Gs.)
Similarly, Dist(o) ∈ O(n2), as the maximum distance between two agents is
n− 1.

Theorem 3.1. The social optimum distance for a resulting tree o is n+nc−2c
where nc is the number of agents that are part of cycles in Gs and c is the
number of cycles in Gs.

To prove this theorem, we will show first, that breaking a cycle into a path
achieves the optimal social distance for the agents in that cycle.

Lemma 3.1. For a set of agents A′ that form a cycle C in Gs, the optimal
summed distance in an output tree is 2 · |C|−2, where |C| = |A′| is the number
of nodes in the cycle. This distance can be achieved by removing exactly one
arbitrarily chosen edge e from the cycle.

Proof. Note that due to symmetry, e can be chosen arbitrarily. Thus, if the
lemma holds for some edge, it also holds for any edge.
For |C| = 2 the lemma follows trivially, as there is only one possible output

tree and it fulfills the condition. Thus, assume |C| > 2.
If there is exactly one agent in an output tree, that is not adjacent to her

preferred partner, the tree is a path in the described form and thus the lemma
holds, as this agent has a communication cost of |C| − 1 and the other |C| − 1
agents only have to pay 1 to interact with their preferred partners. Note that
there cannot be less agents not adjacent to their preferred partners. Thus
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consider some arbitrary output tree that achieves the optimal social distance,
in which there are at least two such agents.
Root this tree on some node r. Among the agents not adjacent to their

preferred partners, select one agent a with maximum distance to r. Due to the
selection of a, all agents in a’s subtree are adjacent to their preferred partners.
As the original graph was a cycle, this implies that the subtree underneath a is
a path and there is exactly one agent a′ outside that subtree whose preferred
partner is in that path. (This preferred partner is the subtree’s leaf.)
Let d be the distance between a and her preferred partner. Replace the

edge between a and her parent with an edge to her preferred partner. By
construction, for all agents except for a and a′, the distance to their respective
preferred partners does not change. However, the distance for a is reduced by
d − 1 whereas the distance of a′ to her preferred partner is increased by at
most d − 1. Therefore, the social distance of the tree does not increase, and
the new tree as well yields the optimal social distance.
Repeat this process until r is the only agent not adjacent to her preferred

partner, and the final tree is a path in the described form. This must happen
after at most n− 1 steps, as the number of agents whose preferred partner is
their direct parent strictly increases by one each time an edge is replaced in
the described way. As in the final path there are |C|−1 agents with a distance
of 1 to their respective preferred partner, and one agent with a distance of
|C| − 1, the optimal summed distance for a cycle is 2 · |C| − 2.

With this, we now can derive the social optimum distance a mechanism can
achieve for a strategy vector s and its induced Graph Gs.

Proof of Theorem 3.1. As the social distance only depends on the distance
between agents and their preferred partners, each connected component of
Gs can be dealt with independently. By pigeonhole principle, a connected
component contains exactly one cycle, for which by Lemma 3.1 a path yields
the optimal social distance. The remaining agents, that are not part of the
cycle, can all be connected directly to their respective preferred partners and
thereby produce the minimal possible distance of 1 per agent.
Thus, in the social optimum for an instance with n agents that has c cycles

in Gs which are formed by (in total) nc agents, there are n− c agents with a
distance of 1. In addition, in each cycle C there is one agent with a distance of
|C|−1 to her preferred partner, which yields a total distance of n+nc−2c.

We say a social choice function achieves some worst case or best case social
distance, if there exists at least one instance on which it produces an output
o with such distance.

24



3. Simple Mechanisms for Trees

Iterative Attachment

Even though the first, overly simplistic mechanism can produce good results in
some rare input cases, it does not generally guarantee anything better than the
worst possible outcome. This is due to the fact that the iterative attachment
can fail for a series of agents and thereby produce disadvantageous networks
through bad random choices.

Theorem 3.2. Iterative attachment achieves a best case social distance of n
and a worst case of Θ(n2). In the worst case, agents can have a distance of
Θ(n) to their respective preferred partner.

Proof. If Gs is a star with one additional edge (as there are n edges in Gs) and
the center is picked first, the resulting tree o has Dist(o) = n as all agents are
adjacent to their respective preferred partner.
However, if Gs consists of a star and an attached cycle like the input graph

shown in Figure 3.2, the resulting tree o has Dist(o) ∈ Θ(n2), as the agents
a1, . . . , an

2
have a distance of at least n

2 to their preferred partner an.

a1

a2

a3
. . .

an
2

an
2 +1

. . .

an−1

an → a1 a2

a3

a4
. . .

an
2 +1

an
2 +2

. . .

an

Figure 3.2.: A worst case instance for Iterative attachment with quadratic social distance.

Theorem 3.2 establishes that, even though some output networks can be
both efficient and individually efficient, the mechanism as a whole is not. As
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individual distances can be linear, and the overall distance sum quadratic,
Iterative attachment does not even accomplish to always produce (individually)
approximately efficient networks. While this is only a worst-case statement it
still means, that agents must fear that a result network performs bad for both
themselves and the whole society.

Cycle Breaking

In contrast to the first social choice function, the second one guarantees to
construct networks with optimal social distance.

Theorem 3.3. Cycle breaking achieves a best and worst case social distance
of Dist(o) = n+nc− 2c and thus achieves the social optimum distance. In the
worst case, agents can have a distance of Θ(n) to their preferred partner, in
the best case all are directly adjacent.

Proof. Cycle breaking always exactly produces the graph described in Theo-
rem 3.1. If the original graph Gs is a cycle with all n agents in it, removing
one edge leaves all but one agent directly adjacent to their respective preferred
partner, whilst one agents bears a distance of n − 1 to hers. For all strategy
graphs Gs that do not include cycles with more than two agents, breaking
these cycles leaves all agents adjacent to their respective friend.

By Theorem 3.3, all output networks are efficient, and thereby the mecha-
nism is as well. All networks are individually efficient for all but one agent per
cycle with size greater two; for those they are however not even approximately
individually efficient.

Cycle Replacement

The second social choice function therefore produces a network with optimal
social distance, but individual agents still might experience bad results, as their
distance can be linear in the number of participating agents. Cycle replacement
fixes this shortcoming by trading in some individual efficiency.

Theorem 3.4. Cycle replacement achieves a best case and worst case social
distance of Dist(o) = n+nc−2c and thus achieves the social optimum distance.
Simultaneously it guarantees a worst case distance of 2 for each individual
agent.

Proof. In each star the algorithm generates from a cycle C in Gs, the center
and exactly one of the other agents are directly adjacent to their preferred
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partners. All other agents of the original cycle have a distance of 2 to their
preferred partner. This yields a total cost of 2 · |C| − 2 for each cycle C,
matching the social optimum cost in Lemma 3.1. All other agents are directly
adjacent to their preferred partner, as the rest of the algorithm is unchanged
from Cycle breaking. Thus, the Cycle replacement achieves the social optimum
of Theorem 3.1 and additionally no agent has a distance greater than 2 to her
preferred partner.

Thus, by replacing cycles with stars, the mechanism is efficient, as it only
produces efficient networks. The created networks are individually efficient
for all agents who are not part of a cycle, and for two agents of each cycle
in Gs. For all other agents it is 2-approximately individually efficient, and
thereby establishes fairness amongst all agents, without compromising global
efficiency.

3.2.2. Individual Rationality
It is unlikely that agents would participate in a mechanism, that brings them
losses. Depending on the parameter β and which of the three social choice
functions is used, networks might or might not be individually rational:

Theorem 3.5. Iterative attachment does not insure individual rationality. Cy-
cle breaking guarantees this property for all but one agent per cycle C with
|C| − 1 > β. Cycle replacement produces individual rational networks for all
agents exactly then if either Gs does not contain a cycle C with |C| > 2 or
β ≥ 2; by adding fair payments to Cycle breaking, it achieves the same.

Lemmas 3.2 to 3.4 prove this theorem. We start with the first social choice
function, that might harm agents, as it is only individually rational for some
outcomes:

Lemma 3.2. Building trees with Iterative attachment does not ensure non-
negative utility for agents. Some networks generated by this algorithm are
individually rational.

Proof. As agents can only derive constant profit β from the result, this lemma
follows directly from Theorem 3.2 and the corresponding proof.

The second social choice function does better, as it produces a good network
for most agents, however still not for all of them:

Lemma 3.3. Cycle breaking guarantees non-negative utility for all but one
agent per cycle C with |C| − 1 > β ≥ 1.
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Proof. As agents can only derive constant profit β from the result, this lemma
follows directly from Theorem 3.3 and the corresponding proof.

The mechanism could consider charging a fee (pi = −1) from all but two
agents in a cycle C with |C| > 2, that have not been separated from their
preferred partners, and paying that money to the agent who has been selected
in Line 4 (pi = |C| − 3). By doing so it remains budget-balanced, all results
concerning efficiency would still apply as before, but in terms of rationality
the mechanism would achieve the same as by using Cycle replacement. By
replacing cycles with stars, this third social choice function does worse for
some, and better for most values of β than the previous two:

Lemma 3.4. Cycle replacement produces individually rational networks if and
only if either the strategy graph Gs does not contain cycles with size greater
two, or β ≥ 2.

The same does Cycle breaking if augmented with payments as described
above.

Proof. The first part follows from Theorem 3.4 and the corresponding proof.
For the second part observe, that the utility for all agents outside cycles C

with |C| > 2 does not change. The same holds for two agents inside such cycles,
who are adjacent to their partners. All other agents in those cycles have a new
utility of ui,1 = β− 2, as they are either adjacent to their respective friend but
have to pay pi = 1 to the mechanism, or are in distance |C| − 1 but receive a
payment of |C| − 3 from the mechanism. These are exactly the utilities of the
corresponding result of Cycle replacement.

Note that while it might seem disappointing that none of the three social
choice functions is individual rational for all inputs and all values of β, this is
in fact not possible to achieve for the given utility function:

Theorem 3.6. For 1 ≤ β < 2 there cannot be any social choice function for
trees that achieves individual rationality for strategy graphs Gs with any cycle
C with |C| > 2.

Proof. Assume the contrary and inspect a strategy graph Gs that includes such
a cycle. Then, in the output graph o all agents have to be directly adjacent to
their preferred partners. (For any agent ai who is not, do(ai, ti) ≥ 2 and thus
ui,1(o) < 0.) This however means that o includes a cycle of length ≥ 3.
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3.2.3. Stability
Considering swap stability, one can easily see that only in rare cases no agent
can improve her utility:

Theorem 3.7. Only if Gs does not contain cycles of length greater 2 can a
resulting tree be swap-stable. Cycle breaking and Cycle replacement then always
produce such a result, Iterative attachment does so only in some cases.

Proof. If Gs does not contain cycles with more than two nodes, then there
exists a swap-stable tree o, in which all agents are adjacent to their respective
preferred partner, thus no agent can improve her utility. Both Cycle breaking
and Cycle replacement construct that tree. Iterative attachment can for some
inputs build the same graph, as Theorem 3.2 shows, but can also yield unstable
results as illustrated in Figure 3.3.

a1

a2a3

...

an−1 an

→ a1

a2a3

...

an−1 an

Figure 3.3.: Iterative attachment fails to produce a swap-stable tree from the feasible
input on the left: In the resulting tree on the right, a1 could improve her utility by dropping
the edge from a2 and building one to an.

If Gs however contains a cycle with length greater 2, there must be an agent
in such a longer cycle that is not adjacent to her preferred partner in o, as
the resulting network is a tree. Thus, such an agent can always improve her
utility by dropping the edge through which she currently reaches her preferred
partner, and establishing a direct edge to this partner instead. After that, the
network would again be substance to such a swap, and the process would cycle
indefinitely.

Iterative attachment does not perform any better concerning anarchy sta-
bility, whereas the other two social choice functions always produce anarchy
stable trees:
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Theorem 3.8. Trees produced by Iterative attachment not always fulfill anar-
chy stability. Both Cycle breaking and Cycle replacement are anarchy stable.

Proof. Figure 3.3 shows, that Iterative attachment does not necessarily pro-
duce outputs that are anarchy-stable, as independent from the order in which
agents are allowed to build their preferred edges, in an anarchic process all
agents would be adjacent to their preferred partners. Thus, in the depicted
example, a1 would be better off without the mechanism. As described in the
proof of Theorem 3.2, the algorithm can for some inputs also produce networks
in which all agents are adjacent to their preferred partners; in these cases the
output is anarchy-stable.
Cycle breaking produces only anarchy-stable trees, as any agent ai, that is

not adjacent to her preferred partner ti in a resulting tree is part of a cycle C
in Gs. If there are |C| agents in that cycle, she has a distance of |C| − 1 to ti.
This is exactly as far away as if she was last in the permutation of agents in
the anarchic network design process.
When using Cycle replacement, all agents are either adjacent to their respec-

tive preferred partner, or are part of a cycle in Gs and have a distance of 2
to their partners. As before, the worst case instance puts such an agent last
in the permutation and would thus lead to a distance depending on the num-
ber of agents in the corresponding cycle in Gs. Therefore, Cycle replacement
guarantees anarchy stability and on top ensures, that no agent is placed more
than two hops from her preferred partner.

Note that the end of the proof highlights a property of the output trees of
Cycle replacement, that is stronger than anarchy stability:

Corollary. Cycle replacement not only produces anarchy-stable trees, but for
some agents even guarantees that they are strictly closer to their preferred
partners with the mechanism than without.

This result is a strong argument for this social choice function, if agents
decide whether to participate in a mechanism or not. If they risk to end up with
linear distance to their preferred partner, they might prefer an anarchic process
over a mechanism-based network design. Should however such a mechanism
guarantee constant distances, the willingness to both participate in the process
and accept its result is likely to be much higher.

3.2.4. Truthfulness
So far we always assumed, that agents are honest about their type and declare
it as their strategy, that is s = t. However, as agents are selfish, if an agent
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ai can increase her utility by declaring some si 6= ti, she would do so. Con-
veniently, all social choice functions presented so far encourage agents to be
honest:

Theorem 3.9. No agent ai with the utility function ui,1 can solely strictly
improve her utility by declaring some strategy si 6= ti.

Proof of Theorem 3.9 for Iterative attachment. As the utility function ui,1 is
strictly monotonically decreasing, improving utility is equivalent to narrowing
the distance to the respective preferred partner. Thus, only those agents not
adjacent to their preferred partners can possibly strictly improve their utility.
Let ai be an agent who can strictly improve her utility. In networks generated

by Iterative attachment, ai has entered the graph before her preferred partner
aj = ti = si which in turn prefers some third agent ak 6= ai. As we inspect a
worst-case instance in which Iterative attachment does not choose uniformly
at random but choses agents according to their natural order, i < j holds.
Note that all edges in the generated output graph o are either edges from

Gs or connect the next “random” agent to the existing graph; in the later case
they connect the first unconnected agent to a1.
If i = 1, the agent’s strategy si is never even considered in the algorithm,

thus declaring some si 6= ti does not influence the output graph. For i > 1
the agent ai is placed adjacent to a1. We distinguish two cases based on the
location of ti in the output graph o:

• If ti = aj is adjacent to a1, then either she prefers agent a1 = sj, or the
preferred partner of ti enters the graph after ti and a1 is selected as edge
endpoint due to the fixed order of agents in our worst-case instance.
Both ways, ai cannot achieve to be placed closer than distance 2, as
neither of the conditions for edges described above can be fulfilled by
altering si.

• If ti is not adjacent to a1, then she is connected to a1 via a path that
consists only of agents who entered the graph after ai and possibly ai,
as shown in Figure 3.4: All trees in o \ {a1} consist only of edges from
Gs and thus agents therein join the graph consecutively, as the iterative
attachment process prefers to attach agents whose preferred partners are
already in the graph. Therefore, if one of the agents in such a tree entered
o before ai, the whole tree, including ti would. As ti is known to enter
the graph after ai, there is no agent that ai could declare as strategy
si 6= ti who would place her closer to ti than her connection to a1.
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a1

ai

a• · · · a•

a• · · · a•

ti

Figure 3.4.: If ti is not adjacent to a1, she is connected to a1 via a path that may (dashed
lines) or may not (dotted lines) include ai. Either way, all agents in these paths except for
a1 and ai entered the graph after ai and all a• have higher indices than ai.

Proof of Theorem 3.9 for Cycle breaking. All agents who are not part of a cy-
cle of length > 2 in Gs are already adjacent to their preferred partners and
cannot improve. The same holds for all but one agent in each cycle. Let this
agent be ai, then (ai, ti) is the edge the social choice function chose to remove
from the graph to break the cycle. Thus, in the result network, the agent is
connected to her preferred partner via her predecessors in the cycle, meaning
the shortest path from ai to ti runs opposite to the edge directions through
the cycle to ti, as shown in Figure 3.5. Due to our worst-case rule for random
selection, i is the smallest index in the whole cycle; particularly the index of
ai is smaller than the indices of all other agents on that shortest path p.

ai

. . .

ti

p

Figure 3.5.: As i is the smallest index in the initial cycle, the mechanism will never remove
an edge on ai’s initial shortest path p (thick) to ti, leaving her distance to ti unchanged no
matter which si she declares.

By choosing si 6= ti, agent ai still is part of a cycle. If that cycle does not
include any agent of the original cycle apart from ai, she is connected to ti
with the unique path p an does not improve her distance. Should the new
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cycle overlap with the original one, it still holds that ai has a lower index than
other agents on p, and the mechanism will break the cycle along one of the
edges not part of p. Thus, the mechanism won’t ever remove an edge on p,
and ai cannot narrow the distance to her preferred partner by lying.

Proof of Theorem 3.9 for Cycle replacement. As in the previous proof, only
agents in cycles of length > 2 in Gs are relevant. All agents but two in
such a cycle have a distance of 2 to their respective preferred partners; the
two remaining being the center of the constructed star and the agent whose
preferred partner is that center. Both are adjacent to their preferred partners
and cannot improve.
Let ai be one of the agents with distance 2 to her preferred partner. If she

declares some si 6= ti, she would still be part of a cycle in the new strategy
graph. Should this new cycle include ti, then it also includes all other agents
of the original cycle, and the mechanism would again chose neither ai nor ti
as center for the cycle. The same happens if the new cycle does not include
ti, but her preferred partner (which is her second neighbor in the cycle apart
from ai). In case the new cycle does not include either of those two, then ti
is not directly adjacent to the center of the new constructed star. Either way,
the distance between ai and her preferred partner is ≥ 2.

3.3. Distance Bounded Profit
A second utility function assumes, that agents make a constant profit of β ∈
R, β > 1 from the connection to their preferred partners, if they are within a
constant maximum distance, similar to the bounded maximum-distance game
proposed by Bilò et al. [11]. In contrast to their game however, an agent is
not punished if the distance between her and her friend is too large, but she
“only” cannot derive any value from the network.

We choose 2 as maximum distance, as by Theorem 3.4 no agent would have
any incentive to accept a larger distance:

ui,2(o) = vi,2(o) =

β do(ai, ti) ≤ 2
0 otherwise.

(3.2)

Again, the function limits the maximum distance an agent finds acceptable,
but instead of having to minimize the distance, this time agents only have an
incentive to be “close enough” to their preferred partner. As ui,2(o) ≥ 0 for all
outcomes o, the mechanism is individually rational, independent of the used
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social choice function. Similarly all statements on distances in Section 3.2.4
still hold, making the mechanism again truthful for any input strategy vector.
As before, we will at first assume that agents play honestly and declare their

true type.

3.3.1. Social Welfare and Efficiency
For Iterative attachment, the efficiency results from Section 3.2.1 still apply,
as the social choice function does not guarantee that an agent comes closer
than Ω(n) to her preferred partner. Similarly, Cycle breaking again produces
individually efficient networks for all but one agent per large cycle. However,
the algorithm now fails to achieve efficiency for all networks with a cycle with
more than three agents. Cycle replacement now produces both efficient and
individually efficient networks for any input.

Theorem 3.10. A network created by Cycle breaking is efficient if and only
if there is no cycle of size > 3 in Gs. The social choice function produces
individually efficient networks for all agents except one in such a larger cycle.

The tree mechanism with Cycle replacement as social choice function is effi-
cient and individually efficient.

Proof. If there is no cycle C with |C| > 3 in Gs, Cycle breaking creates a tree
in which all agents are in distance ≤ 2 to their respective preferred partner,
thus all derive β from interacting with their partner. In each cycle consisting
of more than three agents, there is exactly one agent (the one chosen in Line 4)
with a distance of at least 3, who does not derive any value.

With Cycle replacement, by Theorem 3.4, all agents are within distance 2
of their preferred neighbors and thus gain the maximum value β.

3.3.2. Stability
Concerning anarchy stability, Theorem 3.8 also holds for the new utility func-
tion ui,2. The results for swap stability remain unchanged for Iterative attach-
ment, but improve for the other two:

Theorem 3.11. Iterative attachment only produces swap-stable networks in
some cases. Cycle breaking creates swap-stable networks for all input strategy
graphs Gs that do not include a cycle of more than three agents. For arbitrary
inputs, Cycle replacement always builds swap-stable networks.

Proof. The argument for the Iterative attachment is the same as for Theo-
rem 3.7.
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If Gs does not contain cycles with more than three agents, Cycle breaking
constructs an output tree in which all agents are within distance 2 to their
respective preferred partner, therefore no agent can improve her utility by
swapping an edge. For larger cycles, the agent selected in Line 4 has a larger
distance and thus can improve her utility by dropping the edge to her prede-
cessor in the cycle and establishing a direct connection to her preferred partner
instead.
By Theorem 3.10, all agents receive their maximum utility in any network

created by Cycle replacement and therefore no agent can improve.

Note that in contrast to Theorem 3.7, the swapping process in case of Cycle
breaking function does not necessarily cycle indefinitely, as the agents instead
can end up building a star such as Cycle replacement does.

3.4. Additional Profit from Close Neighbors
There would hardly be any point in having a connected network, if agents only
were to derive value from their preferred partners. Therefore we extend the
utility function by taking into account all agents connected to ai. From each
other agent aj that she decides to interact with, she derives some constant
value — β ∈ R, β > 1 from her preferred partner like before, and γ ∈ R, γ > 1
from all others — whilst having to pay do(ai, aj) for using the edges on the
path to this agent.
As we expect agents to be rational and selfish, we assume they only decide

to interact with some aj if this interaction strictly increases utility:
ui,3(o) = vi,3(o) (3.3)

= max {(β − do(ai, ti)) , 0}+
∑

aj /∈{ai,ti}
max {(γ − do(ai, aj)) , 0}

Now, β and γ effectively limit the maximum distance that ai finds acceptable
for interacting with her friend and the remaining agents. We call the set of
non-preferred agents that yield positive utility for ai the γ-neighborhood of ai.
Usually β ≥ γ should hold (as the preferred partner ought to bring at least as
much profit for the agent than some other partner). For β > γ, being close
to the preferred partner could possibly even compensate for few other nearby
agents and vice versa.
With the same argument as for ui,2, all resulting trees and mechanisms are

individually rational, as ui,3 cannot drop below zero.
We now consider a small selection of values for both β and γ and analyze

networks according to their swap-stability.
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3.4.1. All neighbors yield identical profit
For β = γ, an agent’s only goal is to be able to reach as many agents aj as
possible with a distance of do(ai, aj) < γ. This is again very similar to the
bounded-distance model of Bilò et al. [11].
If β = γ ≤ 2 holds, agents are only interested in the number of direct

neighbors. As dropping an edge to one neighbor and establishing a connection
to some other does not increase this number, all networks are swap-stable for
such β and γ.
In case β = γ > 2, agents are also interested in neighbors farther away. This

leads to a narrow set of swap-stable output networks.

Theorem 3.12. For β = γ > 2 in the utility function ui,3, a tree network is
swap-stable if and only if it is a star.

We prove this in two steps: First we establish that no other networks can be
swap-stable in Lemma 3.5, then we show that all stars are stable in Lemma 3.6.

Lemma 3.5. If, for the utility function ui,3, we choose β = γ > 2, no swap-
stable tree can contain a path consisting of more than two edges. Therefore all
swap-stable trees must be stars in this case.

Proof. Assume the contrary and inspect a path of length ≥ 3 with agents
a1, . . . , a4 and their (potentially empty) subtrees T1, . . . T4, as shown in Fig-
ure 3.6.

a1

T1

a2

T2

a3

T3

a4

T4

Figure 3.6.: Either a1 or a4 can improve her utility by swapping an edge to a3 or a2,
respectively.

Let ui,3(Tk) be the utility agent i derives from subtree Tk if she is directly
adjacent to ak. Note that for β = γ the utility does not depend on the
individual agent, thus we can drop the i and write u3(Tk).
If u3(T2) = u3(T3), agent a1 can strictly improve her utility by dropping the

edge to a2 and establishing a direct connection to a3, as the sum of utility
she derives from a2, a3, T1, T2, T3 remains unchanged, and she increases her
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utility derived from a4 and T4. For u3(T2) < u3(T3), she additionally increases
the utility sum derived from a2, a3, T2, T3. The third case, u3(T2) > u3(T3),
is symmetric to the second; this time a4 can strictly increase her utility by
swapping the edge to a3 with an edge to a2.
Therefore, any path of length greater 2 contains an agent who can strictly

improve her utility by swapping an edge. Thus, the only possible swap-stable
trees for β = γ > 4 are stars.

While Lemma 3.5 only discards all non-stars as potential swap-stable trees,
we can also show, that all trees indeed fulfill the properties for swap stability:

Lemma 3.6. If, for the utility function ui,3, we choose β = γ > 2, all stars
are swap-stable.

Proof. There have to be at least three agents for any swap to be possible, thus
any star with n < 3 is swap-stable.
As the central agent of a star is already connected to all other agents, she

cannot swap an edge. If any of the other agents swaps an edge, she would still
be adjacent to exactly one agent whilst changing the size of her 2-neighborhood
from n−2 to 1 and her 3-neighborhood from 0 to n−3. For n > 3 this strictly
decreases her utility, for n = 3 her neighborhoods and therefore also her utility
remain unchanged.

Note that the only assumptions the proofs of Lemmas 3.5 and 3.6 make, are
that the utility function does not distinguish preferred partners and others,
that the 2-neighborhood yields positive utility, and that the utility function is
monotonic in the sense that agents farther away yield less utility than closer
ones. The results therefore hold not only for ui,3, but for all utility functions
that fulfill those assumptions and Theorem 3.13 follows:

Theorem 3.13. For any utility function that

• does not distinguish between preferred and non-preferred agents

• yields positive utility for the 2-neighborhood of an agent

• is monotonic, thus yields more profit for closer agents than for distant
ones

the set of swap-stable trees is exactly the set of stars.
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As discussed in Section 1.1.1, stars are rather unpractical for large networks.
We hold the assumptions to be reasonable, except for the equal treatment
of all nearby agents. Therefore, Theorem 3.13 is a strong advocate for our
position: It is unrealistic to assume agents would value all other players as
equally important partners.
None of the presented social choice functions always produces a star as

output network: The first two only construct a star, if the initial graph Gs

almost is a star; Cycle replacement also transforms an input cycle into a star.
Except for those rare cases, all three functions generate output trees that are
not swap-stable for β = γ > 2.

3.4.2. Preferred partners yield more profit
As preferred partners ought to be of greater importance to an agent, than other
players, it is reasonable to assume, that β > γ. In this case, the utility function
no longer becomes oblivious of the preferred partner; an agent now might
achieve higher utility with a smaller neighborhood if the preferred partner is
among those close neighbors. For small γ that (in addition to her preferred
partner) only enable an agent to derive profit from the directly adjacent non-
preferred agents, Cycle replacement is swap-stable, as it exactly matches the
stability criterion:

Theorem 3.14. If, for the utility function ui,3, we choose β > γ and γ ≤ 2,
a network o is stable if and only if there is no agent ai with do(ai, ti) > 2.

Proof. For γ ≤ 2, agents can again not change the size of their γ-neighborhood
by swapping one edge. Therefore only if an agent ai is not adjacent to her
preferred partner ti she can possibly make a profitable swap. If the input
strategy graph Gs does not contain a cycle of more than two agents, there
exist output trees in which all agents are adjacent to their respective preferred
partner (and both Cycle breaking and Cycle replacement produce such a tree).
For graphs with larger cycles there must be some agent, that is not adjacent

to her preferred partner in the output tree. She then can possibly strictly
increase her utility by dropping the first edge on the path to her preferred
partner and building a direct edge instead. (Building a direct edge is guar-
anteed to be more profitable, than to only narrow the distance.) Thus, in a
swap-stable network, the following equation must hold for each such agent and
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the respective distance dp > 1 to her preferred partner:

preferred, gained︷ ︸︸ ︷
(β − 1) −

preferred, lost︷ ︸︸ ︷
(β − dp) −

non-preferred, lost︷ ︸︸ ︷
(γ − 1) ≤ 0 (3.4)

dp ≤ γ (3.5)

As γ ≤ 2, networks are stable if and only if no agent is in distance > 2 to her
preferred partner.

For larger γ it is yet unknown how stable trees might look like and how they
could be generated.

3.5. Exponential Profit Decrease
For our fourth and last utility function for simple tree mechanisms, we build
on ui,3. This time however, agents not only have to pay for edge usage, but
generated value decreases exponentially with increasing distance:

ui,4(o) = vi,4(o) = max
{(
β · 21−do(ai,ti) − do(ai, ti)

)
, 0
}

(3.6)

+
∑

aj /∈{ai,ti}
max

{(
γ · 21−do(ai,aj) − do(ai, aj)

)
, 0
}

Like before, ai only interacts with friends close enough to still yield value —
again determined by β and the γ-neighborhood — which makes all resulting
trees and mechanisms individually rational, as ui,4 cannot drop below zero.
For β = γ > 4, Theorem 3.13 applies, as ui,4 fulfills the same necessary

properties as ui,3. Thus, again the set of stable networks is the set of stars for
such parameters. However, for small values of γ and β > γ, no tree can be
swap-stable if there is a cycle with more than two agents in the strategy graph
Gs.

Theorem 3.15. If, for the utility function ui,4, we choose β > γ and γ ≤ 4,
either no network tree is swap-stable or the strategies do not form a cycle with
more than two agents in Gs.

Proof. Except for minor adjustments, the proof is almost identical to Theo-
rem 3.14:
For γ ≤ 4, agents can not change the size of their γ-neighborhood by swap-

ping one edge, hence again the special role of strategy graphs Gs without large
cycles.
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For graphs with larger cycles there must be some agent, that is not adjacent
to her preferred partner in the output tree. She can possibly strictly increase
her utility in the same way as in Theorem 3.14, and the following equation
must hold for each such agent in a swap-stable network and the respective
distance dp > 1 to her preferred partner:(
β · 21−1 − 1

)
−
(
β · 21−dp − dp

)
−
(
γ · 21−1 − 1

)
≤ 0 (3.7)

β − 1− β

2dp−1 + dp − γ + 1 ≤ 0 (3.8)

β ·
(

1− 1
2dp−1

)
≤ γ − dp (3.9)

β ≤ (γ − dp) ·
2dp

2dp − 2 (3.10)

At the same time, β > γ must hold, thus we get

γ < (γ − dp) ·
2dp

2dp − 2 (3.11)

2dp · γ − 2 · γ < 2dp · γ − 2dp · dp (3.12)
γ > 2dp−1 · dp (3.13)

As dp is at least 2, we get γ > 4 which contradicts γ ≤ 4. In summary, if there
is an agent, that is not adjacent to her preferred partner, it is always beneficial
for her to swap an edge.

Again, for larger values of γ, no results on swap-stability in trees are known.
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4. Weighted Strategies
So far, agents were only allowed to declare a single friend to the mechanism.
Now we instead expect them to rank all n − 1 other agents in a tuple in de-
creasing order of importance to them. Therefore Gs is a complete and weighted
directed graph.
We assume, that an agent ai derives the value β · 21−r, β ∈ R, β > 1 from

a reachable agent ti[r] that is ranked on r-th position in ti. She again has to
pay the hop distance do(ai, ti[r]) to that agent for using the edges of graph o,
and will thus only interact with agents that are close or important enough to
yield positive utility:

ui,5(o) = vi,5(o) =
n−1∑
r=1

max
{(

β

2r−1 − do(ai, ti[r])
)
, 0
}

(4.1)

4.1. A Greedy Social Choice Function
It would appear logical to build a social choice function on top of Gs, that
selects an optimal subgraph satisfying some specified property. As mentioned
in Section 1.1.2, this often leads to NP-complete problems, leaving no hope
for constructing a generic poly-time computable mechanism4. Instead, we will
use a greedy heuristic that ensures such a property and favors — compliant
with the agents’ strategies — highly ranked edges (with small edge weight)
over ones with low priority (and high edge weight).
For that, the social choice function is given a predicate P that is initially

fulfilled for Gs. The function then iterates over all edges in decreasing edge
weight order, removing each edge from the graph, given that the removal does
not lead to violation of P . The function presented in Algorithm 4.1 can be
implemented to run in O(n2 · fP (n)) time, where fP describes the complexity
of the predicate P . It is thus poly-time computable for those P that can be
tested in polynomial time.

4 However, we suggest to work on optimizing for specific properties in our Future Work
section.
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Algorithm 4.1: Reverse edge deletion
Input: Agents A = {a1, . . . , an}, Strategy vector s = (s1, . . . , sn),

Predicate P
Output: Generated Graph G with P (G) is true

1 G← Gs ;
2 for r = n− 1 to 1 do
3 for i = 1 to n do
4 if P (G \ {(ai, si[r])}) then
5 G← G \ {(ai, si[r])};

6 return G

4.2. Creating Weighted Trees
The predicate in the reverse edge deletion algorithm is especially capable of
enforcing connectivity constraints. We will again restrict ourselves to trees, as
they are easier to analyze than highly connected resulting networks.
By selecting P (G) ≡ (G is connected), the social choice function returns

a minimum spanning tree; the resulting algorithm is essentially Construc-
tion A’ by Kruskal [38], an algorithm he introduced as dual to the more
popular minimum spanning tree algorithm named after him.
For this social choice function and the utility function ui,5, we show two

negative results; namely that results are not necessarily efficient and that — in
contrast to all social choice functions in Chapter 3 — agents have an incentive
not to play honestly.

4.2.1. Efficiency
Even though a minimum spanning tree optimizes the total weight of the re-
sulting network, this is not the same as maximizing social welfare:

Theorem 4.1. For ui,5, any minimum spanning tree is efficient if β ≤ 2. This
is not always true for larger values of β.

Proof. For 1 < β ≤ 2, only first-ranked agents that are directly adjacent yield
profit. As a minimum spanning tree maximizes the number of edges of weight
1, the result is efficient.

If β > 2, additionally second-ranked adjacent agents yield profit. Consider
2 < β ≤ 4 and an intermediate state of G during the deletion of edges of
Algorithm 4.1, shown in Figure 4.1. Assume, only edges of weight 1 remain,
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4. Weighted Strategies

and T1 and T2 are already proper MSTs for the respective agents therein. Fur-
thermore, apart from the drawn edges, no agent from T1 ranked an agent of
T2 higher than 2, and vice-versa. Thus, the only agents that can profit from
one of the crossing edges, are the respective endpoints of those edges. The
algorithm would now remove edge (a1, a2) and return the resulting minimum
spanning tree.
However, if (a4, a3) was removed instead, the resulting MST would have a

higher social welfare: Let u5(T1) and u5(T2) be the sum of the utility of all
agents without both crossing edges. Then, adding (a1, a2) would add profit to
both endpoints and the total utility would be u5(T1)+u5(T2)+(β−1)+(β2−1),
as both a1 and a2 benefit from the connection. Using edge (a4, a3) instead
would only accumulate to u5(T1) + u5(T2) + (β − 1) total utility, as due to
β ≤ 4 a third-ranked a4 cannot yield profit for a3.

· · ·

T1

· · ·

T2

a1 a2

a3 a4

1

2

3

1

Figure 4.1.: T1, T2 are already MST with only edges of weight 1; The dashed edges have
been removed in previous iterations of Algorithm 4.1. The two possible MST do not yield
the same profit.

Therefore, a minimum spanning tree does no longer guarantee efficiency for
β > 2. Theorem 4.2 establishes an even stronger result, that shows that in
some cases, not only are some MSTs inefficient, but even all of them.

Theorem 4.2. For ui,5 and β > 2, an output network with higher total edge
weight can be more efficient than a minimum spanning tree.

Proof. As Figure 4.2 shows, trees with higher total edge weight can be more
efficient than any MST.
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1

2

3

2

31

31

Gs

1 1

1

MST

2
1

1

non-MST

Figure 4.2.: For β = 12, and the strategy graph (left), the unique minimum spanning
tree (center) yields a social welfare of 64. The optimal solution (right) achieves the higher
value of 66, as the distance costs are lower. As always, the direction of an edge shows which
player declared it as part of her strategy.

4.2.2. Truthfulness
With the added complexity of ranked preferences, the agents also gained the
ability to lie about their true type, in order to increase their utility.

Theorem 4.3. If the utility an agent derives from another player decreases
with distance, the mechanism is not truthful.

Proof. Consider the strategy graph and the resulting networks in Figure 4.3. If
a1 plays truthfully (top), the second-ranked edge between a2 and a4 is preferred
by the algorithm.
Should she however wrongly claim to have a3 as her first-ranked agent, the

result is a minimum spanning tree in which she decreased the distance to a3
without any changes to her other hop distances. Any utility function that
yields more value for closer agents and yields positive profit for third-ranked
partners would therefore encourage her to lie about her true type.
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a1 a2

a3 a4

1

2
3

1

2

3

3

2

1

3
→

a1 a2

a3 a4

1

2

1

a1 a2

a3 a4

3

2
1

1

2

3

3

2

1

3
→

a1 a2

a3 a4

1

1

1

Figure 4.3.: Left are strategy graphs, right resulting minimum spanning trees. Agent
a1 can alter her true strategy (top) and swap her first- and third-ranked agent (bottom) to
decrease her distance to a3 and therefore increase her utility.
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5. Bounded degrees and
budgets

Our last model basically combines ideas of Laoutaris et al. [39] and Ehsani
et al. [24]: Actors now no longer can establish and maintain any number of
connections to neighbors, but are only able to deal with up to k neighbors.
In contrast to Laoutaris et al. [39], this bound applies both to outgoing and
incoming edges, thus we limit the total degree of nodes, like Avin et al. [7] do in
their network design model. Real-world examples for such degree limits occur
in technology, where the number of ports a component provides, is limited,
or also in social interaction networks, where the time a person can spend on
communication is fixed.
Both type and strategy of agents is shaped the same way, as we assume

that agents have a bounded budget to finance edges: Each agent ai has bk2c
(unweighted) preferred partners and thus declares a subset si ⊆ (A\{ai}), |si| =
bk2c of other agents as strategy. This way, at least half of an agents’ “ports” is
available for incoming connections.
Consider a set of agents, in which all favor one agent a∗ as neighbor. Clearly,

even if no other constraints except for the degree bound apply, ≤ kd agents can
be within distance d of agent a∗. Therefore agents have to accept a worst-case
distance of Θ(log n) to their preferred partner.

5.1. Building Snowflakes
As the initial strategy graph might violate the degree constraints, the main
task of the social choice function is to establish compliance with the given
bounds. A simple, centralized network design approach could thus construct a
full (k− 1)-ary tree to ensure both connectedness and that no agent is farther
than Θ(log n) from any of her preferred partners. However, in our opinion, a
good output network more closely resembles the strategy graph Gs. For that,
Algorithm 5.1 moves edges from nodes with too high degree away to the closest
node with potential for additional neighbors.
Whereas the algorithm does not guarantee logarithmic distance between
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5. Bounded degrees and budgets

every agent and her preferred partners, it only adjusts Gs locally and thereby
avoids to change parts of the strategy graph that are fully compliant with the
degree constraint. Figure 5.1 shows an example for that strategy, and also
motivates the algorithm’s name.

→

Figure 5.1.: Many agents who favor the same partners are spread out into a snowflake-
like shape. In this case, k = 5, thus every agent declared two preferred partners. Double
drawn arrows indicate edges added in Line 11 of Algorithm 5.1.

Given an overfull node a with more than k neighbors, consider the graph
rooted at the node a, and all connected nodes arranged in layers according to
their hop distance to a. The algorithm now progresses in increasing distance
d to a and one by one removes the direct edge of an adjacent agent ai with
a ∈ si until the degree constraint is met.
It does so in two different ways: Either, there is such an ai that — after

(ai, a) is cut — still has distance d to a, then this operation is performed and,
visually speaking, ai falls down to layer d (see Figure 5.2). Or, there exists an
agent aj with distance d − 1 to a whose degree allows for an additional edge.
Then the mechanism selects an agent ai with a ∈ si from those agents, who
are farthest away from a after removal of their direct edge to a. Again, (ai, a)
is cut, but this time replaced with an edge (ai, aj), again resulting in ai now
being in layer d (see Figure 5.3). The distance d is increased whenever neither
of those two actions is possible, to iteratively fill all layers with the maximum
number of agents.
If Algorithm 5.1 terminates, G is obviously a graph without any vertices

that violate the degree bound. Theorem 5.1 establishes, that the algorithm
indeed always terminates and thus proves the correctness of Algorithm 5.1.
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a

ai aj . . .
d− 1

→

a

ai

aj . . .

d− 1

Figure 5.2.: A direct edge between ai and a is cut, if ai afterwards still has a path of
length d to a.

a

ai
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. . .

max
./∞

d
−

1

→

a

ai

aj

. . .

. . .
m
ax
./
∞ d
−

1
Figure 5.3.: Agent ai has maximum distance (or no connection) to a, after its direct
edge is cut. The direct edge is replaced with an edge to aj , a node with degree < k and
distance d− 1 to a instead.

Theorem 5.1. The social choice function in Algorithm 5.1 always terminates
and generates a graph in which all nodes have at most k neighbors.

Proof. Observe that if the loop in Line 5 always terminates, the whole function
does: The algorithm never increases the degree of any node above k, and each
time the loop in Line 5 exits, the number of nodes with more than k neighbors
is decreased by one.
In order to prove, that the inner loop always terminates, we assume the

contrary. As both the if-block and the else if-block strictly decrease the degree
of a by one, this can only happen if neither condition applies and the else
block is executed in each iteration. This especially implies that the loop was
executed for all values 2 ≤ d ≤ n.
Now check, that the first condition effectively checks for a cycle of length

d+ 1 from a over some ai ∈ N , traveling over d− 2 agents in A \N , over some
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Algorithm 5.1: Snowflake creation
Input: Agents A = {a1, . . . , an}, Strategy vector s = (s1, . . . , sn)
Output: Generated Graph

1 G← Gs \ {(ai, aj) | i > j ∧ (aj, ai) ∈ G};
2 while ∃a ∈ A with deg(a) > k do
3 N ← {ai ∈ A | a ∈ si};
4 d← 2;
5 while deg(a) > k do
6 if ∃ai ∈ N with dG\{(ai,a)}(ai, a) = d then
7 G← G \ {(ai, a)};
8 N ← N \ {ai};
9 else if ∃aj ∈ A with dG(aj, a) = d− 1 ∧ deg(aj) < k then

10 ai ← argmaxai∈A{dG\{(ai,a)}(ai, a) | ai /∈ path of dG(aj, a)};
11 G← (G \ {(ai, a)}) ∪ {(ai, aj)};
12 N ← N \ {ai};
13 else
14 d← d+ 1;

15 return G

aj that is adjacent to a back to the beginning of the cycle. Such a cycle is
depicted on the left side of Figure 5.2. As the condition is not fulfilled anymore
for any 2 ≤ d ≤ n, none of the agents from N is part of any cycle that includes
the root a. Therefore, no two agents from N are part of the same component
in G \ {a}. As deg(a) > k, there are |N | > k

2 such components, which all (in
G) have one edge to a, and none from a into that component.
Now, inspect the size and calculate the average node degree of any of those

components; let x be the number of agents within it. In total, the out-degree of
all x agents is at most x ·bk2c. As one of those edges points to a, the component
contains at most x · bk2c · 2− 1 edge endpoints, which leads to an average node
degree < k. For that some agent in that component has to have less than k
neighbors. As the distance of this agent to a is between 1 and n−1, the else-if
condition would have applied.
Therefore, d cannot grow above n, which contradicts the assumption that

the inner loop does not terminate. It directly follows from the first observation
and the nature of the loop conditions, that the whole algorithm terminates and
the result graph G fulfills the node degree bound k.
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5.2. Anarchy is bad
The main point of this mechanism is to show, that with certain constraints on
the network infrastructure, an anarchic process can yield much worse results
than a mechanism can provide. For our model with a maximum node degree
k, consider a set A∗ of k + 1 agents, whose preferences form a clique. Assume,
these players are important for many others, who as well list some agents of
A∗ as preferred partners. Should however, in an anarchic process, the clique
form, before the other players have a chance to connect to agents therein, those
others will end up completely disconnected from agents in A∗, as all nodes in
the clique already have k neighbors.
The Snowflake creation on the other hand retains connectivity of components

of Gs, and only adjusts distances in order to meet the degree constraint. Thus,
all agents are guaranteed to be connected to their preferred partners when
participating in the mechanism.

Corollary. Snowflake creation is anarchy stable for all utility functions that
punish an agent for not being connected to all her preferred partners. Moreover,
it not only matches the quality of an anarchic process, but performs better by
guaranteeing connectivity between each agent ai and her respective preferred
partners si.

5.3. Possible Extensions
In contrast to the tree mechanisms, we no longer have a fixed number of edges
in the final graph. Therefore, it is reasonable to assume, that agents now would
have to pay for their edges.
Snowflake creation ensures that all degree bounds are met, but it does not

attempt to cater requests for other properties like connectedness. If agents were
to profit more from closer friends (like in ui,1), the budget balanced social choice
function could be extended to charge agents close to their preferred partners
some payment and use it to finance additional edges between otherwise disjoint
components.
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6. Conclusion and Future Work
This work explored the possibilities of mechanisms for network creation in
the context of several different utility functions and with respect to preferable
properties of resulting networks. When generating trees, for which agents are
allowed to declare a single preferred partner, our Cycle replacement algorithm
proved to be a social choice function that fulfills all properties for a bounded
distance utility model. The Snowflake creation algorithm highlighted, that
(in contrast to an uncoordinated network creation) mechanisms are able to
establish important properties, such as the mere chance for all agents to at
least be connected to their preferred partners.
We have shown, that for richer player strategies and more complex utility

function, our algorithms often are not yet able to guarantee stability. Apart
from finding answers to the not yet analyzed fields of Table 1.1, this leaves
a set of intriguing mechanism design challenges open for future work. As we
only started to experiment with the model, there is also a lot of potential for
interesting modifications of it.

Average-case analysis of expected outcomes So far, we have only looked
into the most important properties of our mechanisms and the resulting net-
works. In particular, our analysis always considered worst-case instances. How-
ever, agents might be more interested in the expected outcome in the average
case, or even for specific realistic distributions of the input preferences. Future
work should establish a way to analyze the models accordingly. This also in-
cludes the implementation of the proposed algorithms and a statistical analysis
of their results.

Characterization of Equilibria By challenging our output networks to the
same stability considerations as in classical network creation games, the same
problems arise: How do stable networks look like, do they always exist, and
how might they be created? This is especially interesting in the context of
complex utility functions like ui,3 and networks, that are at least biconnected.
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Mechanism Design All mechanisms presented in this work are built to fulfill
some specific property, such as connectedness or individual efficiency, and only
do this in the context of simple graph structures. The more general problem of
finding (approximately) optimal subgraphs of a strategy graph remains open
and interesting for a multitude of properties. We do for example believe, that
the snowflake creation presented in Section 5.1 can be improved to guaran-
tee logarithmic worst-case distances between all agents and their respective
preferred partners. More extensions are already discussed in Section 5.3.

Edge ownership and payments In our model section we introduced the com-
mon concept, that edges can be owned and payed for by agents. So far, our
examples do not make use of this. Theorem 3.5 already gives a hint, how
payments might help to produce fairness amongst agents. Combined with the
concept of network stability, agents could be charged little for edges planned
by the mechanism, and more for edges they want to selfishly establish on top
of the outcome. The additional budget of the mechanism could then be used
to finance edges for global properties such as low diameter.

Network robustness While relatively easy to analyze, trees often are not
desirable for real-world networks, as they are vulnerable to edge- or node-
failures. In order to create more stable networks, we would for example like
to incorporate the model of Goyal et al. [30] with attack and immunization in
our mechanisms. Could maybe a social choice function be capable of creating
networks and efficiently select immunized nodes?

Scale-free graphs and evolving networks In many real-world networks, one
can find similar distinct properties, such as a power-law distribution on node
degrees, or high clustering. Generating networks with mechanisms, that imple-
ment those properties, might help to understand how real-world graph struc-
tures form. Additionally, large networks usually are not formed once and then
kept unchanged, but evolve as agents enter or exit the network, and prefer-
ences are updated. Thus, our model for mechanisms should be extended to
cope with ongoing changes to the input data.

(Im)possibility theorems Finally, it would be beneficial to establish clear
boundaries of what mechanisms can or cannot achieve. Similar to the impossi-
bility theorems for voting systems [6, 28, 51], we would like to know, whether
preferable properties of networks can be achieved simultaneously, or whether
there are impossible combinations.

52



Appendix

A. Game Theory Examples

A.1. Prisoners’ Dilemma
“Two men, charged with a joint violation of law, are held separately by

the police.” So begins the story Albert Tucker invented in 1950 to present a
psychological study of RAND researchers Merrill Flood and Melvin Dresher
to a broader audience [49, p. 116 ff.]. Those two prisoners are suspected to
have committed a major crime, but the police does not have enough evidence
to convict them for more than a lesser charge. They offer both prisoners the
same deal: Either, he testifies against the other, or refuses to take the deal
and stays silent. Should only one prisoner testify, he is free to go, whereas
his partner is convicted. In case neither of them talks, both do time for the
lesser charge. However, if both testify against the respective other, both can
be sentenced for committing the crime. Table A.1 shows the full payoff matrix
with the sentences in each case.

B refuses deal B testifies

A refuses deal 1 year, 1 year 3 years, 0 years
A testifies 0 years, 3 years 2 years, 2 years

Table A.1.: The payoff matrix of the Prisoners’ Dilemma game. Cells show Profit of A,
Profit of B.

Assuming, the prisoners are selfish and are only interested in minimizing
their own time in jail, both will testify: Independent of whether the other
player takes the deal or not, a prisoner is guaranteed to serve one year less
by selling out the other criminal. It follows, that the game only is in Nash
equilibrium if both players take the deal.
The social optimum, however, would be, to cooperate and serve one year

each. Intriguingly, this would also reduce the prison term for both individually.
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By being rational in the game, the players therefore produce the worst social
outcome of four years totally served and simultaneously harm themselves.
Nisan et al. [46, chap. 1.1.2] extend the Prisoners’ Dilemma and show a

version that is played by n agents; in their case n countries deciding about
whether or not to invest in pollution control. Just like with the prisoners in
the original game, their extension shows that the only stable state is for all
countries to not control pollution. In the end, each country has to bear costs
that are linear in the number of players, instead of constant costs if all had
decided to not pollute.

A.2. Hawk-Dove Game
In the scenario of the Hawk-Dove game, two animals compete for a piece of
food. Should both choose the aggressive Hawk strategy, they would destroy
the food, and get nothing. If they both decide for the passive Dove strategy,
they evenly share the food. Would however one play Hawk, and one Dove,
the more aggressive animal gets most of the food, leaving only little for the
passive one. Table A.2 shows the payoffs of the game as presented by Easley
and Kleinberg [23, chap. 6.6].

B plays Dove B plays Hawk

A plays Dove 3, 3 1, 5
A plays Hawk 5, 1 0, 0

Table A.2.: The payoff-matrix of the Hawk-Dove game played with 6 total “units” of
food. Cells show Profit of A, Profit of B.

In contrast to the Prisoners’ Dilemma, the social worst case is not a stable
state in this game. However, as there are two Nash equilibria — the two cases
in which there is one hawk and one dove — the behavior of the players is
impossible to predict: Both have an interest to maximize their food share, so
they would like to play aggressive, but only if the other does not. The game
therefore has an inherent risk of ending up in the (both global and individual)
worst case that destroys the very resource the players competed for. This
result is quite important for numerous real-world situations: Confrontations
between companies or countries can be modeled as Hawk-Dove game.
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A.3. Tragedy of the Commons
While the more recent and more popular publication by Hardin [33] coined
its title, the story itself is attributed to Lloyd [43]: A group of herdsman
collectively owns some land, on which their animals graze. Each herdsman
receives the full proceeds from his cattle. If the land can provide enough food
for all animals, his revenue only depends on the size of his own herd.
The tragedy takes its course, when herdsmen consider whether to add ani-

mals to their herd or not: Additional revenue goes to the individual, additional
grazing affects the whole community. As long as the effect of overgrazing on
the single herdsman is smaller than the additional proceeds, herds will grow
larger and larger — up to the point where overgrazing ruins the land.
Again, rational individual decisions can lead to a worst-case outcome for

individuals and the whole society. Nisan et al. [46, chap. 1.1.2] show the same
effect in a scenario about bandwidth-usage. They run exemplary numbers for
their version and conclude, that there is an unstable state of the game, with
which the n players were to get about n

4 -times more bandwidth than in the
stable state.

A.4. Braess’s Paradox
This example of Braess’s paradox [13] presented here is taken from Steimle [53]:

Given the left graph shown in Figure A.1, n agents are trying to route traffic
(e.g. data or actual road traffic) from s to t. For using an edge ei, an agent
has to bear costs of ci (in money, latency, . . .), given as edge weights in the
graph. Connections e2 and e3 are large enough to cope with any amount of
traffic and yield constant costs, whereas the cost of e1 and e4 depends on the
number of agents using those edges.

s t

e1

n1/n

e3

1

1
e2

n2/n

e4

(a)

s t

e1

n1/n

e3

1

1
e2

n2/n

e4

e5 0

(b)

Figure A.1.: The original (a) and augmented (b) network of Braess’s paradox. Traffic
flows from s to t with ni being the number of agents using edge ei and n the total number
of agents.
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The optimal distribution would now be for n
2 agents to pick the route (e1, e3),

and the other half to go for (e2, e4), resulting in costs of 1.5 for each agent.
Thereby, both all individual costs and the overall routing cost would be min-
imized. This distribution is stable in the sense that no agent can pay less by
deviating from her chosen route; it is therefore a Nash equilibrium. As in this
case the optimum and the equilibrium are identical, the agents lose nothing
due to lack of coordination.
However, consider a new edge e5, free to use for anyone as shown on the right

of Figure A.1. In the augmented network all agents would choose (e1, e5, e4)
instead of their previous route, as c1 ≤ c2 and c4 ≤ c3. The optimal flow, in
which both the overall costs and all individual costs are minimized, remains
unchanged, but the only stable flow (thus, the only equilibrium in the routing
game on the augmented graph) is for everyone to choose (e1, e5, e4). But by
doing so, the cost for each agent increases to 2 leaving the agents worse off
than without the additional edge.
For Figure A.1, a central authority could either control the traffic flow or

simply remove e5 from the network to restore the social optimum. Thus,
using the sum of individual costs as social cost, the Price of Anarchy is
cost of worst equilibrium
cost of social optimum = 4

3 in the example.5

5 Note that [53] confuses values and claims the Price of Anarchy was 3
4 .
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