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Abstract
Hyperbolic random graphs share many common properties with complex real-world networks; e.g.,
small diameter and average distance, large clustering coefficient, and a power-law degree sequence
with adjustable exponent β. Thus, when analyzing algorithms for large networks, potentially
more realistic results can be achieved by assuming the input to be a hyperbolic random graph of
size n. The worst-case run-time is then replaced by the expected run-time or by bounds that hold
with high probability (whp), i.e., with probability 1−O(1/n). Though many structural properties
of hyperbolic random graphs have been studied, almost no algorithmic results are known.

Divide-and-conquer is an important algorithmic design principle that works particularly well
if the instance admits small separators. We show that hyperbolic random graphs in fact have
comparatively small separators. More precisely, we show that they can be expected to have
balanced separator hierarchies with separators of size O(

√
n3−β), O(logn), and O(1) if 2 < β < 3,

β = 3, and 3 < β, respectively. We infer that these graphs have whp a treewidth of O(
√
n3−β),

O(log2 n), and O(logn), respectively. For 2 < β < 3, this matches a known lower bound.
To demonstrate the usefulness of our results, we give several algorithmic applications.
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1 Introduction

A geometric random graph is obtained by randomly placing vertices into the plane and
connecting two vertices if and only if they are close. When using the hyperbolic plane, one
obtains a (threshold) hyperbolic random graph, as introduced by Krioukov et al. [21]. More
precisely, vertices are placed in a disk DR of radius R (which depends on n) and two vertices
are connected if their distance is at most R. An important property of the hyperbolic plane
is that the perimeter of a circle grows exponentially with the radius. Thus, when sampling
uniformly, we obtain many vertices close to the boundary and few close to the center of DR.
As distances close to the boundary are larger (due to the exponentially growing perimeter),
this leads to many vertices of low degree and few vertices of high degree. The resulting
degree distribution actually follows a power law with exponent β = 3 [18, 28]. One can
tweak this exponent using a parameter α. Choosing 1/2 ≤ α < 1 increases the probability
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of vertices with small radius (and thus of higher degree), while for α > 1, the vertices are
shifted towards the boundary of DR. The resulting power-law exponent is β = 2α+ 1.

Besides a power-law degree-distribution, hyperbolic random graphs exhibit other prop-
erties of large real-world graphs. Due to the geometric notion of closeness, vertices with a
common neighbor are likely also connected, leading to a constant clustering coefficient [18].
We note that this property distinguishes hyperbolic random graphs from other models that
also generate scale-free graphs (i.e., graphs with a power-law degree-distribution) such as the
Chung-Lu model [7] and the Barabási-Albert model [2]. These models produce graphs that
have clustering coefficient o(1) [5, 29]. Beyond a non-vanishing clustering coefficient, hyper-
bolic random graphs have polylogarithmic diameter [15, 20] and average distance O(log logn)
between vertex pairs [1, 6], i.e., they are ultra-small-world networks. Thus, hyperbolic
random graphs seem to be well suited for representing large real-world networks. This is
further supported by the work of Boguñá, Papadopoulos and Krioukov [4] who embedded
the internet into the hyperbolic plane and demonstrated that the resulting coordinates lead
to an almost optimal greedy routing.

Despite these promising properties, we note that hyperbolic random graphs are clearly not
a perfect and domain-independent representation of the real world. The degree distribution
of real-world data does for example not always follow a power-law [8]. Moreover, very
large cliques [14] seem unrealistic as one would expect at least a few edges to be missing.
Such missing edges can be achieved by considering the so-called binomial model, in which
vertices are connected with a certain probability depending on their hyperbolic distance
(see Section 6). Recently, hyperbolic random graphs have been generalized to geometric
inhomogeneous random graphs (GIRGs) [6]. In a GIRG, the degree distribution depends on
chosen weights and is thus not necessarily fixed to a power law. Moreover, GIRGs allow for
more flexibility in the choice of the underlying (potentially higher dimensional) geometry.

Divide-and-conquer algorithms separate the given instance into smaller subinstances,
solve these subinstances recursively, and then combine the results to a solution of the original
instance. Such an approach works well if (i) both subinstances have roughly the same size
(leading to a logarithmic recursion depth); and (ii) a small interface between the subinstances
allows a combination of partial solutions with only few tweaks. For graphs, one is thus
interested in finding small balanced separators, i.e., sets of vertices whose removal separates
the graph into disconnected subgraphs of roughly the same size. A famous example is the
planar separator theorem by Lipton and Tarjan [24] stating that every planar graph with n
vertices has a separator of size O(

√
n) such that both resulting subgraphs have at least 1/3n

vertices. This for example leads to a PTAS for Independent Set on planar graphs [25].
Closely related to separators is the concept of treewidth, which is a key concept in the

field of parameterized complexity as many NP-hard graph problems are actually FPT with
respect to the treewidth [9, 10]. The treewidth has been intensively studied on different
random graph models (all results we mention in the following hold with probability tending
to 1 for n→∞). Erdős-Rényi graphs [12] have linear treewidth if the edge-vertex ratio is
above 1/2 [16, 17, 22]. This bound is sharp as the treewidth is 2 if the edge-vertex ratio
is below 1/2 [22]. For random intersection graphs [19] and for the Barabási-Albert model
(which produces scale-free graphs) [2], Gao [17] gave linear lower bounds for the treewidth.

Besides these negative results, there are positive results for geometric random graphs
(in the euclidean geometry). Depending on the maximum distance for which two vertices
are connected, the treewidth can be shown to be Θ(logn/ log logn) [27] or Θ(r

√
n) [23, 27].

Recently, Bringmann et al. [6] showed that a GIRG has a balanced cut of sub-linear size,
which implies the same for hyperbolic random graphs.
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Contribution & Outline. We present a hierarchical decomposition (the hyperdisk decompo-
sition) of a disk in the hyperbolic plane into equally sized regions that have large distance
from each other while the separators have small area; see Section 3. This decomposition
carries over to hyperbolic random graphs leading to a hierarchy of balanced separators, each
of expected size O(n1−α), O(logn), and O(1) if α < 1, α = 1, and α > 1, respectively.

In Section 4, we infer that hyperbolic random graphs have whp treewidth O(n1−α),
O(log2 n), and O(logn) if α < 1, α = 1, and α > 1, respectively. For α < 1, this matches the
lower bound implied by the clique number of hyperbolic random graphs [14]. For α = 1 and
α > 1, this is above the lower bounds by factors of logn log logn and log logn, respectively.

We demonstrate algorithmic applications in Section 5. For Independent Set, we give an
approximation scheme whose algorithms have expected approximation ratio 1− ε (ε > 0) and
expected polynomial run-time (in n). Choosing ε suitably, the polynomial run-time and the
approximation ratio 1−O(1)/ logα n hold whp. Moreover, we show that maximum matchings
in hyperbolic random graphs can whp be computed in time O(n2−α) (O(n2−α logn) with
edge weights). As α ≥ 1/2, this improves upon the worst-case complexity of the fastest
known algorithm for general graphs with run-time O(

√
nm) [26]. For both results, we assume

that the geometry of the graph is known, which lets us compute the hyperdisk decomposition.
Otherwise, one can still apply the results by Fomin et al. [13] to obtain fast algorithms for
various problems; see Section 5.3.

In Section 6, we consider the binomial model, where two vertices are connected with
a certain probability depending on their distance. For α < 1 we obtain the treewidth
O(n2−(α+1)/(αt+1)) (t is a constant and t→ 0 leads to the threshold model).

2 Preliminaries

Hyperbolic Random Graphs. We consider three parameters, the number of vertices n, the
parameter α ≥ 1/2 controlling the power-law exponent, and C controlling the average degree.
We obtain a hyperbolic random graph by sampling n points in the disk DR with radius
R = 2 logn+ C. A point is described using radial coordinates (r, θ) with the center of DR

as origin. The angle θ is drawn uniformly from [0, 2π] and the radius r is chosen according
to the density d(r) = α sinh(αr)/(cosh(αR)− 1). Thus, the points are distributed according
to the following density function (which depends on the radius r but not on the angle θ).

f(r, θ) = f(r) = α

2π ·
sinh(αr)

cosh(αR)− 1 (1)

For S ⊆ DR, the probability measure µ(S) =
∫
S
f(r) dr gives the probability that a specific

vertex lies in S. Note that µ(DR) = 1 and for α = 1, µ(S) is the area of S divided by the
area of D. Two vertices are connected if and only if their (hyperbolic) distance is at most R.

We are often interested in the number of vertices lying in a certain region S. To this end,
let Xi ∈ {0, 1} be the random variable with the interpretation that Xi = 1 if and only if the
vertex i lies in S. Note that E[Xi] = µ(S). Moreover, the random variable X =

∑n
i=1 Xi

describes the number of vertices in S. The following theorem directly follows from Chernoff
bounds [11] and helps to give bounds that hold whp (i.e., with probability 1−O(1/n)).

I Theorem 1. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and let X
be their sum. Let f(n) = Ω(logn). If f(n) is an upper (resp. lower) bound for E[X], then
for each constant c there is a constant c′ such that X ≤ c′f(n) (resp. X ≥ c′f(n)) holds with
probability 1−O(n−c).

ESA 2016
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Figure 1 (a) The hyperdisk (gray) with radius ρ and horizontal axis a going through the origin.
(b) A right triangle in the hyperbolic plane.

Separator Hierarchy. Let D be a metric space (e.g., a disk in hyperbolic space or a graph).
A separator hierarchy of D is a rooted tree T with t nodes where each node i is associated
with a subset Si ∈ D such that S = {S1, . . . , St} partitions D, i.e., D =

⋃
Si∈S Si and

Si ∩ Sj = ∅ for i 6= j. For every node i, let Ui = Si ∪
⋃
j∈desc(i) Sj , where desc(i) are the

descendants of i in T . For (T,S) to be a separator hierarchy, we require that for every pair
of sibling nodes i and j (i.e., nodes with the same parent) the set Ui is disconnected from Uj .
For the parent k of i and j, we also say that Sk is the separator that separates Ui from Uj .

The diameter of the separator Sk (separating Ui and Uj) is the largest value d such that
every element in Ui has distance at least d form every element in Uj . The diameter of the
separator hierarchy (T,S) is the minimum diameter of all its separators. For a given measure
µ on D, the separator Sk is balanced if µ(Ui) ≤ 1/2µ(Uk) and µ(Uj) ≤ 1/2µ(Uk). If these
inequalities hold in expectation, we say that Sk is expected to be balanced. The separator
hierarchy is balanced (in expectation) if each separator is balanced (in expectation).

Treewidth. Let T be a tree with t nodes and let X = {X1, . . . , Xt} be a family of sets. For
each node i of T , the set Xi is called the bag of i. The pair (T,X ) is a tree decomposition of
a graph G = (V,E) if the bags are subsets of V satisfying the following two properties.
(i) For each vertex v ∈ V , the nodes of T whose bags contain v induce a subtree of T .
(ii) For each edge uv ∈ E, there exist a bag X ∈ X with u ∈ X and v ∈ X.
The width of a tree decomposition is the size of the largest bag minus 1. The treewidth tw(G)
of a graph G is the smallest k for which G has a tree decomposition of width k.

3 Hyperdisk Decomposition

In this section, we define a separator hierarchy for a disk D in the hyperbolic plane. We
assume that D is centered at the origin. The separators are (parts of) hyperdisks, which are
defined as follows. Let a be a line in the hyperbolic plane. The set of points with distance ρ
from a form the hypercircle with radius ρ and axis a. The set of points with distance at most
ρ from a is the corresponding hyperdisk; see1 Fig. 1a. We usually consider lines through the
origin as axes. By aγ , we denote such a line whose points have angle γ or γ + π.

Let x = (rx, θx) be a point on the hypercircle with axis a0 and radius ρ. Moreover, let o
be the origin and let p be the point on aγ such that the line through x and p is perpendicular
to aγ . Then o, p, and x form a triangle with right angle at p; see Fig. 1b. The angle at o

1 We use the Poincaré disk model in illustrations. Thus, the disk shown in Fig. 1 (as well as the outer-most
disk in every later illustration) is not D but the Poincaré disk representing the whole hyperbolic plane.
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Figure 2 (a) The disk D (gray area) is separated by S0 (dark gray) into the two regions U1 and
U2 (light gray). (b, c) The separators on levels 1 and 2. (d) The corresponding separator hierarchy
represented as tree in which each node corresponds to a separator.

is θx, the length of the opposite side xp is ρ, and the length of the hypotenuse is rx. The
trigonometry of hyperbolic right triangles yields the following equation, which we need later.

sin(θx) = sinh(ρ)
sinh(rx) (2)

The hyperdisk decomposition of D is the following separator hierarchy. The top-level
separator (level 0) S0 is the intersection of D with the hyperdisk with axis a0 (all hyperdisks
we consider have arbitrary but fixed radius ρ). This symmetrically separates D into regions
U1 and U2 above and below S0; see Fig. 2a. The region U1 (and analogously U2) is again
symmetrically separated into two parts by its intersection with the hyperdisk with axis aπ/2.
Denote the resulting separator by S1 and the two separated regions by U3 and U4; see Fig. 2b.
On the next level, U3 (and analogously U4, . . . , U6) is separated by its intersection with the
hyperdisk with axis aπ/4 ; see Fig. 2c. We continue this decomposition until Si = Ui. Clearly,
this leads to a separator hierarchy (T,S) and T is a complete binary tree; see Fig. 2d.

3.1 Properties of the Hyperdisk Decomposition
In the following, we investigate different properties of the hyperdisk decomposition, depending
on the radius R of the disk D, on the radius ρ of the hyperdisks, and on a measure µ on D.
We start with two simple observations. The first observation follows from the fact that two
points on different sides of a hyperdisk with radius ρ have distance at least 2ρ (they have
distance ρ from the hyperdisk’s axis and the line segment connecting them crosses the axis).

I Observation 2. The hyperdisk decomposition has diameter at least 2ρ.

We will later set ρ = R/2 (Section 3.2) or to something even larger (Section 6). However,
the bounds we prove in this section hold for more general choices of ρ.

The next observation follows from the fact that for two nodes i and j on the same level,
the regions Ui and Uj are symmetric with respect to rotation around the origin.

I Observation 3. The hyperdisk decomposition is balanced for every measure that is invariant
under rotation around the origin.

The measure we are particularly interested in is µ given by µ(S) =
∫
S
f(r) dr with the

density function f(r) as defined in Equation (1). Note that µ is clearly invariant under
rotation around the origin as f does not depend on the angle of a given point. In the
remainder of this section, we always assume µ to be this measure.

Our main goal in the following is to bound the measure of the separators in the hyperdisk
decomposition. Clearly, the measure of the separators decreases for increasing level. To
quantify this, we first show the following lemma.

ESA 2016
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Figure 3 (a) The region X`−1. (b) Two consecutive hyperdisks enclosing the region U .

I Lemma 4. Let S be a separator on level ` ≥ 1 of the hyperdisk decomposition and let
x ∈ S be a point with radius rx. Then the following holds:

rx ≥ rmin = max{ρ, ρ+ log(1− e−2ρ)− log(22−` − 22−2`)} .

Proof. We show that the inequality holds for every point x that is not contained in a separator
of level less than `. Clearly, rx ≥ ρ holds as every point with smaller radius is contained in
the top-level separator. It remains to show rx ≥ ρ+ log(1− e−2ρ)− log(22−` − 22−2`).

First assume ` = 1. In this case log(22−`−22−2`) = 0. Moreover, log(1−e−2ρ) < 0. Thus
the claim is weaker than rx ≥ ρ, which we already proved above. We assume in the following
that ` ≥ 2, which implies that there are at least two separators with level less than `.

Let γ` = π/2` and consider all hyperdisks that have an axis whose angle is a multiple
of γ`−1. Let X`−1 be the union of these hyperdisks; see Fig. 3a. By the definition of the
hyperdisk decomposition, the union of all separators of level less than ` equals X`−1. We
show that all points not in X`−1 (and thus all points in a separator of level `) satisfy the
claimed inequality. To this end, first note that rotating the disc D by a multiple of γ`−1
around the origin maps X`−1 to itself. Thus, it suffices to prove the claim for points with
angles between 0 and γ`−1.

Let S and S′ be the hyperdisks whose axes have angles 0 and γ`−1, respectively, let U be
the region between them, and let x be the point where S, S′, and U touch; see Fig. 3b. In
the following we first show that actually no point in U has radius smaller than x (which is
intuitively true when looking at Fig. 3a). Afterwards it remains to show the claimed lower
bound for the point x.

Let y ∈ U be a point with coordinates (ry, θy) and let ρy be the distance of y from
the horizontal axis a0. By Equation (2), we have sinh(ρy) = sinh(ry) sin(θy). Thus, for all
relevant angles θy, the distance ρy is increasing with increasing radius and with increasing
angle. Hence, in case θy ≤ θx, the assumption ry < rx implies that ρy < ρ (recall that ρ is
the distance of x from the horizontal axis). Thus, y is contained in the hyperdisk S and
cannot be contained in U . Symmetrically, if θy ≥ θx and ry < rx, then y is contained in S′.
Hence, no point in U has smaller radius than x.

It thus remains to show the claimed inequality for the point x. Note that x has the angle
θx = γ`. Thus, by Equation (2), we have the following.

sin(γ`) = sinh(ρ)
sinh(rx)
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⇔ sinh(rx) = sinh(ρ)
sin(γ`)

⇔ erx − e−rx = eρ − e−ρ

sin(γ`)

⇒ erx ≥ eρ − e−ρ

sin(γ`)
⇔ rx ≥ log(eρ − e−ρ)− log(sin(γ`))

= ρ+ log(1− e−2ρ)− log(sin(γ`))

We use that sin(γ) ≤ 1− (1− 2/π · γ)2 for γ ∈ [0, π/2] to obtain the following.

sin(γ`) ≤ 1−
(

1− 2
π
γ`

)2
= 1−

(
1− 21−`

)2
= 22−` − 22−2`

Together with the previous inequality, this yields the claimed bound. J

The above lemma together with a simple calculation shows the following. With the height
of the hyperdisk decomposition (which is a separator hierarchy), we refer to the height of the
corresponding tree, i.e., to the maximum distance from a node to the root.

I Lemma 5. The hyperdisk decomposition has height O(R) if ρ ≥ ε for a constant ε.

Proof. We show that setting ` = log2(c · eR) + 2 = O(R) (for a suitable constant c) results in
rmin ≥ R. Thus, the separators with smaller levels already cover the whole disk of radius R.
The last part of the formula given for rmin in Lemma 4 can be rewritten as follows.

− log
(

22−` − 22−2`
)
≥ − log

(
22−`

)
= log

(
2`−2

)
= log(c) +R

When choosing c = (1− e−2ε)−1, Lemma 4 yields rmin ≥ R. J

In the following, we upper bound the measure of a separator S on level ` of the hyperdisk
decomposition. Let H be the hyperdisk corresponding to S. To simplify the calculations,
we rotate the disk such that a0 (i.e., the horizontal line through the origin) is the axis of H.
First assume that ` ≥ 1 and let rmin be the lower bound for the radius shown in Lemma 4.
Consider the set S′ of all points in H with radius at least rmin that lie to the right of the
origin (angle between −π/2 and π/2). Clearly S ⊆ S′ and thus µ(S) ≤ µ(S′).

To compute µ(S′), let θρ(r) be the angle between 0 and π/2 such that the point (r, θρ(r))
lies on the hypercircle boundingH. By Equation (2), we have θρ(r) = arcsin(sinh(ρ)/ sinh(r)).
We obtain the following (recall that f(r) is the density function).

µ(S′) =
∫
S′
f(r) dr =

R∫
rmin

θρ(r)∫
−θρ(r)

f(r) dθ dr =
R∫

rmin

2θρ(r)f(r) dr (3)

Note that θρ(r) is only well-defined if r ≥ ρ. For ` ≥ 1, this is not an issue as rmin ≥ ρ by
Lemma 4. However, the case that S = H is the top-level separator needs special treatment.
In this case, we partition S into the disk Dρ of radius ρ and the subsets S′ and S′′ of H
whose points have radius at least ρ and lie to the right and left of the origin, respectively.
Due to symmetry, µ(S′) = µ(S′′). Thus, µ(S) = µ(Dρ) + 2µ(S′). Gugelmann et al. [18]
showed that µ(Dρ) = e−α(R−ρ)(1 + o(1)). Moreover, for µ(S′) we again obtain Equation (3)
with rmin = ρ. We thus obtain the following lemma by bounding µ(S′) from above. Note
that we require ρ to be linear in R here.

ESA 2016
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I Lemma 6. Let S be a separator on level ` of the hyperdisk decomposition of DR with
hyperdisks of radius ρ ∈ Ω(R). Then the following holds.

µ(S) =


O
(
eαρ−αR

)
·
(
21−α)−` for α < 1

O
(
eρ−R ·R

)
for α = 1

O
(
eρ−R

)
for α > 1

Proof. For the special case ` = 0, µ(Dρ) = O(eαρ−αR) is dominated by the claimed bounds
for all α. Thus, for all cases, it remains to prove the bounds for µ(S′). Starting with
Equation (3) and using that arcsin(x) ≤ x · π/2 (for x ≥ 0), we get the following.

R∫
rmin

2θρ(r)f(r) dr ≤
R∫

rmin

2 · π2 ·
sinh(ρ)
sinh(r) ·

α

2π ·
sinh(αr)

cosh(αR)− 1 dr

= α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
R∫

rmin

sinh(αr)
sinh(r) dr

= α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
R∫

rmin

eαr − e−αr

er − e−r
dr

= α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
R∫

rmin

er

er − e−r
· e

αr − e−αr

er
dr

≤ α

2 ·
sinh(ρ)

cosh(αR)− 1 ·
eρ

eρ − e−ρ
·

R∫
rmin

eαr

er
dr

= O
(
eρ−αR

)
·

R∫
rmin

e(α−1)r dr

The last inequality follows from the facts that er

er−e−r is monotonically decreasing (and thus
maximal for r = rmin ≥ ρ) and that e−αr is positive. In case α = 1, the integral equals to
R− rmin ≤ R, yielding µ(S′) = O(eρ−R ·R). Otherwise, we have the following.

R∫
rmin

eαr

er
dr =

[
e(α−1)r

α− 1

]R
rmin

= e(α−1)R − e(α−1)rmin

α− 1

If α > 1, the integral is dominated by e(α−1)R, yielding µ(S′) = O(eρ−αR ·eαR−R) = O(eρ−R).
If α < 1, the integral is dominated by e(α−1)rmin . Using the bound for rmin given by Lemma 4,
we obtain the following.

µ(S′) = O
(
eρ−αR

)
· e(α−1)rmin

= O
(
eρ−αR

)
· e(α−1)ρ ·

(
1− e−2ρ

)α−1
·
(

22−` − 22−2`
)1−α

In this product, the first two factors simplify to O(eαρ−αR). The third factor tends to 1 for
increasing ρ (and ρ ∈ Ω(R)). The fourth factor can be written as 2−`(1−α)(22 − 22−`)1−α.
As (22 − 22−`)1−α is bounded by the constant 41−α, we obtain the claimed bound. J
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3.2 Decomposing Hyperbolic Random Graphs
Recall that one obtains a hyperbolic random graph G by randomly placing n vertices in the
disk D of radius R = 2 logn + C according to the probability measure µ and connecting
two vertices if and only if their distance is less than R. For a subset S ⊆ D, let G[S] be the
subgraph of G induced by vertices in S.

Let (T,S) be the hyperdisk decomposition of D with hyperdisks of radius ρ = R/2. Let
further k be a node of T with children i and j. By Observation 2, the diameter of the
separator Sk (separating Ui from Uj) is at least 2ρ = R. This implies that no vertex in Ui is
connected to a vertex in Uj . Thus, the graph G[Uk] is separated by the vertices in Sk into
the subgraphs G[Ui] and G[Uj ]. Hence, the hyperdisk decomposition of D translates into
a separator hierarchy of the graph G. We also call this separator hierarchy the hyperdisk
decomposition of G. The properties of the separators in D directly translate to the separators
in G, i.e., we can expect the separators to be balanced (Observation 3) and small (Lemma 6).

I Theorem 7. The hyperdisk decomposition of a hyperbolic random graph is expected to be
balanced and for a separator S on level `, the following holds.

E
[
|S|
]

=


O
(
n1−α) · (21−α)−` for α < 1

O (logn) for α = 1
O (1) for α > 1

4 The Treewidth of Hyperbolic Random Graphs

The treewidth of a graph G is closely related to the size of separators in G. If G has treewidth
k, it is known to have a balanced separator of size k + 1. This follows from the fact that a
tree (e.g., the decomposition tree of width k) has a (weighted) balanced separator of size 1.
Conversely, if G can be recursively decomposed by small balanced separators, i.e., if it has a
balanced separator hierarchy with small separators, its treewidth is also small.

The following statement is easy to prove and for example used to show that planar graphs
have treewidth

√
n based on the planar separator theorem.

I Lemma 8. Let (T,S) be a separator hierarchy of G. For each node i of T , let Xi be the union
of Si and all separators Sj for which j is an ancestor of i in T . Then (T,X = {X1, . . . , Xt})
is a tree decomposition of G.

Proof. We have to show that for each vertex v ∈ V the bags containing v form a subtree of
T and that for each edge uv ∈ E, there exists a bag containing u and v. For the former, let
v be a vertex and let i be the unique node of T such that v ∈ Si. Then v ∈ Xj if and only if
j = i or j is an descendant of i. The node i together with its descendants clearly is a subtree
of T . For the second condition, let uv ∈ E, let u ∈ Si and v ∈ Sj . Due to their edge, u and
v cannot be separated, which implies that i is an ancestor of j or vice versa. Without loss of
generality, we assume i is an ancestor of j. Then Xj includes Sj and Si, which proves the
claim. J

Using the properties of the hyperdisk decomposition as stated in Lemma 5 and Theorem 7
together with Lemma 8, we obtain a tree decomposition with upper bounds on the expected
size of each bag. Applying a Chernoff bound (Theorem 1) leads to the following theorem.
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I Theorem 9. For the treewidth tw(G) of a hyperbolic random graph G, the following holds
with high probability.

tw(G) =


Θ
(
n1−α) for α < 1

O
(

log2 n
)

for α = 1

O (logn) for α > 1

Note that the theorem states a matching lower bound if α < 1. It follows from the fact
that hyperbolic random graphs have clique number Θ(n1−α) if α < 1 [14]. For α ≥ 1, the
clique number is Θ(logn/ log logn) [14]. Thus, our upper bounds for α = 1 and α > 1 differ
from this lower bound by factors logn log logn and log logn, respectively.

5 Applications

Our results from the previous sections have several algorithmic implications. In particular, the
logarithmic treewidth for α > 1 leads to efficient algorithms for numerous NP-hard problems,
e.g., Vertex Cover, Independent Set, Dominating Set, Odd Cycle Traversal,
and Max Cut [9]. We note that the size of the largest connected component in a hyperbolic
random graph is whp polynomial even for α > 1 as the maximum degree [18] is a lower
bound for the size of the largest component. Thus, for α > 1, the treewidth is not only
logarithmic in the size of the whole (potentially disconnected) hyperbolic random graph but
also in the size of the largest component.

For α < 1, the separators are larger and thus algorithmic applications are less obvious.
Moreover, there exists a giant component [3], i.e., a connected component of linear size. In
the following sections, we present several algorithmic applications for the case that G is the
giant component of a hyperbolic random graph with α < 1. We note that all results still hold
when considering the whole hyperbolic random graph instead of only the giant component
(in fact, some arguments actually get simpler).

We give an approximation scheme for Independent Set (Section 5.1) and a fast algorithm
for computing maximum matchings (Section 5.2). Both results assume that the geometry of
the hyperbolic random graph is known (which is a strong but not completely unreasonable
assumption [4]). In Section 5.3 we give applications that do not rely on knowing the geometry.

5.1 An Approximation Scheme for Independent Set
As an independent set forms a clique in the complement graph and vice versa, it is NP-hard
to approximate Independent Set with approximation ratio better than O(n1−ε) for any
ε > 0 [30]. However, based on the planar separator theorem (stating that planar graphs
have balanced separators of size O(

√
n)), Lipton and Tarjan [25] showed that Independent

Set on planar graphs has a PTAS (polynomial-time approximation scheme), i.e., for every
constant ε > 0, it admits an efficient approximation algorithm with approximation ratio 1−ε.
We adapt their approach to show that there is an approximation scheme for Independent
Set if the input is a hyperbolic random graph given in its geometric representation.

The PTAS for planar graphs is based on two facts. First, planar graphs have a balanced
separator hierarchy with separators of size O(

√
n). Second, planar graphs have independent

sets of linear size. The latter follows directly from the fact that planar graphs have bounded
chromatic number. For hyperbolic random graphs, this is not true, as they include com-
paratively large cliques [14]. However, as the degree sequence follows a power law, we find
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a subgraph of linear size whose vertices have bounded degree. This subgraph can then be
colored with a constant number of colors which implies a large independent set. To obtain
the following lemma, we have to apply this argument to the giant component of a hyperbolic
random graph.

I Lemma 10. The giant component of a hyperbolic random graph has whp independent sets
of linear size.

Following the approach of Lipton and Tarjan [25], we prove the following lemma. The
rough idea is to choose V ′ to be the union of all separators of the hyperdisk decomposition
with level at most blog2(n/k)c.

I Lemma 11. Let G = (V,E) be a hyperbolic random graph with α < 1 and let k ∈ N. Then
there is a vertex set V ′ ⊆ V of expected size O(n)/kα such that the connected components of
G− V ′ have expected size at most k.

Proof. Consider the hyperdisk decomposition (T,S) of G and let i be a node on level `.
Recall that Ui denotes the set of vertices such that G[Ui] is the subgraph whose separators are
represented by the descendants of i in T . Due to the fact that the hyperdisk decomposition
is balanced (Theorem 7), the expected size of Ui is at most n2−`. We choose V ′ to be the
union of all separators with level at most `max = blog2(n/k)c. Each connected component of
G− V ′ is then a subgraph of G[Ui] for a vertex i with level `max + 1. Thus, the expected
size of these components is at most k.

It remains to bound E[|V ′|]. Recall from Theorem 7 that a separator on level ` has expected
size O(n1−α) · 2−`(1−α). Moreover, as T is a complete binary tree, there are 2` separators on
level `. Thus, the total size of separators on level ` is O(n1−α) · 2−`(1−α)2` = O(n1−α) · 2α`.
We thus obtain the following for the expected size of V ′.

E
[
|V ′|

]
=
`max∑
`=0

O
(
n1−α

)
· 2α`

= O
(
n1−α

)
·
`max∑
`=0

2α`

To conclude the proof, it remains to proof that the sum equals (n/k)α ·O(1), which follows
from the following calculation and from the fact that the geometric series converges.

`max∑
`=0

2α` =
`max∑
i=0

2α(`max−i)

= 2α`max

`max∑
i=0

2−αi

=
(
n/k

)α ·O(1) J

To approximate Independent Set, one can apply Lemma 11 to the given hyperbolic
random graph G and then compute for each of the resulting connected components an optimal
independent set in expected time O(k2k). For all O(n/k) connected components, this takes
expected O(n2k) time. The union of these independent sets is an independent set of G. Let
I be this independent set, restricted to the giant component H of G. Comparing this to the
size of an optimal independent set I? of H, we miss at most the vertices in the separator V ′,
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thus E[|I?| − |I|] = O(n)/kα. As |I?| is linear with high probability (Lemma 10), dividing
by |I?| yields E[1− |I|/|I?|] = k−α ·O(1) and thus E[|I|/|I?|] = 1− k−α ·O(1).

This directly implies the claimed approximation scheme: for every given ε > 0, one can
choose the k such that the expected approximation ratio is 1− ε. As the k we have to chose
does not depend on n, the resulting running time is polynomial in n (but exponential in 1/ε).
Additionally applying concentration bounds if k = logn yields the following theorem.

I Theorem 12. For the giant components of hyperbolic random graphs given in their
geometric representation, Independent Set can be approximated in expected O(n2k) time
with expected approximation ratio 1 − k−α · O(1). If k = logn, the algorithm runs whp in
polynomial time and the bound on the approximation ratio holds whp.

Proof. It remains to consider the case k = logn. We apply Lemma 11 with k = logn leading
to connected components of expected size logn. Using a Chernoff bound (Theorem 1) shows
that the size of the connected components is whp at most c logn for a constant c. Thus, the
algorithm described above has whp polynomial run-time.

Concerning the approximation ratio, note that the separator V ′ has expected size
O(n)/ logα n. Thus, there are constants c1 and nmin such that the E[|V ′|] ≤ c1n/ logα n
if n > nmin. As we can brute-force smaller instances, we can assume the latter assump-
tion to be true. Applying a Chernoff bound (Theorem 1) we get that V ′ includes whp
at most c2n/ logα n vertices for another constant c2. As before let I be the independent
set we computed and let I? be an optimal independent set of the giant component. Then,
|I?|− |I| ≤ c2n/ logα n holds whp. As whp |I?| ≥ c3n (at least for sufficiently large instances;
see Lemma 10), the calculations from above show that |I|/|I?| ≥ 1− c/ logα n holds whp for
c = c2/c3. J

5.2 Computing Matchings in O(n2−α) Time
Lipton and Tarjan [25] also gave O(n3/2) and O(n3/2 logn) algorithms that compute match-
ings of maximum cardinality and matchings of maximum weight, respectively, in a planar
graph. Their algorithm uses the following divide-and-conquer strategy. Find a separator,
recursively compute maximum matchings for both subgraphs, and finally combine these
solutions by iteratively adding the vertices of the separator while maintaining a maximum
matching. The latter can be done by finding a single augmenting path, which can be done
in O(m) and O(m logn) time for unweighted and weighted graphs, respectively (m is the
number of edges).

To obtain the following theorem, we apply this divide-and-conquer strategy to hyperbolic
random graphs, show that m is actually linear in n (even for the subgraphs for which we
compute the augmenting paths), and apply concentration bounds.

I Theorem 13. Let G be the giant component of a hyperbolic random graph given in its
geometric representation. Whp, a maximum matching in G can be computed in O(n2−α) and
O(n2−α logn) time if G is unweighted and weighted, respectively.

5.3 In Case the Geometry is Unknown
The two previous applications relied on the fact that we know the geometric representation
of the given hyperbolic random graph. However, even if the geometry is unknown, we can
still benefit from the knowledge that hyperbolic random graphs have low treewidth by using
an algorithm of Fomin et al. [13]. It takes a graph G and an integer k as input and either
decides that tw(G) > k or returns a tree decomposition of width k2. It runs in O(k7n logn)
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time. By spending an additional factor of log(tw(G)) we can actually compute the smallest
k for which the algorithm succeeds to compute a tree decomposition.

Given a tree decomposition of width k, Fomin et al. [13] show (among other algorithms)
how to compute a matching with maximum weight and a maximum vertex flow in a directed
graph in O(k4n log2 n) and O(k2n logn) time, respectively. For sufficiently large α, this leads
to algorithms solving these problems faster than the best known algorithms for general graphs.
E.g., for α = 31/32, the treewidth of G is O(n1/32) with high probability (Theorem 9). Thus,
we get a tree decomposition of width O(n1/16) in O(n7/32 · n log2 n) time. Computing a
matching of maximum weight then takes O(n1/4 · n log2 n). Thus, the overall running time
is O(n5/4 log2 n). Also note that this approach leads to almost linear (i.e., linear up to a
polylogarithmic factor) run-times if α ≥ 1.

6 Binomial Hyperbolic Random Graphs

So far, we considered the so-called threshold model of hyperbolic random graphs where
vertices are connected if and only if they have distance at most R. A more realistic (but
technically more difficult) model is the binomial model, in which longer edges and shorter
non-edges are allowed with a certain probability. More precisely, two vertices with distance
d are connected with the following probability p(d) depending on the constant t (usually
0 < t < 1). Note that we obtain the threshold model for t→ 0.

p(d) =
(

1 + e
1

2t (d−R)
)−1

As before, we start with a hyperdisk decomposition (T,S) of the disk D and then transfer
it to a separator hierarchy of a hyperbolic random graph. In the threshold model, separators
in (T,S) translated to separators in the graph if ρ ≥ R/2. This is not true in the binomial
model as vertices with distance greater than R are still connected with a certain probability.

However, we obtain separators as follows. Let k be a node of T with children i and j,
i.e., Sk separates Uk into Ui and Uj . An edge of the graph G is critical with respect to Sk if
it connects a vertex located in Ui with a vertex in Uj . As before, let G[Uk] be the graph
induced by vertices in Uk. Then the vertices located in Sk together with the endvertices
of critical edges separate G[Uk] into (subgraphs of) G[Ui] and G[Uj ]. In this way, we again
obtain a separator hierarchy for G, which we call the extended hyperdisk decomposition.

To bound the size of the resulting separators, we have to bound the number of vertices
in Sk and the number of critical edges. For the former, we can use the previous results (in
particular Lemma 6). For the latter, note that the expected number of vertices in Ui is at
most n2−` if i has level ` (as the hyperdisk decomposition is balanced). As the same holds
for Uj , there are only (n2−`)2 vertex pairs that potentially form critical edges, each with a
probability of at most p(2ρ) (as their distance is at least 2ρ). Thus, the expected number
of critical edges is at most n2p(2ρ)2−2`. Plugging a carefully chosen value for ρ into this
formula as well as into the formula given by Lemma 6 leads to the following theorem.
I Theorem 14. Let G be a binomial hyperbolic random graph with α < 1 and consider its
extended hyperdisk decomposition with hyperdisks of radius ρ = 2αt+t+1

2αt+2 R. For a separator S
on level `, the following holds.

E(|S|) = O
(
n2− α+1

αt+1

)
·
(

21−α
)−`

Proof. As mentioned above, the number of critical edges is bounded by the following term.

n2p(2ρ)2−2` = n2p

(
2αt+ t+ 1
αt+ 1 R

)
2−2`
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= n2
(

1 + e
1

2t ( 2αt+t+1
αt+1 R−R)

)−1
2−2`

= n2
(

1 + e
1
2
α+1
αt+1R

)−1
2−2`

= n2
(

1 + e
1
2
α+1
αt+1 (2 logn+C)

)−1
2−2`

≤ n2
(

1 + e
α+1
αt+1 (logn+C/2)

)−1
2−(1−α)`

= O
(
n2− α+1

αt+1

)
·
(

21−α
)−`

For the second part, we go one step back and assume that S is a separator in the hyperdisk
decomposition of the disk DR in the hyperbolic plane (instead of a separator in graph). By
Lemma 6, we get the following bound on the measure of S.

µ(S) = O
(
eαρ−αR

)(
21−α

)−`
= O

(
eα

2αt+t+1
2αt+2 R−αR

)(
21−α

)−`
= O

(
eα

t−1
2αt+2R

)(
21−α

)−`
= O

(
eα

t−1
2αt+2 (2 logn+C)

)(
21−α

)−`
= O

(
n
αt−α
αt+1

)(
21−α

)−`
= O

(
n
αt+1−α−1

αt+1

)(
21−α

)−`
= O

(
n1− α+1

αt+1

)(
21−α

)−`
Multiplying with n (as we have n vertices) leads to the claimed bound. J

Note that this bound coincides with our result for the threshold model when t → 0.
Moreover, for t ∈ (0, 1), we obtain separators of sublinear size. As for the threshold model,
we can use Lemma 8 to obtain bounds for the treewidth (compare Section 4).

7 Conclusion

We have shown that hyperbolic random graphs have small separators, as well as a small
treewidth (with a phase transition from polynomial to logarithmic at β = 3). This stands
in stark contrast to other popular random graph models like Erdős-Rényi [12] or Barabási-
Albert [2] that have linear separators [17]. Beyond providing new insights on the structural
properties of hyperbolic random graphs, our results give rise to several algorithmic applica-
tions.

To judge the practical merit of these algorithms, an interesting next step is therefore
to compare separators on real graphs with predictions made by the various models. It is,
however, a challenge to compute small separators in a given massive graph. Depending on
the precise problem formulation, this is likely to be an NP-complete problem.

A more theoretical open question is whether our results are tight or can be improved to
achieve even smaller separators. Of interest is especially the binomial model, since it allows
for long range edges in the graph; and there exists no lower bound on the treewidth in the
current literature.
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