
Algorithmica (2018) 80:1732–1768
https://doi.org/10.1007/s00453-017-0341-1

Static and Self-Adjusting Mutation Strengths for
Multi-valued Decision Variables

Benjamin Doerr1 · Carola Doerr2 · Timo Kötzing3

Received: 18 October 2016 / Accepted: 26 June 2017 / Published online: 5 July 2017
© Springer Science+Business Media, LLC 2017

Abstract The most common representation in evolutionary computation are bit
strings. With very little theoretical work existing on how to use evolutionary algo-
rithms for decision variables taking more than two values, we study the run time
of simple evolutionary algorithms on some OneMax-like functions defined over
Ω = {0, 1, . . . , r − 1}n . We observe a crucial difference in how we extend the one-
bit-flip and standard-bit mutation operators to the multi-valued domain. While it is
natural to modify a random position of the string or select each position of the solu-
tion vector for modification independently with probability 1/n, there are various ways
to then change such a position. If we change each selected position to a random value
different from the original one, we obtain an expected run time of Θ(nr log n). If we
change each selected position by +1 or −1 (random choice), the optimization time
reduces toΘ(nr+n log n). If we use a randommutation strength i ∈ {0, 1, . . . , r −1}
with probability inversely proportional to i and change the selected position by +i or
−i (random choice), then the optimization time becomes Θ(n log(r)(log n + log r)),
which is asymptotically faster than the previous if r = ω(log(n) log log(n)). Interest-
ingly, a better expected performance can be achieved with a self-adjusting mutation
strength that is based on the success of previous iterations. For the mutation operator
that modifies a randomly chosen position, we show that the self-adjusting mutation

Results presented in this work are based on [12,13].

B Timo Kötzing
Timo.Koetzing@hpi.de

1 LIX - UMR 7161, École Polytechnique, CS35003, 91120 Palaiseau, France

2 CNRS, LIP6 UMR 7606, Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu,
75005 Paris, France

3 Hasso-Plattner-Institut, Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0341-1&domain=pdf

Algorithmica (2018) 80:1732–1768 1733

strength yields an expected optimization time of Θ(n(log n + log r)), which is best
possible among all dynamic mutation strengths. In our proofs, we use a new multi-
plicative drift theorem for computing lower bounds,which is not restricted to processes
that move only towards the target.

Keywords Theory of randomized search heuristics · Runtime analysis · Genetic
algorithms · Parameter choice · Parameter control

1 Introduction

In evolutionary computation, taking ideas both from computer science and biology,
often search and optimization problems are modeled in a way that the solution candi-
dates are fixed-length strings over the alphabet consisting of 0 and 1. In otherwords, the
search spaceΩ is chosen to be {0, 1}n for somepositive integern. Such a representation
of solution candidates is very suitable to model binary decision variables. For exam-
ple, when searching for graph substructures like large cliques, (degree-constrained)
spanning trees, or certain matchings, we can use binary decision variables describing
whether a vertex or an edge is part of the solution or not. For these reasons, the bit
string representation is by far the most prominent one in evolutionary computation.

When a problem intrinsically consists of other types of decision variables, the
algorithm designer has the choice to either work with a different representation (e.g.,
permutations in the traveling salesman problem, see also [43] for other early examples
of experimental results investigating discrete search spaces different from {0, 1}n) or
to reformulate the problem using a bit string representation. For an example for the
latter, see, e.g., [19], where the Eulerian cycle problem (asking for a permutation of
the edges) was re-modeled as a matching problem in the adjacency lists. While the
re-modeling in [19] led to a significantly improved runtime, in general, there is the risk
that such a re-modeling leads to a less natural and less efficient optimization process. In
such cases, it may be superior to work with a representation different from bit strings.
The traveling salesman problem is an example for a problem where a convincing bit
string representation has not been found so far.

While in this work we shall not deal with the difficulties of treating permutation
search spaces in evolutionary computation, we shall try to extend our good understand-
ing of the bit string representation to representations in which the decision variables
can take more values than just zero and one. Consequently, we shall work with search
spaces Ω = {0, . . . , r − 1}n . Such search spaces are a natural representation when
each decision variable can take one out of r values. Examples from the evolutionary
computation literature include scheduling n jobs on r machines, which naturally leads
to the search space {0, . . . , r − 1}n , see Gunia [26]. However, also rooted trees lead
to this type of representation: Since each vertex different from the root has a unique
predecessor in the tree, a rooted tree on n vertices can be represented via an element
of {0, . . . , n−1}n−1. This was exploited in [44] to design evolutionary algorithms for
shortest-path problems.

Our focus in this work is to analyze how to best deal with such search spaces in a
direct manner, that is, without remodeling the problem into a bit string representation.

123

1734 Algorithmica (2018) 80:1732–1768

Our motivation is that this seems to us the most natural approach. It is clear that a
variable taking values in {0, . . . , r−1} can be encoded in log r bits, which immediately
gives a reformulation of the problem in the language of bit strings. We discuss briefly
in Sect. 2.1 such encodings. However, by using a binary encoding and then standard
mutation operators, we end up with algorithms ignoring the structure of the search
space. For this reason, in this work, we prefer to investigate how the existing work on
binary representations can be extended directly to multi-valued decision variables.

1.1 Static and Self-Adjusting Mutation Operators for Multi-valued Search
Spaces

A first question, and our main focus in this work, is what mutation operators to
use in such multi-valued search spaces. When there is no particular topology in
the components i ∈ [n] := {1, . . . , n}, that is, in each dimension with values from
[0 . . . r − 1] := {0} ∪ [r − 1], then the natural analogue of the standard-bit mutation
operator is to select each component i ∈ [n] independently and mutate the selected
components by changing the current value to a random other value in [0 . . . r − 1].
This operator was used in [26,44] as well as in the theoretical works [20,22].

When the decision values 0, 1, . . . , r − 1 carry more meaning than just denoting
alternatives without particular topology, then one may want to respect this in the
mutation operator. We shall not discuss the most general set-up of a general distance
matrix defined on the values 0, 1, . . . , r − 1, but assume that they represent linearly
ordered alternatives.

Given such a linear topology, several other mutation operators suggest itself. We
shall always imitate either the one-bit-flip mutation operator (changing a random
position) or the standard-bit mutation operator (changing each component i ∈ [n]
independently with probability 1/n). Hence the only point of discussion is how a
component selected for modification is then changed. Since this is merely the question
by how far the existing entry is moved in the range {0, . . . , r − 1}, we call this to be
determined information the mutation strength. We also call the change of a single
entry of the solution vector an elementary mutation.

The principle that mutation is a minimalistic change of the individual suggests to
alter a selected component randomly by +1 or −1 (for a precise definition, including
also a description of how to treat the boundary cases, see again Sect. 2).We say that this
mutation operator has amutation strength equal to one. Naturally, a mutation strength
of one carries the risk of being slow—it takes r − 1 such elementary mutations to
move one component from one boundary value, say 0, to the other, say r − 1.

In this language, the previously discussed mutation operator changing a selected
component to a new value chosen uniformly at random can (roughly) be described
as having a mutation strength chosen uniformly at random from [r − 1]. While this
operator does not have the disadvantage of moving slowly through the search space,
it does have the weakness that reaching a particular target is slow, even when already
close to it.

Based on these (intuitive, but we shall make them precise later) observations, we
propose an elementary mutation that takes a biased random choice of the mutation

123

Algorithmica (2018) 80:1732–1768 1735

strength. We give more weight to small steps than the uniform operator, but do allow
larger jumps with certain probability. More precisely, in each elementary mutation
independently we choose the mutation strength randomly such that a jump of + j or
− j occurs with probability inversely proportional to j , and hence with probability
Θ((j log r)−1). This distribution, called harmonic distribution, was used in [7] to
design fast greedy random walks in the one-dimensional domain {0, . . . , r − 1}.

All three mutation operators described above are static, i.e., the mutation strength
(more precisely, its distribution) does not change throughout the run of the algo-
rithms. Formanypractical problems (and few theoretical scenarios), however,adaptive
parameter choices are known to outperform such static ones, cf. the discussion in
Sect. 7.1.

Our analyses of the three different static parameter choices suggest that also for
the multi-valued OneMax problems considered in this work an adaptive parameter
choice could be useful. Indeed, as briefly mentioned above we shall observe that the
±1mutation strength is too slow in the beginning of the optimization process while the
uniformmutation strength often suggests too large mutation strengths towards the end
of the optimization. The harmonic operator seems more balanced in the choice of the
mutation strength, which, however, still means that it does not prefer the currently ideal
mutation strength, but has to wait until its random choice selects a suitable mutation
strength.

These observations inspire us to invent a self-adjusting choice of the mutation
strength. Each position i ∈ [n] is equipped with a step size vi ∈ [r/4]. If the i-th
position is selected for variation, then with probability 1/2 the current value xi is
increased to xi + vi and it is decreased to xi − vi otherwise (all technical details, such
as the treatment of the boundary cases will be discussed in Sect. 2). Has the iteration
been successful, that is, if at the end of the iteration the fitness of the offspring is
strictly better than that of its parent, then for all positions i changed in the mutation
step, the step size vi is increased to avi (for some constant a > 1). If the new search
point has worse fitness, it is discarded and the step size vi of all positions i involved
is decreased to bvi (for a positive constant b < 1).

We shall see that this self-adjusting choice together with one-bit-mutations (chang-
ing one randomly chosen position) outperforms the three staticmutation strengths both
for one-bit-mutations and standard-bit mutation. In fact, we obtain a performance that
is optimal among a broad class of black-box optimizers. We conjecture that the same
asymptotic performance is obtained when using the self-adjusting mutation strength
with standard-bit mutation, but we have to leave this an open problem.

1.2 Run Time Analysis of Multi-valued ONEMAX Functions

To gain a rigorous understanding of the working principles of the different muta-
tions strengths, we conduct a mathematical run time analysis for simple evolutionary
algorithms on multi-valued analogues of the OneMax test function. Comparable
approaches have been very successful in the past in studying in isolation particu-
lar aspects of evolutionary computation, see, e.g., [31]. Also, many observations first

123

1736 Algorithmica (2018) 80:1732–1768

made in such simplistic settings have later been confirmed for more complicated algo-
rithms (see, e.g., [1]) or combinatorial optimization problems (see, e.g., [40]).

On bit strings, the classic OneMax test function is defined by Om : {0, 1}n →
[0 . . . n]; (x1, . . . , xn) �→ ∑n

i=1 xi . Due to the obvious symmetry, for most evolution-
ary algorithms it makes no difference whether the target is to maximize or to minimize
this function. For several reasons, among them the use of drift analysis, in this work
it will be more convenient to always assume that our target is the minimization of the
given objective function.

The obvious multi-valued analogue of this OneMax function is Om : [0 . . . r −
1]n → [0 . . . n(r − 1)]; x �→ ∑n

i=1 xi , however, a number of other functions can also
be seen as multi-valued analogues. For example, we note that in the bit string setting
we have Om(x) = H(x, (0, . . . , 0)), where H(x, y) := |{i ∈ [n] | xi �= yi }| denotes
the Hamming distance between two bit strings x and y. Defining fz : {0, 1}n →
[0 . . . n]; x �→ H(x, z) for all z ∈ {0, 1}n , we obtain a set of 2n objective functions
that all have an isomorphic fitness landscape. Taking this route to define multi-valued
analogue of OneMax functions, we obtain the class of functions fz : [0 . . . r−1]n �→
[0 . . . n(r−1)]; x �→ ∑n

i=1 |xi −zi | for all z ∈ [0 . . . r−1]n , again with f(0,...,0) being
the OneMax function defined earlier. Note that these objective functions do not all
have an isomorphic fitness landscape. The asymmetry with respect to the optimum z
can be overcome by replacing the classic distance |xi − zi | in the reals by the distance
modulo r (ring distance), that is, min{xi − (zi − r), |xi − zi |, (zi + r) − xi }, creating
yet another non-isomorphic fitness landscape. All results we show in the following
hold for all these objective functions.

We study the performance of the two elementary black-box optimization algorithms
randomized local search (RLS) and the (1+1) evolutionary algorithm (EA) on these
test functions. RLS and the (1+1)EAare arguably among themost simple randomized
search heuristics, but many results that could first only be shown for (one or both of)
these two algorithms could later be extended to more complicated algorithms, making
them an ideal instrument for a first study of a new subject. For the different ways of
setting the mutation strength, we conduct a mathematical run time analysis, that is,
we prove bounds on the expected number of iterations the algorithms need to find an
optimal solution. This optimization time today is one of themost accepted performance
measures for evolutionary algorithms.

1.3 Our Results

As mentioned, we analyze the performance of different extensions of RLS and the
(1+1) EA on the r -valued OneMax functions described above. All variants maintain
the property that for RLS in each iteration the entry of exactly one position i ∈ [n]
is changed, while for the (1 + 1) EA for each i ∈ [n] an independent coin flip with
success probability 1/n decideswhether or not the entry of the i-th position is subject to
change. In both algorithms, we study how different ways to change entries selected for
modification influence the run time. For the three static mutation strength we analyze
the performance of the respective RLS and (1 + 1) EA variant; for the self-adjusting

123

Algorithmica (2018) 80:1732–1768 1737

Table 1 Expected run times on r -valuedOneMax functions for (a) the (1+1) EA and RLS using different
static mutation strengths (first three rows of results); and for (b) RLS with self-adjusting mutation strength

Mutation strength Expected run time Scaling w.r.t. r

Uniform Θ(rn log n) Θ(r)

±1 Θ(n log n + nr) Θ(r)

Harmonic Θ(n log r(log n + log r)) Θ((log r)2)

Self-adjusting Θ(n(log n + log r)) Θ(log r)

variation operator we only regard the extension of RLS and leave the analysis of the
corresponding (1 + 1) EA variant as an open problem.

For the uniformmutation strength, we show tight and precise (including the leading
constant) run time guarantee of (1±o(1))(r −1)n ln(n) for RLS and (1±o(1))e(r −
1)n ln(n) for the (1 + 1) EA, which are valid for all values of r (Sect. 4). For the
cautious ±1 mutation strength, the run time improves to Θ(n(r + log n)) for both
RLS and the (1 + 1) EA (Sect. 5). The harmonic mutation strength overcomes the
linear influence of r and gives a run time of Θ(n log(r)(log r + log n)), which for
most values of r is significantly better than the previous bounds (Sect. 6).

For RLSwith self-adjusting mutation strength, we show that for reasonable choices
of the update constants a and b, e.g., a ∈ [1.6, 2] and b = 4

√
1/a imitating the 1/5-th

rule, the expected optimization time drops toΘ(n(log n+ log r)), thus gaining a factor
of at least log r over anyRLS or (1+1)EAvariant using static step sizes (indeed, as we
shall discuss in Sect. 6.1, from [7] we know that no static distribution of step sizes can
achieve a better run time than Ω((log r)2) for n = 1). A simple information-theoretic
consideration shows that the lower bound Ω(n log r) applies to all comparison-based
algorithms, whileΩ(n log n) is known to be a lower bound for the performance of any
unary unbiased black-box algorithm (cf. [37] for a proof of this result and a discussion
of unbiased variation). Our results are summarized in Table 1.

All our run time analyses rely on drift methods. For the lower bound for uniform
mutation strengths we prove a variant of the multiplicative drift lower bound theo-
rem [45] that does not need the restriction that the process cannot go back to inferior
search points (see Sect. 3.1). We expect that this will find other applications in the
future.

1.4 Related Works

In particular for the situation that r is large, one might be tempted to think that results
from continuous optimization can be helpful. So far, we were not successful in this
direction. A main difficulty is that in continuous optimization, usually the asymptotic
rate of convergence is regarded. Hence, when operatingwith a fixed r in our setting and
re-scaling things into, say, {0, 1

r ,
2
r , . . . , 1}n , then these results, due to their asymptotic

nature, could become less meaningful. For this reason, the only work in the continuous
domain that we found slightly resembling ours is by Jägersküpper (see [30] and the
references therein), which regards continuous optimizationwith an a-priori fixed target

123

1738 Algorithmica (2018) 80:1732–1768

precision. However, the fact that Jägersküpper regards approximations with respect to
the Euclidean norm (in other words, minimization of the sphere function) makes his
results hard to compare to ours, which can be seen as minimization of the 1-norm.

Coming back to the discrete domain, as said above, the vast majority of theoretical
works on evolutionary computation work with a bit string representation. A notable
exception is the work on finding shortest path trees (e.g., [44]); however, in this setting
we have that the dimension and the number r of values are not independent: one
naturally has r equal to the dimension, because each of the n − 1 non-root vertices
has to choose one of the n − 1 other vertices as predecessor.

Therefore, we see only three previous works that are comparable to ours. The first
two regard the optimization of linear functions via the (1 + 1) EA using mutation
with uniform strength, that is, resetting a component to a random other value. The
main result of [20] is that the known run time bound of O(n log n) on linear functions
defined on bit strings remains valid for the search space {0, 1, 2}n . This was extended
and made more precise in [22], where for r -valued linear functions an upper bound
of (1 + o(1))e(r − 1)n ln(n) + O(r3n log log n) was shown together with a (1 +
o(1))n(r − 1) ln(n) lower bound.

A third paper considers dynamically changing fitness functions [35]. They also
consider OneMax functions with distance modulo r , using ±1 mutation strength.
In this setting the fitness function changed over time and the task was to track it as
closely as possible, which the ±1 mutation strength can successfully do. Note that a
seemingly similar work on the optimization of a dynamic variant of the maze function
over larger alphabets [38] is less comparable to our work since there all non-optimal
values of a decision variable contribute the same to the fitness function.

Compared to these works, we only regard the easier static OneMax problem (note
though that there are several ways to define multi-valued OneMax functions), but
obtain tighter results also for larger values of r and for four differentmutation strengths.

As for the self-adjusting mutation operator (related literature will be discussed in
Sect. 7), we remark that after the work presented in [10] our result is only the second
time that a self-adjusting parameter setting is proven to outperform any static choice
for a discrete optimization problem, and it is the first time that this is shown for a
problem over multiple decision variables.

2 Algorithms and Problems

In this section we define the algorithms and problems considered in this paper. We
let [r] := {1, . . . , r} and [0 . . . r] := {0} ∪ [r]. For a given search space Ω , a fitness
function is a function f : Ω → R. While a frequently analyzed search space is
Ω = {0, 1}n , we will consider in this paper Ω = [0 . . . r − 1]n .

We define the following twometrics on [0 . . . r−1], called interval-metric and ring-
metric, respectively. The intuition is that the interval metric is the usual metric induced
by the metric on the natural numbers, while the ring metric connects the two endpoints
of the interval (and, thus, forms a ring). Formally we have, for all a, b ∈ [0 . . . r − 1],

dint(a, b) = |b − a|;

123

Algorithmica (2018) 80:1732–1768 1739

dring(a, b) = min{|b − a|, |b − a + r |, |b − a − r |}.

We consider different step operators step : [0 . . . r − 1] → [0 . . . r − 1] (possibly
randomized). These step operators will later decide the update of a mutation in a given
component. Thus we call, for any given x ∈ [0 . . . r − 1], d(x, step(x)) the mutation
strength. We consider the following step operators.

– The uniform step operator chooses a different element from [0 . . . r−1] uniformly
at random; thus we speak of a uniform mutation strength.

– The ±1 operator chooses to either add or subtract 1, each with probability 1/2;
this operator has a mutation strength of 1.

– The harmonic operator makes a jump of size j ∈ [1 . . . r−1]with probability pro-
portional to 1/j , choosing the direction uniformly at random; we call its mutation
strength harmonic mutation strength.

Note that, in the case of the ring-metric, all steps are implicitly considered with wrap-
around. For the interval-metric, we consider all steps that overstep a boundary of the
interval as invalid, the resulting non-individual is considered to have a fitness worse
than all regular individuals x ∈ Ω .

We consider the algorithms RLS and (1 + 1) EA as given by Algorithms 1 and 2.
Both algorithms sample an initial search point from [0 . . . r−1]n uniformly at random.
They then proceed in rounds, each of which consists of a mutation and a selection step.
Throughout the whole optimization process the algorithms maintain a population size
of one, and the individual in this population is always the most recently sampled best-
so-far solution. The two algorithms differ only in the mutation operation. While the
RLSmakes a step in exactly one position (chosen uniformly at random), the (1+1)EA
makes, in each position, a step with probability 1/n.

The fitness of the resulting search point y is evaluated and in the selection step
the parent x is replaced by its offspring y if and only if the fitness of y is at least
as good as the one of x . Since we consider minimization problems here, this is the
case if f (y) ≤ f (x). Since we are interested in expected run times, i.e., the expected
number of rounds it takes until the algorithm evaluates for the first time a solution of
minimal fitness, we do not specify a termination criterion. For the case of r = 2, the
two algorithms are exactly the classic Algorithms RLS and (1 + 1) EA, for all three
given step operators (which then degenerate to the flip operator, which flips the given
bit).

Algorithm 1: RLS minimizing a function f : [0..r − 1]n → R with a given step
operator step(·).
1 Initialization: Sample x ∈ [0..r − 1]n uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 Choose i ∈ [n] uniformly at random;
4 for j = 1, . . . , n do
5 if j = i then y j ← step(x j) else y j ← x j

6 if f (y) ≤ f (x) then x ← y

123

1740 Algorithmica (2018) 80:1732–1768

Algorithm 2: The (1 + 1) EA minimizing a function f : [0..r − 1]n → R with
a given step operator step(·).
1 Initialization: Sample x ∈ [0..r − 1]n uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 for i = 1, . . . , n do
4 With probability 1/n set yi ← step(xi) and set yi ← xi otherwise;

5 if f (y) ≤ f (x) then x ← y

Let d be either the interval- or the ring-metric and let z ∈ [0..r −1]n . We can define
a straightforward generalization of the OneMax fitness function by

n∑

i=1

d(xi , zi).

Whenever we refer to an r-valued OneMax function, we mean any such function. We
refer to d as the metric of the OneMax function and to z as the target of the OneMax
function.

2.1 Alternative Representations

An alternative representation would be to encode each value from [0 . . . r − 1] in
log r bits, leading to a search space of {0, 1}n log r . Many encodings are possible, for
example the binary coding, see [42] for an extensive discussion.

The binary representation has the weakness that search points with similar fitness
can be vastly different: the bit representations 10 . . . 0 and 01 . . . 1 code almost the
same value, but are complementary (this is called the Hamming cliff). This trap-like
behavior can lead to a very poor performance on some OneMax functions, where
effectively log r bits might have to be flipped in order to gain any improvement at all,
which takes an expected time of Ω(nlog r).

The disadvantages of the binary representation is overcome by practitioners by
using other representations for integers, for example Gray codes [42].

3 Drift Analysis

A central tool in many of our proofs is drift analysis, which comprises a number of
tools to derive bounds on hitting times from bounds on the expected progress a process
makes towards the target. Drift analysis was first used in evolutionary computation by
He and Yao [28] and is now, after a large number of subsequent works, probably the
most powerful tool in run time analysis. We briefly collect here the tools we use.

We phrase the following results in terms of a given random process on the real
numbers. These theorems can be applied to random processes on some other set Ω

by employing a potential function g : Ω → R and thus translating the given process
to one on the real numbers. We are mostly interested in the time the process (or its
potential) needs to reach 0.

123

Algorithmica (2018) 80:1732–1768 1741

Multiplicative drift is the situation that the progress is proportional to the distance
from the target. This quite common situation in run time analysis was first framed into
a drift theorem, namely the following one, in [21]. A more direct proof of this results
that also gives large deviation bounds was later given in [18].

Theorem 1 (from [21]) Let X (0), X (1), . . . be a random process taking values in
S := {0} ∪ [smin,∞) ⊆ R. Assume that X (0) = s0 with probability one. Assume that
there is a δ > 0 such that for all t ≥ 0 and all s ∈ S with Pr[X (t) = s] > 0 we have

E[X (t+1)|X (t) = s] ≤ (1 − δ)s.

Then T := min{t ≥ 0 | X (t) = 0} satisfies

E[T] ≤ ln(s0/smin) + 1

δ
.

It is easy to see that the upper bound above cannot immediately be matched with a
lower bound of similar order of magnitude. Hence it is no surprise that the only lower
bound result for multiplicative drift, the following theorem by Witt [45], needs two
additional assumptions, namely that the process does not move away from the target
and that it does not too often make large jumps towards the target. We shall see later
(Theorem 4) that the first restriction can be removed under not too strong additional
assumptions.

Theorem 2 (from [45]) Let X (t), t = 0, 1, . . . be random variables taking values in
some finite set S of positive numbers withmin(S) = 1. Let X (0) = s0 with probability
one. Assume that, for all t ≥ 0,

Pr[X (t+1) ≤ X (t)] = 1.

Let saim ≥ 1. Let 0 < β, δ ≤ 1 be such that for all s > saim and all t ≥ 0 with
Pr[X (t) = s] > 0, we have

E[X (t) − X (t+1) | X (t) = s] ≤ δs,

Pr[X (t) − X (t+1) ≥ βs | X (t) = s] ≤ βδ

ln(s)
.

Then T := min{t ≥ 0 | X (t) ≤ saim} satisfies

E[T] ≥ ln(s0) − ln(saim)

δ

1 − β

1 + β
.

In situations inwhich the progress is not proportional to the distance, but onlymono-
tonically increasing with it, the following variable drift theorem of Johannsen [33]
can lead to very good results. Another version of a variable drift theorem can be found
in [39, Lemma 8.2].

123

1742 Algorithmica (2018) 80:1732–1768

Theorem 3 (from [33]) Let X (t), t = 0, 1, . . . be random variables taking values in
some finite set S of non-negative numbers. Assume 0 ∈ S and let xmin := min(S \{0}).
Let X (0) = s0 with probability one. Let T := min{t ≥ 0 | X (t) = 0}. Suppose that
there exists a continuous and monotonically increasing function h : [xmin, s0] → R>0
such that E[X (t) − X (t+1)|X (t)] ≥ h(X (t)) holds for all t < T . Then

E[T] ≤ xmin

h(xmin)
+

∫ s0

xmin

1

h(x)
dx .

3.1 A New Drift Theorem

In this section, we write (q)+ := max{q, 0} for any q ∈ R.
With the drift theorem we prove in this section we want to overcome one difficulty,

namely that the only known lower bound theorem for multiplicative drift (Theorem 2)
requires that the process does not move away from the target, in other words, that the
g-value is non-increasing with probability one. As discussed above, we do not have
this property when using the Hamming distance as potential in a run of the (1+1) EA.
We solve this problem by deriving from Theorem 2 a drift theorem (Theorem 4 below)
that gives lower bounds also for processes that may move away from the optimum.
Compared to Theorem 2, we need the stronger assumptions (i) that we have a Markov
process and (ii) that we have bounds not only for the drift g(X (t)) − g(X (t+1)) or the
positive part (g(X (t))−g(X (t+1)))+ of it, but also for the positive progress (s−g(t+1))+
with respect to any reference point s ≤ g(X (t)). This latter condition is very natural.
In simple words, it just means that we cannot profit from going back to a worse (in
terms of the potential) state of the Markov chain.

A second advantage of these stronger conditions (besides allowing the analysis
of non-decreasing processes) is that we can easily ignore an initial segment of the
process (see Corollary 5). This is helpful when we encounter a larger drift in the early
stages of the process. This phenomenon is often observed, e.g., in Lemma 6.7 of [45].
Previous works, e.g., [45], solved the problem of a larger drift in the early stage of the
process by manually cutting off this phase. This requires again a decreasing process
(or conditioning on not returning to the region that has been cut off) and an extra
argument of the type that the process with high probability reaches a search point
with potential in [s̃0, 2s̃0] for a suitable s̃0. So it is safe to say that Corollary 5 is a
convenient way to overcome these difficulties.

Theorem 4 (multiplicative drift, lower bound, non-decreasing process) Let X (t), t =
0, 1, . . . be a Markov process taking values in some set Ω . Let S ⊂ R be a finite set of
positive numbers withmin(S) = 1. Let g : Ω → S. Let g(X (0)) = s0 with probability
one. Let saim ≥ 1. Let

T := min{t ≥ 0 | g(X (t)) ≤ saim}

be the random variable describing the first point in time for which g(X (t)) ≤ saim.

123

Algorithmica (2018) 80:1732–1768 1743

Let 0 < β, δ ≤ 1 be such that for all ω ∈ Ω , all saim < s ≤ g(ω), and all t ≥ 0
with Pr[X (t) = ω] > 0, we have

E
[
(s − g(X (t+1)))+ | X (t) = ω

]
≤ δs,

Pr
[
s − g(X (t+1)) ≥ βs | X (t) = ω

]
≤ βδ

ln(s)
.

Then

E[T] ≥ ln(s0) − ln(saim)

δ

1 − β

1 + β
≥ ln(s0) − ln(saim)

δ
(1 − 2β).

The proof follows from an application of Witt’s drift theorem (Theorem 2) to the
random process Y (t) := min{g(X (τ)) | τ ∈ [0 . . . t]}.
Proof We define a second random process by Y (t) := min{g(X (τ)) | τ ∈ [0 . . . t]}.
By definition, Y takes values in S and Y is decreasing, that is, we have Y (t+1) ≤ Y (t)

with probability one for all t ≤ 0. Trivially, we have Y (0) = g(X (0)) = s0. Let
TY := min{t ≥ 0 | Y (t) ≤ saim} be the first time this new process reaches or goes
below saim. Clearly, TY = T .

Let β, δ as in the theorem. Let saim < s and t ≥ 0 such that Pr[Y (t) = s] > 0.
Observe that when Y (t) = s, then Y (t) − Y (t+1) = s − min{s, g(X (t+1))} = (s −
g(X (t+1)))+. Let AY

s be the event that Y (t) = s and let BX
ω be the event that X (t) = ω.

Using the fact that X is a Markov process, we compute

E
[
Y (t) − Y (t+1) | AY

s

]
=

∑

ω:g(ω)≥s

Pr
[
AY
s | B

]
E

[
(s − g(X (t+1)))+ | AY

s , BX
ω

]

=
∑

ω:g(ω)≥s

Pr
[
BX

ω | AY
s

]
E

[
(s − g(X (t+1)))+ | BX

ω

]

≤
∑

ω:g(ω)≥s

Pr
[
BX

ω | AY
s

]
δs = δs

and

Pr
[
Y (t) − Y (t+1) ≥ βs | AY

s

]

=
∑

ω:g(ω)≥s

Pr
[
BX

ω | AY
s

]
Pr

[
s − X (t+1) ≥ βs | AY

s , BX
ω

]
]

=
∑

ω:g(ω)≥s

Pr
[
BX

ω | AY
s

]
Pr

[
s − X (t+1) ≥ βs | BX

ω

]
]

≤
∑

ω:g(ω)≥s

Pr
[
BX

ω | AY
s

] βδ

ln(s)
= βδ

ln(s)
.

123

1744 Algorithmica (2018) 80:1732–1768

Consequently, Y satisfies the assumptions of the multiplicative lower bound theorem
(Theorem 2). Hence E[T] = E[TY] ≥ ln(s0)−ln(saim)

δ
1−β
1+β

. Elementary algebra shows
(1− β) ≥ (1− 2β)(1+ β), which gives the second, more convenient lower bound. ��
Corollary 5 Assume that the assumptions of Theorem 4 are satisfied, however with δ

replaced by δ(s) for some function δ : S → (0, 1]. Then for any saim < s̃0 ≤ s0, we
have

E[T] ≥ ln(s̃0) − ln(saim)

δmax(s̃0)
(1 − 2β),

where δmax(s̃0) := max{δ(s) | saim < s ≤ s̃0}.
Proof Let S̃ := S ∩ [0, s̃0]. Let g̃ : Ω → S̃;ω �→ min{s̃0, g(ω)}. Let ω ∈ Ω ,
saim < s ≤ g̃(ω), and t be such that Pr[X (t) = ω] > 0. Then

E[(s − g̃(X (t+1)))+ | X (t) = ω] = E[(s − g(X (t+1)))+ | X (t) = ω]
≤ δ(s)s ≤ δmax(s̃0)s

by the assumptions of Theorem 4 and s ≤ s̃0. Similarly,

Pr[s − g̃(X (t+1)) ≥ βs | X (t) = ω] = Pr[s − g(X (t+1)) ≥ βs | X (t) = ω]
≤ βδ(s)

ln(s)
≤ βδmax(s̃0)

ln(s)
.

Hence we may apply Theorem 4 to (S̃, s̃0, g̃, δmax(s̃0)) instead of (S, s0, g, δ) and
obtain the claimed bound. ��

4 Mutation Strength Chosen Uniformly at Random

In this section we analyze the mutation operator with uniform mutation strength, that
is, if the mutation operator chooses to change a position, it resets the current value to
a different value chosen independently (for each position) and uniformly at random.
We shall prove the same results, tight apart from lower order terms, for all r -valued
OneMax functions defined in Sect. 2. Let f be one such objective function and let z
be its target.

When regarding a single component xi of the solution vector, it seems that replacing
a non-optimal xi by some yi that is closer to the target, but still different from it, gains
us some fitness, but does not lead to a structural advantage (because we still need an
elementary mutation that resets this value exactly to the target value zi). This intuitive
feeling is correct for RLS and not correct for the (1 + 1) EA.

4.1 RLS with Uniform Mutation Strength

For RLS, we turn the above intuition into the potential function g : [0 . . . r − 1]n →
R; x �→ H(x, z) = |{i ∈ [n] | xi �= zi }|, the Hamming distance, which counts the

123

Algorithmica (2018) 80:1732–1768 1745

number of non-optimal positions in the current solution x . We get both an upper and
a lower bound on the drift in this potential which allow us to apply multiplicative drift
theorems. From that we get the following result.

Theorem 6 Let f be any r-valued OneMax function with target z ∈ [0 . . . r − 1]n.
Then randomized local search (RLS) with uniform mutation strength has an optimiza-
tion time T satisfying

E[T] = n(r − 1)(ln(n) + Θ(1)).

If x0 denotes the random initial individual, then for all x ∈ [0 . . . r − 1]n we have

E[T |x0 = x] = n(r − 1)HH(x,z),

where, for any positive integer k, we let Hk := ∑k
j=1 1/j denote the k-th Harmonic

number.

Proof Consider one iteration of RLS started with a current solution x �= z. Let y be the
current solution after one iteration, that is, the value of x after mutation and selection.
We observe that g(y) = g(x) − 1 if and only if the mutation operator selects a non-
optimal position i of x (this happens with probability g(x)/n) and then replaces xi by
zi (this happens with probability 1/(r − 1)). In all other cases, we have g(y) = g(x),
though not necessarily y = x . Consequently, the expected progress with respect to g
in this iteration is

g(x) − E[g(y)] = g(x)

n(r − 1)
. (1)

Let us denote by Tx0 the run time of RLS conditional on the initial search point being
x0. Then the multiplicative drift theorem (Theorem 1) gives an upper bound of

E[Tx0] ≤ n(r − 1)(ln(g(x0)) + 1).

Similarly, by (1) and the fact that RLS touches only one position of the solution
vector, the assumptions of the multiplicative drift theorem for lower bounds (Theo-
rem 2) are easily seen to be satisfied with δ = 1

n(r−1) , saim = ln n and β = 1/ ln n.
Consequently, assuming g(x0) = exp(ω(ln ln n)) in the second estimate, we obtain

E[Tx0] ≥ n(r − 1)(ln(g(x0)) − ln ln n)(1 − 2/ ln(n))

= n(r − 1) ln(g(x0))(1 − o(1)).

In the above analysis we used multiplicative drift with the Hamming distance
because this in a genericmanner gave a very strong result.We also used a drift approach
to ease the comparison with the other results we will obtain, also via drift analysis.
For this particular problem, also a very problem-specific approach can be used, which
gives an even sharper result. Consider a run of RLS starting with a search point x0.
For i ∈ [0 . . . g(x0)], let Ti denote the first iteration after which g(x) ≤ i , where

123

1746 Algorithmica (2018) 80:1732–1768

Tg(x0) = 0. Then equation (1) shows that E[Ti−1 − Ti] = n(r−1)
i for all i ∈ [g(x0)].

Consequently,

E[Tx0] = E

[g(x0)∑

i=1

(Ti−1 − Ti)

]

=
g(x0)∑

i=1

E[Ti−1 − Ti]

= n(r − 1)
g(x0)∑

i=1

1

i
= n(r − 1)Hg(x0),

where for all k ∈ N, Hk := ∑k
i=1(1/ i) is the kth Harmonic number. The harmonic

number is well-understood, e.g., we have Hk = ln(k) + γ + O(1/k) with γ =
0.5772 being the Euler–Mascheroni constant and we have the non-asymptotic
bounds ln(k) ≤ Hk ≤ ln(k) + 1, which gives

n(r − 1) ln(g(x0)) ≤ E[Tx0] ≤ n(r − 1)(ln(g(x0)) + 1).

By the law of total probability, the expected run time of RLS (with the usual
random initialization) is E[T] = n(r − 1)E[Hg(x0)]. The expected potential of the
random initial search point is E[g(x0)] = n(1 − 1/r). By a Chernoff bound (e.g.,
Theorem 1.11 in [8]), we see that Pr[|g(x0) − E[g(x0)]| ≥ √

n ln n] ≤ 2n−2.
Hence E[Hg(x0)] ≤ (1 − 2n−2)H�E[g(x0)]+

√
n ln n� + 2n−2Hn ≤ H�E[g(x0)]� +

�√n ln n� 1
E[g(x0)] + O(n−2 ln n) = ln(n) + O(1) + O(

√
ln(n)/n) + O(n−2 ln n).

Similarly, we see E[Hg(x0)] ≥ ln(n) − O(1). The error terms could be further
reduced by arguments as used in [9], where for the case r = 2 a run time bound
of E[T] = nHn/2 − 1/2 ± o(1) was shown. We do not detail this idea any further. ��

4.2 The (1+1) EA with Uniform Mutation Strength

Wenow consider the same run time analysis problem for the (1+1)EA, that is, instead
of selecting a single random entry of the solution vector and applying an elementary
mutation to it, we select each entry independently with probability 1/n and mutate all
selected entries. Our main result is the following.

Theorem 7 For any r-valuedOneMax function, the (1+1)EAwith uniformmutation
strength has an expected optimization time of

E[T] = e(r − 1)n ln(n) + o(nr log n).

As we will see, since several entries can be changed in one mutation step, the
optimization process now significantly differs from the RLS process. This has two
important consequences. First, while for the RLS process the Hamming distance of
the current search point precisely determined the expected remaining optimization
time, this is not true anymore for the (1 + 1) EA. This can be seen (with some
mild calculations which we omit here) from the search points x = (r, 0, . . . , 0) and
y = (1, 0, . . . , 0) and the fitness function f defined by f (x) = ∑n

i=1 x0.

123

Algorithmica (2018) 80:1732–1768 1747

The second, worse, consequence is that the Hamming distance does not lead to
a positive drift from each search point. Consider again x = (r, 0, . . . , 0) and f as
above. Denote by x ′ the search point after one mutation-selection cycle started with
x . Let g be the Hamming distance to the optimum x∗ = (0, . . . , 0) of f . Then,
for r ≥ 5, the drift from the search point x satisfies E[g(x) − g(x ′)] ≤ −(1 ±
o(1)) r−4

2e(r−1)n < 0. Indeed, we have g(x ′) = 0, that is, g(x) − g(x ′) = 1, with

probability (1−1/n)n−1(1/n)(1/(r −1)) = (1±o(1)) 1
e(r−1)n . This is the only event

that gives a positive drift. On the other hand, with probability at least (1−1/n)n−2(n−
1)(1/n2)(1+2+ . . .+ (r −2))/(r −1)2 = (1±o(1)) r−2

2e(r−1)n , the mutation operator
touches exactly the first and one other entry of x and does so in a way that the first
entry does not become zero and the second entry remains small enough for x ′ to be
accepted. This event leads to a drift of −1, showing the claim.

For these reasons, we resort to the actual fitness as potential function in our upper
bound proof (proof of Theorem8). It is clear that the fitness also is not a perfectmeasure
for the remaining optimization time (compare, e.g., the search points (2, 0, . . . , 0) and
(1, 1, 0, . . . , 0)), but naturally we have a positive drift from each non-optimal search
point, which we shall exploit via the variable drift theorem. For the lower bound, a
worsening of the Hamming distance in the optimization process is less of a problem,
since we only need an upper bound for the drift. Hence for the lower bound, we can
use multiplicative drift with g again. However, since the process maymove backwards
occasionally, we cannot applyWitt’s lower bound drift theorem (Theorem 2), but have
to prove a variant of it that does not require that the process only moves forward. This
lower bound theorem for multiplicative drift might be of interest beyond this work.

4.2.1 An Upper Bound for the Run Time

Theorem 8 For any r-valued OneMax function f , the (1 + 1) EA with uniform
mutation strength has an expected optimization time of

E[T] ≤ e(r − 1)n ln(n) + (2 + ln(2))e(r − 1)n

= e(r − 1)n ln(n) + O(rn).

Proof Let z be the optimum of f . Then f can be written as f (x) = ∑n
i=1 d(xi , zi),

where d is one of the distance measures on [0 . . . r −1] that were described in Sect. 2.
Let x be a fixed search point and y be the result of applying one mutation and selection
step to x . We use the short-hand di := d(xi , zi). We first show that

	 := f (x) − E[f (y)] ≥ 1

2e(r − 1)n

n∑

i=1

di (di + 1). (2)

Indeed, f (x) − f (y) is always non-negative. Consequently, it suffices to point out
events that lead to the claimed drift. With probability (1 − (1/n))n−1 ≥ (1/e), the
mutation operator changes exactly one position of x . This position then is uniformly
distributed in [n]. Conditional on this position being i , we have	 ≥ ∑di

δ=1 δ/(r−1) =

123

1748 Algorithmica (2018) 80:1732–1768

di (di+1)
2(r−1) , where the first inequality uses the fact that all our fitness functions are of the
type that if there is a value xi ∈ [0 . . . r − 1] with d(xi , zi) = k, then for each
j ∈ [0 . . . k − 1] there is at least one value yi ∈ [0 . . . r − 1] such that d(yi , zi) = j .
This shows (2).

For any d ≥ 1, we have d(d + 1) ≥ 2d and d(d + 1) ≥ d2. Also, the mapping
d �→ d2 is convex.Consequently,we have	 ≥ 1

2e(r−1)n2
f (x)2 and	 ≥ 1

e(r−1)n f (x),

that is, 	 ≥ max{ 1
2e(r−1)n2

f (x)2, 1
e(r−1)n f (x)}. To this drift expression, we apply

Johannsen’s [33] variable drift theorem (Theorem 3). Let S = [0 . . . (r − 1)n]. Let
h : R>0 → R>0 be defined by h(s) = 1

2e(r−1)n2
s2 for s ≥ 2n and h(s) = 1

e(r−1)n s for
s < 2n. Then h is a continuous increasing function satisfying	 ≥ h(f (x)). Consider
the process X0, X1, . . .with Xt describing the fitness after the t th iteration. Given that
we start with a fitness of X0, Johannsen’s drift theorem gives

E[T] ≤ 1

h(1)
+

∫ X0

1

1

h(s)
ds

= e(r − 1)n +
∫ X0

2n
2e(r − 1)

n2

s2
ds +

∫ 2n

1
e(r − 1)

n

s
ds

≤ e(r−1)n + 2e(r−1)n2
(

1

2n
− 1

X0

)

+ e(r−1)n ln(2n)

≤ e(r − 1)n ln(n) + (1 + 1 + ln(2))e(r − 1)n.

��
We may remark that the drift estimate above is pessimistic in that it applies to all

r -valuedOneMax functions. For an r -valuedOneMax function using the ring metric
or one having the optimum close to (r/2, . . . , r/2), we typically have two different bit
values in each positive distance from zi . In this case, the drift stemming from exactly

position i being selected for mutation is 	 ≥ di/(r − 1) + ∑di−1
δ=1 2δ/(r − 1) = d2i

r−1 ,
that is, nearly twice the value we computed above. The fact that in the following
subsection we prove a lower bound matching the above upper bound for all r -valued
OneMax functions shows that this, almost twice as high, drift has an insignificant
influence on the run time.

4.2.2 A Lower Bound for the Run Time

We aim at proving a lower bound, again via drift analysis, that is, via transforming an
upper bound on the expected progress (with respect to a suitable potential function)
into a lower bound on the expected run time. Since we only need an upper bound on
the progress, we can again (as in the RLS analysis) work with the Hamming distance
g(x) = H(x, z) to the optimum z as potential and, in the upper estimate of the drift,
ignore the fact that this potential may increase. The advantage of working with the
Hamming distance is that the drift computation is easy and we observe multiplicative
drift, which is usually convenient to work with.

We want to apply the multiplicative drift theorem given in Theorem 4. To this end,
we will compute that the Hamming distance to the optimum satisfies the assumptions

123

Algorithmica (2018) 80:1732–1768 1749

of our drift results in the following lemma, and afterwards state and prove the precise
lower bound.

Lemma 9 Let f be an r-valuedOneMax function with optimum z. Let x ∈ [0 . . . r −
1]n and y be the outcome of applying mutation and selection to x. Let s+ := H(x, z)
and s ≤ s+. Then

E[(s − H(y, z))+] ≤ s

e(r − 1)n

(
1

1 − 1/n
+ 3e

s + 1

(r − 1)n

)

.

Proof Let u be the outcome of mutating x with uniform mutation strength and y be
the result of applying selection (with respect to f) to x and u.

We consider first the case that s = s+. With probability (1 − (1/n))n−1, u and x
differ in exactly one position. Conditional on this, E[(s − H(y, z))+] = s/(r − 1)n.
The only other event in which possibly s > H(y, z) is that u and x differ in at least
two positions i and j such that ui = zi and u j = z j . The probability for this to happen
is 1 − (1 − 1/(r − 1)n)s − (s/(r − 1)n)(1 − 1/(r − 1)n)s−1 ≤ 1 − (1 − s/(r −
1)n) − (s/(r − 1)n)(1 − (s − 1)/(r − 1)n) = s(s − 1)/(r − 1)2n2. In this case, we
can estimate (s − H(y, z))+ from above by the number of non-correct positions that
are touched by the mutation operator, which in this case is Bin(s, 1/n) conditional on
being at least two, which again is at most 3. Consequently, in the case that s = s+,
we have E[(s − H(y, z)+] ≤ (1 − (1/n))n−1s/(r − 1)n + 3s(s − 1)/(r − 1)2n2 ≤
(s/(r − 1)n)(1/e(1 − 1/n) + 3(s − 1)/(r − 1)n).

Let now s ≤ s+−1. Let Z := |{i ∈ [n] | xi �= zi �= ui }| ∈ [0 . . . s+] be the number
of positions that are incorrect in both x andu. Clearly, H(y, z) stochastically dominates
Z , whichwewrite as H(x, z) � Z . Let Z ′ be defined analogous to Z but for an original
search point x ′ with H(x ′, z) = s+1 ≤ H(x, z). Then, clearly, Z � Z ′. Consequently,
s − H(y, z) � s − Z � s − Z ′, and consequently, (s − H(y, z))+ � (s − Z ′)+ and
E[(s−H(y, z)+] ≤ E[(s−Z ′)+]. The onlyway to get a positive value for s−Z ′ is that
at least two incorrect positions of x ′ are changed to their correct value in the mutation
offspring. Analogous to the previous paragraph, the probability for this to happen is
1−(1−1/(r−1)n)s+1−((s+1)/(r−1)n)(1−1/(r−1)n)s ≤ (s+1)s/(r−1)2n2. In
this case, we can estimate (s − Z ′)+ from above by the number of incorrect positions
that are touched by the mutation operator (conditional on being at least two) minus
one, which is at most 2. We conclude E[(s − H(y, z))+] ≤ E[(s − Z ′)+] ≤ 2(s +
1)s/(r − 1)2n2.

Putting the two cases together, we see that we always have E[(s − H(y, z))+] ≤
(s/(r − 1)n)(1/e(1 − 1/n) + 3(s + 1)/(r − 1)n). ��
Lemma 10 Let f be anr-valuedOneMax functionwith optimum z. Let saim = ln(n)3

and β = 1/ ln(n). Let x ∈ [0 . . . r−1]n with H(x, z) > saim. Let saim < s ≤ H(x, z).
Let y be the outcome of applying mutation and selection to x. Then Pr[s − H(y, z) ≥
βs] ≤ 1

r−12
− ln(n)2 if n ≥ 11.

Proof We have that Pr[s−H(y, z) ≥ βs] ≤ Pr[H(x, z)−H(y, z) ≥ βsaim]. The lat-
ter is atmost the probability that at leastβsaim = ln(n)2 positions of x flip to a particular
value (namely the one given by z) in one mutation step. Since the expected number of

123

1750 Algorithmica (2018) 80:1732–1768

positions flipping to the correct value is at most 1/(r−1), a strongmultiplicative Cher-
noff bound (e.g., Cor. 1.10(b) in [8]) shows that this number is greater than ln(n)2 with
probability at most (e/ ln(n)2(r−1))ln(n)2 ≤ 1

r−12
− ln(n)2 for n ≥ 10.29 ≈ exp(

√
2e).

��
We are now ready to give the main result of this section.

Theorem 11 For any r-valued OneMax function, the (1+1) EA with uniform muta-
tion strength has an expected optimization time of

E[T] ≥ e(r − 1)n (ln(n) − 6 ln ln(n)) (1 − O(1/ ln(n)))

≥ e(r − 1)n ln(n) − O((r − 1)n ln ln(n)).

Proof Let n be sufficiently large. Let Ω = [0 . . . r − 1]n and f : Ω → R an r -valued
OneMax function with optimum z. Let saim = ln(n)3 and β = 1/ ln(n). For all
saim < s ≤ n, let δ(s) := (1/e(r −1)n)(1/(1−1/n)+3e(s+1)/(r −1)n). Consider
a run of the (1 + 1) EA optimizing f initialized with a random search point X (0).
We have E[H(X (0), z)] = n(1 − 1/r). Consequently, we have H(X (0), z) ≥ n/3
with probability 1 − exp(−Ω(n)). In the following, we thus assume that X (0) is a
fixed initial search point such that H(X (0), z) ≥ n/3. Denote by X (t) the search point
building the one-element population of this EA after the t-th iteration. Let g : Ω →
N; x �→ H(x, z). By Lemma 9 and 10, the following conditions are satisfied for all
ω ∈ Ω , all saim < s ≤ g(ω), and all t ≥ 0 with Pr[X (t) = ω] > 0.

E
[
(s − g(X (t+1)))+ | X (t) = ω

]
≤ δ(s)s.

Pr
[
s − g(X (t+1)) ≥ βs | X (t) = ω

]
≤ βδ(s)

ln(s)
.

We apply Corollary 5 with s̃0 = n/ ln(n)3 ≤ n/3 and δmax(s̃0) ≤ 1
e(r−1)n (1 +

O(1/n) + O(1/ ln(n)3(r − 1))) and obtain

E[T] ≥ ln(s̃0) − ln(saim)

δmax(s̃0)
(1 − 2β)

≥ e(r − 1)n ln(n) − O((r − 1)n ln ln(n)).

��
We remark that the lower order term O((r − 1)n log log n) in this lower bound

could be removed with stronger methods. We preferred to use the simple and natural
proof approach via multiplicative drift, because it is easy to handle and still relatively
precisely describes the true behavior of the process. As is visible from Lemma 9, in the
early stages the progress is slightly faster than the multiplicative (main) term s/e(r −
1)n. This is why we cut out the regime from the initial H -value of approximately
n(1− 1/r) up to an H -value of s̃0 = n/ ln(n)3, resulting in a −Θ((r − 1)n log log n)

term in our lower bound. Another −Θ((r −1)n log log n) term stems from the second

123

Algorithmica (2018) 80:1732–1768 1751

condition ofWitt’s lower bound drift theorem (which is similar to the second condition
of our theorem). To prove a bound sharp up to terms of order (r − 1)n log log n, we
need β ≤ log log n/ log n. However, this forbids using an saim smaller than 1/β =
log n/ log log n, since otherwise any improvement would count into the bad event of
the second condition. An saim of at least polylogarithmic size immediately implies an
Ω((r−1)n log log n) additive distance to the upper bound proven inTheorem8.We are
very optimistic that via variable drift, in particular, the lower bound theorem of [16],
both difficulties could be overcome. We do not think that this small improvement
justifies the effort, though.

5 Unit Mutation Strength

In this section we regard the mutation operator that applies only ±1 changes to each
component.

It is not very surprising that RLS with the ±1 variation operator needs Θ(n(r +
log n)) fitness evaluations in expectation to optimize any r -valued OneMax function.
In fact, the proof is similar to the analysis of the (1 + 1) EA equipped with the ±1
variation operator (the proof for the (1 + 1) EA is a bit more involved). We will
make use of the following observation. There are two extreme kinds of individuals
with fitness n. The first kind is only incorrect in one position (by an amount of n);
the second kind is incorrect in every position (by an amount of 1). The first kind of
individual is hard to improve (the deficient position has to be chosen for variation),
while the second kind is very easy to improve (every position allows for improvement).
We reflect this in our choice of potential function by giving each position a weight
exponential in the amount that it is incorrect, and then sum over all weights.

Theorem 12 The expected optimization time of RLS with the ±1 variation operator
is Θ(n(r + log n)) for any r-valued OneMax function.

Proof The lower bound Ω(nr) is quite immediate: with probability 1/2 we start in a
search point of fitness at most nr/2 and in each step the algorithm increases the fitness
by at most one. On the other hand, there is a coupon collector effect which yields the
Ω(n log n) lower bound. Indeed, it is well-known that this is the expected number of
RLS iterations that we need in case of r = 2, and larger values of r will only delay
optimization.

We now turn to the more interesting upper bound. Let any r -valued OneMax
function be given with metric d and target z. We want to employ a multiplicative drift
theorem (see Theorem 1). We measure the potential of a search point by the following
drift function. For all x ∈ Ω = [0 . . . r − 1]n , let

g(x) :=
n∑

i=1

(
wd(zi ,xi) − 1

)
, (3)

where w := 1+ ε is an arbitrary constant between 1 and 2. In fact, for the analysis of
RLS we can simply set w := 2 but since we want to re-use this part in the analysis of
the (1 + 1) EA, we prefer the more general definition here.

123

1752 Algorithmica (2018) 80:1732–1768

We regard how the potential changes on average in one iteration. Let x denote
the current search point and let y denote the search point that we obtain from x
after one iteration of RLS (after selection). Clearly, we have that each position is
equally likely to be selected for variation.When a non-optimal component i is selected,
then the probability that yi is closer to zi than xi is at least 1/2, while for every
already optimized component we will not accept any move of RLS (thus implying
yi = xi). This shows that, abbreviating di := d(zi , xi) for all i ∈ [n], and denoting
by O := {i ∈ [n] | xi = zi } the set of already optimized bits,

E[g(x) − g(y) | x] = 1
2n

∑

i∈[n]\O

(
(wdi − 1) − (wdi−1 − 1)

)

= 1
2n

∑

i∈[n]\O

(
1 − 1

w

)
wdi

≥ 1
2n

(
1 − 1

w

) ∑

i∈[n]

(
wdi − 1

)

= 1
2n

(
1 − 1

w

)
g(x).

Furthermore, the maximal potential that a search point can obtain is at most nwr .
Plugging all this into the multiplicative drift (see Theorem 1), we see that the expected
optimization time is of order at most ln(nwr)/

(1
2n (1 − 1

w
)
) = O(n(r + log n)), as

desired. ��
For the analysis of the (1 + 1) EA we will proceed similarly as for RLS. To help

with the added complexity, we use the following lemma.

Lemma 13 Let n be fixed, let q be a cost function on elements of [n] and let c be a
cost function on subsets of [n]. Furthermore, let a random variable S ranging over
subsets of [n] be given. Then we have

∀T ⊆ [n] : c(T) ≤
∑

i∈T
q(i) ⇒ E[c(S)] ≤

n∑

i=1

q(i)Pr[i ∈ S]; (4)

and

∀T ⊆ [n] : c(T) ≥
∑

i∈T
q(i) ⇒ E[c(S)] ≥

n∑

i=1

q(i)Pr[i ∈ S]. (5)

Proof We have E[c(S)] = ∑
T⊆[n] Pr[S = T]c(S) ≤ ∑

T⊆[n] Pr[S = T]∑n
i∈T q(i)

= ∑n
i=1 q(i)Pr[i ∈ S]. The other direction follows analogously. ��

The proof for the case of the (1+ 1) EA follows along similar lines, but is (signif-
icantly) more involved.

Theorem 14 The expected optimization time of the (1+ 1) EA with the ±1 variation
operator is Θ(n(r + log n)) for any r-valued OneMax function.

123

Algorithmica (2018) 80:1732–1768 1753

Proof The lower bound Ω(nr) follows almost as for RLS: With constant probability
the initial search point is Θ(nr) away from the optimum, and the expected progress
towards the optimum is bounded form above by 1. Thus, with a simple lower-bound
additive drift theorem [28], the lower bound of Ω(nr) follows.

Regarding the upper bound, let any r -valuedOneMax function be givenwithmetric
d and target z. We want to employ multiplicative drift again. We fix some w > 1 to be
specified later. With any search point x ∈ Ω we associate a vector d ∈ R

n such that,
for all i ≤ n, di = d(xi , zi). We use the same potential g on Ω as for the analysis of
RLS, that is, for all x ∈ Ω ,

g(x) =
n∑

i=1

(wdi − 1).

Let any current search point x ∈ Ω be given and let Y be the random variable
describing the search point after one cycle of mutation and selection. Let E1 be the
event that Y is obtained from x by flipping exactly one bit and the result is accepted
(that is, f (Y) ≤ f (x)). Let E2 be the event that at least 2 bits flip and the result
is accepted. The total drift in the potential g is now E[g(x) − g(Y)] = E[g(x) −
g(Y) | E1]Pr[E1] + E[g(x) − g(Y) | E2]Pr[E2]. We are now going to estimate
E[g(x) − g(Y) | E2]. The random variable Y is completely determined by choosing
a set S ⊆ [n] of bit positions to change in x and then, for each such position i ∈ S,
choosing how to change it (away or towards the target zi). For each choice S ⊆ [n],
let A(S) be the set of all possible values for Y which have the set S as positions of
change. For each possible S ⊆ [n], let Y (S) be the random variable Y conditional on
making changes exactly at the bit positions of S. Thus, we can now write the random
variable Y as

Y =
∑

S

Y (S)Pr[S].

We are now going to estimate, for any possible S,

E[g(Y (S)) − g(x)].
For all possible S, let c(S) = E[g(Y (S))− g(x)]. Let a possible S be given. Note that
Y (S) is the uniform distribution on A(S). For each y ∈ A(S) and each i ∈ S, we have
d(yi , zi)− di ∈ {−1, 0, 1} (note that the case of being 0 can only occur when r is odd
and we have a circle, or in other such border cases); in the case that this value is 1 we
call (y, i) an up-pair, and in case that this value is −1 we call this pair a down-pair.
We let U be the set of all up-pairs. As we only consider accepted mutations, we have
that, for all y ∈ A(S),

∑
i∈S d(yi , zi) − di ≤ 0. This implies that there are at least

as many down-pairs as there are up-pairs in A(S) × S. Furthermore, for any up-pair
(y, i) with di �= 0 there is y′ ∈ A(S) such that (y′, i) is a down-pair and, for all
j ∈ S \ {i}, y′

j = y j . Thus, for all up-pairs (y, i) ∈ U there is a down-pair (y, i),

such that the mapping (y, i) �→ (y, i) is injective and, for all (y, i) ∈ U with di �= 0,
(y, i) = (y′, i). Note that, for all up-pairs (y, i), we have di ≤ di .

123

1754 Algorithmica (2018) 80:1732–1768

We now get, for any (y, i) ∈ U ,

wd(yi ,zi) − wdi + wd(yi ,zi) − wdi ≤ wdi

(

w − 1 + 1

w
− 1

)

= wdi (w − 1)2

w
.

Overall we have

c(S) = E[g(Y (S)) − g(x)] = 1

|A(S)|
∑

y∈A(S)

g(y) − g(x)

= 1

|A(S)|
∑

y∈A(S)

n∑

i=1

(
wd(yi ,zi) − wdi

)

≤ 1

|A(S)|
∑

(y,i)∈U

(
wd(yi ,zi) − wdi + wd(yi ,zi) − wdi

)

≤ 1

|A(S)|
∑

(y,i)∈U
wdi (w − 1)2

w
≤ 1

2

∑

i∈S
wdi (w − 1)2

w
.

Using Lemma 13, we see that

E[g(Y) − g(x) | E2] ≤
n∑

i=1

1

n
wdi (w − 1)2

2w
= (w − 1)2

2wn

n∑

i=1

wdi .

We use the following estimation of progress we can make with changing exactly
one position.

E[g(x) − g(Y) | E1]Pr[E1] ≥ 1

2ne

∑

i∈[n]

(
1 − 1

w

)
wdi = w − 1

2wne

n∑

i=1

wdi .

Let w be any constant > 1 such that w − 1 − e(w − 1)2 > 0, and let c =
(w − 1 − e(w − 1)2)/e. Then we have

E[g(x) − g(Y)] ≥ w − 1

2wne

n∑

i=1

wdi − (w − 1)2

2wn

n∑

i=1

wdi

= w − 1 − e(w − 1)2

2wne

n∑

i=1

wdi = c

2wn

n∑

i=1

wdi ≥ c

2wn
g(x).

Again, the maximal potential that a search point can obtain is at most nwr .
Plugging all this into the multiplicative drift (see Theorem 1), we see that the
expected optimization time is of order at most ln(nwr)/

(c
2wn

) = O(n(r + log n)), as
desired. ��

123

Algorithmica (2018) 80:1732–1768 1755

6 Harmonic Mutation Strength

In this section we will consider a mutation operator with variable step size. The idea is
that different distances to the target value require different step sizes for rapid progress.
We consider a mutation operator which, in each iteration, chooses its step size from
a fixed distribution. As distribution we use what we call the harmonic distribution,
which chooses step size j ∈ [1 . . . r − 1] with probability proportional to 1/j . Using
the bound on the harmonic number Hr−1 < 1 + ln r , we see that the probability of
choosing such a j is at least 1/(j (1 + ln r)).

Theorem 15 The RLS as well as the (1+1) EAwith the harmonically distributed step
size (described above) has an expected optimization time of Θ(n log r(log n + log r))
on any r-valued OneMax function.

Proof We first show the upper bound by considering drift on the fitness. Let any
x ∈ Ω be given, let Y be the random variable describing the best individual of the
next iteration and let Ai, j be the event that Y differs from x in exactly bit position i
and this bit position is now j closer to the optimum. Note that, for both RLS and the
(1 + 1) EA, we get Pr[Ai, j] ≥ 1

2enj (1+ln r) . We have

E[f (x) − f (Y)] ≥
n∑

i=1

di∑

j=1

E[f (x) − f (Y) | Ai, j]Pr[Ai, j] =
n∑

i=1

di∑

j=1

j Pr[Ai, j]

≥
n∑

i=1

di∑

j=1

j

2enj (1 + ln r)
=

n∑

i=1

di
2en(1 + ln r)

= 1

2en(1 + ln r)
f (x).

As the initial fitness is less than rn, the multiplicative drift theorem (see Theorem 1)
gives us the desired total optimization time.

Now we turn to the lower bound. A straightforward coupon collector argument
gives us the lower bound of Ω(n log r log n), since each position has to change from
incorrect to correct at somepoint, and thatmutation has a probability ofO(1/(n log r)).
It remains to show a lower bound of Ω(n(log r)2). To this end, let f be any r -valued
OneMax function and x∗ its optimum. Let g(x) = d(x1, x∗

1) be the distance of the
first position to the optimal value in the first position. Let h(x) = ln(g(x) + 1). Let x ′
be the outcome of one mutation step and x ′′ be the outcome of selection from {x, x ′}.
We easily compute E[max{0, h(x) − h(x ′)}] ≤ K

n ln r for some absolute constant K .
Consequently, E[h(x) − h(x ′′)] ≤ K

n ln r as well. For the random initial search point,
we have g(x) ≥ r/2 with constant probability, that is, h(x) = Ω(log r) with constant
probability. Consequently, the additive drift theorem gives that the first time T at which
h(x) = 0, satisfies E[T] ≥ Ω(log r)/ K

n ln r = Ω(n log2 r). ��
In the same way as we showed the additive drift statement E[h(x) − h(x ′′)] =

O(1/n log r), we could have shown a multiplicative drift statement for g, namely

123

1756 Algorithmica (2018) 80:1732–1768

E[g(x) − g(x ′′)] = O(g(x)/n log r); in fact, the latter is implied by the former.
Unfortunately, due to the presence of large jumps – we have Pr[g(x ′′) ≤ g(x)/2] =
Θ(1/n log r) –,we cannot exploit this via the lower boundmultiplicative drift theorem.

6.1 Lower Bound for the Dependence on r

Naturally, the question arises whether the O((log r)2) dependence on r can be
improved. In particular, one wonders whether drawing the step size from the harmonic
distribution is optimal, orwhether another distribution gives a better optimization time.
This is exactly the problem considered in [7], where the following result is presented,
which could also be used to derive the run time bound of Theorem 15.

Theorem 16 ([7]) Let a random process on A = {0, . . . , r} be given, representing
the movement of a token. Fix a probability distribution of step sizes D over {1, . . . , r}.
Initially, the token is placed on a random position in A. In round t, a random step
size d is chosen according to D. If the token is in position x ≥ d, then it is moved to
position x − d, otherwise it stays put. Let TD be the number of rounds until the token
reaches position 0. Then minD(E[TD]) = Θ((log r)2).

In general, our processes have a slightly different behavior (including the possibility
to overshoot the goal). But for the special case of n = 1, the interval metric and the
optimum at 0, the setting matches exactly (apart from choosing the correct direction
for the step). Thus, in terms of asymptotic behavior in r , the above theorem shows that
the Harmonic distribution is an optimal choice and cannot be improved.

7 Self-Adjusting Mutation Rates

In this sectionwe consider self-adjustingmutation rates and show that they can achieve
an asymptotically better performance than the static operators considered in the pre-
vious sections. For this we consider a natural generalization of RLS to a multi-valued
algorithm RLSa,b with a self-adjusting mutation strength whose update rules are
parametrized by the constants 1 < a ≤ 2 and 1/2 < b < 1. The algorithm is
summarized in Algorithm 3 and will be described in detail in Sect. 7.2. Before we
go into the technical details, we briefly discuss in Sect. 7.1 some related work on
self-adjusting parameter choices.

7.1 Adaptive Parameter Choices

In continuous optimization one easily observes that static parameter choices are not
very meaningful. This is why for such problems several examples exist where adap-
tive parameter choices are well-understood also from a theoretical perspective (for
example, the works [2,27,29] analyze the convergence rates of different evolution
strategies). As has been noted in Sect. 1.4, however, such results are difficult to com-
pare to performance guarantees in discrete optimization let alone being transferable

123

Algorithmica (2018) 80:1732–1768 1757

to such problems. We recall that this is mostly due to the fact that in discrete opti-
mization we do not study the speed of convergence but the time needed to hit an
optimal solution. But even if one studies continuous optimization with an a-priori
fixed target precision (see [30] and the references therein), then typically the norms
used to evaluate a solution differ from the typically regarded 1-norm used in discrete
optimization.

For the discrete domain, several empirical works exist that suggest an advantage of
adaptive parameter updates (cf. [24], [25, Chapter 8], and [34] for surveys). However,
the first work formally showing an asymptotic gain over static parameter selection
is the self-adjusting choice of the population size of the (1 + (λ, λ)) GA proposed
and analyzed in [10]. In that work the advantage is shown for the classic OneMax
functions fz : {0, 1}n → R, x �→ |{1 ≤ i ≤ n | xi = zi }|.

When we include in our consideration other adaptive parameter choices,1 a few
situations exist for which an advantage over static parameter choices could be proven.
All these works study the optimization of pseudo-Boolean functions f : {0, 1}n → R.
To be more precise, the only theoretical investigations of adaptive parameter choices
in evolutionary algorithms for discrete optimization problems that we are aware of
analyze advantages of

– a fitness-dependent mutation rate for the (1+1)EA optimizingLeadingOnes [4],
– a fitness-dependent [15] and a self-adjusting [14]mutation rate for RLS optimizing
OneMax,

– a fitness-dependent [3] and a self-adjusting [17] mutation rate for the (1 + λ) EA
optimizing OneMax,

– a self-adjusting choice of the number of parallel evaluations in a parallel EA [36],
– a fitness-dependent [11] and the above-mentioned self-adjusting [10] choice of the
population size for the (1+ (λ, λ))GA optimizingOneMax, and the same for the
optimization of random satisfiability instances [5],

– a fitness-dependent mutation rate for immune algorithms with [47] and with-
out [46] population, and

– a rank-based mutation rate for a (μ + 1) EA optimizing OneMax and functions
with a “trap” that guides the search to local optima which are far away from the
global ones [41].

We believe that self-adjusting parameter choices provide a possibility for significant
improvement of many search heuristics, and theoretical analyses can offer guidance

1 Following the terminology introduced in [24] and extended in [10, Section 3.1] we distinguish adap-
tive parameter choices into functionally-dependent and self-adjusting ones. While functionally-dependent
parameter choices depend only on the current state of the algorithm, they may explicitly use absolute fitness
values. Fitness- and rank-dependent mutation rates are a typical example for such functionally-dependent
parameter choices. Self-adjusting parameter choices, in contrast, do not depend on absolute fitness infor-
mation but rather on the success of previous iterations. This is the case of the parameter updates of the
RLSa,b considered in this work. A typical representative of this class is the so-called one-fifth rule that is
often used in evolution strategies for controlling the step size of the algorithm under consideration. Other
dynamic update rules are either called deterministic—this is the case if there is no dependency between
the parameters and the success or state of the optimization process other than the iteration count—or self-
adapting. Self-adaptive algorithms code the parameters themselves into the genome of the individuals and
hope to evolve good parameters during the optimization process.

123

1758 Algorithmica (2018) 80:1732–1768

for how to design such self-adjustment mechanisms. Our work shows that our math-
ematical toolbox, in particular drift analysis, is well-suited to analyze such systems.

For the sake of completeness we mention that a few other works in the theory
of evolutionary computation literature exist that analyze dynamic (but, in contrast
to the results mentioned above, non-adaptive) parameter choices. The following list
summarizes these works.

– Jansen and Wegener [32] regard a (1 + 1) EA with a deterministic choice of the
mutation rate. They show that, depending on the problem, it can be advantageous
or disadvantageous to use a mutation rate that depends on the iteration counter.

– Dang andLehre regard in [6] a self-adaptive choice ofmutation rates in a non-elitist
EA. That is, in their work the mutation probability is encoded in each individual
so that it is subject to a global mutation itself. Dang and Lehre analyze how the
global mutation rate influences the expected performance of a (λ, λ)-type EA on
LeadingOnes.

7.2 The Self-Adjusting RLS Variant, Main Result, and Proof Overview

In this section we consider the self-adjusting variant of RLS called RLSa,b, see Algo-
rithm 3.

Algorithm 3: RLSa,b with self-adjusting step sizes minimizing a function f :
[0..r − 1]n → R

1 Initialization: Choose v ∈ [1, �r/4�]n uniformly at random;
2 Choose x ∈ [0..r − 1]n uniformly at random;
3 Optimization: for t = 1, 2, 3, . . . do
4 y ← x ;
5 Choose i ∈ [n] uniformly at random;
6 With probability 1/2 let yi ← xi − �vi � and let yi ← xi + �vi � otherwise;
7 if f (y) < f (x) then vi ← min{avi , �r/4�} else vi ← max{1, bvi } if f (y) ≤ f (x) then x ← y

RLSa,b maintains a search point x ∈ [0..r − 1]n as well as a real-valued velocity
vector v ∈ [1, �r/4�]n ; we use real values for the velocity to circumvent rounding
problems. Both these strings are initialized uniformly at random, but it is not difficult
to verify that all results shown in this paper apply to an arbitrary initialization of x and
v. In one iteration of the algorithm a position i ∈ [n] is chosen uniformly at random.
The entry xi is replaced by xi − �vi� with probability 1/2 and by xi + �vi� otherwise
(see below for how to deal with overstepping the endpoints of the interval [0, r − 1]).
The entries in positions j �= i are not subject to mutation. The resulting string y
replaces x if its fitness is at least as good as the one of x , i.e., if f (y) ≤ f (x) holds
(recall that we regard the minimization of f). If the offspring y is strictly better than
its parent x , i.e., if f (y) < f (x), we increase the velocity vi in the i-th component by
multiplying it with the constant a and we decrease vi to bvi otherwise. The algorithm
proceeds this way until we decide to stop it.

We will now discuss some technical details.

123

Algorithmica (2018) 80:1732–1768 1759

It may happen that xi − �vi� < 0 or xi + �vi� > r − 1. If we are working with
the interval-metric then we assume that the algorithm does not change its current
position, that is, the offspring is discarded and the velocity is not adjusted (decreasing
the velocity in this case would lead to the same results). In the ring-metric we identify
all values modulo r , i.e., we identify values p < 0 with p + r and values p > r − 1
with p − r . Note that in the ring-metric it can happen that we decrease the fitness
regardless of whether we add or subtract from xi the value �vi�. This in particular
applies when the distance to the optimum is close to r/2, i.e. the search point is on the
opposite side of the ring than the target.

Furthermore, we emphasize that the velocity vector is an element in the real interval
[1, �r/4�], that is, it does not necessarily take integer values. This technicality avoids
that rounding inaccuracies accumulate over several velocity adaptations. The velocity
is capped at 1 (to avoid situations in which we do not move at all) and at �r/4� (to
avoid too large jumps).

To further lighten the notation, we say that the algorithm “moves in the right direc-
tion” or “towards the target value” if the distance to the target is actually decreased
by �vi�. Analogously, we speak otherwise of a step “away from the target” or “in the
wrong direction”.

Our main result is the following statement.

Theorem 17 For constants a, b satisfying 1 < a ≤ 2, 1/2 < b ≤ 0.9, 2ab −
b − a > 0, a + b > 2, and a2b > 1 (one can choose, for example, a = 1.7 and
b = 0.9) the expected run time of RLSa,b (Algorithm 3) on any generalized r-valued
OneMax function is Θ(n(log n + log r)). This is asymptotically best possible among
all comparison-based variants of RLS and the (1 + 1) EA.

We argue first the lower bound of Theorem 17.
The bound ofΩ(n log n) easily follows from a coupon collector argument: note that

in the initial solution there are, with high probability, Θ(n) positions i in which the
value xi does not agree with that of the target string. The algorithm has to touch each
of these positions at least once, which by the well-known coupon collector theorem
(cf. [1, Section 1] for an introduction to this problem) requires Θ(n log n) iterations
on average and with high probability.

The Ω(n log r) part of the lower bound follows from the following information
theoretic argument. We first observe that RLSa,b is a comparison-based algorithm.
For an arbitrary comparison-based algorithm A we argue as follows. There are rn

possible target strings in total. Since A exploits only the information whether or not
the offspring has a fitness value that is at least as good as that of its parent (in the deci-
sion of whether or not to replace the parent) and whether or not its fitness is strictly
better (in the decision how to update the velocity), it is a comparison-based algorithm
that uses only log2(3) bits of information per iteration. As such it therefore needs
Ω(log(rn)) = Ω(n log r) iterations in expectation to optimize any unknown r -valued
OneMax function. See [23] for how to turn the latter information-theoretic consid-
eration into a formal proof. That already for r = 2 every unary unbiased black-box
algorithm needs Ω(n log n) function evaluations in expectation to optimize OneMax
has been shown in [37]. The class of unary unbiased black-box algorithms includes,
roughly speaking, all algorithms that do not give preference to any of the n positions

123

1760 Algorithmica (2018) 80:1732–1768

of the string nor to any of the possible values [0 . . . r − 1] and that employ only muta-
tion and random sampling as variation operations (that is, in particular no crossover
operations are allowed for unary unbiased algorithms). It is easily verified that RLSa,b

is unary unbiased.
To prove the upper bound we use drift analysis; multiplicative drift analysis to be

more precise. To this end, we need to find amapping of the state (x, v) of the algorithm
to a real value. This potential function should measure some sort of distance to the
target state. We briefly discuss this potential function below. Proving that it yields the
requiredmultiplicative drift is the purpose of Lemma 18. The formal proof of the upper
bound in Theorem 17 is rather technical and will be carried out in Sect. 7.3; while an
overview of the main proof ideas is the focus of the discussion in the remainder of this
section.

To simplify the notation below, for a given search point x and the target bit string
z and the chosen metric d, we let di = d(xi , zi) (for all i ≤ n) be the distance vector
of x to z. Thus, the goal is to reach a state in which the distance vector is (0, . . . , 0).
We now want to define a potential function in dependence on (d, v) (where of course
d is dependent on x) such that it is 0 when d is (0, . . . , 0) and strictly positive for
any x �= (0, . . . , 0). Furthermore, we easily see that there are two important ways
to make progress, either by advancing in terms of fitness or by adjusting the velocity
to a value that is more suitable to make progress in future iterations. This has to be
reflected in the potential function. Our ultimate goal being the minimization of fitness,
it is not difficult to see that some preference should be given to a progress in fitness.
This can be achieved by multiplying the term accounting for the appropriateness of
the velocity with some constant c < 1.Wemeasure the appropriateness of the velocity
as the maximum of the ratios di/(2vi) and 2vi/di , reflecting the fact that a velocity of
di/2 is very well-suited for progress; smaller values give less progress, while larger
values lead to a badly adjusted velocity in the next iteration (and very large values
make progress in fitness impossible).

One problem in getting good drift is that velocities vi just below 2di allow for
jumping over the target while increasing the (already too large) velocity.We get around
this problem by observing that it is equally likely that the large velocity is reduced
because of a jump in the wrong direction, and then, while still larger than di , will still
give a good improvement when overstepping the goal. We reflect this in the potential
function by giving a penalty term of pdi (for some suitable constant p) on any state
(d, v) having a too large velocity.

To sum up this discussion we use as potential function the following map g :
[0 . . . r −1]n ×[1, �r/4�]n → R, (x, v) �→ ∑n

i=1 gi (di , vi)where gi (di , vi) := 0 for
di = 0 and for di ≥ 1

gi (di , vi) := di +
{
cdi max{2vi/di , di/(2vi)}, if vi ≤ 2bdi ;
cdi max{2vi/di , di/(2vi)} + pdi , otherwise

(6)

and c, p are (small) constants specified below.
Summarizing all the conditions needed below, we require that that the constants

a, b, c, p satisfy 1 < a ≤ 2, 1/2 < b ≤ 0.9, 2ab − b − a > 0, a + b > 2, a2b > 1,
8abc + 2p + 4c/b ≤ 1/16, p > 8c

(a+b
2 − 1

)
, and p > 4(a − 1)c > 0.

123

Algorithmica (2018) 80:1732–1768 1761

We can thus choose, for example, a = 1.7, b = 0.9, p = 0.01, and c = 0.001.

7.3 Proof of the Upper Bound in Theorem 17

The following lemma, together with the observation that the initial potential is of
order at most nr2 plugged into the multiplicative drift theorem (Theorem 1) proves
the desired overall expected run time of O(n log(nr)) = O(n(log n + log r)).

Lemma 18 Let d �= (0, . . . , 0) and v ∈ [1, �r/4�]n. Let (d ′, v′) be the state of
Algorithm 3 started in (d, v) after one iteration (i.e., after a possible update of x and
v). The expected difference in potential satisfies

E
[
g(d, v) − g(d ′, v′) | d, v

] ≥ δ

n
g(d, v)

for some positive constant δ.

Proof Let d, d ′, v, and v′ as in the statement of Lemma 18. Any fixed index i is chosen
by Algorithm 3 for mutation with probability 1/n; for all i , let Ai be the event that
index i was chosen. We show that there is a constant δ such that, for all indices i with
di �= 0,

E
[
gi (di , vi) − gi (d

′
i , v

′
i) | Ai

] ≥ δgi (di , vi),

thus proving the claim using P(Ai) = 1/n.
We regard several cases, depending on how di and vi relate. Note that we do not

consider updates into an infeasible area of the search space (which can happen in case
of the interval metric). This would not change the argument, but it would involve a lot
more cases, since the possibility of stepping into an infeasible region would have to
be covered. Since such steps do not lead to any update at all, we only get the update
from the only possible alternative, which in all cases gives the desired multiplicative
drift.
Case 1 vi ≤ di/8.
First we observe that max{2vi/di , di/(2vi)} = di/(2vi). The contribution of the i-th
position to the current potential is thus

gi (di , vi) = di + cd2i /(2vi).

With probability 1/2 the algorithm decides to move in the right direction. In this
case we make progress with respect to the fitness function and the velocity. That is,
after the iteration we have d ′

i = di − �vi� < di and v′
i = max{avi , r/4} = avi > vi .

To see the second equality in the previous expression note that avi ≤ 2di/8 ≤ r/4.
To bound the progress in the second component of gi , we observe that

cd ′
i max

{
2avi/d

′
i , d

′
i/(2avi)

} = max
{
2cavi , cd

′2
i /(2avi)

}
= cd ′2

i /(2avi)

123

1762 Algorithmica (2018) 80:1732–1768

where the second equality follows from 2avi ≤ di/2 < d ′
i . We thus obtain that for

this case the difference in potential is at least

gi (di , vi) − gi
(
d ′
i , v

′
i

) = di + cd2i /(2vi) − d ′
i − cd ′2

i /(2avi) ≥ cd2i
2vi

− cd2i
2avi

. (7)

With probability 1/2 the algorithm decides to go the wrong direction. In case of
the ring metric it is possible that (modulo r) d ′

i < di holds. In this case the offspring
d ′ is accepted and the computations from above yield the same positive drift as above
(since all we used about the new search point is that it improved). Otherwise, d ′

i > di
holds and the new individual is thus discarded while the velocity vi at position i is
further decreased to max{bvi , 1} ≥ bvi . Hence, the difference in potential for this case
is at least

gi (di , vi) − gi (di , bvi) = cd2i
2vi

− cd2i
2bvi

. (8)

Combining (7) and (8), we thus obtain that the expected difference in potential is
at least

1

2

(
cd2i
2vi

− cd2i
2avi

+ cd2i
2vi

− cd2i
2bvi

)

= cd2i
2vi

(
2ab − b − a

2ab

)

=
(
2ab − b − a

4ab

) (
cd2i
2vi

+ cd2i
2vi

)

≥
(
2ab − b − a

4ab

) (

4cdi + cd2i
2vi

)

≥
(
2ab − b − a

4ab

)

min{4c, 1}
(

di + cd2i
2vi

)

=
(
2ab − b − a

4ab

)

min{4c, 1}gi (di , vi),

where in the third step we have used the requirement that vi ≤ di/8.
Case 2 di/8 < vi ≤ 2bdi .
Now we are in a range of velocity which is well-suited to make progress. In fact,
every step towards the optimum decreases the distance to the optimum by at least the
minimum of �di/8� (if vi is close to di/8 and we hence do not overshoot the target)
and �(2 − 2b)di� (if vi = 2bdi ≥ di in which case we overshoot the target and the
distance to it decreases from di to at most �2bdi� − di). In case of moving towards
the target value, the change in the first term of gi is thus at least

min{�di/8�, �(2 − 2b)di�} = �di/8�,

using b ≤ 0.9. However, note that the decrease is at least 1 (since vi is at least 1).
Furthermore, we have, for all z ≥ 8, z/16 ≤ �z/8�. Thus, we always have a decrease
of at least di/16.

123

Algorithmica (2018) 80:1732–1768 1763

We now compute the change in the second term of gi . Regard first the case that
max{2v′

i/d
′
i , d

′
i/(2v

′
i)} = 2v′

i/d
′
i . In this case, we pessimistically assume that the

previous contribution of the second term in gi (di , vi) was zero. This contribution
increases to at most

2cv′
i + pd ′

i ≤ 2acvi + pd ′
i ≤ 2acvi + pdi ≤ (4abc + p)di . (9)

If, on the other hand, max{2v′
i/d

′
i , d

′
i/(2v

′
i)} = d ′

i/(2v
′
i) and the previous contribution

of the second term in gi (di , vi) was cd2i /(2vi) (note that this is in particular the case
when the capping at r/4 is not in force; i.e., if v′ = avi , since in this case it holds that
vi ≤ d ′

i/(2a) ≤ di/(2a) < di/2), then the contribution of this second term has been
decreased to c(d ′

i)
2/(2avi) ≤ cd2i /(2vi). The change in contribution is thus positive in

this case, and therefore in particular strictly larger than−(4abc+ p)di .We finally need
to regard the case that max{2v′

i/d
′
i , d

′
i/(2v

′
i)} = d ′

i/(2v
′
i), max{2vi/di , di/(2vi)} =

2vi/di , and avi > �r/4�. In this case the contribution in the second term of gi increases
by at most

cd ′2
i

2�r/4� ≤ cd ′2
i

2avi
≤ cd2i

2a(di/8)
≤ 4cdi

a
≤ 4abcdi ,

where the last step follows from the condition a2b ≥ 1.
Summarizing this discussion, we see that in case of stepping towards the target the

change in progress satisfies

gi (di , vi) − gi
(
d ′
i , v

′
i

) ≥ di (1/16 − (4abc + p)) , (10)

which is positive by our conditions on c and p.
Let us now regard the case of stepping away from the optimum, which happens

with probability 1/2. In case of the ring metric it is possible that the search point is
nonetheless accepted. In this case we assume no progress in di and the contribution of
the second part of the potential to drift we bound pessimistically with (4abc + d)di
from above just as in the computations for the step towards the target.

The more typical case is that the new search point is discarded and the velocity is
decreased to max{bvi , 1}. Assume first that max{bvi , 1} = bvi . Then,

gi (di , vi) − gi
(
d ′
i , v

′
i

) = max

{

2cvi ,
cd2i
2vi

}

− max

{

2cbvi ,
cd2i
2bvi

}

. (11)

If max{2cbvi , cd2i /(2bvi)} = cd2i /(2bvi), then the term in (11) is at least
−cd2i /(2bvi) ≥ −4cdi/b by our condition di/8 ≤ vi . Furthermore, ifmax{2cbvi , cd2i
/(2bvi)} = 2cbvi , then (11) is strictly positive as can be seen by the following obser-
vation

max

{

2cvi ,
cd2i
2vi

}

− 2cbvi ≥ 2cvi − 2cbvi > 0.

123

1764 Algorithmica (2018) 80:1732–1768

Putting everything together we thus obtain that for di/8 ≤ vi ≤ 2bdi

E
[
gi (di , vi) − gi (d

′
i , v

′
i)

] ≤ di
2

(1/16 − 2(4abc + p) − 4c/b) (12)

which is positive if 8abc+ 2p+ 4c/b ≤ 1/16. Since vi = Θ(di) this also shows that
there is a positive constant δ such that E

[
gi (di , vi) − gi (d ′

i , v
′
i)

] ≥ δgi (di , vi).
We finally need to regard the case that max{bvi , 1} = 1. Intuitively, the cap can

only make our situation better. This is formalized by the following computations. We
need to bound

gi (di , vi) − gi (d
′
i , v

′
i) = max

{

2cvi ,
cd2i
2vi

}

− max

{

2c,
cd2i
2

}

. (13)

As above we obtain positive drift for the case max
{
2c, cd2i /2

} = 2c by observing

that max

{

2cvi ,
cd2i
2vi

}

− 2c ≥ 2cvi − 2c ≥ 0 (using that vi ≥ 1). For the case

max
{
2c, cd2i /2

} = cd2i /2 the term in (13) is at least −cd2i /2 ≥ −cd2i /(2bvi) ≥
−4cdi/b as above. The same computation as above thus shows a positivemultiplicative
gain in gi .
Case 3 2bdi < vi < 2di .
Under these conditions gi (di , vi) = di + 2cvi + pdi holds.

As before, we first regard the case that the algorithm moves towards the target
value. Since b ≥ 1/2 it holds that di ≤ 2bdi < vi and the target value is thus
overstepped. However, due to the requirement vi < 2di , the distance of the off-
spring is strictly smaller than the previous distance. The velocity is hence increased
to min{avi , �r/4�} ≤ avi .

With probability 1/2 the algorithm does a step away from the goal. Since we have
di < vi ≤ r/4, we see that even if the ring-metric is in place such a step results in a
rejected offspring and thus a reduced velocity v′

i = max{bvi , 1}. Regard first the case
that v′

i = bvi . Then, due to bvi < 2bdi , the penalty term pdi is no longer applied and
the resulting potential at component i is thus gi (d ′

i , v
′
i) = di + 2cbvi .

Ignoring any possible gains in di , we therefore obtain that the expected difference
in the potential is at least

2cvi

(

1 − a + b

2

)

+ p

2
di .

Note that 1 − (a + b)/2 is negative, since we require a + b > 2. Using vi ≤ 2di we
see that the drift is at least

4cdi

(

1 − a + b

2

)

+ p

2
di = di

(
p

2
− 4c

(
a + b

2
− 1

))

.

Since p > 8c
(a+b

2 − 1
)
this expression is positive. Furthermore, we have gi (di , vi) =

Θ(di), yielding the desired multiplicative drift.

123

Algorithmica (2018) 80:1732–1768 1765

For v′
i = 1 we first observe that v′

i = 1 ≤ di ≤ 2bdi and the penalty term pdi
is thus not in force. Furthermore, we have bdi < bvi ≤ 1 and thus di ≤ 1/b ≤ 2,
showing that max{2/di , di/2} ≤ max{2, 1} = 2. We obtain

E
[
gi (di , vi) − g(d ′

i , v
′
i)

] ≥ p

2
di − cvi (a − 1) ≥ p

2
di − 2(a − 1)cdi ,

which is positive for p/2 − 2(a − 1)c > 0.
Case 4 vi = 2di .
Just as in the previous case, steps away from the target are not accepted, as can be
seen by observing that di < vi ≤ r/4. Thus, regardless of whether or not we move
towards or away from the target, the fitness does not decrease; therefore, the velocity
is decreased to bvi (note that vi ≥ 2 and hence bvi ≥ 1). The previous contribution
of the i-th component to g(x) being di + 2cvi + pdi = di (1 + 4c + p), and the new
potential at the i-th component being di (1 + 4bc), we obtain

E
[
gi (di , vi) − g(d ′

i , v
′
i)

] = di (4c + p − 4bc),

which is strictly positive and linear in gi (di , vi).
Case 5 2di < vi .

Steps towards the optimum are now not accepted, since they overstep the optimum by
too much. Steps away from the optimum are also not accepted since again we have
di < vi ≤ r/4. Therefore, we always decrease the velocity to max{bvi , 1} = bvi
(note that vi > 2 and thus bvi > 1) and the gain in potential is

2cvi + pdi − [2cbvi + pdi] = 2cvi (1 − b) > 4(1 − b)cdi ,

showing that we have multiplicative drift as desired. ��

8 Discussion of Our Results

While many analyses of randomized search heuristics focus on the behavior of the
algorithm independence on a large andgrowingdimension,we additionally considered
a growing size of the search space in each dimension.We considered RLS and the (1+
1) EA with different mutation strengths and proved asymptotically tight optimization
times for a variety of OneMax-type test functions over an alphabet of size r . We
proved that both using large changes (change to uniformly chosen different value)
or very local changes (change value by ±1) leads to relatively slow (linear in r)
optimization times of Θ(rn log n) and Θ(n(r + log n)), respectively.

We then considered a variable step size operator which allows for both large
and small steps with reasonable probability; this leads to an optimization time of
Θ(n log r(log n + log r)). Note that this bound, while polylogarithmic in r , is worse
than the bound ofΘ(n(r+log n)) for the±1 operator when r is asymptotically smaller
than log n log log n. This shows that there is no uniform superior mutation operator
among the three proposed static ones. It remains open whether there is yet another
“natural” static mutation operator achieving a better runtime than each of these two.

123

1766 Algorithmica (2018) 80:1732–1768

We have also shown that a dynamic choice of the mutation strength can bring the
dependence on r further down to logarithmic. In fact, already a simple success-based
update rule achieves this optimal dependence. We have investigated this dynamic
parameter choice only for a variant of RLS. However, already its analysis required
a rather intricate drift-argument, with many different cases to consider and penalty
terms for resolving situations which would otherwise allow for search points with
negative drift. Extending our results to the case of the (1+1) EAmight thus be a very
challenging task, pushing the limits of drift theory.

Note that we chose a specific step size adaptation schemewhich guarantees optimal
run time. It would also be interesting to investigate other adaptation schemes. For
example, the step size, in each iteration, could be drawn from a distribution (just as
in one of the operators presented in [13]), and the parameters of this distribution are
adapted.

Another issue with step sizes is that infeasible areas of the search space might be
reached (in our setting this can happen if we use the interval metric). The issue of
boundary handling is a known problem, and our boundary handling technique is by
no means the only way for dealing with it. We believe that our choice is natural and
leads to a “fair” treatment of all parts of the search space, and it leads to an optimal
run time for our setting. It might be interesting to see whether there are other settings
where a different boundary handling is more natural, or gives better run time.

Acknowledgements This work was supported by a public grant as part of the Investissement d’avenir
project, referenceANR-11-LABX-0056-LMH,LabExLMH, in a joint callwithProgrammeGaspardMonge
en Optimisation et Recherche Opérationnelle.

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics. World Scientific, Singapore (2011)
2. Auger, A., Hansen, N.: Linear convergence on positively homogeneous functions of a comparison

based step-size adaptive randomized search: the (1+1) ES with generalized one-fifth success rule.
CoRR (2013). arXiv:1310.8397

3. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Pro-
ceedings of Parallel Problem Solving from Nature (PPSN’14), Lecture Notes in Computer Science,
vol. 8672, pp. 892–901. Springer (2014)

4. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes
problem. In: Proceedings of Parallel Problem Solving from Nature (PPSN’10), Lecture Notes in Com-
puter Science, vol. 6238, pp. 1–10. Springer (2010)

5. Buzdalov, M., Doerr, B.: Runtime analysis of the (1+ (λ, λ)) genetic algorithm on random satisfiable
3-CNF formulas. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’17).
ACM (2017)

6. Dang, D., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of
Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer Science, vol. 9921, pp.
803–813. Springer (2016)

7. Dietzfelbinger, M., Rowe, J.E., Wegener, I., Woelfel, P.: Tight bounds for blind search on the integers
and the reals. Comb. Probab. Comput. 19, 711–728 (2010)

8. Doerr, B.: Analyzing randomized search heuristics: tools from probability theory. In: Auger, A., Doerr,
B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20. World Scientific Publishing, Singapore
(2011)

9. Doerr, B.,Doerr, C.: The impact of random initialization on the runtimeof randomized search heuristics.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1375–1382.
ACM (2014)

123

http://arxiv.org/abs/1310.8397

Algorithmica (2018) 80:1732–1768 1767

10. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in
discrete settings. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’15),
pp. 1335–1342. ACM (2015)

11. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor.
Comput. Sci. 567, 87–104 (2015)

12. Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision
variables. In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in
Computer Science, vol. 9921, pp. 782–791. Springer (2016)

13. Doerr, B., Doerr, C., Kötzing, T.: The right mutation strength for multi-valued decision variables.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1115–1122.
ACM (2016)

14. Doerr, B., Doerr, C., Yang, J.: k-bit mutation with self-adjusting k outperforms standard bit mutation.
In: Proceedings of Parallel Problem Solving from Nature (PPSN’16), Lecture Notes in Computer
Science, vol. 9921, pp. 824–834. Springer (2016)

15. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. In: Pro-
ceedings of Genetic and Evolutionary Computation Conference (GECCO’16), pp. 1123–1130. ACM
(2016)

16. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift.
In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’11), pp. 2083–2090.
ACM (2011)

17. Doerr, B., Gießen, C.,Witt, C., Yang, J.: The (1+λ) evolutionary algorithmwith self-adjustingmutation
rate. In: Proceedings ofGenetic andEvolutionaryComputationConference (GECCO’17).ACM(2017)

18. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
19. Doerr, B., Johannsen, D.: Adjacency list matchings: an ideal genotype for cycle covers. In: Proceedings

of Genetic and Evolutionary Computation Conference (GECCO’07), pp. 1203–1210. ACM (2007)
20. Doerr, B., Johannsen, D., Schmidt, M.: Runtime analysis of the (1+1) evolutionary algorithm on strings

over finite alphabets. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 119–126.
ACM (2011)

21. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
22. Doerr, B., Pohl, S.: Run-time analysis of the (1+1) evolutionary algorithm optimizing linear func-

tions over a finite alphabet. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO’12), pp. 1317–1324. ACM (2012)

23. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-
box optimization. Theory Comput. Syst. 39, 525–544 (2006)

24. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE
Trans. Evolut. Comput. 3, 124–141 (1999)

25. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
26. Gunia, C.: On the analysis of the approximation capability of simple evolutionary algorithms

for scheduling problems. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO’05), pp. 571–578. ACM (2005)

27. Hansen, N., Gawelczyk, A., Ostermeier, A.: Sizing the population with respect to the local progress in
(1,λ)-evolution strategies—a theoretical analysis. In: Proceedings of IEEE Congress on Evolutionary
Computation (CEC’95), pp. 80–85. IEEE (1995)

28. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell.
127, 57–85 (2001)

29. Jägersküpper, J.: Rigorous runtime analysis of the (1+1) ES: 1/5-rule and ellipsoidal fitness landscapes.
In: Proceedings of Foundations ofGeneticAlgorithms (FOGA’05), LectureNotes inComputer Science,
vol. 3469, pp. 260–281. Springer (2005)

30. Jägersküpper, J.: Oblivious randomized direct search for real-parameter optimization. In: Proceedings
of European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol. 5193, pp.
553–564. Springer (2008)

31. Jansen, T.: Analyzing Evolutionary Algorithms—The Computer Science Perspective. Springer, Berlin
(2013)

32. Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J. Discrete Algorithms
4, 181–199 (2006)

33. Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Saar-
land University. http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/ (2010)

123

http://scidok.sulb.uni-saarland.de/volltexte/2011/3529/

1768 Algorithmica (2018) 80:1732–1768

34. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary algorithms: trends and
challenges. IEEE Trans. Evolut. Comput. 19, 167–187 (2015)

35. Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of
Foundations of Genetic Algorithms (FOGA’15), pp. 40–51. ACM (2015)

36. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary
algorithms. In: Proceedings of Foundations of Genetic Algorithms (FOGA’11), pp. 181–192. ACM
(2011)

37. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)
38. Lissovoi, A., Witt, C.: MMAS vs. population-based EA on a family of dynamic fitness functions.

In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO’14), pp. 1399–1406.
ACM (2014)

39. Mitavskiy, B., Rowe, J., Cannings, C.: Theoretical analysis of local search strategies to optimize
network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern.
2, 243–284 (2009)

40. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and
Their Computational Complexity. Springer, Berlin (2010)

41. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based mutation-combining explo-
ration and exploitation. In: Proceedings of Congress on Evolutionary Computation (CEC’09), pp.
1455–1462. IEEE (2009)

42. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer, Berlin
(2006)

43. Rudolph, G.: An evolutionary algorithm for integer programming. In: Proceedings of Parallel Problem
Solving from Nature (PPSN’94), pp. 139–148. Springer (1994)

44. Scharnow, J., Tinnefeld,K.,Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest
paths problems. J. Math. Model. Algorithms 3, 349–366 (2004)

45. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions.
Comb. Probab. Comput. 22, 294–318 (2013)

46. Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation rates. In: Proceedings
of Parallel Problem Solving from Nature (PPSN’08), Lecture Notes in Computer Science, vol. 5199,
pp. 112–122. Springer (2008)

47. Zarges, C.: On the utility of the population size for inversely fitness proportional mutation rates. In:
Proceedings of Foundations of Genetic Algorithms (FOGA’09), pp. 39–46. ACM (2009)

123

	Static and Self-Adjusting Mutation Strengths for Multi-valued Decision Variables
	Abstract
	1 Introduction
	1.1 Static and Self-Adjusting Mutation Operators for Multi-valued Search Spaces
	1.2 Run Time Analysis of Multi-valued OneMax Functions
	1.3 Our Results
	1.4 Related Works

	2 Algorithms and Problems
	2.1 Alternative Representations

	3 Drift Analysis
	3.1 A New Drift Theorem

	4 Mutation Strength Chosen Uniformly at Random
	4.1 RLS with Uniform Mutation Strength
	4.2 The (1+1) EA with Uniform Mutation Strength
	4.2.1 An Upper Bound for the Run Time
	4.2.2 A Lower Bound for the Run Time

	5 Unit Mutation Strength
	6 Harmonic Mutation Strength
	6.1 Lower Bound for the Dependence on r

	7 Self-Adjusting Mutation Rates
	7.1 Adaptive Parameter Choices
	7.2 The Self-Adjusting RLS Variant, Main Result, and Proof Overview
	7.3 Proof of the Upper Bound in Theorem 17

	8 Discussion of Our Results
	Acknowledgements
	References

